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Abstract  
Ruminants plays an important role in global warming by emitting enteric methane (CH4) through the degradation of feeds by 
the rumen microbiota. To better understand the dynamics fermentation outputs, including methane and volatile fatty acids 
(VFA) production, mathematical models have been developed. Sensitivity analysis (SA) methods quantify the contribution of 
model input parameters (IP) to the variation of an output variable of interest. In animal science, SA are usually conducted in 
static condition. In this work, we hypothesized that including the dynamic aspect of the rumen fermentation to SA can be useful 
to inform on optimal experimental conditions aimed at quantifying the key mechanisms driving CH4 and VFA production. 
Accordingly, the objective of this work was to conduct a dynamic SA of a rumen fermentation model under in vitro continuous 
conditions (close to the real in vivo conditions). Our model case study integrates the effect of the macroalgae Asparagopsis 
taxiformis (AT) on the fermentation. AT has been identified as a potent CH4 inhibitor via the presence of bromoform, an anti-
methanogenic compound. We implemented two SA methods. We computed Shapley effects and full and independent Sobol 
indices over time for quantifying the contribution of 16 IPs to CH4 (mol/h) and VFA (mol/l) variation. Our approach allows to 
discriminate the 3 contribution types of an IP to output variable variation (individual, via the interactions and via the 
dependence/correlation). We studied three diet scenarios accounting for several doses of AT relative to Dry Matter (DM): control 
(0% DM of AT), low treatment (LT: 0.25% DM of AT) and high treatment (HT: 0.50% DM of AT). Shapley effects revealed that 
hydrogen (H2) utilizers microbial group via its Monod H2 affinity constant highly contributed (> 50%) to CH4 variation with a 
constant dynamic over time for control and LT. A shift on the impact of microbial pathways driving CH4 variation was revealed 
for HT. IPs associated with the kinetic of bromoform utilization and with the factor modeling the direct effect of bromoform on 
methanogenesis were identified as influential on CH4 variation in the middle of fermentation. Whereas, VFA variation for the 3 
diet scenarios was mainly explained by the kinetic of fibers degradation, showing a high constant contribution (> 30%) over time. 
In addition, the Sobol indices indicated that interactions between IPs played a role on CH4 variation, which was not the case of 
VFA variation. However, these results are dependent on the way interactions are represented in the model. The simulations 
computed for the SA were also used to analyze prediction uncertainty. It was related to the dynamic of dry matter intake (DMI, 
g/h), increasing during the high intake activity periods and decreasing when the intake activity was low. Moreover, CH4 (mol/h) 
simulations showed a larger variability than VFA simulations, suggesting that the reduction of the uncertainty of IPs describing 
the activity of the H2 utilizers microbial group is a promising lead to reduce the overall model uncertainty. Our results highlighted 
the dynamic nature of the influence of metabolic pathways on CH4 productions under an anti-methanogenic treatment. SA tools 
can be further exploited to design optimal experiments studying rumen fermentation and CH4 mitigation strategies. These 
optimal experiments would be useful to build robust models that can guide the development of sustainable nutrition strategies.  
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1. Introduction 1 

Reducing methane (CH4) emissions from ruminants is an important challenge for the livestock 2 

sector. At the global level, these emissions are responsible of 14.5% of total greenhouse gases 3 

(GHG) from human activity sources (Fao, 2017), highlighting the important role of ruminants 4 

in global warming. In France, CH4 emissions represented 48% of total GHG emissions from 5 

agricultural sector in 2021 (CITEPA, 2023). In this context, Masson-Delmotte et al. (2019) 6 

highlighted that decreasing agricultural CH4 emissions by 11 to 30% of the 2010 level by 2030 7 

and by 24 to 47% by 2050 must be achieved to meet the 1.5 °C target of the Paris Agreement. 8 

In addition, Arndt et al. (2022) indicated that some mitigation strategies scenarios may allow 9 

to meet the 1.5 °C target by 2030. However, this study also highlighted that it was not possible 10 

to meet this target by 2050 considering that expected increase in milk and meat demand will 11 

lead to an increase of GHG emissions. 12 

Ruminants produce CH4 during the degradation and fermentation of feeds (Morgavi et al., 13 

2010; Beauchemin et al., 2020). The fermentation process is done by a complex community 14 

of microbes inhabiting the forestomach (rumen) of ruminants. These microbial community 15 

(rumen microbiota) are constituted by members of bacteria, archaea, fungi and protozoa. The 16 

products of fermentation include volatile fatty acids (VFA), which are useful compounds for 17 

the animal, and CH4. The development of mitigation actions aiming to reduce the enteric CH4 18 

production without affecting animal performance and welfare is a crucial challenge for the 19 

field (Hristov et al., 2013; Pellerin et al., 2013; Torres et al., 2020).  20 

To better understand rumen fermentation and help design such strategies, mechanistic 21 

models describing the dynamic process of the rumen fermentation were developed. A 22 

synthesis of the characteristics of these models is presented by Tedeschi et al. (2014). Among 23 

these, the 3 most popular dynamic mechanistic models of rumen fermentation are: Molly 24 

(Baldwin et al., 1987), Dijkstra et al. (1992) and Karoline (Danfær et al., 2006).  25 

These dynamic models involved numerous input parameters (IPs) representing biological and 26 

physical processes. The complexity of such models raises the need to investigate model 27 

behaviour, including the various relationships among IPs and outputs. To address this need, 28 

sensitivity analysis (SA) methods were used to assess the contribution of IP variability on the 29 

variability of the output of interest, identifying IPs which contribute the most to model 30 

predictions variability from those having a negligible effect (Faivre et al., 2013; Iooss and 31 

Lemaître, 2015; Saltelli et al., 2008, 2005). 32 

In animal science, SA is usually conducted on mechanistic models with the main objective of 33 

reducing their complexity and identifying which IPs requires more accurate measurements for 34 

reducing output uncertainty. For instance, Huhtanen et al. (2015) and van Lingen et al. (2019) 35 

used linear regressions for describing the effects of some parameters on the variation of daily 36 

scale enteric CH4 emissions in the Karoline model and an updated version of the Dijkstra 37 

model, respectively. In addition, Morales et al. (2021) and Dougherty et al. (2017) computed 38 

the Sobol indices (Sobol, 1993) for quantifying the effects of 19 and 20 parameters on several 39 

output variables of the Molly and AusBeef (Nagorcka et al., 2000) models, respectively. 40 
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Morales et al. (2021) did not consider the CH4 production among the 27 output variables 41 

studied, while VFAs were considered. Dougherty et al. (2017) considered the daily CH4 42 

production in the output variables. In both studies, uniform distributions were set for 43 

exploring parameter variability. Recently, Merk et al. (2023) adapted and calibrated the model 44 

of Muñoz-Tamayo et al. (2021) to represent experimental data from the in vitro RUSITEC study 45 

of Roque et al. (2019), which aimed at evaluating the effect of the macroalgae Asparagosis 46 

taxiformis (AT) on CH4 production and rumen microbiota. Authors used a Sobol based 47 

approach for identifying key parameters associated to microbial pathways driving CH4 48 

production with and without the presence of AT.   49 

Although different SA approaches were applied to mechanistic models in the literature, 50 

several aspects still need to be explored. One aspect is the dynamic characteristic of the rumen 51 

fermentation. Most of the studies mentioned above explored sensitivity of mechanistic 52 

models at a single time point or under steady state conditions. However, the impact of IPs 53 

might vary over time, since the rumen is a dynamic system. Capturing this dynamic effect is of 54 

relevance to better understand rumen function (Morgavi et al., 2023) and to design CH4 55 

mitigation strategies. To our knowledge, SA has not been applied in dynamic conditions for 56 

studying CH4 and VFA predictions of rumen models. Other aspect to explore in mechanistic 57 

models is the nature of the contribution of the IPs to model outputs by identifying: 1) the 58 

effect due to the IPs alone, 2) the effect due to the interactions between the IPs and 3) the 59 

effect due to the dependence or correlation between the IPs. Some references mentioned 60 

above implemented a method differentiating some effects of the contribution of an IP to 61 

output (individual, interaction and dependence/correlation). Dougherty et al. (2017) 62 

computed first-order and total Sobol indices (Homma and Saltelli, 1996), quantifying the 63 

individual and interaction effects of IPs. Whereas, van Lingen et al. (2019) concluded that 64 

there was no interaction between parameter covariates when studying the variation of daily 65 

scale enteric CH4 emissions. The quantification of the contribution due to the 66 

dependence/correlation between the IPs has been an important research activity of the 67 

applied mathematics field for several years now (Kucherenko et al., 2012; Mara et al., 2015; 68 

Xu and Zdzislaw Gertner, 2008). Not all the SA methods are able to identify these 3 effects, 69 

conducting to biases in the estimated sensitivity indices. 70 

The aim of this work was to conduct a complete SA of a dynamic model of rumen fermentation 71 

under in vitro continuous conditions accounting for the effect of AT on the fermentation and 72 

CH4 production. The model studied extends previous developments of Muñoz-Tamayo et al. 73 

(2016, 2021). The AT macroalgae has been identified as a potent CH4 inhibitor (Machado et 74 

al., 2014) with reported in vivo reductions of CH4 emissions over 80% and 98% in beef cattle 75 

(Kinley et al., 2020; Roque et al., 2021). The original model (Muñoz-Tamayo et al., 2021) 76 

represented the fermentation under batch conditions. We extended the model to account for 77 

continuous condition which aimed at providing a model closer to the in vivo conditions. Also, 78 

the in silico framework in which SA is conducted was used to analyze the uncertainty 79 

associated with the outputs of interest over time. This work also addresses the limitations 80 

pointed out by Tedeschi (2021) in the evaluation process of the model in Muñoz-Tamayo et 81 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 23, 2024. ; https://doi.org/10.1101/2024.06.19.599712doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.19.599712
http://creativecommons.org/licenses/by/4.0/


 

PEER C 4 

al. (2021),  which did not include SA to assess the impact of model parameters on the model 82 

outputs. 83 

2. Methods 84 

2.1. Presentation of the mechanistic model 85 

2.1.1. Phenomena representation   86 

The structure of the rumen fermentation model used in this study is determined by the 87 

representation of two phenomena namely the flow transport and microbial fermentation. The 88 

first is a biochemical and physical phenomenon describing the transport fluxes in the system, 89 

here represented as a reactor. The second is a biological phenomenon describing the 90 

microbial fermentation of feeds.  91 

The system studied is displayed in Figure 1.  92 

 93 

 94 

This system is represented as a reactor system similar to engineering anaerobic digestion 95 

reactors (Batstone et al., 2002). It represents a rumen simulation technique (RUSITEC) system 96 

on a daily scale. Characteristics of the simulated RUSITEC system were taken from the setting 97 

used in Belanche et al., 2017. The total volume of the system was set to 0.8 L with a separation 98 

of 0.74 L in liquid phase (Vl) and 0.06 L in gas phase (Vg). The daily total dry matter intake (DMI) 99 

was of 11.25 g/d. In our model, the DMI was set as a dynamic equation determined by the 100 

number of feed distributions (𝑛𝑟). For the feed distribution 𝑗, the DMI kinetics follows  101 

𝐷𝑀𝐼(t) =
𝜆𝑛𝑗

. 𝐷𝑀𝑡𝑜𝑡𝑎𝑙

𝑛𝑟
. e−𝑘t (1) 102 

Where 𝐷𝑀𝑡𝑜𝑡𝑎𝑙  is the total DMI ingested in one day (g),  𝜆𝑛𝑗
 is the fraction   of 𝐷𝑀𝑡𝑜𝑡𝑎𝑙  supplied 103 

in the distribution 𝑗 and 𝑘 (h-1) is the intake kinetic rate. 𝐷𝑀𝑡𝑜𝑡𝑎𝑙  was set to 11.25 g supplied 104 

in two feed distributions (𝑛𝑟 = 2). We set the first feed distribution to account for 70% of the 105 

Figure 1. Representation of the in vitro continuous system. 
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total DM (𝜆𝑛1
= 0.7).  This configuration provides a daily DMI composed of 2 distributions 106 

with a significantly greater amount of dry matter (DM) ingested during the first intake and a 107 

medium intake kinetic (Figure 2). 108 

 109 

 110 

The feed intake constitutes the input flux of the system. The feed is degraded by the rumen 111 

microbiota, leading to the production of several components in liquid and gas phase. Polymer 112 

components, soluble components and microbial functional groups are the components in 113 

liquid phase, and hydrogen, carbon dioxide and CH4 are the components in gas phase. 114 

Chemical compounds leave the system in liquid and gas phases as shown in Figure 1.  115 

The representation of the fermentation process is displayed in Figure 3.  116 

 117 

 118 

Figure 2. Dry matter intake (DMI, g/h) over time (h) simulated for one day with 𝐷𝑀𝑡𝑜𝑡𝑎𝑙 =

11.25 g, 𝑛𝑟 = 2, 𝜆𝑛1
= 0.7 and k = 0.015. 

