Numerical analysis of the porous structure of spherical activated carbons obtained from ion-exchange resins
Résumé
This paper presents the results of an analysis of the porous structure of spherical activated carbons obtained from cation-exchange resin beads subjected to ion exchange prior to activation. The study investigated the effects of the type of cation exchange resin, the concentration of potassium cations in the resin beads and the temperature of the activation process on the adsorption properties of the resulting spherical activated carbons. The numerical clustering-based adsorption analysis method and the quenched solid density functional theory were used to analyse the porous structure of spherical activated carbons. Based on original calculations and unique analyses, complex relationships between preparation conditions and the porous structure properties of the obtained spherical activated carbons were demonstrated. The results of the study indicated the need for simultaneous analyses using advanced methods for the analysis of porous structures, i.e., the numerical clustering-based adsorption analysis method and the quenched solid density functional theory. This approach allows a reliable and precise determination of the adsorption properties of the materials analysed, including, among other things, surface heterogeneities, and thus an appropriate selection of production conditions to obtain materials with the expected adsorption properties required for a given industrial process.
Origine | Fichiers produits par l'(les) auteur(s) |
---|