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BRILLOUIN ZONES OF INTEGER LATTICES AND THEIR
PERTURBATIONS∗

HERBERT EDELSBRUNNER† , ALEXEY GARBER‡ , MOHADESE GHAFARI§ , TERESA

HEISS† , MORTEZA SAGHAFIAN† , AND MATHIJS WINTRAECKEN¶

Abstract. For a locally finite set, A ⊆ Rd, the k-th Brillouin zone of a ∈ A is the region of
points x ∈ Rd for which ‖x− a‖ is the k-th smallest among the Euclidean distances between x and
the points in A. If A is a lattice, the k-th Brillouin zones of the points in A are translates of each
other, which tile space. Depending on the value of k, they express medium- or long-range order in
the set. We study fundamental geometric and combinatorial properties of Brillouin zones, focusing
on the integer lattice and its perturbations. Our results include the stability of a Brillouin zone
under perturbations, a linear upper bound on the number of chambers in a zone for lattices in R2,
and the convergence of the maximum volume of a chamber to zero for the integer lattice.

Key words. Brillouin zones, Voronoi tessellations, plane arrangements, Gauss circle problem,
asymptotic analysis

MSC codes. 52C22, 52C35, 05B45

1. Introduction. Brillouin zones were introduced by Léon Brillouin [6, 7] to
describe quantum properties of crystals modeled as lattices in R3. Given a locally
finite set, A ⊆ Rd, and a specific point, 0 ∈ A, we introduce regions of Rd based on
the distances to the points in A. Indeed, the k-th Brillouin zone of 0 in A consists
of the points x ∈ Rd such that at most k − 1 points in A \ {0} are closer than 0 to
x, and at least k − 1 points in A \ {0} are at the same distance or closer than 0 to
x. For k ≥ 2, it consists of a collection of chambers in the arrangement of bisectors
between 0 and other points in A—known as Bragg planes—which form a thickened
sphere surrounding 0. They have been used to analyze the soft density of lattices [13]
and to construct fingerprints of crystal structures modeled as locally finite periodic
sets [12]. If A is a lattice, then every Brillouin zone of every point in A has the same
(d-dimensional) volume, which is equal to the volume of the lattice’s unit cell; see [4].
Among other questions, we probe to what extent this long-range behavior changes
when we perturb the lattice. More generally, we study fundamental geometric and
combinatorial questions about Brillouin zones, with an eye on applications to sets with
some notion of order, such as lattices, sets with aperiodic structure, and hyperuniform
sets. For background on lattices, we refer to the books by Engel, Michel, Senechal
[16] and Zhilinsky [30] but also to the paper by Skriganov [27], which focuses on the
connection to the geometry of numbers. For an extensive introduction to aperiodic
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order see the book by Baake and Grimm [2]. For background on hyperuniform sets
see the article by Torquato [28]. Among our results are

• bounds on the distance of the k-th Brillouin zone of 0 from 0;
• the stability of the k-th Brillouin zone under perturbations of the points;
• bounds on the number of chambers in the k-th Brillouin zone;
• bounds on the maximum diameter of a chamber in the k-th Brillouin zone.

We focus on the integer lattice in Rd and on its perturbations. Some of our results
hold more generally—such as the stability, which holds for Delone sets—while others
are specific—such as the O(k) bound on the number of chambers in the k-th Brillouin
zone, which we can only prove for lattices in R2. We provide experimental data for
sets in the plane and use it to formulate concrete questions aimed at deepening the
study started in this paper. The corresponding Python code is available at [17].

Outline. Section 2 provides the necessary geometric background. Sections 3 and
4 study the width, the distance from the generating point, and the stability of the
Brillouin zones. Section 5 counts the chambers in the Brillouin zones. Section 6 proves
bounds on the size of the largest chamber in a Brillouin zone. Section 7 concludes the
paper.

2. Geometric Background. In this section, we introduce the necessary back-
ground on Brillouin zones, the related bisector arrangements, and Voronoi tessella-
tions.

2.1. Types of Sets. The results in this paper apply to a small number of differ-
ent types of point sets in Euclidean space. The primary concern is that their Voronoi
tessellations are well defined and that the dual Delaunay mosaic covers the entire
space.

A set A ⊆ Rd is Delone1 if there are constants 0 < r < R < ∞ such that every
open ball of radius r contains at most one point of A, and every closed ball of radius
R contains at least one point of A. The supremum r is the packing radius and the
infimum R is the covering radius of A. The existence of r > 0 implies that every
closed ball contains only a finite number of points in A, so the Voronoi tessellation is
well defined. Such a set is called locally finite, but note that a locally finite set does
not necessarily have a positive packing radius. The existence of R < ∞ implies that
every half-space contains infinitely many points of A, so the Delaunay mosaic covers
Rd. We therefore call such a set coarsely dense, but note that a coarsely dense set
does not necessarily have a finite covering radius.

