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Boundary controllability of time-discrete parabolic

systems: a moments method approach

Franck Boyer Vı́ctor Hernández-Santamaŕıa

June 28, 2024

Abstract

In this work, we investigate the boundary controllability of time-discrete parabolic systems, uniformly
with respect to the discretization parameter. To establish our main results, we adapt and extend the moment
method first introduced by Fattorini and Russell, to the time-discrete setting. While this method has proven
effective in the continuous framework and in the space-discrete case, its adaptation to time-discrete systems
is challenging due to the fact that the more accurate results in the field are based on several complex analysis
tools.

To overcome this, we introduce a new alternative proof for constructing biorthogonals to (generalized)
exponential functions in the continuous setting, based on the original proof by Fattorini and Russell which
avoids the use of these tools, and taking ideas from the block moment method introduced by Benabdallah,
Morancey and the first author of this work. We then manage to adapt this strategy to the discrete setting,
enabling the construction and estimation of biorthogonal families for some time-discrete functions that play
the same role as the exponentials at the discrete level. Our results show that these biorthogonals can be
uniformly estimated for a finite portion of the spectrum, determined by the discretization parameter τ , and
that converges to the whole spectrum as τ goes to zero.

Using this tool, we prove a relaxed null-controllability result for discrete parabolic systems. It says that
there exists a bounded sequence of time discrete controls that makes the solution reach a target at final time
tending to zero exponentially fast as the discretization parameter τ goes to zero. We will also study the
effects of the existence of a minimal null-control time and how this phenomenon translates into the discrete
world.

Keywords: Time-discrete heat equation, moment’s method, biorthogonal families, minimal time
MSC2020: 93C55, 93B05, 93C20, 30E05.

1 Introduction

In this paper, we are interested in studying null-controllability properties of boundary control systems at
a time-discrete level. The prototypical example we shall focus on (see Section 4 for a discussion on more
general systems) is the cascade system of parabolic equations given by

∂ty1(x, t) +Ay1(x, t) = 0 in (0, 1)× (0, T ),

∂ty2(x, t) +Ay2(x, t) + y1(x, t) = 0 in (0, 1)× (0, T ),

y1(x, t) = 1{x=1}v(t) on {0, 1} × (0, T ),

y2(x, t) = 0 on {0, 1} × (0, T ),

y1(x, 0) = y1,0(x), y2(x, 0) = y2,0(x).

(1.1)

where T > 0 is fixed, yi,0 ∈ L2(0, 1), i = 1, 2, are given initial data, v = v(t) is a boundary control function,
and A stands for a positive self-adjoint operator in L2(0, 1) defined as

A = −∂x(γ(x)∂x·) (1.2)

with domain D(A) = H1
0 (0, 1) ∩H2(0, 1) and where

γ ∈ C1([0, 1]) verifying γmin := inf
x∈(0,1)

γ > 0. (1.3)
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The main difficulty to study the controllability of systems like (1.1) is that we have only one control
available to steer both components (y1, y2) to 0 at the final time T . In fact, notice that v is being applied
only at the boundary of the first component y1 and its action enters indirectly on the system through the
coupling y1 in the second equation.

It is by now well-known, see e.g. [23], that for any y1,0 and y2,0, system (1.1) is null controllable at time
T , this is, there exists a control v ∈ L2(0, T ) such that

y1(x, T ) = y2(x, T ) = 0. (1.4)

As mentioned in that work, the boundary controllability of coupled systems like (1.1) is more difficult to
prove than for scalar equations or coupled systems with distributed control. The main reason is that the
usual techniques based on Carleman strategies are mostly often inefficient for these kind of problems and,
except for a few cases, this approach is useless, see [6, 10,29].

To this day, the moment method, introduced by Fattorini and Russell in their seminal work [21], is
the most successful tool for studying the boundary controllability of systems like (1.1). The results in the
literature are very rich and varied, thus we refer the reader only to some of the most recent works for the
application of the method to the controllability of coupled parabolic systems, see [2,3,4,5,9,10,19,23,25,26,
33, 36]. This technique has allowed in particular to obtain Kalman-type conditions, see [3], for establishing
the boundary controllability of more general coupled parabolic systems like the ones we shall study here.
Also, this approach has been useful to study interesting phenomena, which were not initially expected for
parabolic systems, such as the minimal time for controllability or the dependence on the geometry of the
control domain, see [5] and the discussion in Section 4.

1.1 Problem statement

Let us fix d ∈ N∗. Adopting the tensor product formalism used in [16] (see also [1]), we will study here the
controllability of the general cascade system given by

∂ty +A⊗ I y + I ⊗ C y = 0 in (0, 1)× (0, T ),

y = 1{x=1} ⊗ (Bv) on {0, 1} × (0, T ),

y(x, 0) = y0(x), in (0, 1),

(1.5)

where y0 ∈ L2(Ω) ⊗ Rd is a given initial datum, the control and coupling matrices B ∈ Rd and C ∈ Rd×d,
respectively, are given by

B =


1
0

0

 , C =


0 0

0 0

1

1

0

0

 , (1.6)

while I and I denote the identity operators in Rd and L2(0, 1), respectively. Observe that the matrices I, C
and B act pointwise on the components of the solution and the control in the system while A and I stand
for differential operators acting on infinite dimensional function spaces. To simplify the notation, we shall
define the complete (non self-adjoint) operator

L := A⊗ I + I ⊗ C. (1.7)

Although it has not been written with this formalism, system (1.5) has been already studied in [3] from
a control point of view. Due to the special structure of the matrices B and C, refered to as the cascade form,
it is indeed possible to find a single scalar control v ∈ L2(0, T ) such that

y(·, T ) = 0.

With this in mind, the main goal of this paper is to study controllability properties for the time-discrete
counterpart of (1.5). To be more precise, for any given M ∈ N∗, we set τ = T/M and introduce the following
discretization of the time interval [0, T ]

0 = t0 < t1 < . . . < tM = T, (1.8)

with tn = nτ and n ∈ J0,MK. Hereinafter, we shall use the notation Ja, bK = [a, b] ∩ N for any real numbers
a < b.

For any time-discrete scalar boundary control sequence v = {vn}n∈J1,MK ⊂ R, consider the sequence of
functions y = {yn}n∈J0,MK ⊂ L2(0, 1)⊗ Rd verifying the recursive formula

yn+1 − yn

τ
+ Lyn+1 = 0, n ∈ J0,M − 1K,

yn+1
|∂Ω = 1{x=1} ⊗ (Bvn+1), n ∈ J0,M − 1K,
y0 = y0(x),

(1.9)
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where yn (resp. vn) denotes the approximation of y (resp. v) at time tn. Notice that system (1.9) is precisely
an implicit Euler discretization of (1.5).

Analogous to the continuous case, we say that system (1.9) is null-controllable at time T if for any
y0 ∈ L2(Ω)⊗ Rd, there exists a sequence {vn}n∈J1,MK such that the corresponding solution satisfies

yM = 0. (1.10)

It is straightforward to see that this requirement is impossible to achieve in our discrete setting since we only
have a finite number M of degrees of freedom for the scalar control to achieve the constraint (1.10) which
takes place in an infinite dimensional space. Note that, even though it is less clear at first sight, restrictions
also hold in the distributed control case (in which case the controls live in an infinite dimensional space and
the above argument does not apply). For instance, even for a simple scalar heat equation (i.e. d = 1), for a
distributed control applied on an open bounded set ω ⊂ (0, 1), it was pointed out in [37] that (1.9) is not
even approximately controllable for any τ > 0, except for the trivial case ω = (0, 1).

This obstruction leads to the natural question if whether relaxing condition (1.10), one is able to say
something about the controllability of (1.9). As it turns out, this is indeed the case and several works have
been devoted to study this problem. Still in the case when d = 1 and the control is applied internally, in [37],
it has been proved that the time-discrete heat equation can be controlled uniformly with respect to τ > 0
by projecting the solutions over a suitable class of low frequency Fourier components. Later, in [20], the
authors have proved that for any controllable parabolic equation, the discretization in time preserves some
controllability properties by applying an adequate filtering of high frequencies. Finally, in [14] the authors
establish a Carleman-type estimate for time-discrete approximations of the parabolic operator −∂t − ∂xx
allowing them to obtain a ϕ(τ)-controllability result where a small target is reached, that is,

|yM |L2(0,1) ≤ C
√
ϕ(τ)|y0|L2(0,1), (1.11)

where C > 0 is uniform with respect to τ and τ 7→ ϕ(τ) is a suitable function decaying exponentially as
τ → 0. We refer to [11,28] for other works in this direction.

We remark that the works mentioned above assume that the control is applied in the interior of the
domain and that we have a scalar system. Even though in [14], the authors study the possibility of controlling
many equations with few controls, as we have mentioned, Carleman based techniques are mostly useless for
boundary control problems. This important limitation is what motivate us to look for a systematic way to
deal with problems like (1.9).

1.2 Notations and functional framework

Here, we shall introduce some notation and definitions that will help us to present our computations and
results as closely as possible to the continuous framework.

Let {X, | · |X} be a real Banach space. We denote by Lpτ (0, T ;X), 1 ≤ p <∞ the space of time-discrete
functions {un}n∈J1,MK ⊂ X endowed with the norm

‖u‖Lpτ (0,T ;X) :=

(
M∑
n=1

τ |un|pX

)1/p

(1.12)

We also define the space L∞τ (0, T ;X) by means of the norm

‖u‖L∞τ (0,T ;X) := sup
n∈J1,MK

|un|X .

In the case where p = 2 and X is replaced by a Hilbert space {H, (·, ·)H}, the space of functions
{un}n∈J1,MK ⊂ H becomes a Hilbert space for the norm induced by the inner product

(u, v)L2
τ (0,T ;H) :=

M∑
n=1

τ (un, vn)H . (1.13)

In particular, if H = R, we will simply denote the space L2
τ (0, T ;R) by L2

τ (0, T ). We will also use the
notation L2

τ (0,+∞) to denote the space of discrete functions equipped with the norm

‖u‖L2
τ (0,+∞) :=

(
+∞∑
n=1

τ |un|2
)1/2

. (1.14)

1.3 Main results

Let us consider any given increasing function τ 7→ ϕ(τ) of the discretization parameter verifying

ϕ(0) = 0, and lim sup
τ→0

|τ logϕ(τ)| = 0. (1.15)

This means that ϕ does not tend to zero faster than some function τ 7→ e−C/τ . In practice, polynomial
functions such as ϕ(τ) = τp can be considered, where p corresponds to the accuracy of the numerical method
being considered, see the discussion in [12].

Our main controllability result reads as follows.
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Theorem 1.1. Let us consider T > 0 and a discretization parameter τ ∈ (0, 1). Then, for any y0 ∈ L2(Ω)
there exists a time-discrete control v ∈ L2

τ (0, T ) such that

‖v‖L2
τ (0,T ) ≤ C|y

0|L2(Ω) (1.16)

and such that the associated controlled solution of (1.5) verifies

|yM |L2(Ω) ≤ C
√
ϕ(τ)|y0|L2(Ω). (1.17)

where the constant C > 0 depends only on T and φ.

As we have mentioned before, in general we cannot achieve a standard null controllability result as in
(1.10). Instead, Theorem 1.1 indicates that we can reach a target yM whose size goes to zero as τ → 0 at
the prescribed rate

√
ϕ(τ) with controls that remain uniformly bounded with respect to τ . Thus, we speak

of ϕ(τ)-controllability result. In this case, we see that up to a subsequence, we can recover the known result
in the continuous setting.

To prove Theorem 1.1, we will follow closely the classical moment method introduced in [22] that we
suitably adapt to the time-discrete world. In fact, the moment method has been used in [3] to prove
the controllability of (1.5) in the continuous framework and therefore seems to be a natural approach.
Nonetheless, the proof presented in [3] or in [7] relies on several complex analysis tools for proving the
existence of biorthogonal families to some (generalized) exponential functions and, as far as we know, there
is no easy translation of these results to the discrete setting. For this reason, we shall present here an
alternative proof for constructing and estimating biorthogonal families inspired by the block moment method
as presented in [8]. Although this result is evidently not new in the literature, see for instance [23], the
approach we use here is original. It can be applied to a system with any number of components and, more
importantly, it is well suited to an adaptation to the time-discrete case that we will present in Theorem 3.2
and which is one of the main original results of the paper.

At this point, it is important to mention that the moment method has proven effective for establishing
controllability properties of other (space-) discrete systems; see, for instance, [2, 32, 35]. However, our
approach differs significantly from these works. In those papers, the underlying equations are discretized
in the space variable, leading to continuous ordinary differential equations. The difficulty comes from the
fact that the spectrum of the problem is a finite approximation of the continuous spectrum but the moment
problem retains its structure. Here, the eigenfunctions and eigenvalues of the problem are the same as in
the continuous setting, but the moment problem must be solved for time-discrete functions approximating
the continuous exponentials. This approximation is what makes our problem particularly challenging. See
Section 3.1 for a precise formulation and further discussion on this.

Once we are able to estimate solutions to time-discrete moment problems, other applications are possible
like the time-discrete controllability property in cases where the control system has a positive minimal null-
control time, see Section 4. This will be done by looking at associated relaxed observability inequalities for
the time-discrete adjoint system.

1.4 Outline

The rest of the paper is organized as follows. In Section 2, we recall some instrumental definitions and
present various results of the moment method in the continuous setting. Specifically, we will focus on giving
an alternative constructive proof for biorthogonal families to exponential functions in Section 2.2. These
results will be translated to the time-discrete setting in Section 3, where we present the proof of our main
theorem Theorem 1.1. Section 4 is devoted to discussing the phenomenon of minimal null control time for
some general time-discrete control systems. We conclude this paper by presenting some final remarks and
comments in Section 5. Some technical results are gathered in appendices.

2 The continuous setting

We begin this section by recalling briefly the classical moment’s method as introduced in [22]. The ideas
presented below form the basis of the results shown in the following sections.

For an operator defined as in (1.2)–(1.3), it is well-known that there exists an orthonormal basis of
L2(0, 1) made of eigenfunctions of A and associated simple and real eigenvalues. We denote by Λ the set of
eigenvalues λ and we denote by (φλ)λ∈Λ the corresponding Hilbert basis of L2(Ω).

Let us fix T > 0 and y0 ∈ L2(Ω). For the sake of exposition, let us consider first the scalar problem
∂ty +Ay = 0 in Q,

y(0, t) = 0, y(1, t) = v in (0, T ),

y(x, 0) = y0(x) in (0, 1).

(2.1)

It is well-known (see, e.g., [18]) that for any given v ∈ L2(0, T ), there exists a unique solution y ∈
C(0, T ;H−1(0, 1)) to (2.1) verifying

〈y(t), φλ〉−1,1 −
〈
y0, e−λtφλ

〉
−1,1

= −
(
e−λ(t−·)∂xφλ(1), v

)
L2(0,T )

, ∀λ ∈ Λ, t ∈ [0, T ],
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where 〈·, ·〉−1,1 denotes the usual duality product between H−1(0, 1) and H1
0 (0, 1). Since we are interested

in the null controllability at time T of system (2.1), the above formula evaluated at t = T gives

〈y(T ), φλ〉−1,1 −
〈
y0, e−λTφλ

〉
−1,1

= −
∫ T

0

γ(1)∂xφλ(1)e−λ(T−t)v(t) dt, ∀λ ∈ Λ, (2.2)

We see that the null-controllability problem at time T is reduced to find v ∈ L2(0, T ) such that∫ T

0

v(t)e−λ(T−t)dt =
〈y0, φλ〉−1,1e

−λT

γ(1)∂xφλ(1)
, ∀λ ∈ Λ. (2.3)

This set of equations is called a moment problem. The moment’s method hence consists in solving (2.3)
by using a so-called biorthogonal family to the exponentials (e−λ(T−•))λ∈Λ.