Figure 3. Representation of the in vitro rumen fermentation from Muñoz-Tamayo et al., 2021 

model. 
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Biochemical assumptions used to describe the fermentation are detailed in Muñoz-Tamayo et 119 

al. (2021, 2016). The main assumptions are: 1) 3 polymer components are considered in the 120 

rumen: fiber carbohydrates, non-fiber carbohydrates and proteins, 2) hydrolysis of polymer 121 

components releases glucose (for fibers and non-fibers) and amino acids (for proteins), 122 

constituting 2 of the 3 soluble limiting substrates available in the rumen. The last soluble 123 

limiting substrate available is hydrogen, 3) the rumen microbiota is represented by 3 microbial 124 

functional groups (glucose utilizers, amino acids utilizers and hydrogen utilizers) determined 125 

by the microbial utilization of the 3 soluble limiting substrates in the fermentation pathway, 126 

4) the utilization of the soluble substrates by biological pathways is done towards 2 127 

mechanisms: product formation and microbial growth, 5) acetate, propionate and butyrate 128 

are the only VFA produced from the fermentation and 6) CH4, carbon dioxide and hydrogen 129 

are the gas outputs of the fermentation.  130 

The inclusion of bromoform as the inhibitor compound of AT impacted the fermentation via 131 

2 mechanisms. First, the bromoform has a direct inhibition of the growth rate of 132 

methanogens, resulting in a CH4 production reduction and hydrogen accumulation. Second, 133 

the bromoform affects indirectly, through the hydrogen accumulation, the flux allocation 134 

towards VFA production, as hydrogen exerts control on this component (Mosey, 1983).   135 

The resulting model comprises 19 state variables corresponding to 19 biochemical component 136 

concentrations in liquid and gas phases. 137 

2.1.2. Model equations 138 

Model state variables are defined as 𝛏 = (𝐳, 𝐬, 𝐱, 𝐬𝐠), where 𝐳 = (𝑧ndf, 𝑧nsc, 𝑧pro) is the vector 139 

of concentrations of the polymer components (neutral detergent fiber, non-structural 140 

carbohydrates and proteins; g/L), 𝐬 = (𝑠su, 𝑠aa, 𝑠ac, 𝑠bu, 𝑠pr, 𝑠IN, 𝑠IC, 𝑠H2
, 𝑠CH4

, 𝑠br)  is the 141 

vector of concentrations of the soluble components (sugars, amino acids, acetate, butyrate, 142 

propionate, inorganic nitrogen, inorganic carbon, hydrogen, CH4 and bromoform; mol/L), 𝐱 =143 

(𝑥su, 𝑥aa, 𝑥H2
) is the vector of concentrations of the microbial functional groups (sugars 144 

utilizers, amino acids utilizers and hydrogen utilizers; mol/L) ,𝐬𝐠 = (𝑠g,CO2
, 𝑠g,H2

, 𝑠g,CH4
) is the 145 

vector of concentrations in gas phase (carbon dioxide, hydrogen and CH4; mol/L). The polymer 146 

components include an input flux in their equation and all the components are associated with 147 

an output flux in liquid or gas phase. The input flux (g/(Lh)) of polymer components is 148 

described as  149 

𝐹𝑖,in =  
𝑤𝑖 .  𝐷𝑀𝐼

𝑉l

(2) 150 

where 𝑤𝑖 is the fraction of polymer component 𝑖 in the diet of the animal, 𝐷𝑀𝐼 is the DM 151 

intake (g/h) with a total DM of 11.25 g split in two feed distributions along the day with the 152 

first distribution accounts for 70% of the total DM, and 𝑉l  the volume in liquid phase of the 153 

rumen (L). 154 

The output flux in liquid phase (g/(Lh) for polymer components and mol/(Lh) for soluble and 155 

microbial functional groups components) is described as 156 
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𝐹𝑖,out,l =  𝐷 . 𝑧𝑖, for polymer components (3) 157 

𝐹𝑖,out,l =  𝐷 . 𝑠𝑖, for soluble components (4) 158 

𝐹𝑖,out,l =  𝐷 . 𝑥i, for microbial functional groups (5) 159 

where 𝐷 is the dilution rate  (𝐷 = 0.035 h-1, Bayat et al., 2011), 𝑧𝑖 is the concentration of 160 

polymer component 𝑖, 𝑠𝑖 is the concentration of soluble component 𝑖 and 𝑥𝑖  is the 161 

concentration of microbial functional group 𝑖. 162 

The output flux in gas phase (mol/(Lh)) is described as 163 

𝐹𝑖,out,g =  
𝑞g . 𝑠g,𝑖

𝑉g

(6) 164 

where 𝑞g =
𝑅 .𝑇 .𝑉l .(𝜌T,H2+𝜌T,CO2+𝜌T,CH4)

𝑃−𝑝H2O
 is the output flow of gas phase (L/h) wit 𝑅 the ideal 165 

gas constant (barL/(molK)), 𝑇 the temperature of the rumen (K), 𝜌T,H2
, 𝜌T,CO2

 and 𝜌T,CH4
 the 166 

liquid-gas transfer phenomena rates of hydrogen, carbon dioxide and CH4 (mol/(Lh)), 167 

respectively, 𝑃 the total pressure (bars) and 𝑝H2O the partial pressure of water vapor (bar). 168 

𝑠g,𝑖 is the concentration of component 𝑖 in gas phase (mol/L) and 𝑉g  is the volume in gas 169 

phase of the rumen (L).  170 

Model equations are derived from mass balance equations described below.   171 

For polymer components 172 

d𝑧ndf

dt
= 𝐹ndf,in −  𝜌ndf − 𝐹ndf,out,l (7) 173 

d𝑧nsc

dt
= 𝐹nsc,in −  𝜌nsc + (𝑓ch,x . 𝑤mb). (𝜌𝑥su

+ 𝜌𝑥aa
+ 𝜌𝑥H2

) − 𝐹nsc,out,l (8) 174 

d𝑧pro

dt
= 𝐹pro,in −  𝜌pro +  (𝑓pro,x . 𝑤mb). (𝜌𝑥su

+ 𝜌𝑥aa
+ 𝜌𝑥H2

) − 𝐹pro,out,l (9) 175 

where 𝐹ndf,in, 𝐹nsc,in and𝐹pro,in  are the input fluxes of neutral detergent fiber, non-structural 176 

carbohydrates and proteins (g/(Lh)), respectively. 𝜌ndf, 𝜌nsc and 𝜌pro are the hydrolysis rate 177 

functions of polymer components (g/(Lh)), indicating the kinetic of hydrolysis of polymer 178 

components. These functions are described as 179 

𝜌𝑖 = 𝑘hyd,𝑖. 𝑧𝑖 (10) 180 

With 𝑘hyd,𝑖 the hydrolysis rate constant (h-1) and 𝑧𝑖 the concentration of polymer component 181 

𝑖 (g/L). 𝐹ndf,out, 𝐹nsc,out and 𝐹pro,out are the output fluxes of polymer components (g/(Lh)). The 182 

middle part of equations (8) and (9) represents  the recycling of dead microbial cells where 183 

𝑓ch,x, 𝑓pro,x are the fractions of carbohydrates and proteins of the biomass, 𝑤mb is the 184 

molecular weight of microbial cells (g/mol) and 𝜌𝑥su
= 𝑘d . 𝑥su, 𝜌𝑥aa

= 𝑘d . 𝑥aa,  𝜌𝑥H2
=185 

𝑘d . 𝑥H2
 are the cell death rate of sugars utilizers, amino acids utilizers and hydrogen utilizers 186 

(mol/(Lh)) with 𝑘d the rate of dead of microbial cells (h-1). 187 

For soluble components 188 

d𝑠su

dt
=

𝜌ndf

𝑤su
+

𝜌nsc

𝑤su
− 𝜌su − 𝐹su,out,l (11) 189 

 
d𝑠aa

dt
=

𝜌pro

𝑤aa
− 𝜌aa − 𝐹aa,out,l (12) 190 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 23, 2024. ; https://doi.org/10.1101/2024.06.19.599712doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.19.599712
http://creativecommons.org/licenses/by/4.0/


 

PEER C 8 

d𝑠H2

dt
= 𝑌H2,su . 𝜌su + 𝑌H2,aa . 𝜌aa −  𝜌H2

− 𝜌T,H2
− 𝐹H2,out,l (13) 191 

d𝑠ac

dt
= 𝑌ac,su . 𝜌su + 𝑌ac,aa . 𝜌aa − 𝐹ac,out,l (14) 192 

d𝑠bu

dt
= 𝑌bu,su . 𝜌su + 𝑌bu,aa . 𝜌aa − 𝐹bu,out,l (15) 193 

d𝑠pr

dt
= 𝑌pr,su . 𝜌su + 𝑌pr,aa . 𝜌aa − 𝐹pr,out,l (16) 194 

d𝑠IN

dt
= 𝑌IN,su . 𝜌su + 𝑌IN,aa . 𝜌aa + 𝑌IN,H2

 . 𝜌H2
− 𝐹IN,out,l (17) 195 

d𝑠IC

dt
= 𝑌IC,su . 𝜌su + 𝑌IC,aa . 𝜌aa + 𝑌IC,H2

 . 𝜌H2
− 𝜌T,CO2

− 𝐹IC,out,l (18) 196 

d𝑠CH4

dt
= 𝑌CH4,H2

 . 𝜌H2
− 𝜌T,CH4

− 𝐹CH4,out,l (19) 197 

Let us detail how the amino acids are produced and used by the biological pathways in the 198 

fermentation process. Equation (12) indicates that amino acids are produced (positive sign in 199 

the equation) from the degradation of proteins, occurring with the kinetic rate 𝜌pro (g/L h), 200 

which is divided by the molecular weight of the amino acids 𝑤aa (g/mol). Moreover, amino 201 

acids are utilized (negative sign in the equation) by the biological pathways during the 202 

fermentation with the kinetic rate 𝜌aa (mol/Lh). The kinetic rate 𝜌aa is a function indicating 203 

the kinetic of utilization of amino acids during the fermentation and is described as 204 

𝜌aa =
𝑘m,aa. 𝑠aa. 𝑥aa

𝐾S,aa + 𝑠aa

(20) 205 

With 𝑘m,aa the maximum specific utilization rate constant of amino acids (mol substrate/(mol 206 

biomass h)), 𝑠aa the concentration of amino acids (mol/L), 𝑥aa the concentration of amino 207 

acids-utilizing microbes (mol/L) and 𝐾S,aa the Monod affinity constant associated with the 208 

utilization of amino acids (mol/L). 𝐹aa,out is the output flux of amino acids concentration 209 

(mol/(Lh)). Then, further in the fermentation, amino acids are utilized by the specific microbial 210 

functional group 𝑥aa and contributed to the production of hydrogen (Equation 13), VFA 211 

(Equations 14, 15, 16), inorganic nitrogen (Equation 17) and inorganic carbon (Equation 18) 212 

with a stoichiometry represented by the yield factors 𝑌H2,aa, 𝑌ac,aa, 𝑌bu,aa, 𝑌pr,aa, 𝑌IN,aa and 213 