Assuming d linearly independent vectors, v1, v2, . . . , vd ∈ Rd, the set of integer
combinations, Λ = {

∑d
i=1 jivi | ji ∈ Z}, is a (full rank) lattice. It necessarily contains

the origin, denoted 0 ∈ Rd. If the vi are the vectors in the standard basis of Rd, we
call Λ = Zd the integer lattice in Rd. The vi span a parallelepiped, and the (absolute)
determinant of the vi is the d-dimensional volume of this parallelepiped, which is
determined by the lattice.

A periodic set is the sum of a lattice and a finite set: A = Λ +M , in which M is
called the motif. Note that every periodic set, and therefore every lattice is Delone.

2.2. Brillouin Zones. In some areas of mathematics, “Brillouin zone” is a syn-
onym for “Voronoi domain”. We define them so the zones depend on a positive integer

1Delaunay mosaics and Delone sets are both named after Boris Delone (Delaunay), a Russian
and Soviet mathematician of French descent. He used the French spelling Delaunay in earlier works
and the transliteration of Russian spelling Delone in later works.
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parameter.

Definition 2.1 (Brillouin Zones). Let A ⊆ Rd be a locally finite point set with
a distinguished point, 0 ∈ A, and let k ≥ 1 be an integer. The k-th Brillouin zone of
0 is the set Zonek(0, A) of points x ∈ Rd such that

‖x− a‖ < ‖x− 0‖ for at most k − 1 points a ∈ A \ {0},(2.1)

‖x− b‖ ≤ ‖x− 0‖ for at least k − 1 points b ∈ A \ {0}.(2.2)

In the same way we can define Zonek(a,A) for every point a ∈ A. Note that
Zone1(0, A) is the Voronoi domain of 0: all points x ∈ Rd for which no point in
A is closer to x than 0. To show that Brillouin zones are closed, observe the following.
When fixing a set of at least k−1 points for (2.1) and its subset of at most k−1 points
for (2.2), the sets defined by (2.1) and (2.2) are closed and so is their intersection.
The kth Brillouin zone of 0 is the (possibly infinite) union of these closed sets over all
suitable choices of sets of at least k−1 points and the corresponding subsets. However,
its intersection with every compact neighborhood is determined by a finite number of
points of A and therefore it is closed as the finite union of closed sets. Because this
holds for any compact neighborhood the kth Brillouin zone is closed. Denoting the
open ball with center x and radius ‖x‖ = ‖x− 0‖ by B(x, ‖x‖), note that (2.1) and
(2.2) state there are at least k − 1 points of A \ {0} in B(x, ‖x‖) and at most k − 1
in the closure of B(x, ‖x‖). To construct the Brillouin zones, we draw the bisectors
defined by 0 and all points a ∈ A \ {0}; see Figure 1. Observe that a ∈ B(x, ‖x‖) iff

Fig. 1: Left: the arrangement of bisectors defined by the point in the center and all other
points in the integer lattice. Starting with the second, every fourth Brillouin zone is colored
dark blue alternating with light blue. Middle: the 6-th Brillouin zone sandwiched between
two circles centered at the point in the center. Right: the order-k Brillouin tessellation of
the integer lattice obtained by overlaying the order-5 with the order-6 Voronoi tessellations
or, equivalently, by drawing the 6-th Brillouin zones of all points in the integer lattice.

the bisector of 0 and a separates x from 0, and b ∈ ∂B(x, ‖x‖) iff the bisector of 0 and
b passes through x. Hence, according to Definition 2.1, x ∈ Zonek(0, A) iff at most
k−1 bisectors separate x and 0 and at least k−1 bisectors pass through x or separate
x and 0. We can therefore label each d-dimensional cell in the arrangement by the
number of bisectors that separate points in its interior from 0, and get Zonek(0, A)
as the union of all (closed) cells labeled k − 1. For k ≥ 2, every Brillouin zone is
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the difference between the (closed) star-convex set defined by (2.1) and the (open)
star-convex complement of the set defined by (2.2), in which the interior of the former
contains the latter set. It is therefore not difficult to prove the following fundamental
result on the shape of the zones:

Lemma 2.2 (Thickened Sphere). Let A ⊆ Rd be locally finite and coarsely dense,
and assume 0 ∈ A. Then for every finite integer k ≥ 2, the k-th Brillouin zone of 0
has the homotopy type of Sd−1.

Proof. Every ray L emanating from the origin 0 has non-empty intersection with
the k-th Brillouin zone of 0. To show this, consider a point x moving along the ray L
together with the (moving) ball B(x, ‖x‖) centered at x passing through the origin.
Since A is coarsely dense, the half space orthogonal to L (and passing through 0)
contains infinitely many points of A. Thus, there is a point x on the ray L such
that the open ball B(x, ‖x‖) contains at least k points in A \ {0}, and thus condition
(2.1) is not fulfilled, so x is not in the Brillouin zone. However, when moving x on L
towards the origin, the first time that the open ball B(x, ‖x‖) contains at most k− 1
points in A \ {0}, the closure of that ball contains at least k points in A \ {0}. Hence,
we found a point xL satisfying both (2.1) and (2.2).