Definition 2.1. We say that a family (qλ′)λ′∈Λ is biorthogonal to (e−λ(T−•))λ∈Λ in L2(0, T ) if∫ T

0

e−λ(T−t)qλ′(t)dt = δλ,λ′ , ∀λ, λ′ ∈ Λ. (2.4)

With this definition, it is not difficult to see that we may formally solve the moment problem by defining

v(t) :=
∑
λ∈Λ

〈y0, φλ〉−1,1e
−λT

γ(1)∂xφλ(1)
qλ(t). (2.5)

It is well known that the quantities |∂xφλ(1)| are uniformly bounded from below. For instance, one can
find in [13, Theorem IV.1.3] the following lower bound

|∂xφλ(1)| ≥ C
√
λ, ∀λ ∈ Λ. (2.6)

Thus, in order to justify the methodology it remains to prove the existence of the biorthogonal family
(qλ)λ∈Λ, as well as a suitable upper bound of the L2-norms of qλ for all λ ∈ Λ. This will let us obtain the
convergence of the formal series (2.5) and conclude the proof.

In this context, those two steps summarize the essentials of the moment’s method, as developped most
notably, in [22], and will be at the heart of our analysis.

2.1 The moment’s method for the controllability of coupled parabolic
systems

The methodology presented above can be applied, with very few modifications, to address the controllability
of the coupled system (1.5). Since Carleman estimates are useless in this particular case, this approach is of
particular interest.

First, it is not difficult to see that the adjoint operator of L (defined in (1.7)) is given by L? := A⊗I+I⊗C?
and has the same set of eigenvalues Λ as A. Each of this eigenvalues is geometrically simple but has algebraic
multiplicity equal to d and is associated to a d× d Jordan block. More precisely, we have that

L?(φλ ⊗ e1) = λφλ ⊗ e1 (2.7)

and, iteratively,
L?(φλ ⊗ ej) = λφλ ⊗ ej + φλ ⊗ ej−1, j ∈ J2, dK. (2.8)

where (e1, . . . , ed) is the canonical basis of Rd. Thus, φλ⊗e1 is an eigenfunction of L? and φλ⊗ej , j ∈ J2, dK,
are generalized eigenfunctions.

Now, for any λ ∈ R+ and any fixed t, we define et[λ] to be the exponential

et[λ] := e−λt. (2.9)

and e[λ] : (0,+∞)→ R to be the associated function of the time variable

e[λ] : t 7→ et[λ]. (2.10)

With these notations and using the formalism of divided differences (see Section A.1), we can give a
convenient and compact expression of the action of the semigroup on the (generalized) eigenfunctions as
follows

e−tL
?

(φλ ⊗ er) =

r−1∑
`=0

(−t)`

`!
e−λt(φλ ⊗ er−`)

=

r−1∑
`=0

et[λ
(`+1)](φλ ⊗ er−`), ∀t ≥ 0, ∀r ∈ J1, dK. (2.11)

where, in particular, we have used Definition A.2.
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Using formula (2.11) and arguing as previously, we can readily see that the boundary controllability
problem for (1.5) reduces to find a control v ∈ L2(0, T ) such that for any λ ∈ Λ and any r ∈ J1, dK the
following equality holds〈

y0, e−TL
?

(φλ ⊗ er)
〉
−1,1

=
((
∂x|x=1

⊗B∗
)
e−(T−•)L?(φλ ⊗ er), v

)
L2(0,T )

.

Thanks to the special structure of matrix B and performing the change of variables T − t 7→ t, we deduce
using (2.11) that〈

y0, e−TL
?

(φλ ⊗ er)
〉
−1,1

= γ(1)∂xφλ(1)

∫ T

0

et[λ
(r)]v(T − t)dt, ∀λ ∈ Λ, ∀r ∈ J1, dK. (2.12)

From this expression, it is clear what the moment problem to be solved is. Specifically, we look for a

family of functions that is biorthogonal to
(
e[λ(i)]

)i∈J1,dK
λ∈Λ

in L2(0, T ). The precise definition is as follows.

Definition 2.2. We say that a family (qλ′,j)
j∈J1,dK
λ′∈Λ is biorthogonal to

(
e[λ(i)]

)i∈J1,dK
λ∈Λ

in L2(0, T ) if∫ T

0

et[λ
(i)]qλ′,j(t)dt = δλ,λ′δi,j , ∀λ, λ′ ∈ Λ, ∀i, j ∈ J1, dK. (2.13)

With this definition, we can construct an auxiliary control function by setting

ṽ(t) :=

d∑
j=1

∑
λ∈Λ

αjλ
γ(1)∂xφλ(1)

qλ,j(t) (2.14)

where we have denoted αjλ :=
〈
y0, e−TL

?

(φλ ⊗ ej)
〉
−1,1

and set the change of variables v(t) = ṽ(T − t). As

in the scalar case, to justify the method, we will prove the existence of the biorthogonal family and also give
precise estimates on its norm. The controllability result will follow by observing that we have the bound

|αjλ| ≤ CT e
−λT |y0|L2 ,

as well as the bound from below for the normal derivatives given in (2.6).

2.2 Existence of biorthogonal families to exponential functions

2.2.1 Assumptions

Before stating the main result of this section, we need to introduce some instrumental definitions and
assumptions on the family of eigenvalues Λ.

From now on, we will work with families of eigenvalues Λ ⊂ (0,+∞) verifying

• Asymptotic behavior: ∑
λ∈Λ

1

λ
< +∞. (2.15)

• Gap condition with parameter ρ:

|λ− λ′| > ρ, ∀λ, λ′ ∈ Λ, λ 6= λ′. (2.16)

For a family Λ verifying (2.15), we introduce the following notion.

Definition 2.3. A function R : R→ [0,∞) is called a remainder function for the family Λ if it satisfies

lim
r→∞

R(r) = 0

and ∑
λ∈Λ
λ>r

1

λ
≤ R(r), ∀r ∈ R. (2.17)

Clearly, the family Λ of eigenvalues associated to the operator A defined in (1.2)–(1.3) verify (2.15)–(2.16)
and a non-increasing remainder function R can be computed such that R(r) ∼ C√

r
as r → ∞.. Also note

that since (2.15) holds
λ ≥ 1/R(0) for all λ ∈ Λ. (2.18)
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2.2.2 Biorthogonal families

Now, we are in position to state the main result of this section. This result, which is already known
in the literature (see Remark 2.5) gives the existence of a biorthogonal family to the family of functions

(e[λ(i)])
i∈J1,dK
λ∈Λ , as well as suitable estimates.

Theorem 2.4. Let d ∈ N∗, T ∈ (0,+∞] and Λ be a family of eigenvalues verifying (2.15)–(2.18). There

exists a family (qλ,i)
i∈J1,dK
λ∈Λ in L2(0, T ) satisfying(

e[λ(i)], qλ′,j

)
L2(0,T )

= δλ,λ′δi,j , ∀λ, λ′ ∈ Λ, ∀i, j ∈ J1, dK (2.19)

and the estimate
‖qλ,i‖L2(0,+∞) ≤ Ce

δ(λ)λ, ∀λ ∈ Λ, ∀i ∈ J1, dK, (2.20)

where δ : R→ R is a non-increasing function such that lims→+∞ δ(s) = 0 that only depends on ρ, R, d. The
constant C > 0 depends at most on d, R and T .

With this result at hand, it is not difficult to see that the control defined in (2.14) is bounded in L2(0, T )
and that the null controllability problem for system (1.5) is solved. Since similar computations will be
performed at the discrete level, we skip the details and only focus on the original parts of the argument.

Remark 2.5. As said previously this result is not new by itself but the strategy of proof we propose is original
and, more importantly, can be adapted to the time-discrete setting (see Section 3), which is not the case for
the other approaches.

• In [3,7,13], such a result was proved, even with more acurate estimates in some cases, by using Laplace
transform, Paley-Wiener theorems and the construction of suitable analytic functions called multipliers.
Unfortunately, it is not known how to follow this way to obtain those results in the time-discrete setting.

• On the other hand, the proof given in [23], in the case d = 2, follows closely the method given for d = 1
in [22]. However, this proof does not immediately translates to any value of d and seems to be delicate
to translate into the time-discrete framework as it.

This process can be simplified by following the ideas of [8] that consists in grouping the eigenvalues and
using the concept of divided differences, which has the advantage to work for any value of d. This is
the strategy we shall use in this paper.

In the remainder of the section, we will give a proof of Theorem 2.4 for T = +∞ that relies on quite direct
computations that we will manage to adapt later to the discrete setting. Then using a classical restriction
argument (see e.g. [22, Theorem 1.3]), we will obtain the same result in a time interval (0, T ) for any T > 0
finite.

More precisely, our proof of Theorem 2.4 will be mainly based on the following result.

Proposition 2.6. Let d ∈ N∗ and Λ be a family of eigenvalues verifying (2.15)–(2.18) . There exists ε0 > 0

only depending on d, ρ and R such that for any ε < ε0, there exists a family (qλ,i,ε)
i∈J1,dK
λ∈Λ in L2(0,+∞)

satisfying
(e[λ, . . . , λ+ (i− 1)ε], qλ′,j,ε)L2(0,+∞)

= δλ,λ′δi,j , ∀λ, λ′ ∈ Λ, ∀i, j ∈ J1, dK (2.21)

and the estimate
‖qλ,i,ε‖L2(0,+∞) ≤ Ce

δ(λ)λ, ∀λ ∈ Λ, ∀i ∈ J1, dK, (2.22)

where δ : R→ R is a non-increasing function such that lims→+∞ δ(s) = 0 that only depends on ρ, d, R, and
C > 0 is a constant only depending on d and R.

This result says that we can find a biorthogonal family to divided differences of the exponentials e[λ],
which in addition satisfies good uniform estimates (w.r.t ε). Then, it can be seen that

e[λ, . . . , λ+ (i− 1)ε]→ e[λ(i)] in L2(0,+∞)

and by a limit process one can deduce the proof of Theorem 2.4.
This same strategy will be employed at the discrete level, so we shall only focus on proving Proposition 2.6.

The proof combines the classical methodology of Fattorini and Russell and some ideas of the block moment
method presented in [8].

2.2.3 Reduction to divided differences

Here we prove the existence of biorthogonal families to divided differences of the exponentials.

Proof of Proposition 2.6. Let ε ∈
(

0, ρ
4(d−1)

)
and define

Λ̃ :=

d−1⋃
r=0

(Λ + rε) =
⋃
λ∈Λ

Gλ (2.23)
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where Gλ is the group formed by the ordered elements

Gλ = {λ, λ+ ε, . . . , λ+ (d− 1)ε} . (2.24)

Those sets depend on ε but we will not make this appear in the notation to ease as much as possible the
reading. Defined in this way, we are gluing together d families of eigenvalues where each of them satisfy a
gap condition (2.16). Note that our choice of ε above ensures that Gλ ∩Gλ′ = ∅ for any λ, λ′ ∈ Λ.

For the sake of exposition, we have divided the rest of the proof in three different steps that hold for
each fixed λ ∈ Λ.

– Step 1. Measuring the distance between some exponential functions. Let us consider the
closed subspace of L2(0,+∞) defined by

Eλ := span
{
e[σ] : σ ∈ Λ̃λ

}L2(0,+∞)

(2.25)

where
Λ̃λ := Λ̃ \Gλ,

and let PEλ be the orthogonal projection onto Eλ in L2(0,+∞).
Following the spirit of [22], the first step is to compute the distance in the L2-norm of the functions e[σ]

with σ in Gλ to the space Eλ. We have the following result

Lemma 2.7. For any σ, σ′ ∈ Gλ(
e[σ]− PEλe[σ], e[σ′]− PEλe[σ

′]
)
L2(0,+∞)

=
1

σ + σ′
Wλ(σ)Wλ(σ′)

where

Wλ(σ) =
∏
µ∈Λ̃λ

µ− σ
µ+ σ

.

The proof of this result is classical and we only made some minor adaptations for handling the grouping
of eigenvalues. For the sake of completeness, we present the proof in Appendix B.1.

We observe also that, by definition of the orthogonal projection, we have

(e[σ]− PEλe[σ], e[γ])L2(0,+∞) = 0 (2.26)

for all σ ∈ Gλ and γ ∈ Λ̃λ.

– Step 2. A biorthogonal for an auxiliary family. For any σ ∈ Gλ, we define

ẽ[σ] := e[σ]− PEλe[σ], and f [σ] :=
ẽ[σ]

Wλ[σ]
.

Note from Lemma 2.7 that(
f [σ], f [σ′]

)
L2(0,+∞)

=
1

σ + σ′
=
(
e[σ], e[σ′]

)
L2(0,+∞)

, ∀σ, σ′ ∈ Gλ (2.27)

where the rightmost equality follows from a direct computation. Also notice that by linearity, the family
Fλ,ε := ((2λ)i−1/2f [λ, . . . , λ+ (i− 1)ε])i∈J1,dK spans the same space as

Eλ,ε := (ẽ[λ, . . . , λ+ (i− 1)ε])i∈J1,dK .

Taking into account all of this, we will focus on building a biorthogonal family (qaux
λ,i )i∈J1,dK to Fλ,ε, that

is a family satisfying(
(2λ)i−1/2f [λ, . . . , λ+ (i− 1)ε], qaux

λ,j

)
L2(0,+∞)

= δi,j , ∀i, j ∈ J1, dK, (2.28)

together with suitable estimates. Since λ is fixed, and since Fλ,ε is linearly independent, we are faced with
a finite dimensional problem that has a unique solution in the space spanned by Fλ,ε, which is the one with
minimal L2 norm.

This solution can be found in the following form

qaux
λ,i := νi,1(2λ)1/2f [λ] + νi,2(2λ)3/2f [λ, λ+ ε] + . . .+ νi,d(2λ)d−1/2f [λ, . . . , λ+ (d− 1)ε],

i ∈ J1, dK, (2.29)

where νi,j ∈ R, i, j ∈ J1, dK are suitable coefficients. By construction, the biorthogonal problem (2.28) can
be reduced to finding the coefficients νi = (νi,1, . . . νi,d)

> ∈ Rd such that

Gλ,ενi = ei, i ∈ J1, dK, (2.30)
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where ei is the i-th canonical vector of Rd and Gλ,ε is the Gram matrix of the family Fλ,ε with entries

Gλ,ε =
(

(2λ)i+j−1(f [λ, . . . , λ+ (i− 1)ε], f [λ, . . . , λ+ (j − 1)ε]
)
L2(0,+∞)

)
1≤i,j≤d

. (2.31)

The matrix Gλ,ε is invertible and the coefficients νi can be readily obtained from (2.30) by setting

νi = G−1
λ,εei, i ∈ J1, dK. (2.32)

The inverse of the Gram matrix Gλ,ε can be estimated by the following result.

Lemma 2.8. Under the assumptions of Proposition 2.6, there exists ε0 > 0 only depending on ρ, R, and d
such that for any ε < ε0, there exists a constant c > 0 only depending on d such that

(Gλ,εξ, ξ) ≥ c‖ξ‖2∞ (2.33)

for any ξ = (ξi, . . . , ξd)
> ∈ Rd and any λ ∈ Λ and where (·, ·) stands for the usual inner product in Rd.

The proof of Lemma 2.8 can be found at the end of this section and it is based on the fact that for any
σ, σ′ ∈ Gλ, formula (2.27) gives a nice expression to compute explicitly the entries of (2.31).

To end this step, we shall estimate the L2-norm of qaux
λ,i , i ∈ J1, dK. Using expressions (2.29) and (2.31),

we get
‖qaux
λ,i ‖2L2(0,+∞) = (Gλ,ενi,νi) , i ∈ J1, dK. (2.34)

Then, from (2.30), we have that

‖qaux
λ,i ‖2L2(0,+∞) = (ei,νi) , i ∈ J1, dK,

whence
‖qaux
λ,i ‖2L2(0,+∞) ≤

√
d‖νi‖∞. (2.35)

Using formula (2.33) with ξ = νi and (2.34), we deduce that

‖νi‖∞ ≤ C̃, (2.36)

for some C̃ > 0 not depending on ε and λ. Combining estimates (2.35) and (2.36) yield that there is a
uniform constant C > 0 such that

‖qaux
λ,i ‖L2(0,+∞) ≤ C (2.37)

for all i ∈ J1, dK and λ ∈ Λ.

– Step 3. Final arrangements and conclusion. With the biorthogonal functions (qaux
λ,i )i∈J1,dK, let

us set

qλ,i =

d∑
k=i

(
1

Wλ

)[
λ+ (i− 1)ε, λ+ (k − 1)ε

]
(2λ)k−1/2qaux

λ,k , i ∈ J1, dK.