𝑌IC,aa, respectively. These components are also produced from glucose metabolism. In the last 214 

step of the biochemical conversion cascade, inorganic nitrogen and inorganic carbon are 215 

utilized during the reaction of hydrogen utilization in liquid phase with the kinetic rate 216 

function 𝜌H2
 (mol/L h), described similarly as Equation (20). An additional term (𝐼br) is included 217 

to represent the inhibition effect of bromoform on the hydrogen utilizers (methanogens) as 218 

detailed later on. Hydrogen in liquid phase is also associated with a transfer phenomenon with 219 

hydrogen in gas phase given by the rate 𝜌T,H2
 (mol/(Lh)). This liquid-gas transfer phenomenon 220 

also concerns carbon dioxide with the rate 𝜌T,CO2
 (mol/(Lh)) and CH4 (Equation 19) with the 221 

rate 𝜌T,CH4
(mol/(Lh)). The general equation of the liquid-gas transfer rate is described as 222 

𝜌T,𝑖 = 𝑘La. (𝑠𝑖 − 𝐾H,𝑖. 𝑝g,𝑖) (21) 223 
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With 𝑘La the mass transfer coefficient (h-1), 𝑠𝑖 the concentration (mol/L), 𝐾H,𝑖 the Henry’s law 224 

coefficient (M/bar) and 𝑝g,𝑖 the partial pressure (bars) of soluble component 𝑖. 225 

Finally, CH4 in liquid phase is produced using hydrogen in liquid phase with the stoichiometry 226 

𝑌CH4,H2
. 227 

For microbial functional groups 228 

d𝑥su

dt
= 𝑌su . 𝜌su − 𝜌𝑥su

− 𝐹𝑥su,out,l (22) 229 

d𝑥aa

dt
= 𝑌aa . 𝜌aa − 𝜌𝑥aa

− 𝐹𝑥aa,out,l (23) 230 

d𝑥H2

dt
= 𝑌H2

 . 𝜌H2
− 𝜌𝑥H2

− 𝐹𝑥H2 ,out,l (24) 231 

Microbial functional groups of glucose utilizers (Equation 22), amino acid utilizers (Equation 232 

23) and hydrogen utilizers (Equation 24) are produced from their respective substrates with 233 

the yield factors 𝑌su, 𝑌aa and  𝑌H2
, respectively. 234 

For the gas phase 235 

d𝑠g,CO2

dt
= 𝑉l .

𝜌T,CO2

𝑉g
− 𝐹CO2,out,g (25) 236 

d𝑠g,H2

dt
= 𝑉l .

𝜌T,H2

𝑉g
− 𝐹H2,out,g (26) 237 

d𝑠g,CH4

dt
= 𝑉l .

𝜌T,CH4

𝑉g
− 𝐹CH4,out,g (27) 238 

The dynamics of carbon dioxide (Equation 25), hydrogen (Equation 26) and CH4 (Equation 239 

27) in gas phase are driven by the liquid-gas transfer phenomena given by the rates 𝜌T,CO2
, 240 

𝜌T,H2
 and 𝜌T,CH4

 (mol/(Lh)), respectively. 241 

Model parameters were either set with values extracted from the literature (Batstone et al., 242 

2002; Serment et al., 2016), set with values reported from in vitro study providing the 243 

experimental data (Chagas et al., 2019) or estimated using the maximum likelihood 244 

estimator as reported in Muñoz-Tamayo et al. (2021). In the present study, initial conditions 245 

of state variables were determined by running the model for 50 days without AT supply 246 

(control condition). The idea was to reach a quasi-steady state of the state variables. Values 247 

corresponding to the last time step simulated were selected as initial conditions of the 248 

model for the further analysis explained below. 249 

2.1.3. Integration of the macroalgae Asparagosis 250 

taxiformis 251 

The integration of bromoform contained in AT conducted to the incorporation of the 19th state 252 

variable representing the dynamic of bromoform concentration. 253 

d𝑠br

dt
= 𝐹br,in − 𝑘br . 𝑠br − 𝐹br,out (28) 254 

Where 𝐹br,in =  
𝑤br .  𝐷𝑀𝐼

𝑉l
 is the input flux of bromoform concentration (g/(Lh)) with 𝑤br the 255 

fraction of bromoform in the diet of the animal. 𝑘br corresponds to the kinetic rate of 256 
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bromoform utilization (h-1) and 𝐹br,out =  𝐷 . 𝑠br is the output flux of bromoform 257 

concentration (g/(Lh)). The value of 𝑘br was obtained from data reported in Romero et al. 258 

(2023b) .  259 

The direct effect of bromoform on the CH4 production is represented through the factor 𝐼br 260 

(Equation 29) impacting the kinetic rate function of hydrogen utilization (𝜌H2
). This factor is a 261 

function of the bromoform concentration and is modeled by a sigmoid shape. Whereas the 262 

indirect effect of bromoform on the flux allocation towards VFA production is represented 263 

through the flux allocation parameters 𝜆, describing the 3 reactions driving flux allocation 264 

from glucose utilization to VFA production. 𝜆1, 𝜆2 and 𝜆3 indicates the molar fraction of 265 

glucose utilized to produce acetate, to produce propionate and to produce butyrate, 266 

respectively. They follow 𝜆1 +  𝜆2 + 𝜆3 = 1. λ1 (Equation 30) and 𝜆2 (Equation 31) are 267 

represented by affine functions described below.    268 

𝐼br = 1 −
1

1 + exp(−𝑝1. (𝑠br + 𝑝2))
 (29) 269 

With 𝑠br the bromoform concentration (g/L) and 𝑝1, 𝑝2 the parameters of sigmoid function. 270 

𝜆1 = 𝑝3 − 𝑝4. 𝑝H2
 (30) 271 

With 𝑝H2
 the hydrogen partial pressure (bars) and 𝑝3, 𝑝4 the parameters of affine function. 272 

𝜆2 = 𝑝5 + 𝑝6. 𝑝H2
 (31) 273 

With 𝑝H2
 the hydrogen partial pressure (bars) and 𝑝5, 𝑝6 the parameters of affine function. 274 

These factors are displayed in Figure 4. 275 

 276 

 277 

Figure 4. Representation of the direct effect of Asparagosis taxiformis on the methane 

production (𝐼br) against the bromoform concentration (𝑠br, mg/L), and of the indirect effect 

of Asparagosis taxiformis, through the hydrogen accumulation, on the flux allocation towards 

acetate production (𝜆1) and propionate production (𝜆2) against the hydrogen partial pressure 

(𝜌H2
). 
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It should be noted that the model version of Muñoz-Tamayo et al. (2021) includes an inhibition 278 

factor of glucose utilization by hydrogen (𝐼H2
). This factor was incorporated to account for the 279 

reduced production of VFA under AT supply observed in the experiments of Chagas et al. 280 

(2019). However, in the present study, we decided not to include this term. Some studies have 281 

shown that high doses of AT decrease total VFA both in vitro (Chagas et al., 2019; Kinley et al., 282 

2016; Machado et al., 2016; Terry et al., 2023) and in vivo (Li et al., 2016; Stefenoni et al., 283 

2021). However, in other studies the total VFA was unaffected by AT supplementation under 284 

in vitro (Romero et al., 2023b; Roque et al., 2019) and in vivo (Kinley et al., 2020) conditions. 285 

These discrepancies might be due to the variability of physical processing of the macroalgae 286 

(e.g., drying, storage). The incorporation of the hydrogen inhibition factor was indeed 287 

challenged by Henk Van Lingen in the evaluation of the model in Muñoz-Tamayo et al., (2021) 288 

(Tedeschi, 2021). Accordingly, we acknowledge that this aspect requires further studies, and 289 

it is not then included in the present work. We then run again the calibration of the model 290 

without the 𝐼H2
 factor under batch conditions using the experimental data from Chagas et al. 291 

(2019) to estimate the parameters from equations (28-30). In the process, with the aim of 292 

model simplification, we set the allocation factors 𝜆1, 𝜆2 as linear functions of 𝑝H2
. The 293 

updated version of the model under batch conditions is available at Muñoz-Tamayo (2020).  294 

 295 

Table 1. Stoichiometry matrix of biochemical reactions occurring during the rumen 296 

fermentation. 297 

 Component → i 1 2 3 4 5 6 7 8 Kinetic rate 

j Microbial process   ↓ 𝑧ndf 𝑧nsc 𝑧pro 𝑠su 𝑠aa 𝑠H2
 𝑠ac 𝑠bu  

1 Hydrolysis of NDF -1   1 𝑤su⁄      𝜌ndf 

1 Hydrolysis of NSC  -1  1 𝑤su⁄      𝜌nsc 

2 Hydrolysis of proteins   -1  1 𝑤aa⁄     𝜌pro 

3 Utilization of glucose    -1  𝑌H2,su 𝑌ac,su 𝑌bu,su 𝜌su 

4 Utilization of amino acids     -1 𝑌H2,aa 𝑌ac,aa 𝑌bu,aa 𝜌aa 

5 Utilization of hydrogen      -1   𝜌H2
 

6 Death of sugars utilizers  𝑓ch,x . 𝑤mb 𝑓pro,x . 𝑤mb      𝜌xsu
 

7 Death of amino acids utilizers  𝑓ch,x . wmb 𝑓pro,x . 𝑤mb      𝜌xaa
 

8 Death of hydrogen utilizers  𝑓ch,x . 𝑤mb 𝑓pro,x . 𝑤mb      𝜌xH2
 

9 Inhibition of bromoform          

           

           

 Component → i 9 10 11 12 13 14 15 16 Kinetic rate 

j Microbial process ↓ 𝑠pr 𝑠IN 𝑠IC 𝑠CH4
 𝑥su 𝑥aa 𝑥H2

 𝑠br  

1 Hydrolysis of NDF          𝜌ndf 

1 Hydrolysis of NSC         𝜌nsc 

2 Hydrolysis of proteins         𝜌pro 

3 Utilization of glucose 𝑌pr,su 𝑌IN,su 𝑌IC,su  𝑌su    𝜌su 

4 Utilization of amino acids 𝑌pr,aa 𝑌IN,aa 𝑌IC,aa   𝑌aa   𝜌aa 

5 Utilization of hydrogen  𝑌IN,H2
 𝑌IC,H2

 𝑌CH4,H2
   𝑌𝐻2

  𝜌H2
 

6 Death of sugars utilizers     -1    𝜌𝑥su
 

7 Death of amino acids utilizers      -1   𝜌𝑥aa
 

8 Death of hydrogen utilizers       -1  𝜌𝑥H2
 

9  Inhibition of bromoform        −𝑘br  

           

 298 

Table 2. Model parameters 299 
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 Definition Unit Value Reference 

Rates     

𝜇𝑗 
Growth rate of the microbial 

group 𝑗 
mol j/(L h) 𝑌𝑗 . 𝜌𝑗  

𝜌𝑗 
Kinetic rate of microbial 

process 𝑗 
Mol (or g) j/(L h) 𝑘m,𝑗

𝑠𝑗

𝐾s,𝑗 + 𝑠𝑗

𝑥𝑗  

𝜌𝑥𝑗
 Death cell rate of microbes 𝑗 mol j/(L h) 𝑘d. 𝑥j  

𝜌T,𝑗 
Liquid-gas transfer rate of 

component 𝑗 
mol j/(L h) 𝑘La. (𝑠𝑗 − 𝐾H,𝑗 . 𝑝gas,𝑗)  

Biochemical parameters 

𝜆1 
Molar fraction of the sugars 

utilized to produce acetate 
mol/mol 𝑝3 − 𝑝4 . 𝑝H2

  

𝜆2 
Molar fraction of the sugars 

utilized to produce acetate 
mol/mol 𝑝5 + 𝑝6 . 𝑝H2

  

𝜆3 
Molar fraction of the sugars 

utilized to produce acetate 
mol/mol 1 − (𝜆1 + 𝜆2)  

𝜎ac,aa 

Stoichiometry coefficient of 

acetate production from amino 

acids utilization 

mol/mol 0.67  

𝜎bu,aa 

Stoichiometry coefficient of 

butyrate production from 

amino acids utilization 

mol/mol 0.24  

𝜎pr,aa 

Stoichiometry coefficient of 

propionate production from 

amino acids utilization 

mol/mol 0.062  

𝜎H2,aa 

Stoichiometry coefficient of 

hydrogen production from 

amino acids utilization 

mol/mol 0.82  

𝜎IC,aa 

Stoichiometry coefficient of 

inorganic carbon production 

from amino acids utilization 

mol/mol 0.88  

𝑓H2
 

Fraction of hydrogen utilized 

for product formation 
mol/mol 1 − 10 . 𝑌H2

  