Next, we use star-convexity to construct a deformation retraction: Every point y
in the k-th Brillouin zone of 0 gets moved by a straight line to cy with c = sup{c′ >
0 | c′y ∈ S}, where S is the open star-convex set defined by the negation of (2.2). The
image under this retraction of the points xL for all the rays L, and thus the image of
the whole Brillouin zone, is homeomorphic to a sphere.

2.3. Bisector Arrangements. The bisectors defined by 0 and the other points
of A form an arrangement of (d−1)-planes in Rd; see the left panel in Figure 1. When
restricting ourselves to coarsely dense2 locally finite point sets, this is a decomposition
of Rd into convex polyhedra of dimension p from 0 to d. We refer to the p-dimensional
polyhedra as p-cells and to the d-cells as chambers. Note that the (relative) interiors
of the cells partition Rd, while the cells may intersect in shared boundary pieces,
which are again cells in the arrangement.

We say A ⊆ Rd is in general position if no d + 1 of its points lie on a common
(d−1)-plane and no d+2 of its points lie on a common (d−1)-sphere. If A is in general
position, the arrangement of bisectors is simple; that is: any d of the (d − 1)-planes
meet in a common point and no d+1 of them do. Under this assumption, the number
of cells in the arrangement is a function of the number of bisectors; see for example
[11, Theorem 1.3].

Proposition 2.3 (Plane Arrangements). Let A be a simple arrangement of
n (d − 1)-planes in Rd. Then for each 0 ≤ p ≤ d, the number of p-cells in A is∑p
i=0

(
d−i
p−i
)(

n
d−i
)
.

Assuming p and d are constants, this implies that the arrangement has Θ(nd) cells of
any dimension.

2.4. Voronoi Tessellations. For fixed k ≥ 1, the k-th Brillouin zones of the
points in A form the order-k Brillouin tessellation, which is also known as the degree-k
Voronoi tessellation [15]. It relates to the better known order-k Voronoi tessellation,
see e.g. [23], which we introduce first.

2For infinite point sets that are not coarsely dense, the cells in the decomposition might not be
polyhedra but are generalized convex polyhedra [18], because a cell can have infinitely many faces,
see [29, Abbildung 3.4]
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Given a finite set A ⊆ Rd and a non-empty subset Q ⊆ A, we define the region
of Q as the points x ∈ Rd that satisfy ‖x− q‖ ≤ ‖x− a‖ for all q ∈ Q and a ∈ A \Q.
If non-empty, this region is a convex polyhedron, and if A is in general position, then
this polyhedron is d-dimensional. The order-k Voronoi tessellation is the polyhedral
complex consisting of the regions of subsets Q ⊆ A of size #Q = k and the faces
shared by these polyhedra.

For finite sets A ⊆ R2, the number of cells in the order-k Voronoi tessellation is
well understood. Part of the reason is that in the 2-dimensional generic case, every
vertex is shared by exactly two tessellations of consecutive order. We thus distinguish
between the old and new vertices of the order-k Voronoi tessellation, which it shares
with the order-(k − 1) and order-(k + 1) Voronoi tessellations, respectively. Using
induction, Lee proved that there are fewer than [4k − 2]n vertices, [6k − 3]n edges,
and [2k − 1]n regions [23]. We will need more precise estimates, so we follow [5] and
view the order-k Voronoi tessellation in R2 as the projection of cells in an arrangement
of planes in R3, and then overcount by moving to the 3-sphere. The latter amounts to
mapping the planes to 2-dimensional great-spheres in S3, which effectively combines
the order-k with the order-(n−k) Voronoi tessellation. We call the result of this view
the spherical order-k Voronoi tessellation. The benefit of this approach is that we
get equalities for the number of cells, rather than inequalities. Indeed, applying the
3-dimensional methods in [5] to 2 dimensions, things simplify considerably and it is
not difficult to count the faces assuming general position:

Proposition 2.4 (Spherical Order-k Voronoi Tessellation). Let A be n ≥ 4
points in general position in R2. Then for 1 ≤ k ≤ n − 1, the spherical order-k
Voronoi tessellation of A has uk = 2(k − 1)(n− k) old vertices, wk = 2k(n− k)− 2k
new vertices, ek = (6k − 3)(n − k) − 3k edges, and rk = (2k − 1)(n − k) − (k − 2)
regions.

