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Abstract
In our companion paper “Tight bounds for the learning of homotopy à la Niyogi, Smale, and
Weinberger for subsets of Euclidean spaces and of Riemannian manifolds” we gave optimal bounds
(in terms of the two one-sided Hausdorff distances) on a sample P of an input shape S (either
manifold or general set with positive reach) such that one can infer the homotopy of S from the
union of balls with some radius centred at P , both in Euclidean space and in a Riemannian manifold
of bounded curvature. The construction showing the optimality of the bounds is not straightforward.
The purpose of this video is to visualize and thus elucidate said construction in the Euclidean setting.
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1 Introduction

The medial axis of a set consists of those points in ambient space with no unique closest
point on the set, and the reach of a set is the distance between the set and its medial axis.
In [6], Niyogi, Smale, and Weinberger showed that, given a C2 manifold of positive reach
and a sufficiently dense point sample (P ) on (or near) the manifold, the union of balls
of certain radii centred on the point sample captures the homotopy type of the manifold.
Niyogi, Smale, and Weinberger’s homotopy reconstruction result has led to generalizations
including [3, 4, 5, 7].

In this video and our companion paper [2] we consider both submanifolds (M) and
general closed subsets of positive reach (S) in the Euclidean space. While for the media
contribution we concentrate on the Euclidean setting due to the ease of visualization, in [2]
we also generalize the ambient space to Riemannian manifolds of bounded curvature.

We recall that the one-sided Hausdorff distance from X to Y , denoted by do
H(X; Y ), is

the smallest ρ such that the union of balls of radius ρ centred at X covers Y . We denote the
bound on the one-sided Hausdorff distance from P to M (resp. S) by ε, and the one-sided
Hausdorff distance from M (resp. S) to P by δ. In [2], we achieved the following conditions
on ε and δ which, if satisfied, guarantee the existence of a radius r > 0 such that the union
of balls

⋃
p∈P B(p, r) = P ⊕ B(r), with ⊕ the Minkowski sum, deformation-retracts onto M

(resp. S): If S has positive reach (R), the condition is

ε +
√

2 δ ≤ (
√

2 − 1)R. (CS)

If, moreover, S = M is a manifold and δ ≤ ε ≤ R, the condition is

(R − δ)2 − ε2 ≥
(

4
√

2 − 5
)

R2. (CM)

The set of pairs (ε, δ) that satisfy these conditions is depicted in Figure 1.

Figure 1 In blue we depict the region in (ε, δ)-space for which there exists a radius r such that
the union of balls P ⊕ B(r) captures the homotopy type of a set of positive reach R = 1. We do the
same in yellow for a manifold. We stress that for δ ≥ ε, the fact that a set of positive reach is also a
manifold does not lead to better bounds. The black points indicate the bounds that were known to
Niyogi, Smale, and Weinberger.

In [2] we proved that the bounds CS and CM are optimal for sets of dimension at least
2 in the following sense: If the conditions are not satisfied, we can construct a set of positive
reach S (resp. manifold M) and a sample P , such that the homology of the thickening
P ⊕ B(r) always differs from the homology of S (resp. M).

In the following we construct the set S (resp. the manifold M) and the sample P that
show the optimality of our bounds. The main goal of the video is to visualize the construction.
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2 The Construction

Note that due to rescaling it suffices to construct sets of reach rch(S) = R = 1.

(a) For all r < r0, the union of balls (Ci ∪ {pi, p̃i}) ⊕ B(r) has three connected components.

(b) At radius r1, the 1-cycle (created at r0) in the union of balls (C0 ∪{p0, p̃0})⊕B(r) at the annulus
A0 dies, while a cycle is created in the union of balls (C1 ∪ {p1, p̃1}) ⊕ B(r) at the annulus A1.

(c) At radius r2, the cycle in the union of balls at the annulus A1 dies, while a cycle is created in the
union of balls at the annulus A2.

(d) The set (Ck ∪ {pk, p̃k}) ⊕ B(r) at radius
rk = 1 − δ. The two “gaps” are identical.

(e) The two “gaps” of the set (Ck ∪ {pk, p̃k}) ⊕
B(r) disappear simultaneously.

Figure 2 The changing homology of the thickening P ⊕ B(r) in the annuli A0, A1, A2, and Ak.
The set S is in blue, the sample P in red, and the thickening P ⊕ B(r) in pink. The black circles
indicate the location of the two isolated sample points of P associated to each annulus.