𝑓su 
Fraction of glucose utilized for 

product formation 
mol/mol 1 −

5

6
 . 𝑌su  

𝑓ch,x 
Mass fraction of carbohydrates 

in the microbial cells 
g/g 0.20  

𝑓pro,x 
Mass fraction of proteins in the 

microbial cells 
g/g 0.55  

𝑘br 
Kinetic rate constant of 

bromoform utilization 
h-1 0.095 Romero et al., 2023b  

𝑘d Death cell rate constant h-1 8.33e-04  

𝑘hyd,ndf 
Hydrolysis rate constant of cell 

wall carbohydrates 
h-1 0.024  

𝑘hyd,nsc 
Hydrolysis rate constant of 

non-structural carbohydrates 
h-1 0.06  

𝑘hyd,pro 
Hydrolysis rate constant of 

proteins 
h-1 0.09  

𝑘m,aa 
Maximum specific utilization 

rate constant of amino acids 
mol /(mol h) 2.00  

𝑘m,H2
 

Maximum specific utilization 

rate constant of hydrogen 
mol /(mol h) 16  

𝑘m,su 
Maximum specific utilization 

rate constant of glucose 
mol /(mol h) 1.00  

𝐾s,aa 

Monod constant associated 

with the utilization of amino 

acids 

mol/L 6.40e-03  

𝐾s,H2
 

Monod constant associated 

with the utilization of hydrogen 
mol/L 5.84e-06  

𝐾s,su 
Monod constant associated 

with the utilization of glucose 
mol/L 9.00e-03  
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Ks,IN Nitrogen limitation constant mol/L 2.0e-04  

𝑌aa 
Microbial biomass yield factor 

of amino acids utilizers 
mol/mol 0.31  

𝑌H2
 

Microbial biomass yield factor 

of hydrogen utilizers 
mol/mol 0.006  

𝑌su 
Microbial biomass yield factor 

of glucose utilizers 
mol/mol 0.16  

𝑌ac,su 
Yield factor of the acetate 

during utilization of glucose 
mol/mol 𝑓su . (2 . 𝜆1 +

2

3
 . 𝜆2)  

𝑌bu,su 
Yield factor of the butyrate 

during utilization of glucose 
mol/mol 𝑓su . (𝜆3)  

𝑌pr,su 
Yield factor of the propionate 

during utilization of glucose 
mol/mol 𝑓su . (

4

3
 . 𝜆2)  

𝑌H2,su 
Yield factor of the hydrogen 

during utilization of glucose 
mol/mol 𝑓su . (4 . 𝜆1 + 2 . 𝜆3)  

𝑌IN,su 

Yield factor of the inorganic 

nitrogen during utilization of 

glucose 

mol/mol −𝑌su  

𝑌IC,su 

Yield factor of the inorganic 

carbon during utilization of 

glucose 

mol/mol 𝑓su . (2 . 𝜆1 +
2

3
 . 𝜆2 + 2 . 𝜆3)  

𝑌CH4,H2
 

Yield factor of the methane 

during utilization of hydrogen 
mol/mol 𝑓H2

 . (
1

4
 )  

𝑌IC,H2
 

Yield factor of the inorganic 

carbon during utilization of 

hydrogen 

mol/mol −((
1

4
) . 𝑓H2

+ (
5

10
) . (1 − 𝑓H2

))  

YIN,H2
 

Yield factor of the inorganic 

nitrogen during utilization of 

hydrogen 

mol/mol −𝑌H2
  

Yi,aa 

Yield factor of the component i 

during utilization of amino 

acids 

mol/mol (1 − 𝑌aa). 𝜎i,aa  

YIN,aa 

Yield factor of the component 

inorganic nitrogen during 

utilization of amino acids 

mol/mol 𝑁aa − 𝑌aa .𝑁mb
  

Physicochemical parameters 

𝐾a,CO2
 

Equilibrium constant of 

bicarbonate 
 5.13e-07 Batstone et al., 2002 

𝐾a,NH4
 

Equilibrium constant of 

ammonium 
 1.44e-09 Batstone et al., 2002 

𝐾a,VFA Equilibrium constant of VFA  1.74e-05 Batstone et al., 2002 

𝐾w 
Equilibrium coefficient of 

water 
 2.75e-14 Batstone et al., 2002 

𝑘La Liquid-gas transfer constant h-1 8.33  

𝐾H,CO2
 

Henry’s law coefficient of 

carbon dioxide 
M/bar 2.46e-02 Batstone et al., 2002 

𝐾H,CH4
 

Henry’s law coefficient of 

methane 
M/bar 1.10e-03 Batstone et al., 2002 

𝐾H,H2
 

Henry’s law coefficient of 

hydrogen 
M/bar 7.23e-04 Batstone et al., 2002 

𝑃 Pressure bars 1.01325 Serment et al., 2016 

𝑇 Temperature K 312.15 Serment et al., 2016 

𝑤aa 
Molecular weight of average 

amino acid 
g/mol 134 Feedipedia 

𝑤ac Molecular weight of acetate g/mol 60.05 Wikipedia 

𝑤bu Molecular weight of butyrate g/mol 88.10 Wikipedia 

𝑤mb 
Molecular weight of microbial 

cells 
g/mol 113 Batstone et al., 2002 

𝑤pr 
Molecular weight of 

propionate 
g/mol 74.1 Wikipedia 

𝑤su Molecular weight of glucose g/mol 180.16 Wikipedia 
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𝑉g Volume of the gas phase L 0.06 Belanche et al., 2017 

𝑉l Volume of the liquid phase L 0.74 Belanche et al., 2017 

Parameters of factors modelling the effect of bromoform on rumen fermentation 

𝑝1 

Parameter of the factor 𝐼br  

modelling the direct effect of 

bromoform on the CH4 

production  

 72551  

𝑝2 

Parameter of the factor 𝐼br  

modelling the direct effect of 

bromoform on the CH4 

production 

 -1.0837e-04  

𝑝3 Intercept of 𝜆1    0.3655  

𝑝4 Slope of 𝜆1  0.6371  

𝑝5 Intercept of 𝜆2  0.3787  

𝑝6 Slope of 𝜆2  0.1160  

 300 

2.2. Sensitivity analysis 301 

We implemented two SA methods for quantifying the contribution of 16 IPs to the variability 302 

of 4 state variables of the mechanistic model described in the previous section. These 2 303 

methods use a strong theoretical framework and provide easy-to-interpret sensitivity indices 304 

(SI). Moreover, the SI were computed over time allowing to study the dynamic of IP sensitivity 305 

during the fermentation. Thus, Shapley effects (Owen, 2014) and full and independent Sobol 306 

indices (Mara et al., 2015) were computed for quantifying the individual, interaction and 307 

dependence/correlation effects of an IP to the variability of an output. Although the model 308 

studied here provides no correlated or dependent IPs, these 2 methods were used to 309 

introduce a new SA method in the animal science field.  310 

This work was done with the support of MESO@LR-Platform at the University of Montpellier, 311 

which was used to run the algorithms computing Shapley effects and Sobol indices. They were 312 

run using one node, 28 cores and 125 GB of RAM of memory. 313 

2.2.1. Input parameters and output variables studied 314 

State variables of the model considered as output variables of the SA were the rate of CH4 315 

production (in gas phase) (𝑞CH4,g,out, mol/h) and VFA (acetate (𝑠ac), butyrate (𝑠bu) and 316 

propionate (𝑠pr)) concentrations (mol/L). The model was runned for 4 days, similarly to the 317 

RUSITEC of Roque et al., (2019), and the SA was performed on the last day of simulation,  from 318 

72 to 96h with a time step of 1h. 319 

Components constituting the model represent different factors associated to microbial 320 

pathways involved in in vitro rumen fermentation. These factors include polymer hydrolysis 321 

and microbial growth. The sensibility of hydrolysis rate constants associated with the 3 322 

polymer components (𝑘hyd,ndf, 𝑘hyd,nsc and 𝑘hyd,pro, h-1) was studied for quantifying the 323 

impact of feed polymer hydrolysis on output variables of interest during the fermentation. In 324 

addition, the sensibility of maximum specific utilization rate constants (𝑘m,su, 𝑘m,aa and 𝑘m,H2
, 325 

mol substrate/(mol biomass h))  and Monod constants (𝐾S,su, 𝐾S,aa and 𝐾S,H2
, mol/L) 326 
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associated with the 3 microbial groups was studied for quantifying the impact of microbial 327 

growth  on output variables of interest during the fermentation. 328 

In addition to the IPs quantifying the impact of polymer components and microbial functional 329 

groups, IPs related to the effect of bromoform on the fermentation were considered. The 330 

kinetic rate constant of bromoform utilization (𝑘br , h-1), quantifying the consumption of anti-331 

methanogenic compounds, was added to the SA. Moreover, the parameters of sigmoid and 332 

affine functions associated with the factor representing the impact of bromoform on 333 

methanogens (𝐼br associated with parameters 𝑝1 and 𝑝2) and with the flux allocation from 334 

glucose utilization to VFA production (𝜆1 associated with parameters 𝑝3 and 𝑝4, and 𝜆2 335 

associated with parameters 𝑝5 and 𝑝6) were added to the SA. Therefore, in total, 16 IPs were 336 

considered. 337 

The first step in SA was to set the variability space of IPs. To perform that, information about 338 

the variability of each IP was required. This information was available from 2 sources: data 339 

and expert knowledge (Table 3).  Based on the low number of data available for each IP, 340 

uniform distributions were selected for quantifying hydrolysis rate constants, maximum 341 

specific utilization rate constants and Monod constants variability. Lower and upper bounds 342 

of uniform distributions were set by selecting the minimum and maximum values among all 343 

the references. Furthermore, the parameters associated with the effect of bromoform on the 344 

fermentation were not biological parameters and no data were available for modeling their 345 

variability. Therefore, a uniform distribution varying of ± 10% the baseline model parameter 346 

value was used for parameters 𝑝1 to 𝑝6.  347 

 348 

Table 3. Variation range (minimum (min) and maximum (max)) and sources/references of 349 

uniform distributions used for exploring the variability of input parameters studied in the 350 

sensitivity analysis. 351 

Parameter Min Max References 

𝑘hyd,ndf 0.01 0.33 
Chapoutot et al., 2010; Muñoz-Tamayo et al., 2016; van 

Lingen et al., 2019 

𝑘hyd,nsc 0.06 0.22 Muñoz-Tamayo et al., 2016; van Lingen et al., 2019 

𝑘hyd,pro 0.05 0.25 Muñoz-Tamayo et al., 2016; van Lingen et al., 2019 

𝑘m,su 0.94 4.33 Batstone et al., 2002; Muñoz-Tamayo et al., 2021, 2016 

𝐾S,su 1e-04 9e-03 Batstone et al., 2002; Muñoz-Tamayo et al., 2021, 2016 

𝑘m,aa 1 5 Batstone et al., 2002; Muñoz-Tamayo et al., 2021, 2016 

𝐾S,aa 3e-04 8e-03 Batstone et al., 2002; Muñoz-Tamayo et al., 2021, 2016 

𝑘m,H2
 12 25 Batstone et al., 2002; Muñoz-Tamayo et al., 2021, 2016 

𝐾S,H2
 1e-07 1e-05 Batstone et al., 2002; Muñoz-Tamayo et al., 2021, 2016 

𝑘br 8.55e-02 1.04e-01  

 𝑝1 6.52e+04 7.98e+04  

𝑝2 -1.19e-04 -9.75e-05  

𝑝3 0.33 0.40  

𝑝4 0.57 0.70  

𝑝5 0.34 0.42  
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𝑝6 0.10 0.13  

 352 

2.2.2. System characteristics, intake and dietary scenarios 353 

The consideration of feed intake in the model studied allows to simulate dietary scenarios. 354 

The dietary scenarios studied in this work were set using data from an in vitro study assessing 355 

several dietary CH4 mitigation strategies, including AT, on the fermentation (Chagas et al., 356 

2019). This experiment tested the impact on CH4 production of several doses of AT from 0 to 357 

1% DM (containing 6.84 mg/g dry weight of bromoform) in the diet. The diet was composed 358 

of 38.7% DM of neutral detergent fiber, 39.7% DM of non-structural carbohydrates and 16% 359 