In dimensions three and higher, counting the cells in the order-k Voronoi tes-
sellations is significantly more difficult [5] and only rough upper and lower bounds
are known. The order-k Brillouin tessellation is the overlay of the order-(k − 1) and
order-k Voronoi tessellations; see Figure 1, where the order-5 and order-6 Voronoi
tessellations are overlaid to give the order-6 Brillouin tessellation. It decomposes Rd
into convex regions such that any two points in the same region have the same k-th
nearest point in A. Each such region is a chamber of the k-th Brillouin zone of this
k-th nearest point in A. In the 2-dimensional case, it is not difficult to get good
bounds on the number of cells from Proposition 2.4:

Corollary 2.5 (Spherical Order-k Brillouin Tessellation). Let A be n ≥ 4
points in general position in R2. Then for 1 ≤ k ≤ n − 1, the spherical order-k
Brillouin tessellation of A has (6k−6)(n−k)−4 vertices, (12k−12)(n−k)−6 edges,
and (6k − 6)(n− k) regions.

Proof. For the vertices, we add the numbers of the order-(k − 1) and order-k
Voronoi tessellations and remove duplicates: uk−1 + uk + wk = (6k − 6)(n − k) − 4.
For the edges, we add the numbers: ek−1 + ek = (12k − 12)(n − k) − 6. To count
the regions, we use the Euler formula for the 2-sphere, which implies (ek−1 + ek) −
(uk−1 + uk + wk) + 2 = (6k − 6)(n− k) regions, as claimed.

If the points are not in general position, then the equations turn into upper
bounds, which also hold if we abandon the spherical view and count in the Euclidean
plane.
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2.5. Perturbations of the Integer Lattice. We call an injective map,
ϕ : Zd → Rd, a perturbation of the integer lattice, and the supremum of the ‖a− ϕ(a)‖
over all a ∈ Zd its magnitude. The perturbation is bounded if its magnitude is finite.
We call the image of the map, P = ϕ(Zd), a perturbed integer lattice. Without loss
of generality, we assume throughout this paper that 0 ∈ Zd is a fixed point; that is:
ϕ(0) = 0. We generate perturbations randomly, by picking ϕ(a) uniformly at random
in a + [−τ, τ ]d for each a ∈ Zd \ {0}, in which τ is the strength of the perturbation.
Standardizing to three strengths, we call the generated perturbation weak, medium,
strong if τ = 0.02, 0.10, 0.50, respectively.

While magnitude and strength are different concepts, we discuss them in disjoint
contexts and thus use the same letter, τ , to denote either. The strength of a per-
turbation is relevant in many of our computational experiments, and in Appendix A,
which supports the experiments by analyzing how many Brillouin zones in a finite
arrangement of bisectors are reliable.

2.6. Balls and Spheres. Consistent with the common notation in stochastic
geometry, we write νd for the d-dimensional volume of the unit ball in Rd, and σd for
the (d− 1)-dimensional volume of the unit sphere, which bounds this ball. We have

σd =
2πd/2

Γ(d/2)
=


[2π]d/2

[d−2]!! for even d,

2[2π][d−1]/2

[d−2]!! for odd d,
(2.3)

in which [d − 2]!! is the product of every other integer starting with d − 2; see e.g.
[25, page 13], where σd is denoted ωd. Furthermore, the volume of the unit ball is
νd = σd/d, which is denoted κd in [25]. Writing B(0, ρ) for the ball with radius ρ
centered at 0 ∈ Rd, we note that its d-dimensional volume is vol(B(0, ρ)) = νdρ

d.

3. Distance and Width. Drawing the two circles centered at 0 ∈ A whose
radii are the minimum and maximum distances of the k-th Brillouin zone from 0, we
get an annulus containing Zonek(0, A); see the middle panel in Figure 1. We write
rk(0) < Rk(0) for the two distances and call Wk(0) = Rk(0) − rk(0) the width of
the zone. Since the distances and widths are the same for all points of a lattice, we
simplify notation to rk, Rk,Wk whenever we talk about lattices.

3.1. Integer Lattices. We give upper and lower bounds on rk and Rk. Some of
these bounds were known to Jones [21, Section 5]. In particular, the lower bound on
rk in [21] is the same as in the theorem below, while the upper bound on rk is slightly
weaker. Similarly, [21] contains a lower bound on the width of the k-th Brillouin zone
that is weaker than the lower bound in the theorem below. For completeness, we
include a proof of the statement based on the fact that all Brillouin zones of a point
in a lattice have the same volume.