We will see that these qλ,i verify (2.21) and (2.22). Recalling that ẽ[σ] = f [σ]Wλ[σ] for σ ∈ Gλ, by
Leibniz rule (see Proposition A.4), we get

ẽ[λ, . . . , λ+ (`− 1)ε] =
∑̀
r=1

f [λ, . . . , λ+ (r − 1)ε]Wλ

[
λ+ (r − 1)ε, . . . , λ+ (`− 1)ε

]
, ` ∈ J1, dK,

whence, for k, ` ∈ J1, dK, we have

(ẽ[λ, . . . , λ+ (`− 1)ε], qλ,k)L2(0,+∞)

=
∑̀
r=1

Wλ

[
λ+ (r − 1)ε, . . . , λ+ (`− 1)ε

]
(f [λ, . . . , λ+ (r − 1)ε], qλ,k)L2(0,+∞)

=
∑̀
r=1

d∑
j=k

Wλ

[
λ+ (r − 1)ε, . . . , λ+ (`− 1)ε

]( 1

Wλ

)[
λ+ (k − 1)ε, . . . , λ+ (j − 1)ε

]
× (2λ)j−r

(
(2λ)r−1/2f [λ, . . . , λ+ (r − 1)ε], qaux

λ,j

)
L2(0,+∞)

,

and in view of (2.28), the only terms that remain are the ones when r = j, that is

(ẽ[λ, . . . , λ+ (`− 1)ε], qλ,k)L2(0,+∞)

=
∑̀
r=1

d∑
j=k

Wλ[λ+ (r − 1)ε, . . . , λ+ (`− 1)ε]

(
1

Wλ

)
[λ+ (k − 1)ε, . . . , λ+ (j − 1)ε](2λ)j−rδj,r.
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Observe that for ` < k, the above sum is zero since the case j = r is not possible. On the other hand, for
` ≥ k, by Leibniz rule (see Proposition A.4), we obtain

(ẽ[λ, . . . , λ+ (`− 1)ε], qλ,k)L2(0,+∞)

=
∑̀
r=k

Wλ

[
λ+ (r − 1)ε, . . . , λ+ (`− 1)ε

]( 1

Wλ

)[
λ+ (k − 1)ε, . . . , λ+ (r − 1)ε

]
=

(
Wλ

1

Wλ

)[
λ+ (k − 1)ε, . . . , λ+ (`− 1)ε

]
= δk,`. (2.38)

since Wλ
1
Wλ

is a constant function.

We can now check that the family (qλ,k)
k∈J1,dK
λ∈Λ we have just built satisfies (2.21):

• First, formula (2.38) exactly gives (2.21) in the case λ = λ′.

• Next, if λ′ ∈ Λ is such that λ′ 6= λ then λ′ + (i− 1)ε ∈ Λ̃λ for all i ∈ J1, dK and by construction (recall
(2.26) and that qλ,ε ∈ Fλ,ε) we have

(e[λ′ + (i− 1)ε], qλ,ε)L2(0+∞) = 0

which, by linear combinations, yields

(e[λ′, . . . , λ′ + (i− 1)ε], qλ,ε)L2(0+∞) = 0, ∀i ∈ J1, dK. (2.39)

This proves the claim.

Finally, from (2.37), we readily obtain

‖qλ,k‖L2(0,+∞) ≤ Cλ
d−1/2 max

j∈Jk,dK

∣∣∣∣( 1

Wλ

)
[λ+ (k − 1)ε, . . . , λ+ (j − 1)ε]

∣∣∣∣ .
From Proposition A.3, for any k, j ∈ J1, dK we have

1

Wλ
[λ+ (k − 1)ε, . . . , λ+ (j − 1)ε] =

1

(j − k)!

(
1

Wλ

)(j−k)

(θ)

for some θ ∈ [λ+ (k − 1)ε, λ+ (j − 1)ε]. Thus by Proposition A.8, we obtain

‖qλ,k‖L2(0,+∞) ≤ Cλ
d−1/2eδ(λ)λ. (2.40)

for some C > 0 only depending on d. From (2.18), we get

λd−1/2 ≤ CR,d(1 + λ)d = CR,de
d log(1+λ)

λ
λ (2.41)

thus, noting that the function λ 7→ log(1 + λ)/λ is decreasing and tends to 0 as λ → +∞, we obtain the
desired estimate (2.22) by combining estimates (2.40)–(2.41) and redefining the function δ. This ends the
proof of Proposition 2.6.

2.2.4 Estimate of the inverse of the Gram matrix Gλ,ε
We devote this section to prove Lemma 2.8. For any ξ ∈ Rd, we have

(Gλ,εξ, ξ) =

∥∥∥∥∥
d∑
i=1

ξi(2λ)i−1/2f [λ, . . . , λ+ (i− 1)ε]

∥∥∥∥∥
2

L2(0,+∞)

.

By the linearity of divided differences and using (2.27), we readily have that

(f [λ, . . . , λ+ (k − 1)ε], f [λ, . . . , λ+ (`− 1)ε])L2(0,+∞)

= (e[λ, . . . , λ+ (k − 1)ε], e[λ, . . . , λ+ (`− 1)ε])L2(0,+∞) , k, ` ∈ J1, dK,

thus

(Gλ,εξ, ξ) =

∥∥∥∥∥
d∑
i=1

ξi(2λ)i−1/2e[λ, . . . , λ+ (i− 1)ε]

∥∥∥∥∥
2

L2(0,+∞)

. (2.42)

Now, we proceed to estimate (2.42). Using Proposition A.3 we see that

(Gλ,εξ, ξ) =

∫ +∞

0

∣∣∣∣∣
d∑
i=1

ξi(2λ)i−1/2et[λ, . . . , λ+ (i− 1)ε]

∣∣∣∣∣
2

dt

=

∫ +∞

0

∣∣∣∣∣
d∑
i=1

ξi(2λ)i−1/2 (−t)i−1

(i− 1)!
e−(λ+θi)t

∣∣∣∣∣
2

dt,
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for some θi ∈ [0, (i− 1)ε] (depending on t, λ and ε) with i ∈ J1, dK and using the change of variable t 7→ t/λ,
we get

(Gλ,εξ, ξ) =

∫ +∞

0

e−2t

∣∣∣∣∣
d∑
i=1

ξi 2i−1/2 (−t)i−1

(i− 1)!
e−

t
λ
θi

∣∣∣∣∣
2

dt.

Using that (a− b)2 ≥ a2

2
− b2, we readily deduce

(Gλ,εξ, ξ) ≥
1

2

∫ +∞

0

e−2t

∣∣∣∣∣
d∑
i=1

ξi 2i−1/2 (−t)i−1

(i− 1)!

∣∣∣∣∣
2

dt−
∫ +∞

0

e−2t

∣∣∣∣∣
d∑
i=1

ξi 2i−1/2 (−t)i−1

(i− 1)!

(
1− e−

t
λ
θi
)∣∣∣∣∣

2

dt.

Using the inequality 1− e−x ≤ x for x > 0 in the second term of the above inequality, we deduce

(Gλ,εξ, ξ) ≥
1

2

∫ +∞

0

e−2t

∣∣∣∣∣
d∑
i=1

ξi2
i−1/2 (−t)i−1

(i− 1)!

∣∣∣∣∣
2

dt−
∫ +∞

0

e−2t
d∑
i=1

|ξi|22d−1 (−t)2(i−1)

[(i− 1)!]2

(
tθi
λ

)2

dt

and since θi ≤ (d− 1)ε for any i ∈ J1, dK and (2.18) holds, we obtain

(Gλ,εξ, ξ) ≥
∫ +∞

0

e−2t

∣∣∣∣∣
d∑
i=1

ξi2
i−1/2 (−t)i−1

(i− 1)!

∣∣∣∣∣
2

dt− Cε2‖ξ‖2∞, (2.43)

for some positive constant C only depending on d and R. The first term in the right-hand side can be seen
as the square of a Euclidean norm (depending only on d) of ξ and therefore, there exists a cd > 0 such that

(Gλ,εξ, ξ) ≥ cd‖ξ‖2∞ − Cε2‖ξ‖2∞.

Taking ε0 := min
{√

ρ
4(d−1)

,
√

cd
2C

}
where C > 0 is the constant appearing in (2.43) we get for every ε < ε0,

and every ξ,

(Gλ,εξ, ξ) ≥
cd
2
‖ξ‖2∞.

This concludes the proof of Lemma 2.8.

3 A time-discrete moment’s method

3.1 Motivation

In this section, we shall present in the time-discrete setting, a result analogous to the one given in the
previous section. The motivation and methodology follows the same spirit as in the continuous case, so we
aim to obtain an equation similar to (2.12) and state a moment problem for the discrete setting.

To this end, the first thing we need to check is how the time-discrete semigroup acts on the (generalized)
eigenfunctions of our problem. Let us define for any λ ∈ R+, τ > 0, and any fixed n ∈ N∗ the quantity

pn[λ] := (1 + τλ)−n (3.1)

and the associated time-discrete function

p[λ] : n 7→ pn[λ]. (3.2)

A straightforward computation shows that for any j ≥ 1

pn[λ(j)] =
(−τ)j−1

(j − 1)!
〈〈n〉〉j−1(1 + τλ)−(n+j−1), (3.3)

where, for convenience, we have introduced the notation

〈〈n〉〉i :=
(n+ i− 1)!

(n− 1)!
. (3.4)

Note that for any T > 0, and j ≥ 1, we have that

sup
n≤T/τ

∣∣∣pn[λ(j)]− enτ [λ(j)]
∣∣∣→ 0 as τ → 0,

hence it is expected that the functions p[λ(j)] will play the role of the exponentials e[λ(j)] in the discrete
setting. Indeed, using identities (2.7)–(2.8) and formula (3.3), it can be seen after a long but straightforward
computation that, for each fixed r ∈ J1, dK, the sequence z = (zn+1)n∈J0,M−1K with elements given by

zn+1 =

r−1∑
`=0

pM−n[λ(`+1)](φλ ⊗ er−`), n ∈ J0,M − 1K

11



solves the backward system 
zn − zn+1

τ
+ L?zn = 0, ∀n ∈ J1,MK

(zn+1)|∂Ω = 0, ∀n ∈ J1,MK
zM+1 = φλ ⊗ er.

(3.5)

This proves that the action of the time-discrete semigroup on the (generalized) eigenfunctions of the adjoint
operator reads

(I ⊗ I + τL?)−(M−n)
(φλ ⊗ er) =

r−1∑
`=0

pM−n[λ(`+1)](φλ ⊗ er−`), n ∈ J0,M − 1K (3.6)

for all r ∈ J1, dK and any λ ∈ Λ.
Given this computation, we can multiply in L2(Ω) the system (1.9) by the adjoint semi-group given

by (3.6) and we sum for n ∈ J0,M − 1K. After integration by parts in space and taking into account the
boundary conditions, we obtain(

yM , φλ ⊗ er
)
L2(Ω)

=
(
y0, (I ⊗ I + τL?)−M (φλ ⊗ er)

)
L2(Ω)

−
M−1∑
n=0

τ
(
∂x|x=1

⊗ Bt
)

(I ⊗ I + τL?)−(M−n)(φλ ⊗ er) v
n+1.

Using the structure of matrix B (see (1.6)) and formula (3.6) in the right-hand side of the previous expression,
we deduce that(

yM , φλ ⊗ er
)
L2(Ω)

=
(
y0, (I ⊗ I + τL?)−M (φλ ⊗ er)

)
L2(Ω)

− γ(1)∂xφλ(1)

M−1∑
n=0

τ pM−n[λ(r)]vn+1 (3.7)

for all λ ∈ Λ and r ∈ J1, dK.
From here, it is easy to see that the null controllability problem for the time-discrete system (1.9) amounts

to find a control sequence (vn+1)n∈J0,M−1K ⊂ R such that for all λ ∈ Λ and r ∈ J1, dK, we have

M−1∑
n=0

τ pM−n[λ(r)]vn+1 =
αλ,r

γ(1)∂xφλ(1)
, (3.8)

where
αλ,r :=

(
y0, (I ⊗ I + τL?)−M (φλ ⊗ er)

)
L2(Ω)

. (3.9)

As in the continuous case, we can reverse the order of time in (3.8) by setting the change of variables
M − n 7→ n to obtain the formula

M∑
n=1

τ pn[λ(r)] vM−n+1 =
αλ,r

γ(1)∂xφλ(1)
(3.10)

for all λ ∈ Λ and r ∈ J1, dK.
As we have mentioned in the introduction, we cannot expect to obtain a control function v such that

(3.10) holds for all λ ∈ Λ, since #Λ = +∞. Instead, we shall look for a control v such that the corresponding
solution y = (yn)n∈J0,MK verifies(

yM , φλ ⊗ er
)
L2(Ω)

= 0, ∀λ ∈ Λτ,$, ∀r ∈ J1, dK, (3.11)

where Λτ,$ ⊂ Λ is a suitable finite subfamily of eigenvalues determined by τ and a parameter $ that we
will describe below in (3.14). This is equivalent to solve the equations (3.10) for every r ∈ J1, dK and every
λ ∈ Λτ,$ instead of the whole spectrum Λ. Note that this family of eigenvalues will have the property that
Λτ,$ → Λ as τ → 0, so that we shall recover the usual null-controllability property at the limit τ → 0.

Following the ideas of the continuous case, we will solve (3.11) by looking for a family of biorthogonal
functions. The precise definition is as follows.

Definition 3.1. We say that a family (qλ′,j)
j∈J1,dK
λ′∈Λτ,$ of time-discrete functions is biorthogonal to the family

(p[λ(i)])
i∈J1,dK
λ∈Λτ,$ in L2

τ (0, T ) if(
qλ′,j , p[λ

(i)]
)
L2
τ (0,T )

= δλ,λ′δi,j , ∀λ, λ′ ∈ Λτ,$, ∀i, j ∈ J1, dK. (3.12)

With this definition, the control problem can be formally solved by setting

ṽn :=

d∑
j=1

∑
λ∈Λτ,$

αλ,j
γ(1)∂xφλ(1)

qnλ,j , n ∈ J1,MK,

and then taking vn = ṽM−n+1 (remember that we have reversed the sense of the time in (3.10)). Thus, our

task reduces to prove the existence of (qλ,j)
j∈J1,dK
λ∈Λτ,$ and give precise uniform estimates. This is exactly what

says the main result of this section.
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Theorem 3.2. Let d ∈ N∗, T ∈ (0,+∞] and Λ be a family of eigenvalues verifying (2.15)–(2.18).
There exist $ ∈ (0, 1) only depending on d, and τ0 ∈ (0, 1) only depending on $, Λ, and T , such that

for any τ ∈ (0, τ0), there exists a time-discrete biorthogonal family (qλ,i)
i∈J1,dK
λ∈Λτ,$ in L2

τ (0, T ) satisfying the
estimate

‖qλ,i‖L2
τ (0,T ) ≤ Ce

δ(λ)λ, ∀i ∈ J1, dK, ∀λ ∈ Λτ,$, (3.13)

where
Λτ,$ := {λ ∈ Λ : τλ < $} (3.14)

and δ : R → R is a non-increasing function such that lims→+∞ δ(s) = 0 that only depends on d, ρ, and R
and C > 0 is a constant only depending on d, R and T .

Note that the biorthogonal family clearly depends on T , even though we do not explicitly mention it in
the notation to ease the reading.

The rest of the section will consists in proving this result, first when T = +∞, then for finite values of
T .

3.2 The biorthogonal family for an infinite time horizon

We present here the construction of the biorthogonal in the time-discrete framework for the infinite time
horizon.

The proof of this result relies on an auxiliary result concerning the construction of biorthogonals to
divided differences of the functions p[λ] and on a limit process. This result is in fact the time-discrete
counter part of Proposition 2.6 and reads as follows.