DM of crude proteins. We analyzed three simulation scenarios: A control treatment with 0% 360 

of AT, a low treatment with 0.25% of AT and a high treatment with 0.50% of AT (Figure 5).  361 

 362 

 363 

The initial condition of bromoform concentration was set to zero for all the 3 treatments.  364 

 365 

2.2.3. Shapley effects 366 

2.2.3.1. Definition  367 

The first method implemented was the Shapley effects, which come from the field of 368 

cooperative game theory (Shapley, 1953). The Shapley effect of an IP Xi (Shi) measures the 369 

Figure 5. Summary of system characteristics, intake scenario and diet scenario simulated with 

the mechanistic model. 
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part of variability of the output variable caused by the variability of Xi, and allocate to Xi a fair 370 

value regarding its individual contribution, its contribution due to interactions with other IPs 371 

and its contribution due to dependence/correlation with other IPs (Owen, 2014, Song et al., 372 

2016). It is described as 373 

Shi =
1

d
∑ (

d − 1
|u|

)
−1

( ∑ Var(E[Y|Xυ])

𝜐⊆𝑢+𝑖

− 

u⊆−{i}

∑ Var(E[Y|Xυ])

𝜐⊆𝑢

) (32) 374 

where d is the number of IPs, u ⊆ {1, … d} is a subset of IPs, Y is the output variable and X is 375 

an IP.  376 

2.2.3.2. Interpretation 377 

The Shapley effects are condensed and easy-to-interpret. Their sum is equal to 1, allowing us 378 

to interpret them as the percentage of contribution of the IPs to output variability. 379 

Nevertheless, the distinction of individual, interaction and dependence/correlation effects are 380 

not possible. Each IP is associated with one value, integrating the 3 effects.  381 

2.2.3.3. Numerical computation 382 

Several methods are available for estimating the Shapley effects. In our study, the random 383 

permutation method was used (Song et al., 2016). This method provides a consistent 384 

estimation of the Shapley effects adapted in the case of numerous IPs (Iooss and Prieur, 2019).  385 

It is based on an alternative definition of the Shapley effects, expressing it in terms of all the 386 

possible IPs permutations (Castro et al., 2009). The cost of this method is Nυ + m(d − 1)NoNi 387 

with  Nυ the sample size for estimating the output variance, m the number of permutations 388 

randomly sampled from the space of all the possible IP permutations, d the number of IPs 389 

considered, No the sample size for estimating the expectation and Ni the sample size for 390 

estimating the conditional variance. No and Ni were set at 1 and 3, respectively, as 391 

recommended in Song et al. (2016). In addition, Nυ = 1e04 and  m = 1e04 were considered, 392 

conducting to 460000 model evaluations. Estimation of the Shapley effects was performed 393 

using the R package “sensitivity” (Iooss et al., 2023).  394 

2.2.4. Full and independent Sobol indices 395 

2.2.4.1. Definition  396 

Sobol indices (Sobol, 1993) are commonly used when performing SA. The first-order Sobol 397 

indice (Si) of an IP Xi quantifies the individual contribution of Xi to output variability, based 398 

on the variance decomposition such as 399 

Si =
Var(E[Y|Xi])

Var(Y)
(33) 400 
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where Y is the output variable and Xi is an IP. In addition, the total Sobol indice (Ti) (Homma 401 

and Saltelli, 1996) quantifies the contribution due to the  interactions of Xi with other IPs such 402 

as 403 

Ti = Si + ∑ Sij

j≠i

+ ∑ Sijk

j≠i,k≠i,j<k

+ ⋯ (34) 404 

where Si is the first-order Sobol indice of Xi, Sij is the second-order Sobol indice of Xi 405 

quantifying the interactions between Xi and other IPs 2 by 2, Sijk is the third-order Sobol indice 406 

of Xi quantifying the interactions between Xi and other IPs 3 by 3. 407 

When dependence/correlation is present among the IPs, the variance decomposition is no 408 

longer applicable. Then, Si and Ti are no longer computable. In this case, Mara et al. (2015) 409 

proposed Sobol indices  allowing to quantify the contribution of an IP due to its 410 

dependence/correlation with other IPs by computing 4 SI: 411 

• the full first-order and total Sobol indices (Si
full, Ti

full) of an IP Xi integrate the 412 

dependence/correlation effects between Xi and other IPs; 413 

• the independent first-order and total Sobol indices (Si
ind, Ti

ind) of an IP Xi represent 414 

the effects of Xi that are not due to its dependence/correlation with other IPs.  415 

2.2.4.2. Interpretation  416 

Sobol indices of Mara et al. (2015) are interpreted in 2 steps: 417 

a. Ti
full and Ti

ind are compared for quantifying the contribution of Xi due to its 418 

dependence/correlation effects.  419 

• The combination of a high Ti
full and a low  Ti

ind indicates that Xi contributes to 420 

output variability only via its dependence/correlation with other IPs;  421 

• a high Ti
ind indicates that Xi contributes to output variability via its own 422 

variability and/or its interactions with other IPs; 423 

• a low Ti
full and Ti

ind indicates that Xi has no contribution on output variability  424 

b. The second step of the interpretation is the comparison of Si
full and Ti

full or Si
ind and 425 

Ti
ind, depending on whether Xi contributes to output variability via its 426 

dependence/correlation with other IPs, for quantifying the contribution of Xi due to 427 

its interaction effects: 428 

• Ti − Si ≈ 0 indicates that Xi contributes to output variability via its own 429 

variability,  430 

• Ti − Si ≫ 0 indicates that Xi contributes to output variability via its 431 

interactions with other IPs. 432 

2.2.4.3. Numerical computation  433 

For estimating the 4 indices, IPs were sampled using the Sobol sequences, which were 434 

identified as providing a better stability for Sobol indices estimation (Blondiaux et al., 2022). 435 

3000 simulations and 100 bootstrap replications using the Sobol (Sobol, 1993) and Saltelli 436 
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(Saltelli et al., 2008) estimators for computing first-order (Si
full and Si

ind) and total (Ti
full and 437 

Ti
ind) indices, respectively, were conducted with the R package “sensobol” (Puy et al., 2022), 438 

leading to 54000 model evaluations. Moreover, the estimation of conditional densities of the 439 

IPs is required for modelling their dependence structure. This estimation was conducted using 440 

a vine copula model.  441 

In addition to the Shapley effects, the interpretation of Si
full, Ti

full, Si
ind and Ti

ind allows a 442 

distinction of the individual, interaction and dependence/correlation effects. Therefore, in our 443 

work, both methods were used in a complementary approach. First, the Shapley effects of the 444 

16 IPs studied were computed for estimating their percentage of contribution, integrating the 445 

3 effects, to the variability of output variables of interest. Second, the full and independent 446 

Sobol indices were computed for identifying what is the main source of contribution among 447 

these 3 effects.  448 

2.3. Uncertainty analysis 449 

SA provides a framework combining an IP sampling matrix, developed by randomly drawing 450 

values from IP probability distributions, to simulations of our 4 outputs of interest. This in silico 451 

framework was used for analyzing uncertainty associated with the simulations of CH4, acetate, 452 

butyrate and propionate concentrations (mol/L). Similarly to SA, uncertainty associated with 453 

outputs of interest was studied dynamically by computing summary statistics (median, 454 

standard deviation (SD), and quantiles 10 and 90%) and the coefficient of variation (CV) of the 455 

output simulations at each time step. 456 

3. Results 457 

3.1. Analysis of the simulations of the mechanistic model 458 

Figure 6 and Figure 7 display the dynamics of 𝑞CH4,g,out and of VFA proportions, and 459 

propionate to acetate ratio of the 3 dietary scenarios (control: 0% of AT, low treatment: 0.25% 460 

of AT and high treatment: 0.50% of AT) for a 4 days simulation.  461 

 462 
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 463 

 464 

Increasing the dose of AT decreased 𝑞CH4,g,out with, at the end of the 4 days of simulations, a 465 

CH4 (g/d) reduction of 17% between control and low AT treatment and of 78% between 466 

control and high AT treatment. This reduction increased from one day to the next with 467 

computed reductions of 9%, 14%, 16% and 17% between control and low AT treatment, and 468 

Figure 6. Rate of CH4 production in gas phase (𝑞CH4,g,out, mol/h) over time (h) of the 3 dietary 

scenarios (control: 0% of Asparagopsis taxiformis, low treatment: 0.25% of Asparagopsis 

taxiformis and high treatment: 0.50% of Asparagopsis taxiformis) for a 4 days simulation. 

Figure 7. Acetate proportion (%), butyrate proportion (%), propionate proportion (%) and 

propionate to acetate ratio over time (h) of the 3 dietary scenarios (control: 0% of 

Asparagopsis taxiformis, low treatment: 0.25% of Asparagopsis taxiformis and high 

treatment: 0.50% of Asparagopsis taxiformis) for a 4 days simulation. 
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of 65%, 72%, 75% and 78% between control and high AT treatment, from day 1 to 4, 469 

respectively. 470 

The dynamic of VFA proportions showed that increasing AT dose in the diet decreased acetate 471 

proportion of 5% and 31% at the end of the fermentation between control, and low and high 472 

AT treatments, respectively. Whereas, butyrate and propionate proportions increased when 473 

increasing AT dose in the diet, with increases at the end of the fermentation (t = 96h) of 13% 474 

and 74% for butyrate proportion and of 4% and 22% for propionate proportion between 475 

control, and low and high AT treatments, respectively. 476 

Propionate to acetate ratio was also associated with an increase of 10% between control and 477 

low AT treatment and of 76% between control and high AT treatment.  478 

3.2. Sensitivity analysis 479 

3.2.1. Shapley effects 480 

Figure 8, Figure 9, Figure 10 and Figure 11 display the Shapley effects computed over time for 481 

the 4th day of simulation (from 72 to 96h) of 𝑞CH4,g,out (mol/h), 𝑠ac (mol/L), 𝑠bu (mol/L) and 482 

𝑠pr (mol/L), respectively, for the 3 dietary scenarios (control, low AT treatment and high AT 483 

treatment) studied. Only the IP associated with a contribution higher than 10% for at least 484 

one time step were displayed.  485 

For some time steps, the computation led to negative indexes. In this case, the estimates were 486 

set to 0. These issues mainly concerned 𝑞CH4,g,out of the 2 AT treatments and were either due 487 

to the outliers in the variability explored in the simulations or to the lack of variability in the 488 

simulations for some time steps.  The computational time for one dietary scenario was of 24h 489 

using the MESO@LR-Platform.   490 

3.2.1.1. Rate of methane production  491 

Figure 8 indicated that the microbial group of hydrogen utilizers, via the Monod affinity 492 

constant 𝐾S,H2
, contributed largely the most to the variability of 𝑞CH4,g,out over the 493 

fermentation for control and low AT treatment, explaining more than 50% of 𝑞CH4,g,out 494 

variation over time for both scenarios. The influence of this IP was also important for high AT 495 

treatment from 73 to 76h, from 87 to 89h and from 93 to 96h.  496 

 497 
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 498 

The other influential IP for control was related to fiber degradation via the hydrolysis rate 499 

constant  𝑘hyd,ndf, highlighting a contribution of c.a. 10% to 𝑞CH4,g,out variability over time. 500 

This IP showed a low influence (c.a. 10%) for low and high AT treatments.  501 

Hydrogen utilizers microbial group also showed an influence via the maximum specific 502 

utilization rate constant 𝑘m,H2
 on 𝑞CH4,g,out variation of low and high AT treatments. This 503 

influence was low (c.a. 10%) for low AT treatment over the fermentation and was of c.a. 20% 504 

or higher at t = 73h, from 81 to 83h and from 87 to 96h for high AT treatment.  505 

Moreover, for low and high AT treatments some IP associated with the factors modeling the 506 

effect of AT on the fermentation were highlighted. The IP 𝑝2, which is related to the sigmoid 507 

function modelling the direct inhibition effect of AT on methanogenesis, showed a 508 

contribution to 𝑞CH4,g,out variability higher than 10% from 77 to 78h for low AT treatment and 509 

higher than 20% (most important contribution with the kinetic rate constant of bromoform 510 

utilization 𝑘br) for high AT treatment. The IPs 𝑝2 and 𝑘br explained more than 50% of 𝑞CH4,g,out 511 

variability of high AT treatment at t = from 81 to 83h and from 88 to 92h. Their influence 512 

decreased at the end of the fermentation but was still higher than 20%. When comparing both 513 