Theorem 3.1 (Width for Integer Lattices). For every k ≥ 1, the minimum and
maximum distances and the width of the k-th Brillouin zone of any point in Zd satisfy

d
√
k/νd −

√
d/2 < rk <

d
√

(k − 1)/νd,(3.1)
d
√
k/νd < Rk <

d
√
k/νd +

√
d/2,(3.2)

d
√
k/νd − d

√
(k − 1)/νd < Wk <

√
d.(3.3)

Proof. To prove the upper bound for rk and the lower bounds for Rk and Wk,
recall that the 1-st Brillouin zone is [−1/2, 1/2]d. Its d-dimensional volume and—by
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a classic result [4]—the volume of any other Brillouin zone is vol(Zone1(0,Zd)) = 1.
Let %k = d

√
k/νd and note that vol(B(0, %k)) = k. The first k − 1 Brillouin zones of 0

have a total volume of k−1, but since their union is not a perfect geometric ball, they
do not cover all of B(0, %k−1). Hence, Zonek(0,Zd) contains points in the interior of
B(0, %k−1), which implies rk < %k−1. A symmetric argument implies Rk > %k. This
implies that the width satisfies

Wk = Rk − rk > %k − %k−1 = d
√
k/νd − d

√
(k − 1)/νd.(3.4)

To prove the lower bound for rk and the upper bounds for Rk and Wk, we use
a straightforward solution to the generalization of the Gauss circle problem to d
dimensions; see [20] and references therein for the problem and relevant progress.
Letting x ∈ Rd, not necessarily in Zd, the number of integer points in B(x, ρ) satisfies

νd[ρ−
√
d/2]d < #points < νd[ρ+

√
d/2]d.(3.5)

To see this, we note that the unit cubes of the points inside B(x, ρ) cover B(x, ρ−√d/2),
which implies the first inequality in (3.5) by a volume argument. Symmetrically, these
unit cubes are contained in B(x, ρ+

√
d/2), which implies the second inequality, again

by a volume argument. Setting ρ = ‖x‖ and #points = k, we rearrange the two
inequalities and get bounds on the minimum and maximum distances from 0:

d
√
k/νd −

√
d/2 < rk ≤ ‖x‖ ≤ Rk < d

√
k/νd +

√
d/2.(3.6)

This implies that the width is Wk = Rk − rk <
√
d, as claimed.

We remark that the lower bound on the width in Theorem 3.1 tends to 0 when
k goes to infinity, while the upper bound is a constant independent of k. Using
earlier work by van der Corput [9], Kwakkel improves upon our upper bound in two
dimensions, showing that the width of the k-th Brillouin zone goes to zero as k goes
to infinity [22, Theorem 3.2]. With appropriate changes of the constants, all bounds
in Theorem 3.1 extend to Delone sets in Rd. Indeed, we can use volume arguments
to adjust (3.5) to the more general case of Delone sets, while leaving the rest of the
argument as is.

3.2. Perturbed Integer Lattices. We generalize the lower bound for rk and
the upper bound for Rk in Theorem 3.1 to perturbations of Zd. An upper bound for
the width follows.

Theorem 3.2 (Width for Perturbed Integer Lattices). Let ϕ : Zd → Rd be a
bounded perturbation with magnitude τ < ∞, and let k ≥ 1. Then the distances and
the width of the k-th Brillouin zone of 0 ∈ P = ϕ(Zd) satisfy

d
√
k/νd −

√
d/2− τ < rk(0) < Rk(0) < d

√
k/νd +

√
d/2 + τ,(3.7)

Wk(0) <
√
d+ 2τ.(3.8)

Proof. Write %k = d
√
k/νd and recall from the proof of Theorem 3.1 that the closed

balls with radii %k ±
√
d/2 contain at most and at least k points of Zd, respectively.

Since ‖a− ϕ(a)‖ ≤ τ , for every a ∈ P , the balls with radii %k ± (
√
d/2 + τ) contain at

most and at least k points of P . This implies the claimed lower bound for rk(0) and
the claimed upper bound for Rk(0). We get (3.8) from Wk(0) = Rk(0)− rk(0).
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3.3. Distances and Widths Experimentally. We illustrate Theorems 3.1 and
3.2 by constructing Brillouin zones in the plane. The solid graphs in Figure 2 give
the minimum and maximum distances of the Brillouin zones of 0 ∈ Z2 from 0, which
are bracketed by the upper and lower bounds proved in Theorem 3.1. The width is
the difference between these two distances. The dotted curves in Figure 2 show the
minimum and maximum distances of the first 57 Brillouin zones of 0 ∈ P from 0, in
which P is a strong perturbation of Z2. We see that the perturbation causes only
minor displacements of the four graphs.

Fig. 2: The solid curves show the min and max distances, rk and Rk, of the k-th Brillouin
zones of 0 ∈ Z2 from 0, together with their lower and upper bounds. For comparison, the
dotted curves show the same information for a strong perturbation of Z2, so the lowest and
highest curves are the bounds from (3.7). As detailed in Appendix A, the dotted curves
graphing the min and max distances of the k-th Brillouin zone in the perturbed integer
lattice are provably correct up to k = 34 and may possibly be contaminated by missing
bisectors starting from k = 35 onward.

4. Stability. While Theorem 3.2 bounds the width under perturbations, it falls
short of showing that the Brillouin zones are stable, which we prove in this section.
A related result is the stability of Voronoi regions, which was proven by Reem [24].

4.1. Two Technical Lemmas. We begin with an observation about the func-
tion mink : Rn → R that maps a vector of n numbers to the k-th smallest among
them. We write x1, x2, . . . , xn for the components of x ∈ Rn and y1, y2, . . . , yn for the
components of y ∈ Rn.