Proposition 3.3. Let d ∈ N∗ and Λ be a family of eigenvalues verifying (2.15)–(2.18). There exist constants
ε0 > 0 only depending on d, ρ, and R, and $ ∈ (0, 1) only depending on d such that for any τ ∈ (0, 1) and

any ε < ε0, there exists a family (q̃λ,i,ε)
i∈J1,dK
λ∈Λτ,$ in L2

τ (0,+∞) satisfying(
q̃λ′,i,ε , p[λ, . . . , λ+ (j − 1)ε]

)
L2
τ (0,+∞)

= δλ′,λδi,j , ∀λ, λ′ ∈ Λτ,$, ∀i, j ∈ J1, dK, (3.15)

and the estimate
‖q̃λ,i,ε‖L2

τ (0,+∞) ≤ Ce
δ(λ)λ, ∀i ∈ J1, dK, ∀λ ∈ Λτ,$, (3.16)

with Λτ,$ as in (3.14) and where δ : R → R is a non-increasing function such that lims→+∞ δ(s) = 0 that
only depends on $, d, ρ, and R, and C > 0 is a constant only depending on d and R.

The proof of Proposition 3.3 follows very closely the one of Proposition 2.6. We will crucially use the
fact that we are only working with a finite portion of the spectrum to obtain the uniform bound (3.16). For
the sake of readability, we will postpone it to the following section.

Assuming that Proposition 3.3 holds, we can prove our main theorem for an infinite time horizon.

Proof of Theorem 3.2 in the case T = +∞. For each fixed ε ∈ (0, ε0), let us consider the biorthogonal family

(q̃λ,i,ε)
i∈J1,dK
λ∈Λτ,$ provided by Proposition 3.3.

Since the estimate (3.16) is uniform with respect to ε, we can find a sequence (εm)m ⊂ (0, ε0) such that
εm → 0 as m→∞ and such that (q̃λ,i,εm)m that converges weakly towards some qλ,i ∈ L2

τ (0,+∞) for each
λ ∈ Λτ,$ and i ∈ J1, dK verifying

‖qλ,i‖L2
τ (0,+∞) ≤ Ce

δ(λ)λ, (3.17)

where C end δ do not depend on τ .
Now, it is not difficult to see that for any fixed λ, and any i ∈ J1, dK, we have the pointwise convergence

pn[λ, . . . , λ+ (i− 1)εm] −−−−→
m→∞

pn[λ(i)], ∀n ∈ N∗.

Furthermore, from Lagrange theorem (see Proposition A.3), we have that the following identity holds

pn[λ, . . . , λ+ (i− 1)εm] = pn[θ
(i)
i,n,εm

],

for some θi,n,εm ∈ [λ, λ+ (i− 1)εm], which together with estimate (A.3) yields

|pn[λ, . . . , λ+ (i− 1)εm]| ≤ Ci(nτ)i−1pn[θi,n,εm ] ≤ Ci(nτ)i−1pn[λ], (3.18)

for all n ∈ N∗ and i ∈ J1, dK. The right-hand side of the above expression is independent of εm and square
summable for each i ∈ J1, dK. Indeed, by Lemma A.6, we readily get

∞∑
n=1

τ (nτ)2(i−1)|pn[λ]|2 ≤ Ci
λ2i−1

, i ∈ J1, dK, (3.19)

for some constants Ci > 0 uniform with respect to τ and λ.
Therefore, using (3.18), (3.19) and dominated convergence theorem, we get that

p[λ, . . . , λ+ (i− 1)εm] −−−−→
m→∞

p[λ(i)] strongly in L2
τ (0,+∞).

Finally, the result follows by a weak-strong convergence argument in (3.15) and the bound (3.17). This ends
the proof.
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3.2.1 Proof of Proposition 3.3

Here, we will give the construction of a biorthogonal family to divided differences the functions p[λ]. We
shall perform the same steps as in the proof of Proposition 2.6, but taking into account the discrete nature
of our problem.

– Step 1. Measuring the distance between some discrete functions. We begin by noting that
the map (3.2) is well defined in L2

τ (0,+∞) for any λ ∈ Λ and τ > 0. From (1.13), we see that for any
λ, λ′ ∈ Λ, (

p[λ], p[λ′]
)
L2
τ (0,+∞)

=

∞∑
n=1

τ (1 + τλ)−n(1 + τλ′)−n =
1

λ+ λ′ + τλλ′
, (3.20)

and in particular

‖p[λ]‖2L2
τ (0,+∞) =

∞∑
n=1

τ (1 + τλ)−2n =
1

2λ+ τλ2
,

which resembles very much the continuous case except that we have an additional term depending on τ in
the denominator.

In what follows, we shall work only with a finite portion of the spectrum of the problem that was
introduced in (3.14). For ε ∈ (0, ρ

4(d−1)
), we construct the finite family

Λ̃τ,$ =

d−1⋃
r=0

(Λτ,$ + rε) =
⋃

λ∈Λτ,$

Gλ, (3.21)

where we recall that Gλ is the group defined in (2.24).
We will now compute the distance of the functions p[σ] with σ ∈ Gλ to the space generated by the others,

namely, the space

Eτλ := span
{
p[λ] : λ ∈ Λ̃τ,$λ

}
,

where Λ̃τ,$λ := Λ̃τ,$ \Gλ. As before, PEτ
λ

stands for the orthogonal projection in L2
τ (0,+∞) on Eτλ .

The precise result is the following.

Lemma 3.4. For any σ, σ′ ∈ Gλ(
p[σ]− PEτ

λ
p[σ], p[σ′]− PEτ

λ
p[σ′]

)
L2
τ (0,T )

=
1

σ + σ′ + τ σσ′
W τ
λ (σ)W τ

λ (σ′) (3.22)

where

W τ
λ (σ) =

∏
µ∈Λ̃

τ,$
λ

σ − µ
σ + µ+ τ σµ

. (3.23)

The proof is analogous to the one of Lemma 2.7 and can be found on Appendix B.2. By construction,
since we are removing the projection of p[σ] to the space Eτλ , we have from Lemma 3.4 that(

p[σ]− PEτ
λ
p[σ], p[γ]

)
L2
τ (0,+∞)

= 0, (3.24)

for all σ ∈ Gλ and γ ∈ Λ̃τ,$λ .

– Step 2. A biorthogonal for an auxiliary family. Let us define p̃[σ] := p[σ]−PEτ
λ
p[σ] with σ ∈ Gλ

and set w[σ] := p̃[σ]
Wτ
λ

[σ]
. This w[σ] will play a similar role to that of f [σ] in the continuous case (cf. eq.

(2.27)).
By Lemma 3.4 and formula (3.20) we note that

(w[σ], w[σ′])L2
τ (0,+∞) =

1

σ + σ′ + τσσ′
= (p[σ], p[σ′])L2

τ (0,+∞). (3.25)

Thus, following the approach of the continuous case, we aim to build, for every λ ∈ Λτ,$ a family (qaux
λ,i )i∈Ji,dK

verifying (
qaux
λ,i , (2λ)j−1/2w[λ, . . . , λ+ (j − 1)ε]

)
L2
τ (0,+∞)

= δi,j , ∀i, j ∈ J1, dK, (3.26)

Arguing as in Proposition 2.6, we know that problem (3.26) reduces to studying the inverse of the Gram
matrix

Gτλ,ε =
(

(2λ)i+j−1(w[λ, . . . , λ+ (i− 1)ε], w[λ, . . . , λ+ (j − 1)ε])L2
τ (0,+∞)

)
1≤i,j≤d

.

and, as in the continuous case, the invertibility can be ensured by obtaining a suitable lower bound. The
precise result is the following.

Lemma 3.5. Under the assumptions of Proposition 3.3, there exist ε0 > 0 only depending on d, ρ and R
and $ ∈ (0, 1) only depending on d such that for any ε ≤ ε0, there exists a constant C > 0 uniform with
respect to ε, λ and τ , such that

(Gτλ,εξ, ξ) ≥ C‖ξ‖2∞ (3.27)

for any ξ ∈ Rd and any λ ∈ Λτ,$.
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We postpone the proof of this result to the end of this section since it is technical but, before continuing,
we shall remark that it is precisely at this point that a smallness condition on the parameter $ is imposed
to ensure that the constant C > 0 appearing in (3.27) is uniform with respect to τ .

Thus, in view of Lemma 3.5 and arguing as we did for (2.37), we can obtain that

‖qaux
λ,i ‖2L2

τ (0,+∞) ≤ C (3.28)

for all i ∈ J1, dK, λ ∈ Λτ,$ and a constant C > 0 uniform with respect to λ, ε and τ .

– Step 3. Final arrangements and conclusion. We define

qλ,i =

d∑
k=i

(
1

W τ
λ

)[
λ+ (i− 1)ε, λ+ (k − 1)ε

]
(2λ)k−1/2qaux

λ,k , i ∈ J1, dK.

We claim that these functions satisfy (3.15) and (3.16). Indeed, by Proposition A.4 and the definition of p̃

p̃[λ, . . . , λ+ (`− 1)ε] =
∑̀
r=1

w[λ, . . . , λ+ (r − 1)ε]W τ
λ

[
λ+ (r − 1)ε, . . . , λ+ (`− 1)ε

]
, ` ∈ J1, dK,

whence, arguing as in the continuous case (just changing Wλ by W τ
λ everywhere), we have

(p̃[λ, . . . , λ+ (`− 1)ε], qλ,k)L2(0,+∞) = δk,`. (3.29)

Recalling that by construction (3.24) holds and by linearity of divided differences, we have(
p̃[λ′, . . . , λ′ + (`− 1)ε], qλ,k

)
L2(0,+∞)

= 0, ∀k, l ∈ J1, dK, ∀λ, λ′ ∈ Λτ,$, λ 6= λ′.

This, together with (3.29) prove that (qλ,k)
k∈J1,dK
λ∈Λτ,$ satisfies (3.15). Moreover, from (3.28), we readily obtain

‖qλ,k‖L2(0,+∞) ≤ Cλ
d−1/2 max

j∈Jk,dK

∣∣∣∣( 1

W τ
λ

)[
λ+ (k − 1)ε, . . . , λ+ (j − 1)ε

]∣∣∣∣ .
Using Propositions A.3 and A.9, we can argue as in the end of Proposition 2.6 to obtain the desired estimate.
The proof is complete.

3.2.2 Invertibility of Gτλ,ε
It remains to prove the invertibility of the Gram matrix with a suitable uniform estimate of its inverse.

Proof of Lemma 3.5. In this proof, the eigenvalue λ ∈ Λτ,$ is fixed. We can write, by (3.25),

(Gτλ,εξ, ξ) =

∥∥∥∥∥
d∑
i=1

ξi(2λ)i−1/2w[λ, . . . , λ+ (i− 1)ε]

∥∥∥∥∥
2

L2
τ (0,+∞)

=

∥∥∥∥∥
d∑
i=1

ξi(2λ)i−1/2p[λ, . . . , λ+ (i− 1)ε]

∥∥∥∥∥
2

L2
τ (0,+∞)

. (3.30)

Noting that

pn[λ, . . . , λ+ (i− 1)ε] = (1 + τλ)−(i−1)pn[λ] pn

[
0, . . . ,

ε(i− 1)

1 + τλ

]
, i ∈ J1, dK,

we have from (3.30)

(Gτλ,εξ, ξ) =

+∞∑
n=1

τ (1 + τλ)−2n

∣∣∣∣∣
d∑
i=1

ξi(2λ)i−1/2(1 + τλ)−(i−1) pn
[
0, . . . , (i−1)ε

1+τλ

]∣∣∣∣∣
2

and using the Lagrange Theorem (see Proposition A.3), we get

(Gτλ,εξ, ξ) =

+∞∑
n=1

τ (1 + τλ)−2n

∣∣∣∣∣
d∑
i=1

ξi(2λ)i−1/2(1 + τλ)−(i−1) pn

[(
θi

1+τλ

)(i)
]∣∣∣∣∣

2

for some θi ∈ [0, (i− 1)ε].
Adding and subtracting pn[0(i)] in the above expression and using the inequality (a− b)2 ≥ 1

2
a2− b2, we

obtain

(Gτλ,εξ, ξ) ≥
1

2

+∞∑
n=1

τ (1 + τλ)−2n

∣∣∣∣∣
d∑
i=1

ξi(2λ)i−1/2(1 + τλ)−(i−1) pn[0(i)]

∣∣∣∣∣
2

−
+∞∑
n=1

τ (1 + τλ)−2n

∣∣∣∣∣
d∑
i=1

ξi(2λ)i−1/2(1 + τλ)−(i−1)

(
pn[0(i)]− pn

[(
θi

1+τλ

)(i)
])∣∣∣∣∣

2

.
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Then, using the explicit expression for the divided differences for pn (see eq. (3.3)), we get

pn

[(
θi

1 + τλ

)(i)
]

= pn[0(i)]

(
1 +

τθi
1 + τλ

)−(n+(i−1))

, i ∈ J1, dK,

and thus

(Gτλ,εξ, ξ)

≥ 1

2

+∞∑
n=1

τ (1 + τλ)−2n

∣∣∣∣∣
d∑
i=1

ξi(2λ)i−1/2(1 + τλ)−(i−1)pn[0(i)]

∣∣∣∣∣
2

−
+∞∑
n=1

τ (1 + τλ)−2n

∣∣∣∣∣
d∑
i=1

ξi(2λ)i−1/2(1 + τλ)−(i−1)pn[0(i)]

{
1−

(
1 +

τθi
1 + τλ

)−(n+(i−1))
}∣∣∣∣∣

2

=:
1

2
I1 − I2.

(3.31)

We proceed to estimate the terms I1 and I2. For I2, we have

|I2| ≤
√
d‖ξ‖2∞

+∞∑
n=1

τ(1 + τλ)−2n
d∑
i=1

(2λ)2i−1(1 + τλ)−2(i−1) |fi|2
∣∣∣pn[0(i)]

∣∣∣2 ,
where fi = 1− e−(n+(i−1)) log

(
1+

τθi
1+τλ

)
. From the inequalities log(1 + x) < x and 1− e−x < x for x > 0, we

have that 0 < fi < (n+ (i− 1)) τθi
1+τλ

, whence

|I2| ≤
√
d‖ξ‖2∞

×
+∞∑
n=1

τ(1 + τλ)−2n
d∑
i=1

(2λ)2i−1(1 + τλ)−2(i−1)

[
(n+ (i− 1))

τθi
1 + τλ

]2 ∣∣∣pn[0(i)]
∣∣∣2 . (3.32)

Using that (n+(i−1))2 ≤ Cin2 for all i ∈ J1, dK and n ∈ N∗, estimate (A.3), and recalling that θi ≤ (d−1)ε,
we deduce that there exists a constant C > 0 only depending on d such that

|I2| ≤ C‖ξ‖2∞ε2
d∑
i=1

(2λ)2i−1(1 + τλ)−2i
+∞∑
n=1

τ(1 + τλ)−2n(nτ)2i. (3.33)

The infinite sum in the above inequality can be readily estimated. By Lemma A.6

+∞∑
n=1

τ(1 + τλ)−2n(nτ)2i ≤ Ci
λ2i+1

, i ∈ J1, dK, (3.34)

for some Ci > 0 uniform with respect to τ and λ. Putting together (3.33)–(3.34), and the fact that
(1 + τλ)2i > 1 for all i ∈ J1, dK, we get

|I2| ≤ C‖ξ‖2∞
ε2

λ2
,

for a constant C > 0 only depending on d. Recalling (2.18) we get

|I2| ≤ C′‖ξ‖2∞ε2, (3.35)

for some C′ > 0 depending on d and R but uniform with respect to λ, ε and τ .
Let us turn out our attention to I1. Notice that this term can be rewritten as

I1 =

+∞∑
n=1

∫ tn

tn−1

1(tn−1,tn)(1 + τλ)−2n

∣∣∣∣∣
d∑
i=1

ξi
(2λ)i−1/2

(1 + τλ)i−1
pn[0(i)]

∣∣∣∣∣
2

dt

=

+∞∑
n=1

∫ tn

tn−1

1(tn−1,tn)(1 + τλ)−2n

∣∣∣∣∣
d∑
i=1

ξi
(2λ)i−1/2

(1 + τλ)i−1

(
(−t)i−1

(i− 1)!
−
{

(−t)i−1

(i− 1)!
− pn[0(i)]

})∣∣∣∣∣
2

dt.

Using once again the inequality (a− b)2 ≥ 1
2
a2 − b2, we can bound the above expression as follows

I1 ≥
1

2

+∞∑
n=1

∫ tn

tn−1

1(tn−1,tn)(1 + τλ)−2n

∣∣∣∣∣
d∑
i=1

ξi
(2λ)i−1/2

(1 + τλ)i−1

(−t)i−1

(i− 1)!