IPs,  𝑘br showed a slightly higher influence (< 10%) than 𝑝2.   514 

Figure 8. Shapley effects of the influential input parameters (i.e, parameters with a 

contribution higher than 10% for at least one time step) over time (h) computed for the 4th 

day of simulation of the rate of CH4 production in gas phase (𝑞CH4,g,out, mol/h) for the 3 dietary 

scenarios (control: 0% of Asparagopsis taxiformis, low treatment: 0.25% of Asparagopsis 

taxiformis and high treatment: 0.50% of Asparagopsis taxiformis). 
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Finally, AT treatments highlighted the differences of the role of microbial pathways explaining 515 

the variation of 𝑞CH4,g,out when increasing the dose of AT. The IPs 𝑘hyd,nsc, 𝑘hyd,pro, 𝐾S,su, 𝑝1, 516 

𝑝4, 𝑝5 and 𝑝6 showed a low but non-negligible influence (c.a. 10%) to 𝑞CH4,g,out variability for 517 

high AT treatment and were not influential for control and low AT treatment, except 𝐾S,su 518 

which showed also a low influence (c.a. 10%) for low AT treatment.  519 

3.2.1.2. Acetate concentration  520 

Figure 9 showed that the fiber degradation via the hydrolysis rate constant  𝑘hyd,ndf explained 521 

largely most of the variation of 𝑠ac over the fermentation for control with a constant 522 

contribution higher than 60% over time. When increasing the dose of AT, the influence of 523 

𝑘hyd,ndf largely decreased while it was still the most influential IP. Its influence over time 524 

varied from 29 to 42% for low AT treatment and from 26 to 37% for high AT treatment. 525 

 526 

 527 

The other influential IPs for Control were 𝑝3, which was the intercept of the factor modeling 528 

the flux allocation from glucose utilization to acetate production in the rumen fermentation 529 

(𝜆1), and 𝑘hyd,nsc, which was associated with the degradation of non-fiber compounds (Sh𝑝3
 530 

Figure 9. Shapley effects of the influential input parameters (i.e; parameters with a 

contribution higher than 10% for at least one time step) over time (h) computed for the 4th 

day of simulation of the acetate concentration (𝑠ac, mol/L) for the 3 dietary scenarios (control: 

0% of Asparagopsis taxiformis, low treatment: 0.25% of Asparagopsis taxiformis and high 

treatment: 0.50% of Asparagopsis taxiformis). 
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and Sh𝑘hyd,nsc
 varying from 13 to 19%). The IP 𝑘hyd,nsc was non-influential for AT treatments. 531 

Whereas, 𝑝3 was associated with a non-negligible influence (< 20%) for low AT treatment, 532 

while it was more important (Sh𝑝3
 varying from 23 to 27%) for high AT treatment, which was 533 

similar to 𝑘hyd,ndf contribution from 72 to 74h and 93 to 96 h. 534 

The microbial group of hydrogen utilizers, via the Monod constant 𝐾S,H2
 and the maximum 535 

specific utilization rate constant 𝑘m,H2
, contributed to 𝑠ac variability for low AT treatment. This 536 

influence was mainly due to 𝐾S,H2
, being the second most influential IP from t = 74h to the 537 

end of the fermentation with a contribution varying from 17 to 27% over this period of time. 538 

𝑘m,H2
was associated with a low contribution varying from 11 to 16% over the fermentation. 539 

The factor 𝜆1 was also represented via its slope 𝑝4 with a constant low contribution (c.a. 10%) 540 

to  𝑠ac variability over time for high AT treatment.  541 

3.2.1.3. Butyrate concentration  542 

Similarly to 𝑠ac, the fiber degradation via the hydrolysis rate constant  𝑘hyd,ndf was the most 543 

influential IP to 𝑠bu variability over the fermentation for control and AT treatments (Figure 544 

10). Its influence increased when increasing the dose of AT, varying from 34 to 42% for control, 545 

from 34 to 43% for low AT treatment and from 54 to 62% for high AT treatment over time. 546 

 547 
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 548 

Intercepts of the factors modeling the flux allocation from glucose utilization to acetate and 549 

propionate production in the rumen fermentation (𝑝3 associated with 𝜆1 and 𝑝5 associated 550 

with 𝜆2, respectively) were the other influential IPs for the 3 dietary scenarios with a similar 551 

contribution over time. The contribution of 𝑝3 and 𝑝5 to 𝑠bu variability decreased when 552 

increasing the dose of AT. The contribution of 𝑝3 and 𝑝5 varied from c.a. 18 to 28% for control, 553 

6 to 15% for low AT treatment and 7 to 16% for high AT treatment, respectively.  554 

The microbial group of hydrogen utilizers, via the Monod constant 𝐾S,H2
 and the maximum 555 

specific utilization rate constant 𝑘m,H2
, slightly contributed to 𝑠bu variability of the low AT 556 

treatment, similarly to 𝑠ac. The contribution of 𝑘m,H2
 over the fermentation was low (c.a. 557 

10%), while the contribution of 𝐾S,H2
 was higher, explaining a maximum of 16% of the 558 

variation of 𝑠bu (second most influential IP). 559 

The non-fiber degradation via the hydrolysis rate constant  𝑘hyd,nsc slightly contributed (c.a. 560 

10%) to 𝑠bu variability over time of the high AT treatment. 561 

Figure 10. Shapley effects of the influential input parameters (i.e; parameters with a 

contribution higher than 10% for at least one time step) over time (h) computed for the 4th 

day of simulation of the butyrate concentration (𝑠bu, mol/L) for the 3 dietary scenarios 

(control: 0% of Asparagopsis taxiformis, low treatment: 0.25% of Asparagopsis taxiformis and 

high treatment: 0.50% of Asparagopsis taxiformis). 
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3.2.1.4. Proprionate concentration  562 

The variation of 𝑠pr for the 3 dietary scenarios was mainly due to the contributions of 3 IPs 563 

(Figure 11).   564 

 565 

 566 

This result was different from those obtained for the other output variables where new 567 

influential IPs were highlighted from a dietary scenario to another. Similarly to 𝑠ac and 𝑠bu, 568 

the fiber degradation via the hydrolysis rate constant  𝑘hyd,ndf was the most influential IP to 569 

𝑠pr variability over the fermentation for control and AT treatments. Its influence increased 570 

when increasing the dose of AT, varying from 60 to 65% for control, from 61 to 68% for low 571 

AT treatment and from 67 to 71% for high AT treatment over time. 572 

The other influential IPs were, by order of contribution, the intercept of the factor modeling 573 

the flux allocation from glucose utilization to propionate production in the rumen 574 

fermentation (𝑝5 associated with 𝜆2) and the non-fiber degradation IP 𝑘hyd,nsc. The 575 

contribution of 𝑝5 slightly decreased when increasing the dose of AT with an average 576 

contribution over time of 20% for control, 17% for low AT and 16% for high AT. Whereas, the 577 

contribution of 𝑘hyd,nsc was similar between the 3 dietary scenarios. 578 

Figure 11. Shapley effects of the influential input parameters (i.e; parameters with a 

contribution higher than 10% for at least one time step) over time (h) computed for the 4th 

day of simulation of the propionate concentration (𝑠pr, mol/L) for the 3 dietary scenarios 

(control: 0% of Asparagopsis taxiformis, low treatment: 0.25% of Asparagopsis taxiformis and 

high treatment: 0.50% of Asparagopsis taxiformis). 
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3.2.2. Full and independent Sobol indices 579 

Similarly to the Shapley effects, the full and independent Sobol indices of the 16 IPs were 580 

computed over time, considering the 4th day of simulation, for the 4 output variables and 3 581 

dietary scenarios studied. These indices were computed in addition to the Shapley effects for 582 

identifying the nature of the contribution of the IPs to output variable variation. The 583 

computational time for one dietary scenario was of 5h using the MESO@LR-Platform. 584 

Since the model is associated with independent IPs, the difference between Ti
full and Ti

ind was 585 

systematically close to 0 for all the IPs, output variables and dietary scenarios studied, 586 

indicating that the contribution of IPs to output variable variation were not due to the 587 

dependence or correlation between IPs.  588 

3.2.2.1. Rate of methane production 589 

The full and independent Sobol indices were displayed only for 𝑞CH4,g,out (mol/h) (Figure 12).   590 

 591 
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 592 

Figure 12. Independent first-order (Sind) and total Sobol indices (Tind) of the input parameters 

over time (h) computed for the 4th day of simulation of the rate of CH4 production in gas phase 

(𝑞CH4,g,out, mol/h) for the 3 dietary scenarios (control: 0% of Asparagopsis taxiformis, low 

treatment: 0.25% of Asparagopsis taxiformis and high treatment: 0.50% of Asparagopsis 

taxiformis). 
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The difference between  Ti
ind and Si

ind over time indicated that interactions between IPs had 593 

an important influence on its variation for the control and two AT treatments over the 594 

fermentation.  595 

For control, the variability of 𝐾S,H2
 alone had a high contribution on the variation of 𝑞CH4,g,out 596 

(S𝐾S,H2

ind  varying from 45 to 60%). The contribution of 𝐾S,H2
 increased over the fermentation 597 

when considering its influence via the interactions with other IPs over time (T𝐾S,H2

ind  varying 598 

from 78 to 92%). The other IPs did not show any contribution due to their own variability 599 

(S𝑖,i≠𝐾S,H2

ind  c.a. 0). However, their independent total indices indicated that all the IPs interacted 600 

with 𝐾S,H2
 (Ti

ind ≥ 10%), except 𝑘br with T𝑘br

ind c.a. 0 over the fermentation (which is obvious 601 

since there is not bromoform in the control). The influential contribution due to the 602 

interactions between IPs was mostly due to interactions of  𝐾S,H2
 with other IPs such as the 603 

fibers degradation (𝑘hyd,ndf), the maximum utilization rate of hydrogen utilizers microbial 604 

group (𝑘m,H2
), the microbial group of sugars utilizers (𝐾S,su and 𝑘m,su), the non-fibers 605 

degradation (𝑘hyd,nsc) and the microbial group of amino acids utilizers (𝐾S,aa) with on average 606 

Ti,i=𝑘hyd,ndf,𝑘m,H2 ,𝐾S,su,𝑘m,su,𝑘hyd,nsc,𝐾S,aa 
ind  higher than 25% over time.  607 

For low AT treatment, 𝐾S,H2
 was the only IP contributing to 𝑞CH4,g,out variation via its own 608 

variability over time, similarly to the control. S𝐾S,H2

ind varied from 0 to 63% over the fermentation 609 

with a contribution lower than 10% from t = 73 to 77h, corresponding to the highest intake 610 

activity of the first feed distribution. During this time period, 𝑞CH4,g,out variation was only 611 

explained by the interactions between the 16 IPs, with Ti 
ind  higher than 80% for all the IPs for 612 

at least one time step during this time period. Similarly to the control, 𝐾S,H2
 also explained 613 

almost all the variability of 𝑞CH4,g,out over the fermentation when considering the contribution 614 

via the interactions with other IPs with T𝐾S,H2

ind   varying from 82 to 100% over time. These 615 

interactions mainly included 𝑘m,H2
 and 𝑘hyd,ndf with T𝑘m,H2

ind = 36% and T𝑘hyd,ndf

ind = 28% on 616 

average over time. 617 

For high AT treatment, Si
ind was lower than 32% for all the IPs, indicating that the variation of 618 

𝑞CH4,g,out was mainly due to the interactions between IPs. The IP with the most important 619 

individual contribution over the fermentation was 𝑘hyd,ndf during the first feed distribution 620 

(S𝑘hyd,ndf

ind  varying from 22 to 31% from t = 75 to 77h) and at the end of the fermentation 621 