Lemma 4.1 (Stability of Rank). For any 1 ≤ k ≤ n, the map mink : Rn → R
is 1-Lipschitz under the L∞-norm; that is: if |xi − yi| ≤ ε for all 1 ≤ i ≤ n, then
|mink(x)−mink(y)| ≤ ε.

Proof. Let X0 contain the k smallest components of x, and let X1 contain the
n− k + 1 largest components of x, in which ties are broken arbitrarily. We note that
max(X0) = mink(x) = min(X1). Let yi ∈ Y0 iff xi ∈ X0, and similarly for Y1 and
X1. Since corresponding components differ by at most ε, we have max(Y0) − ε ≤
mink(x) ≤ min(Y1) + ε, and because #Y0 = k and #Y1 = n − k + 1, we have
min(Y1) ≤ mink(y) ≤ max(Y0). Hence, mink(y)− ε ≤ mink(x) ≤ mink(y) + ε, which
is equivalent to the claimed inequality.

The next technical lemma asserts the stability of the intersection of a half-line
with the bisector of two points. In the setting we consider, the half-line emanates
from one of the two points, which we assume is 0 ∈ Rd. Let a ∈ Rd \ {0} be the
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second point, let u ∈ Sd−1 be the direction of the half-line, and assume 〈u, a〉 > 0 so
that the intersection between the half-line and the bisector of 0, a exists. Writing λu
for the points of the half-line, we solve λ = ‖λu− a‖ to get λ(a) = 1

2‖a‖
2
/〈u, a〉 as

the parameter value of the intersection point.

Lemma 4.2 (Stability of Crossing). Let u ∈ Sd−1 be a direction and a ∈ Rd \{0}
a point with 〈u, a〉 > 0. Then for every ε > 0 there exists τ > 0 such that ‖p− a‖ < τ
implies that λ(p) is well defined and satisfies λ(p) < λ(a) + ε.

Proof. For τ < 〈u, a〉, we have 〈u, p〉 ≥ 〈u, a− τu〉 = 〈u, a〉 − τ > 0, so the
bisector of 0, p has a unique intersection point with the half-line of points λu, and this
intersection point is given by λ(p) = 1

2‖p‖
2
/〈u, p〉. Hence,

λ(p)

λ(a)
=
‖p‖2〈u, a〉
‖a‖2〈u, p〉

<
‖a+ τa

‖a‖‖
2〈u, a〉

‖a‖2〈u, a− τu〉
=
‖a‖2〈u, a〉
‖a‖2〈u, a〉

(1 + τ
‖a‖ )

2

(1− τ
〈u,a〉 )

,(4.1)

in which the first ratio of the right-hand side in (4.1) cancels. Since ‖a‖, ‖a‖2, 〈u, a〉,
and λ(a) are all fixed and positive, it is easy to find a sufficiently small τ > 0 so that
the remaining ratio is at most 1 + ε/λ(a). This implies λ(p) < λ(a) + ε, as required.

4.2. The Stability of Brillouin Zones. Write domk(0,Zd) for the set of points
x ∈ Rd for which fewer than k points in Zd \ {0} have distance less than ‖x‖ from x,
and note that domk(0,Zd) is the union of the first k Brillouin zones of 0. Since the
Brillouin zones have disjoint interiors, this implies that Zonek(0,Zd) is the closure of
domk(0,Zd) \ domk−1(0,Zd). For the same reason,

∂Zonek(0,Zd) = ∂domk(0,Zd) ∪ ∂domk−1(0,Zd)(4.2)

for the boundary of the k-th Brillouin zone. For any direction u ∈ Sd−1, consider the
half-line of points λu, with λ ≥ 0, and write αk(u) for the unique λ such that λu ∈
∂domk(0,Zd). Similarly, write βk(u) for the unique λ such that λu ∈ ∂domk(0, P ),
in which ϕ : Zd → Rd is a perturbation of the integer lattice and P = ϕ(Zd) is the
perturbed set.

Theorem 4.3 (Stability of Brillouin Zones). For every integer k ≥ 1 and real
ε > 0, there is a sufficiently small τ > 0 such that for every perturbation ϕ : Zd → Rd
with ϕ(0) = 0 and sup{‖a− ϕ(a)‖} < τ , we have |βk(u) − αk(u)| < ε for every
direction u ∈ Sd−1.

Proof. Assume a sufficiently small τ > 0, and let ϕ : Zd → Rd be a perturbation
of the integer grid such that ϕ(0) = 0 and sup{‖a− ϕ(a)‖} < τ . Fixing a direction
u ∈ Sd−1, we begin by constructing a set A ⊆ Zd \ {0} that satisfies the conditions
needed to apply Lemmas 4.1 and 4.2; that is:

1. 〈u, a〉 > 0 so λ(a) = 1
2‖a‖

2
/〈u, a〉 is well defined for every a ∈ A,

2. αk(u) is the k-th smallest of the λ(a), a ∈ A,

3. 〈u, p〉 > 0 so λ(p) = 1
2‖p‖

2
/〈u, p〉 is well defined for every p ∈ ϕ(A),

4. βk(u) is the k-th smallest of the λ(p), p ∈ ϕ(A).