SoCG 2024
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2.1 Sets of Positive Reach
The construction for sets of positive reach goes as follows: We define S to be a union of
annuli Ai in R2, each of which has inner radius 1 and outer radius 1 + 2ε. We lay the annuli
in a row at distance at least 2 away from each other. We number the annuli from i = 0.

The sample P consists of circles Ci of radius 1 + ε lying in the middle of the annuli
(Ci ⊆ Ai), and pairs of points {pi, p̃i}. Each pair {pi, p̃i} lies in the disk inside the annulus
Ai, at a distance δ from Ai, and the two points lie at a distance 2ri from each other. The
bisector of pi and p̃i intersects the circle Ci in two points. We let qi be the intersection point
that is closest to pi (and thus p̃i). We denote the circumradius of pip̃iqi by Ri and note that
Ri ≥ ri.

Figure 3 Each annulus Ai is sampled by a circle Ci and a pair of points {pi, p̃i}. The circumradius
is indicated by Ri.

We set r0 = δ+ε
2 and, for i ≥ 0,

ri+1 =
{

Ri, if Ri < 1 − δ,

1 − δ, otherwise.

We stop the sequence at the first value of i = k such that rk = 1 − δ. Our constructed set
S consists of the finitely many annuli A0 ∪ A1 ∪ . . . ∪ Ak and our sample P is defined as⋃

0≤i≤k Ci ∪ {pi, p̃i}. The topological transitions of the thickening of the sample (P ⊕ B(r))
are illustrated in Figure 2 and described in the supplementary material [1].

2.2 Manifolds
The construction for manifolds goes as follows: We define M to be a union of tori of revolution
Ti ⊆ R3. Each of these tori is the 1-offset of a circle (in the horizontal plane) of radius 2
in R3. We number the tori from i = 0, and lay them out in a row at a distance at least 2
apart from one another. Due to this assumption, the reach of M equals 1.

The sample P consists of sets Ci which are tori with a part cut out, and pairs of points
{pi, p̃i} lying inside the hole of each torus Ti. To construct each set Ci we take the δ-
offset of Ti, keep the part that lies inside the solid torus bounded by Ti, and remove an
ε-neighbourhood of the circle obtained by revolving the point (1, 0, 0) around the z-axis; see
the red set in Figures 4 and 5.
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Ti Ci
pi p̃i

C′
i

Figure 4 The (half of the) torus Ti depicted in blue; the sample – the set Ci and the points pi

and p̃i – in red. In black we indicate the circle C′
i. The closest point projection of this circle onto

M is indicated in blue.

Let C ′
i be the circle found by revolving the point (1 − δ, 0, 0) around the z-axis. Each

pair of points pi and p̃i lies on C ′
i at a distance 2ri from each other. Let qi and q̃i be those

two points in the intersection of the bisector of pi and p̃i and the set Ci, that lie closest to pi

and p̃i. Note that qi and q̃i lie on the boundary of Ci (where we think of Ci as a manifold
with boundary), and {qi, q̃i} = πCi

(
pi+p̃i

2
)
. Denote the circumradius of the simplex pip̃iqiq̃i

by Ri.

1 − δ

y

z

Ci

Ti

C′
i

(−2, 0, 0)

pi

x
ε

δ

p̃i

qi

δ
q̃i

(2, 0, 0)

1
ri

(1, 0, 0)(−1, 0, 0)

Figure 5 The sets Ti, Ci and C′
i are obtained by rotating around the z-axis, respectively, the

blue circles, the red arcs and the white point.

We define the distance 2ri between each pair of points pi and p̃i inductively. We set the
distance r0 such that the balls B(p0, r) and B(p̃0, r) start to intersect at the same value of r

as the balls B(q0, r) and B(q̃0, r) start to intersect:

r0 = 1
2 d (q0, q̃0) =

√
ϵ2 −

(
ϵ2 − δ2 + 2δ

2

)2
.

We then define

ri+1 =
{

Ri, if Ri < 1 − δ,

1 − δ, otherwise.

We stop the sequence at the first value of i = k such that ri = 1 − δ.

SoCG 2024
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Finally, the manifold M consists of the finitely many tori T0 ∪ T1 ∪ . . . ∪ Tk, and the
sample P is defined as

⋃
0≤i≤k (Ci ∪ {pi, p̃i}). The topological transitions of the thickening

of the sample (P ⊕ B(r)) are described in the supplementary material [1].
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