(S𝑘hyd,ndf

ind = 14% at t = 96h).  Then, the contribution of other IPs such as 𝑘br (S𝑘br

ind varying from 622 

14 to 32%), 𝑝2 (S𝑝2
ind varying from 4 to 23%) and 𝑘m,H2

 (S𝑘m,H2

ind  varying from 3 to 14%) was low 623 

in the middle of fermentation from t = 78 to 92h. Also, 𝐾S,H2
 showed the most important 624 

contribution at the beginning and end of the fermentation with S𝐾S,H2

ind = 26 and 15% at t = 625 

72 and 96h, respectively. When considering the interactions between IPs, their contribution 626 

increased significantly. All the IPs showed a non-negligible contribution (> 20%) for at least 627 

one time step, indicating that the 16 IPs were considered in the interactions contributing to 628 

𝑞CH4,g,out variation.  IP 𝐾S,H2
 contributed the most via its interactions with an average 629 
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difference between T𝐾S,H2

ind and S𝐾S,H2

ind  over time of 42%. IP 𝑘m,H2
 also showed an important 630 

contribution throughout the fermentation via the interactions with other IPs with an average 631 

constant contribution of 34% over time.  The third and fourth IPs contributed the most via the 632 

interactions were 𝑝2 and 𝑘br, respectively, with on average T𝑝2
ind − S𝑝2

ind = 33% and  T𝑘br

ind −633 

S𝑘br

ind = 28% over time. These contributions were more important in the middle of 634 

fermentation from t = 78 to 92h. Finally, 𝑘hyd,ndf and 𝑘hyd,nsc also showed a non-negligible 635 

contribution via the interactions with  on average  T𝑘hyd,ndf

ind − S𝑘hyd,ndf

ind = 28% and 636 

T𝑘hyd,nsc

ind − S𝑘hyd,nsc

ind = 24% over time.  637 

3.2.2.2. Volatile fatty acids concentration  638 

For VFA concentrations (𝑠ac, 𝑠bu and 𝑠pr, mol/L), the contribution of the interactions between 639 

IPs to their variation was lower than 20% (i.e. Ti
ind − Si

ind ≤ 20%) for the 3 dietary scenarios 640 

studied, except for 𝑝5 which described the fraction of glucose utilized to produce propionate 641 

and showed a strong influence on 𝑠ac, 𝑠bu and 𝑠pr variation of the control with a maximum 642 

contribution of 60, 38 and 29%, respectively. For these 3 variables, the maximum contribution 643 

of 𝑝5 via the interactions was reached at the end of the fermentation. Also, the interactions 644 

between 𝑘m,H2
 and other IPs showed a contribution of 24% and 19% to 𝑠ac variation for low 645 

and high AT treatments, respectively. 646 

3.3. Uncertainty analysis 647 

Similarly to the full and independent Sobol indices, the uncertainty analysis of simulations 648 

computed for estimating the Shapley effects was displayed only for 𝑞CH4,g,out. Simulations of 649 

VFA used for estimating the Shapley effects were associated with a low variability with a 650 

maximum CV of 0.08, 0.12 and 0.09 for 𝑠ac, 𝑠bu and 𝑠pr, respectively.  651 

Figure 13 displays the median and quantiles 10% and 90% over time of 𝑞CH4,g,out simulations 652 

computed using the IP sampling matrix and the calculated Shapley effects of the 3 dietary 653 

scenarios.  654 

 655 
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 656 

When not considering the 10% more extreme simulations, the CV highlighted that 𝑞CH4,g,out 657 

simulations showed a lower variability for low and high AT treatments with a median CV of 658 

0.74 and 0.59, respectively. Whereas, the control showed a median CV of 0.78.   659 

Moreover, Figure 14 highlighted that 𝑞CH4,g,out variability varied over time and that this 660 

variability was related to the dynamic of DMI (g/h).  661 

 662 

 663 

 664 

Figure 13. Median and 0.1 and 0.9 quantiles of the rate of methane production in gas phase 

(𝑞CH4,g,out, mol/h) over time (h) computed from the simulations used to calculate the Shapley 

effects for the 3 dietary scenarios (control: 0% of Asparagopsis taxiformis, low treatment: 

0.25% of Asparagopsis taxiformis and high treatment: 0.50% of Asparagopsis taxiformis). 
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 665 

 666 

The time periods associated with the highest intake activity (represented by the level of decay 667 

of the curve of Figure 2) were between 72 and 78h for the first feed distribution and 84 and 668 

90h for the second feed distribution. The first feed distribution time period was systematically 669 

associated with the highest variability of 𝑞CH4,g,out simulations with a maximum SD of 7e-04 670 

mol/h at t = 75h, 6e-04 mol/h at t = 74h and 7e-05 mol/h at t = 73h for control, and low and 671 

high AT treatments, respectively. This feed distribution represented 70% of the total DM. The 672 

second feed distribution, representing 30% of the total DM, was also associated with an 673 

important variability of 𝑞CH4,g,out simulations for the 3 dietary scenarios.  674 

4. Discussion 675 

4.1. Analysis of the simulations of the mechanistic model 676 

4.1.1. Comparison with in vitro and in vivo studies 677 

CH4 reductions between AT treatments obtained with the mechanistic model were lower than 678 

those reported in in vitro and in vivo studies.  679 

Chagas et al. (2019) indicated that the inclusion of AT (10 g/kg OM) decreased predicted in 680 

vivo CH4 production (mL/g DM) of 99% under in vitro condition. Whereas, the RUSITEC of 681 

Roque et al. (2019) and the in vitro study of Romero et al. (2023b) reported reductions of CH4 682 

Figure 14. Standard deviation of the simulations of rate of methane production in gas phase 

(𝑞CH4,g,out, mol/h) over time (h) used to calculate the Shapley effects for the 3 dietary 

scenarios (control: 0% of Asparagopsis taxiformis, low treatment: 0.25% of Asparagopsis 

taxiformis and high treatment: 0.50% of Asparagopsis taxiformis). 
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production (mL/g OM and mL, respectively) of 95% (with a 5% OM dose) and 97% (with a 2% 683 

DM dose), respectively. 684 

Under in vivo conditions, Roque et al. (2021) tested AT doses similar to our simulations. This 685 

work reported in vivo CH4 production (g/d) reduction of 32.7 and 51.9% between control, and 686 

low and high AT treatments, respectively. The model simulated a lower reduction for low AT 687 

treatment and a higher reduction for high AT treatment.  688 

These results highlighted that some interactions occurring during the fermentation are not 689 

represented in the model (e.g. forage wall content might inhibit the effect of AT). Improving 690 

the model involves a finer representation of the interactions between feed characteristics and 691 

fermentation as discussed by  Bannink et al. (2016). 692 

4.1.2. Analysis of the behavior of VFA proportions  693 

The behavior of VFA proportions dynamic between AT treatments simulated with the models 694 

was similar to that of in vitro studies. In Chagas et al. (2019), the AT treatment was associated 695 

with lower molar proportion of acetate (- 75%) and higher molar proportions of propionate 696 

and butyrate (+ 38% and + 47%, respectively). Moreover, the increase of the propionate to 697 

acetate ratio was highlighted in Roque et al. (2019) and Romero et al. (2023b). This highlights 698 

that the VFA dynamic behavior between AT treatment simulated by the model was consistent 699 

with the in vitro experiments.  700 

4.2. Sensitivity analysis 701 

4.2.1.  General contribution of the input parameters 702 

4.2.1.1. Rate of methane production  703 

For the control and low AT treatment, all the variation of 𝑞CH4,g,out were explained by the 704 

action of the microbial group of hydrogen utilizers represented by the Monod constant 𝐾S,H2
. 705 

The dynamic of the impact of this microbial group was constant over time and slightly followed 706 

the dynamic of DMI.   707 

Among all the polymer components describing the feed intake, microbes degrading the fibers 708 

with the kinetic 𝑘hyd,ndf explained also a very low part of 𝑞CH4,g,out variation. It was also 709 

associated with a constant dynamic, following the dynamic of DMI. 710 

The comparison of our results with the results of previous SA conducted on mechanistic 711 

models of rumen fermentation is not straightforward given the specific model strucutres and 712 

their mathematical formulation. Consequently, the model structure, and the variables and 713 

parameters considered in these models are different from those used in our representation, 714 

except for Merk et al. (2023) which conducted its SA on an adapted version of the model of 715 

Muñoz-Tamayo et al. (2021). However, considering our results in relation to those obtained 716 

in previous studies provides useful information to improve our knowledge of the whole 717 

picture of the rumen fermentation.  718 
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When no dose of AT was considered, Merk et al. (2023) also highlighted the impact of fibers 719 

degradation component on CH4 production variation via the initial neutral detergent fiber 720 

concentration and 𝑘hyd,ndf. This is the initial condition of neutral detergent fiber that was 721 

largely associated with the highest contribution (= 43%) to CH4 production variation. Its other 722 

influential IP for the control was related to the flux allocation parameter from glucose 723 

utilization to propionate production (𝜆2). This last IP was not considered in our SA as we 724 

modified the flux allocation parameters in our model version. 725 

The low AT treatment highlighted the low participation of IPs describing the kinetic of 726 

bromoform utilization (𝑘br) and the direct effect of bromoform on methanogenesis (𝑝2) to 727 

the variability of 𝑞CH4,g,out, suggesting that the AT dose was too low to highlight a shift in the 728 

factors associated to microbial pathways impacting CH4 production. 729 

This shift was highlighted for high AT treatment. 𝑘br and 𝑝2 were associated with a high impact 730 

on CH4 production in the middle of the fermentation, replacing a part of the variability 731 

explained by the hydrogen utilizers microbial group. However, the impact of 𝐾S,H2
was still 732 

important over time, especially at the beginning and at the end of the fermentation. Other IPs 733 

associated with the direct (𝑝1) or indirect (𝑝4, 𝑝5 and 𝑝6)  effect of bromoform on the 734 

fermentations were associated with a low influence on 𝑞CH4,g,out variation. This work 735 

highlighted that the use of AT to mitigate CH4 production led to a shift in the factors associated 736 

to microbial pathways of the rumen fermentation impacting the CH4 production.  737 

In presence of  a dose of AT (included at a 5% inclusion rate) , the high impact of IPs associated 738 

with bromoform concentration and the factor 𝐼br on CH4 production variation was also 739 

highlighted in Merk et al. (2023). The initial bromoform concentration and  𝑝1 showed the 740 

highest contributions (= 46%) to CH4 production variation. This study also mentioned the low 741 

but non-negligible impact (c.a. 10%) of IPs related to methanogen abundance, total microbial 742 

concentration and hydrogen utilizers microbial group represented by 𝑘m,H2
.  This last IP 743 

showed also an influence on 𝑞CH4,g,out variation for high AT treatment in our work. Therefore,  744 

Merk et al. (2023) also identified a shift in the key factors driving CH4 production variation in 745 

presence of AT.   746 

For other references, the comparison of SA results is only valid for the control as other models 747 

did not consider AT treatments. Huhtanen et al. (2015) concluded that IPs associated with 748 

degradation kinetics of neutral detergent fiber had a strong influence on CH4 predictions of 749 

Karoline. This factor was also identified as influential in our work but was not associated with 750 

a high influence. Fat and the degradation of starch and insoluble protein were the other 751 

factors associated with an influence on CH4 production. Whereas, van Lingen et al. (2019) 752 

highlighted that IPs associated with the fractional passage rate for the solid and fluid fractions 753 

in the rumen and NADH oxidation rate explained 86% of CH4 predictions variation of a 754 

modified version of the Dijkstra model. Our model does not include the different passage rates 755 

between solid and liquid fractions. Finally, Dougherty et al. (2017) found that influential IPs 756 

on daily CH4 production predicted with the AusBeef model were associated with ruminal 757 

hydrogen balance and VFA production.  758 
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4.2.1.2. Volatile fatty acids concentration  759 