In short, to satisfy Conditions 1 and 3, we pick points in the open half-space defined
by 〈x, u〉 > 0, and to satisfy Conditions 2 and 4, we include sufficiently many points
whose bisectors intersect the half-line defined by u near 0. To be specific, we set
λ0 = d

√
k/νd+

√
d/2+1, and let B0 = B(λ0u, λ0) be the open ball passing through 0.

By Theorem 3.1, B0 contains at least k integer points, including the k points whose
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bisectors with 0 intersect the half-line at the first k crossings. Assuming τ ≤ 1, by
Theorem 3.2, B0 contains at least k points of ϕ(Zd), including the k points whose
bisectors with 0 intersect the half-line at the first k crossings. The set A consists of
all points a ∈ Zd \ {0} such that a ∈ B0 or ϕ(a) ∈ B0. Observe that for this choice of
A, Conditions 2 and 4 are satisfied.

To establish the remaining two properties, note that a ∈ B0∩Zd\{0} ⊆ B0\B(0, 1)
trivially satisfies 〈u, a〉 > 0. Assuming τ is smaller than d1 = inf{d(x,H) | x ∈
B0 \ B(0, 1)}, in which H is the half-space of points y that satisfy 〈u, y〉 ≤ 0, the
perturbation p = ϕ(a) satisfies 〈u, p〉 > 0 as well; see Figure 3. Note that this
condition on τ depends neither on u nor on ϕ, only on the radius λ0 and as such on
d and k.

Fig. 3: The open blue ball, B0, is used to define the finite set A. The open yellow ball,
B(0, 1), does not contain any integer points apart from 0. Assuming τ ≤ min(d1, d2), the
points of A and their perturbations avoid the magenta half-space, H, which is necessary to
apply Lemma 4.2. In fact, in order to remove the dependence of Lemma 4.2 on u and A,
we need to choose τ even smaller to avoid the gray half-space, H`. Note that the distances
d1, d2 remain constant as we rotate u.

Similarly, points p = ϕ(a) ∈ B0 satisfy 〈u, p〉 > 0 trivially, but we need to
ascertain 〈u, a〉 > 0 by showing that every a ∈ H ∩ Zd \ {0} ⊆ H \ B(0, 1) is further
than τ from B0. Assuming τ is smaller than d2 = inf{d(x,B0) | x ∈ H \ B(0, 1)},
no point in a ∈ Zd \ {0} with 〈u, a〉 ≤ 0 can be perturbed into B0. Again, note that
the condition on τ depends neither on u nor on ϕ. Hence, Conditions 1 and 3 and
therefore all four conditions are satisfied.

For the last step, let n = #A and write a1, a2, . . . , an for the points in A. Let
xi = λ(ai) and yi = λ(ϕ(ai)), and assume that τ > 0 was chosen so that Lemma 4.2
implies |xi − yi| < ε. Here we use Lemma 4.2 twice: once for a = ai and p =
ϕ(ai) and the second time for a = ϕ(ai) and p = ai, with the second application
justified by Condition 3. We notice that the condition on τ can be made independently
of u and ϕ, by observing that the bounds needed to satisfy Conditions 1 and 3
can be strengthened: by setting ` = 1

2 min{d1, d2} and assuming τ is smaller than
inf{d(x,H`) | x ∈ B0 \ B(0, 1)}, in which H` is the half-space of points y satisfying
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〈u, y〉 ≤ `, and assuming τ is smaller than inf{d(x,B0) | x ∈ H` \ B(0, 1)}, we can
lower bound 〈u, a〉, 〈u, ϕ(a)〉, ‖a‖, ‖ϕ(a)‖ by ` for all a ∈ A. In addition, 2λ0 + 1 is an
upper bound for ‖a‖, ‖ϕ(a)‖ for all a ∈ A. With these bounds, we can choose τ small
enough, independently from u and ϕ, so that Lemma 4.2 holds.

Lemma 4.1 now implies |βk(u)−αk(u)| < ε. Since all conditions on τ depend only
on d, k, ε and not on u, ϕ, this completes the proof of the claim for any perturbation
ϕ with magnitude less than τ and for any direction u.

In words, Theorem 4.3 asserts that the difference between the distances of the outer
boundaries of the k-th Brillouin zones in a given direction from the origin—before
and after the perturbation—goes to 0 when τ tends to 0. This also holds for their
inner boundaries, which are the outer boundaries of the (k − 1)-st Brillouin zones.
Hence, the Hausdorff distance between the k-th Brillouin zones—before and after the
perturbation—goes to 0 when τ tends to 0. Theorem 4.3 also holds for Delone sets in
Rd.