∣∣∣∣∣
2

dt

−
+∞∑
n=1

∫ tn

tn−1

1(tn−1,tn)(1 + τλ)−2n

∣∣∣∣∣
d∑
i=1

ξi
(2λ)i−1/2

(1 + τλ)i−1

{
(−t)i−1

(i− 1)!
− pn[0(i)]

}∣∣∣∣∣
2

dt

=:
1

2
H1 −H2.
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To estimate the first term in the above inequality, we note that since log(1 + x) < x for x > 0, then
log(1 + τλ)/τ ≤ λ uniformly with respect to τ . Therefore,

H1 ≥
1

2

+∞∑
n=1

∫ tn

tn−1

1(tn−1,tn)e
−2λtn

∣∣∣∣∣
d∑
i=1

ξi
(2λ)i−1/2

(1 + τλ)i−1

(−t)i−1

(i− 1)!

∣∣∣∣∣
2

dt

where we recall that tn = nτ . Since tn ≤ t+ τ for t ∈ (tn−1, tn) with n ∈ N, we obtain

H1 ≥
1

2
e−τλ

∫ +∞

0

e−2λt

∣∣∣∣∣
d∑
i=1

ξi
(2λ)i−1/2

(1 + τλ)i−1

(−t)i−1

(i− 1)!

∣∣∣∣∣
2

dt.

and setting the change of variables t 7→ t/λ

H1 ≥
1

2
e−τλ

∫ +∞

0

e−2t

∣∣∣∣∣
d∑
i=1

ξ̃i2
i−1/2 (−t)i−1

(i− 1)!

∣∣∣∣∣
2

dt,

where ξ̃i := ξi(1 + τλ)−(i−1). Observe that this new expression has the same structure as in the continuous
case (cf. equation (2.43)), therefore using the equivalence of norms in Rd, we get

H1 ≥ cde−τλ‖ξ̃‖2∞.

for a constant cd > 0. Since λ ∈ Λτ,$ with $ ∈ (0, 1), we have τλ < 1 so that e−τλ ≥ e−1 and ‖ξ̃‖∞ ≥
c0‖ξ‖∞, for some c0 > 0 only depending on d, thus

H1 ≥ c‖ξ‖2∞, (3.36)

for a constant c > 0 only depending on d.
To estimate the term H2, we proceed as follows. Let n ∈ N∗ and recalling (3.4), we define the function

fi(t) := ti−1 − τ i−1〈〈n〉〉i−1 for i ∈ J1, dK and t ∈ (tn−1, tn). Note that

f1(t) ≡ 0 (3.37)

for all t ∈ (tn−1, tn). On the other hand,

〈〈n〉〉i−1 =

i−1∏
k=1

(n+ k − 1) ≤ (n+ d− 1)i−1, i ∈ J2, dK,

whence |fi(t)| ≤ τ i−1(n + d − 1)i−1 − ti−1
n−1 for all i ∈ J2, dK and t ∈ (tn−1, tn). Recalling that tn = nτ , we

can further write
|fi(t)| ≤ τ i−1

[
(n+ d− 1)i−1 − (n− 1)i−1

]
. (3.38)

Applying Lemma A.7 in the right-hand side of (3.38), we get

|fi(t)| ≤ Ci
(

(1 + (d− 1)i−1
)
τ(τn)i−2 (3.39)

for all t ∈ (tn−1, tn) and i ∈ J2, dK. In view of (3.37), (3.39), and recalling the definition of pn[0(i)]

|H2| ≤ Cd‖ξ‖2∞
+∞∑
n=1

∫ tn

tn−1

1(tn−1,tn)(1 + τλ)−2n
d∑
i=2

(2λ)2i−1(1 + τλ)−2(i−1)|fi(t)|2dt

≤ Cd‖ξ‖2∞τ2
d∑
i=2

(2λ)2i−1(1 + τλ)−2(i−1)
∞∑
n=1

τ(1 + τλ)−2n(nτ)2(i−2). (3.40)

Using once again Lemma A.6, we see that for any λ ∈ Λτ,$ and i ∈ J2, dK
∞∑
n=1

τ(1 + τλ)−2n(nτ)2(i−2) ≤ Ci
λ2i−3

, (3.41)

and putting (3.41) in (3.40) together with (1 + τλ)2(i−1) > 1 for i ∈ J2, dK, we deduce

|H2| ≤ C′′‖ξ‖2∞(τλ)2 (3.42)

for a constant C′′ > 0 only depending on d.
To conclude, combining estimates (3.31), (3.35), (3.36), and (3.42) yields

(Gτλ,εξ, ξ) ≥ ‖ξ‖2∞
[
c− ε2C′ − (τλ)2C′′

]
.

Taking ε0 = min
{√

ρ
4(d−1)

,
√

c
4C′

}
(which depends only on R, d, and ρ) and and reducing (if necessary) the

value of $ ∈ (0, 1) such that $ ≤
√

c
4C′′ (a quantity that only depends on d) we have that for any ε ≤ ε0

and any λ ∈ Λτ,$

(Gτλ,εξ, ξ) ≥
c

2
‖ξ‖2∞,

where c > 0 is a constant only depending on d. This concludes the proof.
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3.3 The biorthogonal family in the finite time horizon

We are now in position to prove Theorem 3.2 when T is finite. For this, we shall adapt to the time-discrete
setting the classical restriction argument presented in [22].

For any T ∈ (0,+∞], we set

Eτ (Λτ,$, T ) := span
{
p[λ(i)]∣∣J1,T/τK

: λ ∈ Λτ,$, i ∈ J1, dK
}
,

where we recall that Λτ,$ is taken as in (3.14) for a parameter $ > 0. The goal of this section will be to
analyze the restriction operator defined by

RT,$,τ : g ∈ Eτ (Λτ,$,+∞) 7→ g∣∣J1,T/τK
∈ Eτ (Λτ,$, T ).

By using a very simple argument, we can first prove that this operator is invertible, as soon as τ is small
enough. More precisely, we have the following proposition.

Proposition 3.6. There exists τ0 > 0 depending only on $,Λ, and T such that for any τ ∈ (0, τ0), the
operator RT,$,τ is invertible.

Proof. Let us take some g ∈ kerRT,$,τ that we write as

g =
∑

λ∈Λτ,$

d∑
i=1

aλ,ip[λ
(i)],

for some coefficients aλ,i ∈ R. By assumption, we have gn = 0 for any n ∈ J1, T/τK. Introducing the
polynomial Qn(X) = Xn and the function ΦQn(x) = Qn(1/x) for x > 0, it is easily seen from (3.3) that the
condition gn = 0 can be written as follows

∑
λ∈Λτ,$

d∑
i=1

aλ,i
(−τ)i−1

(i− 1)!
Φ

(i−1)
Qn

(1 + τλ) = 0.

By linearity of the map Q 7→ ΦQ, we deduce that for any polynomial Q with degree smaller than T/τ and
such that Q(0) = 0, the function ΦQ(x) = Q(1/x) satisfies

∑
λ∈Λτ,$

d∑
i=1

aλ,i
(−τ)i−1

(i− 1)!
Φ

(i−1)
Q (1 + τλ) = 0. (3.43)

If we assume that
T

τ
≥ d×#Λτ,$, (3.44)

we know by Hermite interpolation at the points{
1

1 + τλ
: λ ∈ Λτ,$

}
∪ {0},

that there exists a polynomial Q ∈ R[X], with degree less than T/τ , satisfying Q(0) = 0 and such that ΦQ
satisfies

Φ
(i−1)
Q (1 + τλ) = (−τ)i−1aλ,i, ∀λ ∈ Λτ,$, ∀i ∈ J1, dK.

Therefore, (3.43) leads to ∑
λ∈Λτ,$

d∑
i=1

|aλ,i|2
|τ |2(i−1)

(i− 1)!
= 0,

and thus aλ,i = 0 for every λ and i, that is g = 0.
It remains to prove that (3.44) holds true for τ small enough. If we denote by N the counting function

of the family Λ, we have by (3.14) that #Λτ,$ = N
(
$
τ

)
and therefore condition (3.44) reads as

T

τ
≥ dN

($
τ

)
,

and this is actually valid for τ small enough since we know, by the summability assumption (2.15), that
N(r)/r → 0 when r →∞ (see [13, Proposition A.5.38]).

To conclude the proof of Theorem 3.2 and even if we are in a finite dimensional framework we need a
more intricate argument based on complex analysis. This argument is adapted from the continuous case as
presented in [22, Theorem 1.3]. Specifically, we aim to obtain an estimate on R−1

T,$,τ that is not provided by
Proposition 3.6.

Proposition 3.7. There exist τ0 > 0 and a constant C > 0 only depending on $, Λ, and T such that, for
any τ ∈ (0, τ0), we have

‖g‖L2
τ (0,+∞) ≤ C‖g‖L2

τ (0,T ), ∀g ∈ Eτ (Λτ,$,+∞). (3.45)

Equivalently this means that the uniform bound ‖R−1
T,$,τ‖ ≤ C holds.
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Remark 3.8. A careful inspection of the following proof shows that, in fact, the constant C only depends
on the remainder function R associated to Λ and not on Λ itself. This observation is important to prove
results that are uniform with respect to any parameters on which Λ may depend. A typical example is the
fully discrete case where Λ depends on the space discretization parameter. For further discussion, we refer
to Section 5.1.

Assuming Proposition 3.7 for the moment, we can conclude the proof of our main theorem.

Proof of Theorem 3.2. Let us denote by
(
q∞,λ,i

)i∈J1,dK

λ∈Λτ,$
, the biorthogonal family given by Theorem 3.2 in

the case T = +∞. Note that we can always assume, by orthogonal projection, that each element of this
family belongs to Eτ (Λτ,$,∞) without modifying the uniform estimate we have.

We can now classically set

qT,λ,i := (R?T,$,τ )−1q∞,λ,i, ∀λ ∈ Λτ,$, ∀i ∈ J1, dK, (3.46)

and observe that

(qT,λ′,j , p[λ
(i)])L2

τ (0,T ) = (q∞,λ,i, (RT,$,τ )−1p[λ(i)])L2
τ (0,+∞) = (q∞,λ,i, p[λ

(i)])L2
τ (0,+∞) = δλ,λ′δi,j .

Therefore the family defined in (3.46) is indeed a biorthogonal family in L2
τ (0, T ) that we are looking for.

The bound on the inverse of the restriction operator given in Proposition 3.7 let us conclude on the final

uniform bound on
(
qT,λ,i

)i∈J1,dK

λ∈Λτ,$
and the proof is complete.

It remains to prove Proposition 3.7.

Proof of Proposition 3.7. The proof is done by contradiction. Let η ∈ (0, T/4) be a fixed parameter. If we
assume that (3.45) does not hold for some uniform C, then we can find a sequence of time steps (τm)m≥1 ⊂
(0, η2) such that τm → 0 as m→∞ and, for each m, a function gm ∈ Eτm(Λτ

m,$, T ) satisfying

‖gm‖L2
τm

(0,T ) <
1

m
. (3.47)

while
‖gm‖L2

τm
(0,+∞) = 1, ∀m ≥ 1. (3.48)

By definition of Eτm(Λτ
m,$, T ), gm can be written as

gm =
∑

λ∈Λτ
m,$

d∑
j=1

amλ,j p
m[λ(j)] (3.49)

for some coefficients amλ,j ∈ R. Since we are dealing with a sequence of time steps, we have used here the
notation

pm[λ] : n 7→ (1 + τmλ)−n ∈ L2
τm(0,+∞).

In what follows, C will denote a generic positive constant uniform with respect to λ and m, which may
vary from line to line.

For each m, we denote by (qλ,i,m)
i∈J1,dK
λ∈Λτ

m,$ the biorthogonal family in L2
τm(0,+∞) provided by Theo-

rem 3.2. For this family, it can be readily seen that

(qλ′,i,m, g
m)

L2
τm

(0,+∞)
= amλ′,i, ∀λ′ ∈ Λτ

m,$, ∀i ∈ J1, dK.

This expression, together with estimate (3.13) in Theorem 3.2, the bound (3.48), and Cauchy-Schwarz
inequality yields the uniform bound

|amλ,i| ≤ Ceδ(λ)λ (3.50)

for all λ ∈ Λτ
m,$, i ∈ J1, dK and m ≥ 1. Note that the function δ, given by Theorem 3.2, does not depend

on m.
Now, for each m ≥ 1, let us consider the holomorphic function defined by

emz [λ] := e−z
log(1+τmλ)

τm , z ∈ C. (3.51)

Observe that in this way, the function pmn [λ] = (1 + τmλ)−n with n ∈ N∗ is nothing but a sampled version
of (3.51) at the real discrete points nτm, that is,

pmn [λ] = emnτm [λ]. (3.52)

Using the notation of divided differences, we can define the function

Gm(z) :=
∑

λ∈Λτ
m,$

d∑
j=1

amλ,j e
m
z [λ(j)], (3.53)
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where we have seen that the coefficients amλ,j verify (3.50). Our goal is now to derive some properties for the
holomorphic function (3.53) that will be transferred later to gm in (3.49).

A direct computation gives the explicit expression of emz [λ(j)], this is,

emz [λ(j)] =
(−1)j−1

(j − 1)!

j−1∏
i=1

(z − (i− j + 1)τm)e−(z+(j−1)τm)
log(1+τmλ)

τm . (3.54)

Since λ ∈ Λτ
m,$, using that log(1 + x)/x ≥ 1/2 for x ∈ [0, 1], we can deduce that for each m ≥ 1, the

following bound holds ∣∣∣∣e−(z+(j−1)τm)
log(1+τmλ)

τm

∣∣∣∣ ≤ e−<(z)
2

λ, (3.55)

for every j ∈ J1, dK. Moreover, by Young inequality and since τm ≤ 1, there is a constant Cj > 0 uniform
with respect to m such that ∣∣∣∣∣

j−1∏
i=1

(z − (i− j + 1)τm))

∣∣∣∣∣ ≤ Cj(1 + |z|j−1) (3.56)

for all j ∈ J1, dK. Therefore, using estimates (3.50) and (3.55)–(3.56) in expression (3.53) we deduce

|Gm(z)| ≤ C(1 + |z|d−1)
∑

λ∈Λτ
m,$

e
−
(
<(z)

2
−δ(λ)

)
λ
. (3.57)

Since η < T/4 is a fixed parameter, we have that∑
λ∈Λτ

m,$

e
−
(
<(z)

2
−δ(λ)

)
λ ≤

∑
λ∈Λ

e
−
(
<(z)

2
−δ(λ)

)
λ

= e
−R(0)

(
<(z)

2
−η
)∑
λ∈Λ

e−(λ−R(0))
<(z)

2 eδ(λ)λe−R(0)η,

where we recall (2.18). Since the function λ 7→ δ(λ) is non-increasing and verifies lims→+∞ δ(s) = 0, there
exists λ0 > 0 such that δ(λ) ≤ η for all λ > λ0. Thus,∑

λ∈Λτ
m

e
−
(
<(z)

2
−δ(λ)

)
λ

≤ e−R(0)
(
<(z)

2
−η
) ∑

λ∈Λ
λ≤λ0

e−(λ−R(0))
<(z)

2 eδ(λ)λ +
∑
λ∈Λ
λ>λ0

e
−(λ−R(0))

(
<(z)

2
−η
) .

Let us introduce the truncated sector Pη = {z ∈ C : <(z) ≥ 4η, |=(z)| ≤ <(z)} (see Figure 1). Then, for
all z ∈ Pη we have∑

λ∈Λτ
m

e
−
(
<(z)

2
−δ(λ)

)
λ

≤ e−R(0)
(
<(z)

2
−η
)eδ(R(0))λ0

∑
λ∈Λ
λ≤λ0

e−2η(λ−R(0)) +
∑
λ∈Λ
λ>λ0

e−η(λ−R(0))

 , (3.58)

and noting that the first sum is finite and the second one converges by (2.15), we can use estimate (3.58) in
(3.57) to deduce the existence of a constant C > 0 depending at most on d, R, λ0 and η such that

|Gm(z)| ≤ C|z|d−1e
−R(0)

(
<(z)

2
−η
)
, ∀z ∈ Pη. (3.59)

From (3.59) we deduce that (Gm)m is a sequence of holomorphic functions uniformly bounded in L∞(Pη).
Montel’s theorem on normal families of holomorphic functions (see e.g. [17, Chapter 5]) implies that we can
extract a subsequence, still denoted by (Gm)m that converges locally uniformly towards a holomorphic
function G in Pη. In particular, Gm(t)→ G(t) for all t ∈ (4η,+∞) and from estimate (3.59) we have

|Gm(t)| ≤ Ce−R(0)( t
2
−η)td−1, ∀t ∈ (4η,+∞).