VFA concentration variation were highly impacted by fibers degradation represented by the 760 

kinetic 𝑘hyd,ndf for the control and two AT treatments. 𝑘hyd,ndf was always associated with 761 

the highest contribution for 𝑠ac, 𝑠bu and 𝑠pr and the 3 dietary scenarios studied. This 762 

contribution was very high (> 50%) for 𝑠ac control, 𝑠bu high AT treatment and 𝑠pr. While, it 763 

was intermediate (between 30 and 40% over the fermentation) for 𝑠ac low and high AT 764 

treatments, and 𝑠bu control and low AT treatment. The dynamic of this influence was globally 765 

constant over time slightly following the dynamic of DMI, except for 𝑠ac low AT treatment 766 

which showed a decrease during the first feed distribution. This result was expected as fiber 767 

hydrolysis is the limiting step of the fermentation and VFA proportion. Morales et al., (2021) 768 

studied the sensitivity of 19 IPs on VFA concentration predicted with Molly. It found that the 769 

intercept used for rumen pH prediction was the only influential IP, explaining more than 79% 770 

of the variation of acetate, butyrate and propionate concentration predictions of Molly. In this 771 

study this result was expected as Molly is a whole animal model, which was not the case of 772 

our model. No IPs related to rumen pH were considered in our SA, explaining that the selection 773 

of this component was not possible in our case. 774 

Hydrogen utilizers microbial group slightly impacted (< 30%) the variation of 𝑠ac and 𝑠bu for 775 

low AT treatment with the 2 IPs representing this group (𝐾S,H2
and 𝑘m,H2

). The influence of 776 

these IPs was increasing at the beginning of the fermentation, constant in the middle of the 777 

fermentation and decreasing at the end of the fermentation. 778 

No shift of the factors associated to microbial pathways impacting VFA production was 779 

highlighted when increasing the dose of AT. Moreover, IPs related to the direct effect of 780 

bromoform on the fermentation (𝑝1 and 𝑝2) did not contribute to VFA concentration variation. 781 

This suggests that under the conditions evaluated AT had no impact on the biological 782 

mechanisms responsible for VFA production in contrast with the one responsible for CH4 783 

production. However, AT supply does have an indirect effect on VFA production to its effect 784 

on the lambdas and a variation was observed when considering the molar proportions of VFA 785 

(Figure 7). 786 

Furthermore, IPs associated with the functions describing the indirect effect of bromoform on 787 

rumen fermentation and quantifying reactions driving flux allocation from glucose utilization 788 

to acetate (λ1 associated with 𝑝3 and 𝑝4) and propionate (λ2 associated with 𝑝5 and 𝑝6) 789 

production showed a low impact on VFA concentration variation under our conditions. IP 𝑝3 790 

was associated with an impact on 𝑠ac and 𝑠bu variation. This impact was highlighted for the 791 

control and two AT treatments studied with a contribution decreasing at the beginning of the 792 

fermentation and then increasing over time lower than 20% for control and low AT treatment 793 

and of c.a. 25% for high AT treatment for 𝑠ac. Whereas, the contribution over time was more 794 

important for the control (c.a. 25%) than for the 2 AT treatments (<20%) for 𝑠bu with the same 795 

dynamic. 𝑝4, the negative slope of λ1, slightly impacted  𝑠ac variation of high AT treatment 796 

with a constant dynamic. Regarding λ2, 𝑝5 slightly impacted (<30%) 𝑠bu and 𝑠pr variation over 797 

the fermentation for the 3 dietary scenarios with a dynamic slightly decreasing at the 798 
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beginning of the fermentation and then increasing over time, similarly to 𝑝3. The positive 799 

slope 𝑝6 did not contribute to VFA concentration variation. 800 

4.2.2.  Contribution of the interactions between the input 801 

parameters 802 

In addition to the Shapley effects, full and independent Sobol indices allowed us to investigate 803 

if the influential IPs contributed through their own variability or through the variability 804 

generated by their dependence/correlation and/or their interactions with other IPs. This step 805 

was done as an academic exercise since, by construction, the model does not have 806 

dependency between IPs. However, the methodology here illustrated can be useful to address 807 

the dependency aspects in future model extensions.  808 

4.2.2.1. Rate of methane production  809 

First-order and total independent Sobol indices highlighted that interactions between IPs 810 

played an important role in the contribution of the IPs to 𝑞CH4,g,out variation for the control 811 

and AT treatments. This contribution was higher for AT treatments than for the control, with 812 

the highest contribution for low AT treatment. Merk et al. (2023) also identified the 813 

importance of the contribution due to the interactions between IPs for the AT treatment. 814 

However, no impact of the interactions was highlighted for the control. 815 

The interactions between hydrogen utilizers microbial group via 𝐾S,H2
 and the other factors 816 

associated to microbial pathways of the rumen fermentation considered had an intermediate 817 

impact (~25%) on  𝑞CH4,g,out variation for the 3 dietary scenarios considered. Most of the time, 818 

these interactions included all the IPs, except 𝑘br for the control.  819 

The inclusion of all the IPs in the interactions impacting 𝑞CH4,g,out variation suggests that the 820 

model should be improved to better characterize the interactions. The incorporation of 821 

microbial genomic knowledge is expected to improve the representation of rumen microbial 822 

fermentation in mathematical models (Davoudkhani et al., 2024; Muñoz-Tamayo et al., 2023). 823 

The first feed distribution of the low AT treatment showed that the variation of 𝑞CH4,g,out can 824 

also be only impacted by the interactions between IPs, highlighting the importance of 825 

quantifying the interactions between IPs in SA approaches used. 826 

4.2.2.2. Volatile fatty acids concentration  827 

The contribution due to the interactions was low for VFA concentration variation. Only 𝑝5, the 828 

intercept of λ2 which is related to propionate production, showed a high contribution via the 829 

interactions to VFA concentration variation for control.  830 

Finally, the interactions did not affect the dynamic of the contribution over the fermentation 831 

for 𝑞CH4,g,out and VFA concentrations. 832 
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4.3. Uncertainty analysis 833 

The uncertainty of 𝑞CH4,g,out and VFA concentration simulations used to compute the Shapley 834 

effects was assessed by studying the variability over time of these simulations. 835 

4.3.1. Rate of methane production 836 

The simulations of 𝑞CH4,g,out computed by exploring the variability of 6 factors associated to 837 

microbial pathways of the rumen fermentation (fiber carbohydrates, non-fiber carbohydrates, 838 

proteins, glucose utilizers, amino acids utilizers, hydrogen utilizers) and 4 factors of the effect 839 

of bromoform on the fermentation (𝑠br, 𝐼br, 𝜆1 and 𝜆2) showed a high range of variation for 840 

the 3 dietary scenarios.  841 

SA results indicated that the variability of 𝑞CH4,g,out simulations was only explained by the 842 

variation of hydrogen utilizers microbial group via  𝐾S,H2
 (alone and in interaction with other 843 

factors) for control and low AT treatment. Whereas, the variability of 𝐾S,H2
 explained an 844 

important part, but also with the variability of other factors, of 𝑞CH4,g,out simulation variability 845 

for high AT treatment. This suggests that reducing uncertainty associated with 𝑞CH4,g,out 846 

predictions involves to reduce the uncertainty of IPs describing the activity of the hydrogen 847 

utilizers microbial group. A way to achieve that is to increase the information available for 848 

estimating the variability of parameters describing this microbial group, involving an 849 

improvement of our knowledge of it. Finally, when comparing control and AT treatments, 850 

𝑞CH4,g,out simulation variability was more important for the control than for low and high AT 851 

treatments. This indicates that the shift and increase of factors explaining the variation of 852 

𝑞CH4,g,out did not lead to an increase of simulation variability, especially for high AT treatment. 853 

Merk et al., (2023) found a different result, computing a CV of 0.23 against 1.22 for simulations 854 

associated with control and AT treatment, respectively.  However, the range of variation of 855 

IPs explored in our study led to outlier simulation for AT treatments. For instance, an IP 856 

simulation scenario led to 𝑞CH4,g,out values of 96 and 0.07 mol/h at t = 74 and 73h for low and 857 

high AT treatments, respectively. These outliers were not identified for the control. This 858 

suggests that some of the range of variation explored for 𝐾S,H2
, 𝑘m,H2

, 𝑝2 and 𝑘br was not 859 

appropriate when considering AT treatments. 860 

The dynamic of simulation variability was related to the dynamic of DMI, increasing during the 861 

high intake activity period of both feed distributions and decreasing at the end of it. The 862 

highest period of variability was associated with the first feed distribution, which 863 

corresponded to 70% of the total DM. These results go in line with model developments 864 

predicting CH4 with dynamic data DMI as single predictor (Muñoz-Tamayo et al., 2019, 2022). 865 

4.3.2. Volatile fatty acids concentration  866 

VFA concentrations were associated with much less variability than  𝑞CH4,g,out, suggesting that 867 

these variables are less sensitive to the variation of factors associated to microbial pathways 868 
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involved in the rumen fermentation analyzed here. Perhaps the consideration of other 869 

parameters such as the yield factors would lead to a higher variability of VFA simulations. The 870 

variability of these variables was only explained by the individual variability of the kinetic of 871 

fibers degradation 𝑘hyd,ndf. This suggests that the uncertainty related to 𝑘hyd,ndf 872 

measurements generates a low uncertainty on VFA concentrations. 873 

Similarly to 𝑞CH4,g,out, the dynamic of the variability of VFA concentration simulations was 874 

related to the dynamic of DMI. This variability increased during the high intake activity periods 875 

of the first and second feed distributions, with the highest variability reached for the first feed 876 

distribution, and decreased at the end of both feed distributions. 877 

4.4. Limitations and perspectives of methods 878 

4.4.1. Sensitivity analysis approaches 879 

The computation of the Shapley effects allowed to identify the influential and non-influential 880 

IPs on the variation of 𝑞CH4,g,out and VFA concentration. The use of sensitivity indices for this 881 

purpose is becoming increasingly widespread in animal science and our work contributes to 882 

the integration of SA in animal modeling. For instance, Merk et al. (2023) conducted local and 883 

global SA for identifying key drivers of CH4 production with or without AT.  884 

The main originality of our work is the computation of SI over time, leading to a dynamic 885 

interpretation of the impact of key drivers on CH4 and VFA variation. A second originality is 886 

the proposition of an approach allowing to discriminate the nature of the contribution of IPs 887 

to output variable variation. Although, considering the contribution due to the 888 

dependence/correlation between IPs was not relevant in our case study, this work proposes 889 

a first methodology to handle this kind of contribution in the case of development of more 890 

complex models involving dependent or correlated IPs. 891 

Our study used simulation conditions based on RUSITEC in vitro experiments. Future work can 892 

use our SA framework to identify useful sampling times and experimental conditions to 893 

provide informative data for model refinement in the context of optimal experiment design 894 

for parameter estimation. 895 

Regarding our SA results, it is important to mention that they are inherently linked to the 896 

representation of the rumen fermentation considered in our case study.  897 

4.4.2. Uncertainty analysis 898 

The in silico framework used for the SA shows that the factors associated to microbial 899 

pathways modeled in our case study mainly impacted CH4 prediction uncertainty. This 900 

suggests that an improvement in the range of variation of parameters associated with the 901 

methanogenesis should lead to a reduction of the uncertainty associated with model 902 

predictions. The high AT treatment also showed that the parameters associated with the 903 

bromoform effect on the fermentation impacted negatively the prediction uncertainty.   These 904 
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suggestions should be carefully interpreted because limited by the low information available 905 

on the numerical values of parameters of the equations representing the rumen fermentation. 906 

5. Conclusions  907 

A dynamic sensitivity analysis of a model describing the effect of bromoform (via Asparagopsis 908 

taxiformis) on rumen fermentation under in vitro continuous condition was conducted. The 909 

hydrogen utilizers microbial group was identified as the key factor explaining methane 910 

variation over time for the control and low dose treatments. This factor was associated with 911 

the microbial methanogenesis. The high AT dose treatment showed a shift in the factors 912 

associated to microbial pathways explaining methane variation, highlighting the emergence 913 

of parameters associated with bromoform concentration and direct effect of bromoform on 914 

methanogenesis. The interactions between parameters played a role in these contributions. 915 

Moreover, the individual variability of kinetic of fibers degradation explained most of the VFA 916 

variation. The uncertainty analysis of simulations computed for SA suggested that reducing 917 

the uncertainty of the parameters associated to the kinetics of hydrogen utilizers microbial 918 

group should lead to a reduction of model prediction uncertainty. Our work showed that 919 

implementing dynamic sensitivity analysis is a promising approach to improve our 920 

understanding of mechanisms involved in the rumen fermentation and can help to design 921 

optimal experiments assessing methane mitigation strategies.     922 
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