The right-hand side being square integrable allows us to use dominated convergence theorem to deduce that

Gm → G strongly in L2(4η,+∞). (3.60)

Let us come back to the discrete setting. For any function u = (un)n∈J1,MK ∈ L2
τ (0, T ), we denote by

F [u] the element of L2(0, T ) defined as the piecewise constant interpolator

F [u](t) =

M∑
n=1

1(tn−1,tn)u
n. (3.61)
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4η

<(z)

=(z)

Figure 1: The sector Pη.

Note that ‖F [u]‖2L2(0,T ) = ‖u‖2L2
τ (0,T ). Also notice that this notation equally makes sense if we replace M

and T by∞ everywhere. Moreover, we will add the subscript m to indicate that we consider this interpolator
for the time step τm.

We see that the assumption (3.47) can be rephrased as

‖Fm[gm]‖L2(0,T ) <
1

m
,

and by letting m tend to infinity, we obtain

Fm[gm]→ 0 in L2(0, T ). (3.62)

Now, we claim the following:

Claim 3.9. Fm [gm]→ G strongly in L2(4η,∞), where G is the holomorphic function found as the limit in
(3.60).

Let us assume for the moment that the above statement holds true. From (3.62), Claim 3.9, and the
uniqueness of the limit, we deduce from (3.60) that G ≡ 0 in (4η, T ) and since G is a holomorphic function,
this implies that

G ≡ 0 in (4η,+∞). (3.63)

Thus, (3.63) together with (3.62) and Claim 3.9 allow us to conclude that

Fm[gm]→ 0 in L2(0 +∞)

which is contradiction with our initial initial hypothesis (3.48) that says ‖Fm[gm]‖L2(0,+∞) = 1. This
concludes the proof.

We present the proof of Claim 3.9.

Proof of Claim 3.9. Fix m ≥ 1 and set nη =
⌊

5η
τm

⌋
. Using (3.49), (3.52), and (3.53), for any n ≥ nη and

t ∈ [tmn−1, t
m
n ], we can readily compute

|Gm(t)− gmn | =

∣∣∣∣∣∣
∑

λ∈Λτ
m,$

d∑
j=1

amλ,j

(
emt [λ(j)]− emnτm [λ(j)]

)∣∣∣∣∣∣
≤

∑
λ∈Λτ

m,$

d∑
j=1

∣∣amλ,j∣∣ ∣∣∣ ddt |t=ζemt [λ(j)]
∣∣∣ |tmn − t|

for some ζ ∈ (tmn−1, t
m
n ). Using (3.50) and recalling that t ∈ [tmn−1, t

m
n ], we obtain

|Gm(t)− gmn | ≤ Cτm
∑

λ∈Λτ
m,$

d∑
i=1

eδ(λ)λ
∣∣∣ ddt |t=ζemt [λ(j)]

∣∣∣ . (3.64)

The following result allow us to estimate in the right-hand side of (3.64).

Lemma 3.10. Assume that λ ∈ Λτ
m,$ for some $ ∈ (0, 1). For any n ≥ nη and ζ ∈ (tmn−1, t

m
n ), we have∣∣∣ ddt |t=ζemt [λ(j)]

∣∣∣ ≤ Cj,η√
τm
|tmn |j−1e−

tmn
4
λ, ∀j ∈ J1, dK. (3.65)
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The proof of this result can be found in Appendix B.3. Using (3.64), estimate (3.65), and arguing as we
did for obtaining (3.59), we get

|Gm(t)− gmn | ≤ C
√
τm|tmn |d−1e

−R(0)

(
tmn
4
−η
)

for some constant C > 0 uniform with respect to m.
Squaring and then integrating over (tmn−1, t

m
n ) on both sides of the previous inequality yields∫ tmn

tmn−1

|Gm(t)− 1(tmn−1,t
m
n )(t)g

m
n |2dt ≤ C(τm)2|tmn |2(d−1)e

−2R(0)

(
tmn
4
−η
)
.

Now, we sum over n on both sides, more precisely

+∞∑
n=nη

∫ tmn

tmn−1

|Gm(t)− 1(tmn−1,t
m
n )(t)g

m
n |2dt ≤ Cτm

 +∞∑
n=nη

τm|tmn |2(d−1)e
−R(0)

(
tmn
4
−η
)

≤ Cητm
[

+∞∑
n=1

τm|tmn |2(d−1)e−R(0)
tmn
4

]
. (3.66)

We emphasize that the infinite sum in the right-hand side of the above expression is convergent and is
uniformly bounded with respect to m. Indeed,

+∞∑
n=1

τm|tmn |2(d−1)e
−R(0)

tmn
4

=

+∞∑
n=1

∫ tmn+1

tmn

1(tmn ,t
m
n+1)|tn|2(d−1)e−R(0)

tmn
4 dt

≤
+∞∑
n=1

∫ tmn+1

tmn

1(tmn ,t
m
n+1)t

2(d−1)eτ
m

e−R(0) t
4 dt

≤ e
∫ ∞

0

t2(d−1)e−R(0) t
4 dt = e 42d−1R(0)1−2dΓ(2d− 1) < +∞. (3.67)

On the other hand, from the construction of F and its properties and the choice of nη, observe that the
term in the left-hand side of (3.66) is bounded from below by ‖Gm −Fm[gm]‖L2(4η,∞), that is,

‖Gm −Fm[gm]‖2L2(4η,∞) ≤ Cτ
m

[
+∞∑
n=1

τm|tmn |2(d−1)e−R(0)
tmn
4

]
. (3.68)

Putting together (3.67) and (3.68), we see that ‖Gm − Fm[gm]‖2L2(4η,∞) → 0 as m → ∞ since there is an
extra factor τm in the right-hand side. At this point, we note that

‖g −Fm[gm]‖L2(4η,∞) ≤ ‖G−Gm‖L2(4η,∞) + ‖Gm −Fm[gm]‖L2(4η,∞)

and using (3.60) on the first term, we can take the limit as m → 0 to obtain the desired result. This
concludes the proof.

3.4 Proof of the main theorem

We are now in position to prove our main ϕ(τ)-controllability result, that is Theorem 1.1, which is a direct
construction based on the time discrete biorthogonal families we have obtained above, as follows.

Let us fix T > 0 and the initial data y0 ∈ L2(Ω). Let $ ∈ (0, 1) and τ0 > 0 be the parameters provided
by Theorem 3.2. Take τ ∈ (0, τ0) and set

T1 =
T

2
and M̃ =

⌊
T1

τ

⌋
.

From Theorem 3.2, we know that there exists a biorthogonal family (qλ,i)
i∈J1,dK
λ∈Λτ,$ ⊂ L

2
τ (0, T1) verifying(

p[λ(i)], qλ′,j

)
L2
τ (0,T1)

= δλ,λ′δi,j , ∀i, j ∈ J1, dK, ∀λ, λ′ ∈ Λτ,$

and
‖qλ,i‖L2

τ (0,T1) ≤ Ce
δ(λ)λ, ∀i ∈ J1, dK, ∀λ ∈ Λτ,$, (3.69)

where C > 0 is a constant independent of τ .
Let us consider the control v0 = (vn0 )n∈J1,M̃K with elements given by

vn0 =

d∑
i=1

∑
λ∈Λτ,$

βλ,iq
n
λ,i, n ∈ J1, M̃K,
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where
βλ,i =

αλ,i
γ(1)∂xφλ(1)

, with αλ,i =
(
y0, (I ⊗ I + τL?)−M̃ (φλ ⊗ ei)

)
L2(Ω)

. (3.70)

Then, using formula (3.7) at M = M̃ and due to the special structure of v0 together with the properties
of the biorthogonal, we easily deduce that(

yM̃ , φλ ⊗ er
)

= 0, ∀λ ∈ Λτ,$, ∀r ∈ J1, dK. (3.71)

Since the sums defining v0 are finite, we do not have any convergence issues. Moreover, the condition
∂xφλ(1) 6= 0 is guaranteed by (2.6). Thus, it remains to verify the uniform bound (1.16).

Using definition (3.6) and estimate (A.3) with n = M̃ , we obtain

∣∣∣(I ⊗ I + τL?)−M̃ (φλ ⊗ ei)
∣∣∣
L2(Ω)

=

∣∣∣∣∣
i−1∑
`=0

pM̃ [λ(`+1)](φλ ⊗ er−`)

∣∣∣∣∣
L2(Ω)

≤ Ci
i−1∑
`=0

(M̃τ)`pM̃ [λ] |φλ ⊗ er−`|L2(Ω)

for all i ∈ J1, dK. Using the definition of M̃ and since λ ∈ Λτ,$, we further estimate

∣∣∣(I ⊗ I + τL?)−M̃ (φλ ⊗ ei)
∣∣∣
L2(Ω)

≤ Ci
i−1∑
`=0

T `1e
−λT1

log(1+τλ)
τλ |φλ ⊗ er−`|L2(Ω)

≤ Ci
i−1∑
`=0

T `1e
−λT1

log(1+$)
$ |φλ ⊗ er−`|L2(Ω), ∀i ∈ J1, dK, (3.72)

uniformly with respect to τ . By Cauchy-Schwarz inequality and the fact that (φλ ⊗ ei) are normalized in
the space L2(Ω)⊗ Rd, we deduce

|αλ,i| ≤ CT |y0|L2(Ω)e
−λT1

log(1+$)
$ , (3.73)

for some constant CT only depending on T . Then, from (2.6), we obtain

|βλ,i| ≤ CT |y0|L2(Ω)e
−λT1

log(1+$)
$ . (3.74)

Hence, by the estimate on the biorthogonal family (3.69), we can now easily bound the norm of the control
v0, this is,

‖v0‖L2
τ (0,T/2) ≤ CT |y0|L2(Ω)

∑
λ∈Λτ,$

e−λT1
log(1+$)

$ eδ(λ)λ.

Using the properties of the function λ 7→ δ(λ), there exists λ0 > 0 such that δ(λ) ≤ T1
log(1+$)

2$
for all λ > λ0,

thus

‖v0‖L2
τ (0,T/2) ≤ CT |y0|L2(Ω)

 ∑
λ∈Λ
λ≤λ0

e−λT1
log(1+$)

$ eδ(λ)λ +
∑
λ∈Λ
λ>λ0

e−λT1
log(1+$)

2$



≤ CT |y0|L2(Ω)

eδ(R(0))λ0
∑
λ∈Λ
λ≤λ0

e−λT1
log(1+$)

$ +
∑
λ∈Λ
λ>λ0

e−λT1
log(1+$)

2$

 .

Since the above series are convergent thanks to (2.15), we have thus found a control v0 in L2
τ (0, T/2) satisfying

‖v0‖L2
τ (0,T/2) ≤ C|y0|L2(Ω) (3.75)

with a constant C > 0 uniform with respect to τ and where the associated controlled solution verifies (3.71).
Using that system (1.9) is in cascade form and applying classical elliptic regularity estimates (component

by component), after summing for n ∈ J0, M̃ − 1K we obtain

sup
n∈J1,M̃K

|yn|H−1(Ω) + ‖y‖L2
τ (0,T1;L2(Ω)) ≤ CT

(
|y0|H−1(Ω) + ‖v0‖L2

τ (0,T/2)

)
≤ C|y0|L2(Ω),

where we have used estimate (3.75) in the second line. From here, we deduce in particular that

|yM̃ |H−1(Ω) ≤ C|y0|L2(Ω). (3.76)
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To conclude, we will use the fact that the solution y verifies (3.71). We begin by extending the control v0

by zero in the interval JM̃ + 1,MK and consider the uncontrolled system
yn+1 − yn

τ
+ Lyn+1 = 0, n ∈ JM̃,M − 1K,

yn+1
|∂Ω = 0, n ∈ JM̃,M − 1K,

with initial datum yM̃ coming from the previous step. For n = M̃ , the system of elliptic equations verified

by yM̃+1 is {
τ A⊗ I yM̃+1 + (I ⊗ I + τI ⊗ C) yM̃+1 = yM̃ , in Ω

yM̃+1
|∂Ω = 0.

Using once again the cascade form of the system and using well-known regularity estimates for elliptic PDEs,
we obtain

|yM̃+1|H−1(Ω) + τ |yM̃+1|H1
0 (Ω) ≤ C|y

M̃ |H−1(Ω),

where C > 0 only depends on d. This, together with estimate (3.76) yield

√
τ |yM̃+1|L2(Ω) ≤ C|y0|L2(Ω). (3.77)

For n ∈ JM̃ + 2,M − 1K, we will use the fact that we have an explicit expression for the solution. Indeed,
at each step, we have

yn+1 =

d∑
i=1

∑
λ∈Λ

(yn, φλ ⊗ ei)L2(Ω) (I ⊗ I + τL)−1(φλ ⊗ ei)

=
∑

λ∈Λ\Λτ,$

d∑
i=1

(yn, φλ ⊗ ei)L2(Ω)

i−1∑
`=1

p1[λ(`+1)](φλ ⊗ ei−`), (3.78)

where we have used (3.71) in the second line. Taking the L2-norm in both sides of the above expression and
using estimate (A.3) together with the fact that λ ∈ Λ \ Λτ,$, we get

|yn+1|L2(Ω) ≤ Ce
− log(1+$)|yn|L2(Ω). (3.79)

Iterating estimate (3.79) for indices n ∈ JM̃ + 2,M − 1K and using and (3.77), we obtain

|yM |L2(Ω) ≤ Ce
−(M−(M̃+1)) log(1+$)|y0|L2(Ω),

whence, using the definition of M̃ , we deduce

|yM |L2(Ω) ≤ C̃e
− 1
τ

(T−T1−τ) log(1+$)|y0|L2(Ω), (3.80)

for some new constant C̃ > 0 uniform with respect to τ . This gives the desired the result since T > T1 and
thanks to (1.15).

4 On the minimal time for null-controllability of time-discrete
systems

The minimal time for null controllability, a phenomenon which at first glance seems counterintuitive in the
parabolic setting due to the classical results [24] and [30], has been addressed in many recents works, see,
for instance, [4, 5, 19,33,36]. In such works, the authors exhibit different settings leading to the appearance
of a minimal null-control time. In this section, we are interested on the consequences of such an effect on
time-discretization.

Since the model system (1.5) we have studied up to now does not exhibit such phenomenon, we shall
consider here a slightly more general setting to illustrate our discussion. However, we will see that our result
on time discrete biorthogonal families Theorem 3.2 will be also applicable to this new setting.

4.1 A general framework

We consider an abstract time invariant linear control system with a scalar control{
y′(t) + Ly(t) = Bu(t),

y(0) = y0,
(4.1)
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where (L, D(L)) is an unbounded operator in an Hilbert space X such that −L generates a C0-semigroup
in X. We assume that L has a spectrum included in (0,+∞) and we define X?

1 = D(L?), equipped with the
norm |z|1 = |L?z|X . We can then define a dual norm on X as follows

|y|−1 := sup
z∈X?1

(y, z)X
|z|1

, ∀y ∈ X,

and then define the space X−1 to be the completion of X for this norm. We assume that the (scalar) control
operator B is continuous from R into X−1, so that, by duality B? is continuous from X?

1 into R.
Under this assumptions, it is well-known that for any y0 ∈ X−1 and any u ∈ L2(0, T ;R), system (4.1)

has a unique solution y ∈ C0([0, T ];X−1) verifying the following identity

〈y(t), qt〉−1,1 − 〈y0, e
−tL?qt〉−1,1 =

∫ t

0

u(s)B?
(
e−(t−s)L?qt

)
ds,

for any t ∈ [0, T ] and any qt ∈ X?
1 .

It is well-known that under this functional setting, system (4.1) is null controllable at time T if and only
the following observability inequality holds for some C > 0

|e−TL
?

qT |1 ≤ C
(∫ T

0

∣∣∣B?e−(T−t)L?qT

∣∣∣2 dt)1/2

, ∀qT ∈ X?
1 . (4.2)

We assume now that L? satisfies the following spectral assumptions: its spectrum Λ is made only of
positive eigenvalues, each of them being geometrically simple (we denote by Φλ,1 an associated eigenfunction)
and has a (constant) algebraic multiplicity d. The Jordan chains are denoted by Φλ,r for r ∈ J2, dK. We

additionally assume that the family (Φλ,r)
r∈J1,dK
λ∈Λ is complete in X?

1 . Note that the case where the algebraic
multiplicity of all the eigenvalues are different (but still bounded by some d > 0) can be treated exactly in
the same way.

It is clear from (4.2) that a necessary controllability condition is

B?Φλ,1 6= 0, ∀λ ∈ Λ. (4.3)

Assuming this additional assumption, we can then uniquely specify the (generalized) eigenfunctions by
imposing that

B?Φλ,1 = 1, and B?Φλ,i = 0, ∀i ∈ J2, dK, ∀λ ∈ Λ. (4.4)

Finally, in order to be able to apply the moment’s method, we need to assume in addition that Λ satisfies
the summability condition (2.15) and the gap condition (2.16).

In this framework, the following result is a particular case of the results in [8] (see Section 1.4 of this
reference).

Theorem 4.1 (Minimal null-control time). We define

T0 := lim sup
λ∈Λ

log

(
max
i∈J1,dK

|Φλ,i|1
)

λ
. (4.5)

Then we have:

• For T > T0, the system (4.1) is null-controllable (that is (4.2) holds).

• For 0 < T < T0, the system (4.1) is not null-controllable (that is (4.2) does not hold).

Note that the cascade system (1.5) that we previously studied satisfies the assumptions above with T0 = 0.
However, if we assume that the coupling matrix C in (1.5) depends on the space variable x, a positive value
of T0 can be found. We refer to [4, Section 6] and [8, Section 5] for concrete examples illustrating this fact.

4.2 The time-discrete system

Now, consider the time-discrete system
yn+1 − yn

τ
+ Lyn+1 = Bun+1, ∀n ∈ J0,M − 1K

y0 = y0.
(4.6)

As we have seen before we cannot hope a time-discrete version of the usual observability inequality (4.2) to
hold, but we may expect relaxed observability inequality of the following form (note the extra term in the
right-hand side)

∣∣∣(I + τL?)−MqT
∣∣∣
1
≤ Cϕ,T,τ

(
M−1∑
n=0

τ
∣∣B?(I + τL?)−(M−n)qT

∣∣2 + ϕ(τ)|qT |21

)1/2

, ∀qT ∈ X?
1 . (4.7)
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We denote by Cϕ,T,τ > 0 the smallest constant for which this estimate holds, for a given T , ϕ and τ . It is
clear that, we can basically obtain Cϕ,T,τ ≤ ϕ(τ)−1/2 which does not give useful information.

We would like now to investigate whether or not this constant remains bounded when τ → 0. More
precisely, we will show that Cϕ,T,τ is bounded when T > T0, whereas it is not bounded when T < T0. This
is the time-discrete counterpart of the minimal null-control time property.

It is interesting to note that if, for a given value of T , one manages to actually compute this constant
for different choices of discretization steps M and observe its behavior as M → ∞, it may be possible to
deduce whether T is below or above the actual minimal time T0 for the considered system. At least in the
fully discrete setting (see Section 5.1), it is possible to implement this strategy, since it consists essentially
of computing eigenvalues of matrices.

4.2.1 Large time analysis

In this section we will consider a control time larger than the minimal time given by (4.5). In that case, we
obtain a uniform relaxed time-discrete observability estimate.

Theorem 4.2. Assume that T > T0 ≥ 0, and let ϕ be any given function satisfying (1.15). Then we have

lim sup
τ→0

Cϕ,T,τ < +∞.

We will only give the sketch of proof since it is in fact very similar to the one we did in Section 3. More
precisely, we shall first consider some T1 ∈ (T0, T ), and then we will fix $ ∈ (0, 1) in such a way that

T1 log(1 +$)/$ > T0. (4.8)

We apply the same strategy than in Section 3.4 in this slightly different framework and with this value of
T1 instead of T/2. Everything works exactly the same, up to formulas (3.70) that becomes, thanks to (4.4),

βλ,i =
〈
y0, (I + τL?)−M̃Φλ,i

〉
−1,1

. (4.9)

Note that in the present setting formula (3.6) reads

(I + τL?)−n Φλ,r =

r−1∑
`=0

pn[λ(`+1)]Φλ,r−`, n ∈ J1,MK. (4.10)

Therefore, the bound (3.74) needs to be changed because Φλ,i can be exponentially large. Indeed, by
(4.5), we have for any ε > 0 the estimate

|Φλ,i|1 ≤ Cεe(T0+ε)λ,

which leads to
|βλ,i| ≤ Cε|y0|−1e

(T0+ε)λe−λT1 log(1+$)/$,

and, by (4.8), we see that we can choose ε so that |βλ,i| can be estimated by some CT |y0|Xe−λε̃, with ε̃ > 0
which is enough to conclude the proof exactly as before.

4.2.2 Small time analysis

Let us now consider the case where the control time is below the minimal null-control time. By Theorem 4.1
we know that the continuous problem is not null-controllable and in particular the observability inequality
(4.2) does not hold. However, for every given ϕ and τ the time-discrete relaxed observability estimate (4.7)
holds but we will prove, in that case, that it cannot be uniform.

Theorem 4.3. Assume that 0 < T < T0, and let ϕ be any given function satisfying (1.15). Then we have

lim sup
τ→0

Cϕ,T,τ = +∞.

Proof. By definition of T0, given in (4.5), we see that there exists a unique integer r ∈ J1, dK such that

lim sup
λ∈Λ

log |Φλ,r|1
λ

= T0,

and

lim sup
λ∈Λ

log

(
max

i∈J1,r−1K
|Φλ,i|1

)
λ

< T0.

Those two properties imply that, there exists ε > 0, constants C1, C2 > 0 and a sequence (λk)k ⊂ Λ such
that λk → +∞ and 

|Φλk,r|1 ≥ C1e
(T0−ε)λk ,

|Φλk,r|1 ≤ C2e
(T0+ε)λk ,

|Φλk,i|1 ≤ C2|Φλk,r|1e
−ελk , ∀i ∈ J1, r − 1K.

(4.11)
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Since T < T0 by assumption, we will in addition choose ε such that

T0 − T − ε > 0. (4.12)

By using (4.4) and (4.10), it follows that

B? (I + τL?)−n Φλk,r = pn[λ
(r)
k ],

and by (4.10), with (A.3) and (A.2), we get

| (I + τL?)−n Φλk,r|1 ≥ pn[λk]

(
|Φλk,1 |1 −

r−1∑
`=1

T r−`|Φλk,`|1

)

≥ C1e
(T0−ε)λkpn[λk]

(
1− C2

r−1∑
`=1

T r−`e−ελk

)

≥ C1e
(T0−T−ε)λk

(
1− C2

r−1∑
`=1

T r−`e−ελk

)
.

We can now test the weak observability inequality (4.7) with qT = Φλk,r for any k and any τ . We obtain

C1e
(T0−T−ε)λk

(
1− C2

r−1∑
`=1

T r−`e−ελk

)
≤ Cϕ,T,τ

(
M∑
n=1

τ
∣∣∣pn[λ

(r)
k ]
∣∣∣2 + ϕ(τ)C2

2e
2(T0+ε)λk

)1/2

.

Extending the sum in the right-hand side up to +∞ and bounding its value by (A.3) and (A.5), we get for
k large enough (depending on T ) and for some C3, depending only on C1, C2 and Λ,

C3e
(T0−T−ε)λk ≤ Cϕ,T,τ

(
1 +

√
ϕ(τ)e(T0+ε)λk

)
, ∀τ ≤ 1

λk
. (4.13)

Since the function ϕ is continuous and strictly increasing, we know that for every k large enough there
exists a number δk > 0 such that

δk ≤
1

λk
, and

√
ϕ(δk) ≤ e−λk(T0+ε). (4.14)

Now, set Mk =
⌈
T
δk

⌉
. Obviously, we have

Mk − 1 ≤ T

δk
≤Mk,

and defining τk = T
Mk

we have τk ≤ δk and in particular
√
ϕ(τk) ≤

√
ϕ(δk) = e−λk(T0+ε). It follows from

(4.13) that

C3e
(T0−T−ε)λk ≤ 2Cϕ,T,τk .

Since we have taken ε satisyfing (4.12), the claim follows letting k goes to infinity.

Remark 4.4. In some cases, for instance if ϕ(τ) = τp for some p > 0, this behavior can be precised as
follows

lim sup
τ→0

(
ϕ(τ)

T0−T
T0 Cϕ,T,τ

)
> 0.

5 Concluding remarks

We devote this section to present additional discussion and concluding remarks regarding the controllability
of time-discrete parabolic systems.

5.1 Controllability of the fully discrete case

The controllability of fully-discrete parabolic systems has been rarely studied and, as far as our knowledge,
only few results are available in the literature (see [15,20,27,31]). In particular, in [15] and [27], the authors
address the controllability of some general class of parabolic equations and prove a relaxed observability
inequality which yields a ϕ(h)-controllability result (in the same spirit as our work) by connecting appro-
priately the space-discrete parameter h with the time-step τ . Nevertheless, all of these works are restricted
to the scalar case and interior control.

Using the classical finite difference method and adopting the tensor product formalism (see for instance
[1]), we can discretize system (1.9) and write the fully-discrete system as

yn+1
h − ynh

τ
+Ah ⊗ I yn+1

h + Ih ⊗ C yn+1
h = Bh ⊗ Bvn+1

h , n ∈ J0,M − 1K,

y0
h = y0,h(x).

(5.1)
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where the state ynh is an element of RN ⊗ Rd and the matrices Ah ∈ RN×N , Bh ∈ RN and Ih ∈ RN×N are
the classical ones coming from the discretization procedure.

The results proved in Section 3 apply for a quite general class of families Λ associated with the underlying
problem and as long as the general assumptions (2.15)–(2.18) are fulfilled, the final results hold uniformly.
In fact, the fully-discrete control system (5.1) fits into this framework by making a careful analysis of
the interplay between a finite family of eigenvalues Λh associated to the fully-discrete problem and our
methodology.

For instance, [2, Theorem 3.2], guarantees the existence of a constant h1 > 0 only depending on γ such
that for any h < h1, the gap property

|λh − λ′h| > ρ

holds at the fully-discrete level with a constant ρ > 0 uniform with respect to h for all λh, λ
′
h ∈ Λh,max where

Λh,max := {λ ∈ Λh : λhh
2 < κ0}

for some κ0 > 0 only depending on γmin.
By adapting the proofs of Lemma 3.5, Theorem 3.2, and Proposition 3.7 (see, in particular, Remark 3.8),

it is possible to prove that for a parameter $ ∈ (0, κ0] and a h0 > 0 (only depending on d and κ0) there
exists, for every value of h < h0, a time-discrete biorthogonal family (qλ,i) ∈ L2

τ (0, T ) associated with the
space-discrete eigenvalues Λh, that is verifying(

p[λ
(i)
h ], qλ′

h
,j

)
L2
τ (0,T )

= δλh,λ′hδi,j , ∀i, j ∈ J1, dK, ∀λh, λ′h ∈ Λτ,$h

and
|qλh,i|L2

τ (0,T ) ≤ Ce
δ(λh)λh , ∀i ∈ J1, dK, ∀λh ∈ Λτ,$h ,

uniformly with respect to τ and h, where Λτ,$h = {λh ∈ Λh : λhτ < $}.
As seen in Section 3.4, this biorthogonal family is actually the main ingredient for obtaining a control

result. Due to the paper’s length and the additional notation and complexity that such a detailed exposition
would introduce, we omit further details.

5.2 Other time-discrete schemes

We have developed our methodology by taking as a starting point an implicit Euler scheme for the dis-
cretization of the time variable, however, in the spirit of [15, 20, 37], it is possible to consider the more
general θ-scheme for discretizing the system.

For the sake of exposition, let us consider the scalar control system given by
yn+1 − yn

τ
+Aθyn+1 +A(1− θ)yn = 0, n ∈ J0,M − 1K,

yn+1
|∂Ω = 1{x=1}v

n+1 n ∈ J0,M − 1K,
y0 = y0,

(5.2)

where θ ∈ (1/2, 1]. Observe that the case, θ = 1 corresponds to the implicit Euler scheme while θ = 1/2 is
the Crank-Nicolson scheme.

Introducing the associated adjoint system (see [15]) for every eigenfunction of A, that is

qM − qM+1

τ
+ θAqM = 0,

qn − qn+1

τ
+ θAqn + (1− θ)Aqn+1 = 0, n ∈ J0,M − 1K

qn|∂Ω = 0, n ∈ J0,MK,
qM+1 = φλ.

(5.3)

and following the procedure of Section 3.1, it is not difficult to see that the appropriate moment problem
formulation for the θ-scheme is given by

M∑
n=1

τ vM−n+1pθn[λ] =
αλ,θ

γ(1)∂xφλ(1)
,

where we have defined

pθn[λ] :=

(
1 + τλθ

1− (1− θ)τλ

)−n
1

1− (1− θ)τλ
and αλ,θ are suitable coefficients only depending on T , λ and θ (i.e., an analogous to equation (3.9)). Note
that it immediately appears that this function is only well-defined and non negative for eigenvalues belonging
to the set Λτθ :=

{
λ ∈ Λ : τλ < 1

1−θ

}
, which corresponds to well-known stability issues for those numerical

methods.
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Following our methodology, one of the most important changes to study this numerical scheme can be
seen already while adapting Proposition 3.3. A straightforward computation allows to show that in this
case, we have the formula (

pθ[λ], pθ[λ′]
)
L2
τ (0,+∞)

=
1

λ+ λ′ + (2θ − 1)τλλ′
, (5.4)

instead of (3.20). Using (5.4), we can adapt all of our results without major changes, taking into account
the set Λτθ instead of the whole Λ.

A Some useful results

In this appendix, we gather various definitions and auxiliary results used along this paper.

A.1 Basics of divided differences

Here, we make a brief presentation about the concept of divided differences and introduce two useful results
employed in our methodology. This notion simplifies the presentation and facilitates the computations. The
definition and results presented below are classical and for a complete discussion on this topic we refer to [34].

Let V be a real vector space, n ∈ N and x1, . . . , xn ∈ R. Assume that x1, . . . , xn are pairwise distinct.
Let f1, . . . , fn ∈ V be given.

Definition A.1. The divided differences are defined by

f [xi] := fi, ∀i ∈ J1, nK,

and then by induction for any k ∈ J2, nK, for any pairwise distinct ii, . . . , ik ∈ J1, nK, by

f [xi1 , . . . , xik ] :=
f [xi1 , . . . , xik−1 ]− f [xi2 , . . . , xik ]

xi1 − xik
.

Along the manuscript, if f : R→ V is a given function, it is implicitly assumed that fi = f [xi] = f(xi).
The following definition is instrumental in our manuscript.

Definition A.2. For any function f : R→ R of class Cn, we define the divided difference f [x(n+1)] as

f [x(n+1)] := lim
ε→0

f [x, x+ ε, . . . , x+ nε] =
1

n!

dnf

dxn
(x). (A.1)

The next result is key to obtain different estimates needed in our analysis.

Proposition A.3 (Lagrange theorem). Assume that V = R and that f ∈ Cn−1(Conv{x1, . . . , xn}). For
any k ∈ J1, nK, for any pairwise distinct i1, . . . , ik ∈ J1, nK, there exists z ∈ Conv{xi1 , . . . , xik} such that

f [xi1 , . . . , xik ] =
f (k−1)(z)

(k − 1)!
.

The following result, known as Leibniz rule, gives a simple rule to compute the divided differences of a
product of functions.

Proposition A.4. Let f, g : R → R be given functions. For any k ∈ J1, nK, for any pairwise distinct
i1, . . . , ik ∈ J1, nK, we have

(gf)[xi1 , . . . , xik ] =

k∑
j=1

g[xi1 , . . . , xij ]f [xij , . . . , xik ].

A.2 Divided differences of the discrete function p and auxiliary results

The following results cover some useful estimates for estimating the divided differences of the discrete function
(3.1) and its norm.

Lemma A.5. Let n ∈ N∗, λ ∈ R+, and τ > 0 be given. We have

pn[λ] ≥ e−λnτ , (A.2)

and ∣∣∣pn[λ(j)]
∣∣∣ ≤ Cj |nτ |j−1pn[λ], ∀j ∈ J1, dK, (A.3)

for some positive constant Cj uniform with respect to τ .
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Proof. The inequality (A.2) simply comes from the fact that x ∈ R+ 7→ log(1 + x)/x is monotonically
decreasing and has limit 1 at x = 0.

From definition (3.4), we observe that

〈〈n〉〉j−1 = n(n+ 1) . . . (n+ j − 2) ≤ n× (2n)× . . .× ((j − 1)n) ≤ Cjnj−1 (A.4)

for all n ∈ N∗. On the other hand, recalling (3.1) we get

(1 + τλ)−(n+(j−1)) =
1

(1 + τλ)j−1
pn[λ] ≤ pn[λ] (A.5)

since (1 + τλ) > 1 for any τ > 0 and λ ∈ R+. Using estimates (A.4) and (A.5) on expression (3.3) yields
the desired result.

Lemma A.6. Let r ∈ N and λ ∈ Λτ,1 and τ > 0. Then, there is a constant C > 0 only depending on r
such that

λ2r+1
∞∑
n=1

τ(nτ)2r |pn[λ]|2 ≤ C. (A.6)

Proof. For fixed τ > 0 and λ ∈ Λτ,1, we define x = τλ and recalling (3.1) we see that our task is to prove
that the quantity

x2r+1
∞∑
n=1

n2r(1 + x)−2n,

is uniformly bounded with respect to x ∈ (0, 1].
For the case r = 0, we readily compute

x

∞∑
n=1

(1 + x)−2n =
1

2 + x
≤ 1

2
,

since x > 0 by definition.
For r ≥ 1, we note that

x2r+1
∞∑
n=1

n2r(1 + x)−2n = x2r+1
∞∑
n=1

∫ n+1

n

1(n,n+1)(s)n
2r−1(1 + x)−2nds

= x2r+1
∞∑
n=1

∫ n+1

n

1(n,n+1)(s)n
2r−1e−2nx

log(1+x)
x ds,

and using that log(1 + x)/x ≥ 1/2 uniformly for x ∈ (0, 1], we have

x2r+1
∞∑
n=1

n2r(1 + x)−2n ≤ x2r+1
∞∑
n=1

∫ n+1

n

1(n,n+1)(s)n
2r−1e−nxds.

Since s ∈ [n, n+ 1], the above expression yields

x2r+1
∞∑
n=1

n2r(1 + x)−2n ≤ x2r+1ex
∞∑
n=1

∫ n+1

n

1(n,n+1)(s)s
2r−1e−sxds

= x2r+1ex
∫ ∞

1

s2r−1e−sxds ≤ x2r+1ex
∫ ∞

0

s2r−1e−sxds

= xexΓ(2r),

where Γ is the Gamma function. This quantity is bounded with respect to x ∈ (0, 1], which proves the
claim.

Lemma A.7. Let x ≥ 1, n ∈ N and l ∈ N∗ be given. Then,

(x+ n)l − (x− 1)l ≤ Cl(1 + nl)xl−1 (A.7)

for some constant Cl > 0.

Proof. The case l = 1 follows easily. For the general case, we have that

(x+ n)l − (x− 1)l =

l∑
k=0

(
l
k

)
xl−knk −

l∑
k=0

(
l
k

)
xl−k(−1)k =

l∑
k=1

(
l
k

)
xl−k

(
nk − (−1)k

)
.

Since x ≥ 1, we readily get

(x+ n)l − (x− 1)l ≤ xl−1
l∑

k=1

(
l
k

)∣∣nk − (−1)k
∣∣ ≤ xl−1(1 + nl)

l∑
k=1

(
l
k

)
︸ ︷︷ ︸

=:Cl

as claimed.
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A.3 Estimates on Blaschke-type products

Proposition A.8. For any ` ∈ J0, d−1K, there exists a decreasing function r 7→ δ(r) such that limr→+∞ δ(r) =
0 depending only on `, ρ, d and R such that∣∣∣∣∣

(
1

Wλ

)(`)

(θ)

∣∣∣∣∣ ≤ eδ(λ)λ. (A.8)

for all λ ∈ Λ and θ ∈ Conv{Gλ}.

Proof. Noting that θ ≤ λ + ρ/2 for any θ ∈ Conv{Gλ}, the proof of this result is a direct application

of [13, Proposition A.7.44] to the family L = Λ̃λ and a redefinition of the function ε in such result.

Proposition A.9. For any τ ∈ (0, 1) and any ` ∈ J0, d − 1K, there exists a decreasing function r 7→ δ(r)
such that limr→+∞ δ(r) = 0 depending only on `, ρ, d and R such that∣∣∣∣∣

(
1

W τ
λ

)(`)

(θ)

∣∣∣∣∣ ≤ eδ(λ)λ, (A.9)

for all λ ∈ Λτ,$ with $ > 0 and θ ∈ Conv{Gλ}.

Proof. The proof of this result can be obtained by following closely the proofs of [13, Proposition A.7.44 and
Corollary A.7.45]. For brevity, we will present only the main differences introduced by the time discretization.

Let λ ∈ Λτ,$. Recalling definition (3.23), the first goal is to bound the quantity(
1

W τ
λ

)
(θ) =

∏
µ∈Λ̃

τ,$
λ

θ + µ+ τθµ

θ − µ (A.10)

for any θ ∈ Conv{Gλ}. Note that (A.10) can be rewritten as(
1

W τ
λ

)
(θ) =

Q(θ)

D(θ)
(A.11)

where

Q(θ) :=
∏

µ∈Λ̃
τ,$
λ

∣∣∣∣1 +
θ(1 + τµ)

µ

∣∣∣∣ and D(θ) :=
∏

µ∈Λ̃
τ,$
λ

∣∣∣∣1− θ

µ

∣∣∣∣ .
Thus, we are reduced to find a bound from above for Q and a bound by below for D.

To obtain a bound for Q(θ) we argue as follows. By definition of Λ̃τ,$λ , we have that

Q(θ) =

d∏
i=1

∏
λ′∈Λτ,$

λ′ 6=λ

∣∣∣∣1 +
θ (1 + τ(λ′ + (i− 1)ε))

λ′

∣∣∣∣ .
Using that τλ′ < $ for all λ′ ∈ Λτ,$ and that ε < ρ/4(d−1), we have 1+τ(λ′+(i−1)ε) ≤ 1+$+ρ/4 =: cd,ρ,$
for all i ∈ J1, dK, thus using that θ < (1 +R(0)ρ/4)λ for all θ ∈ Conv{Gλ}

Q(θ) ≤

 ∏
λ′∈Λτ,$

λ′ 6=λ

∣∣∣∣1 + cd,ρ,$
θ

λ′

∣∣∣∣

d

≤

 ∏
λ′∈Λτ,$

λ′ 6=λ

∣∣∣∣1 + c
λ

λ′

∣∣∣∣

d

, (A.12)

for a constant c > 0 only depending on d, $, ρ and R(0).
With (A.12) at hand, we can argue exactly as in the proof of [13, Proposition A.7.44] to obtain

log(Q(θ)) ≤ Cλ
[
R(0)

log(1 + 2cR(0)λ)

[log(1 + λ)]2
+R

(
c

λ

2(log λ)2

)]
, (A.13)

for some constants c, C > 0 depending at most on d, $, ρ and R(0).

To estimate D(θ), we just have to notice that dist(θ, Λ̃τλ) > ρ/2 for any θ ∈ Conv{Gλ} and repeat the
same steps as in the proof of [13, Proposition A.7.44] to obtain

log(D(θ)) ≥ −θ
[
(2 + log 2)R(θ/2) + Cd,ρ

√
R(θ/2)

]
.

Since the function R is non-increasing, we have that R(θ/2) ≤ R(λ/4) since λ/2 < θ for all θ ∈ Conv{Gλ},
thus

log(D(θ)) ≥ −cρ,R(0)λ
[
(2 + log 2)R(λ/4) + Cd,ρ

√
R(λ/4

]
(A.14)

where again we have used that θ ≤ cρ,R(0)λ for all θ ∈ Conv{Gλ}.
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Using (A.13) and (A.14), we can estimate (A.11) as

log

(
1

W τ
λ

(θ)

)
≤ Cd,$,ρ,R(0)λ

(
R(0)

log(1 + 2cR(0)λ)

[log(1 + λ)]2
+R

(
c

λ

2(log λ)2

)
+R(λ/4) +

√
R(λ/4)

)
︸ ︷︷ ︸

:=δ(λ)

(A.15)

which is the desired estimate for ` = 0 by recalling that R is a non-increasing function and a redefinition
(up to a constant) of the function δ.

For the cases ` ∈ J1, d − 1K, noting that dist(θ, Λ̃τλ) > 3ρ/4 for any θ ∈ Conv{Gλ}, a straightforward
adaptation of [13, Corollary A.7.45] and estimate (A.15) yields the desired result. This ends the proof.

B Proof of some technical lemmas

B.1 Proof of Lemma 2.7

Let us fix K ∈ N∗ and consider the finite family of eigenvalues

ΛK = {λ ∈ Λ : λ < K}.

We construct the corresponding family

Λ̃K =
⋃

λ∈ΛK

Gλ

where we recall that Gλ is given in (2.24). Additionally, consider the set

Λ̃Kλ = Λ̃K \Gλ.

Let PEK
λ

be the orthogonal projection onto EKλ in L2(0,+∞). Then, a direct application of [13, Propo-

sition A.3.30] with EKλ := span
{
p[σ] : σ ∈ Λ̃Kλ

}
and H = L2(0,+∞) gives(

e[σ]− PEK
λ
e[σ], e[σ′]− PEK

λ
e[σ′]

)
L2(0,+∞)

=
1

σ + σ′
WK
λ (σ)WK

λ (σ′)

where

Wλ(σ) =
∏
µ∈Λ̃K

λ

µ− σ
µ+ σ

.

Since Λ =
⋃
K≥1 ΛK , [13, Lemma A.3.23] allows us to pass to the limit as K → ∞ and obtain the desired

result. This ends the proof.

B.2 Proof of Lemma 3.4

As in the continuous case, the proof of this result is based on [13, Proposition A.3.30] which in turn employs
the useful result [13, Proposition A.3.31] for the computation of determinants of Cauchy matrices of the
form

CA,B :=

(
1

ai + bj

)
i,j∈J1,nK

, (B.1)

where A = {a1, . . . , an} ⊂ R and B = {b1, . . . , bn} ⊂ R are two given families.
In view of [13, Proposition A.3.30] and identity (3.20), our task is thus reduced to compute the determi-

nant of the Cauchy matrix

CA,B,τ :=

(
1

ai + bj + τaibj

)
i,j∈J1,nK

for any τ > 0 and two given families A and B. Note however that CA,B,τ can be rewritten as

CA,B,τ = diag

(
1

b1
, . . . ,

1

bn

)
×

 1(
1
ai

+ τ
2

)
+
(

1
bj

+ τ
2

)

i,j∈J1,nK

× diag

(
1

a1
, . . . ,

1

an

)
,

where the matrix in the middle is again of the form (B.1). Thus, a direct application of [13, Proposition
A.3.31] and some straightforward simplifications yield

detCA,B,τ =

n∏
i=1

1

ai + bi + τaibi
×

∏
i,j∈J1,nK
i<j

(aj − ai)(bj − bi)
(ai + bj + τaibj) (bi + aj + τbiaj)

. (B.2)

Let Λ̃τ,$ be as in (3.21) and set Λ̃τ,$λ := Λ̃τ,$ \Gλ where we recall that Gλ is defined in (2.24). Let

Eτλ := span
{
p[λ] : λ ∈ Λ̃τ,$λ

}
,
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and PEτ
λ

be the orthogonal projection in L2
τ (0,+∞) on Eτλ . A direct adaptation of [13, Proposition A.3.30]

by using formula (B.2) (instead of the shown there) yields for any σ, σ′ ∈ Gλ that(
p[σ]− PEτ

λ
p[σ], p[σ′]− PEτ

λ
p[σ′]

)
L2
τ (0,+∞)

=
detC{σ}∪Λ̃

τ,$
λ

,{σ′}∪Λ
τ,$
λ

,τ

detCΛ̃
τ,$
λ

,Λ
τ,$
λ

,τ

=
1

σ + σ′ + τσσ′

∏
µ∈Λ̃

τ,$
λ

(σ − µ)(σ′ − µ)

(σ + µ+ τσµ)(σ′ + µ+ τσ′µ)
,

which is exactly the desired result. This ends the proof.

B.3 Proof of Lemma 3.10

Since t 7→ emt [λ(j)] is a holomorphic function in the set Pη, we can use expressions (3.54) and Cauchy’s
formula to compute for all j ∈ J1, dK and ζ ∈ (tmn−1, t

m
n )∣∣∣∣ ddt |t=ζemt [λ(j)]

∣∣∣∣ =

∣∣∣∣∣ 1

2πi

∮
|z−ζ|=γ

Gj(z)e
−(z+(j−1)τm)

log(1+τmλ)
τm

(z − ζ)2
dz

∣∣∣∣∣ , (B.3)

where γ is a well-chosen radius to be fixed later and Gj(z) := (−1)j−1

(j−1)!

∏j−1
i=1 (z − (i− j + 1)τm)) .

Since η >
√
τm, it can be seen that as soon as ζ ≥ 5η, the circle defined by |z − ζ| =

√
τm is fully

contained within the set Pη. Moreover, for any j ∈ J1, dK, we obtain from estimates (3.55) and (3.56)∣∣∣∣Gj(z)e−(z+(i−1)τ)
log(1+τmλm)

τm

∣∣∣∣ ≤ Cj(1 + |z|j−1)e−
<(z)

2
λ,

uniformly with respect to m. Using the above estimate and the parametrization z(θ) = ζ +
√
τmeiθ where

0 ≤ θ ≤ 2π, we can bound the right-hand side of (B.3) as follows∣∣∣∣∣ 1

2πi

∮
|z−ζ|=

√
τm

Gj(z)e
−(z+(j−1)τm)

log(1+τmλ)
τm

(z − ζ)2
dz

∣∣∣∣∣
≤ Cj

2π

∫ 2π

0

(1 + |tn +
√
τmeiθ|j−1)e−

<(tn+
√
τmeiθ)

2
λ

√
τm

dθ.

Since

e−
<(tmn +

√
τmeiθ)

2
λ ≤ e−

tmn
2
λ+
√
τm

2
λ ≤ e−

tmn
2
λ+ η

2
λ

and ∣∣∣tmn +
√
τmeiθ

∣∣∣j−1

≤
(
|tmn |+ |

√
τm|

)j−1

≤ (|tmn |+ η)j−1 ≤ Cj,η|tmn |j−1

for all j ∈ J1, dK, we deduce that∣∣∣∣∣ 1

2πi

∮
|z−ζ|=

√
τm

Gj(z)e
−(z+(j−1)τm)

log(1+τmλ)
τm

(z − ζ)2
dz

∣∣∣∣∣ ≤ Cj,η√
τm
|tmn |j−1e−

tmn
2
λ+ η

2
λ, ∀j ∈ J1, dK. (B.4)

Putting together estimates (B.3), (B.4) and noting that tmn /2 ≥ η + tmn /4 yields the desired result. This
ends the proof.
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[29] V. Hernández-Santamaŕıa and L. Peralta. Some remarks on the robust Stackelberg controllability for
the heat equation with controls on the boundary. Discrete Contin. Dyn. Syst. Ser. B, 25(1):161–190,
2020.

[30] G. Lebeau and L. Robbiano. Contrôle exact de l’équation de la chaleur. Comm. Partial Differential
Equations, 20(1-2):335–356, 1995.

34

https://hal.archives-ouvertes.fr/hal-02470625v4
https://hal.archives-ouvertes.fr/hal-02470625v4
https://hal.archives-ouvertes.fr/hal-02470625v4
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