4.3. Stability Experimentally. We use an indirect approach to probe the sta-
bility of the Brillouin zones experimentally. For the integer lattice, every Brillouin
zone has area 1.0, but for a perturbation, this is no longer necessarily true. It would
be interesting to know how perturbations affect the area of the zones. Clearly, the
area exchange is a zero-sum game, so we expect some oscillation around 1.0, and this
is confirmed by the graphs in the top panel of Figure 4. As suggested by the graphs
in the bottom panel of Figure 4 and implied by Theorem 3.2, the average area of the
first k Brillouin zones of 0 in a perturbation of Z2 converges to 1.0.

We define the outer perimeter of the k-th Brillouin zone as the length of the
boundary of the union of the first k Brillouin zones, which is domk(0, A). By compar-
ing it with the length of the circle bounding a disk of the same area as domk(0, A), we
get the distortion of the outer perimeter. A recent analysis of the distortion of curves
in a different context identified 4/π as a universal constant for the distortion of length
[14], see also [3]. We therefore compare the distortions we get for the integer lattice
and two perturbations of it with this constant in Figure 5. The findings encourage us
to ask for a proof that also in our context the distortion converges to 4/π.

5. Number of Chambers. We get upper bounds on the number of chambers of
individual Brillouin zones from the relation of the zones to k-sets and order-k Voronoi
tessellations.

5.1. Integer Lattice in the Plane. As mentioned in Section 2, there is a
connection between k-th Brillouin zones and order-k Voronoi tessellations, which we
exploit to get a linear upper bound on the number of chambers in the 2-dimensional
lattice case. We also prove a lower bound, for which we need an extension of a well
known number theoretic fact. We begin with this extension.

Lemma 5.1 (#Integer Points on Circle). For every ε > 0, every circle of radius
R passes through at most O(Rε) integer points.

Proof. Let Γ be a circle with radius R and assume first that it is centered at the
origin in R2. Let n(R) be the number of integer points on Γ, which is the number of
ways we can write R2 as a sum of two squares. It is known that n(R) is at most some
constant times the number of divisors of R [8, Lemma 2], which implies n(R) = O(Rε)
for every ε > 0; see [19].

Next consider the more general case, in which the center of Γ is not an integer
point. We can assume that Γ passes through at least three integer points, else there
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Fig. 4: Top: the area of the k-th Brillouin zone of 0 in Z2 and in two perturbations of Z2.
We get progressively more noisy curves for increasing strength of the perturbation. Bottom:
the cumulative area of the first k Brillouin zones divided by k. We get a straight line for
Z2 and graphs that converge to it for perturbations of Z2. Similar to Figure 2, the curves
of the medium and strong perturbations may be inaccurate beyond k = 52 and k = 34,
respectively.

is nothing to prove. We may also assume that one of these three points is 0 = (0, 0),
and we write a = (a1, a2) and b = (b1, b2) for the other two integer points. The center
of Γ is at the intersection of the two bisectors defined by 0, a and by 0, b. Equivalently,
its coordinates are the solutions to the linear system

2a1x1 + 2a2x2 = a21 + a22,(5.1)

2b1x1 + 2b2x2 = b21 + b22.(5.2)

Using Cramer’s Rule, we get the coordinates of the center as ratios of integer deter-
minants, and the two ratios share the denominator, which is ∆ = 2a1b2 − 2a2b1. By
assumption, the radius of Γ is R, which implies that the coordinates are at most 2R,
and thus |∆| ≤ 16R2. Scaling Γ by ∆, we get a new circle, with radius at most 16R3,
whose center is an integer point. The integer points on Γ map to integer points on
the new circle, but there can be only n(∆R) such integer points, which is O(Rε), for
every ε > 0.

Theorem 5.2 (#Chambers for 2D Integer Lattice). For every k ≥ 2 and ε > 0,
the number of chambers in the k-th Brillouin zone of 0 ∈ Z2 is at least Ω(k1−ε) and
at most 6k − 6.

Proof. We first prove the lower bound. Let x be an interior point of a chamber in
the k-th Brillouin zone of 0, and write A(x) for the k−1 integer points in the interior
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Fig. 5: The outer perimeter of the k-th Brillouin zone of 0 ∈ Z2 divided by the perimeter of
the equal area disk, the same ratio for a strong perturbation of Z2, and the conjectured limit
of the distortion at 4/π = 1.27 . . .. Similar to Figure 2, the curve of the strong perturbations
may be inaccurate beyond k = 34.

of B(x, ‖x‖). The point −x is interior to the diametrically opposite chamber, and
A(−x) is another set of k − 1 integer points. Since B(x, ‖x‖) and B(−x, ‖x‖) have
disjoint interiors, A(x) and A(−x) are disjoint.

For k ≥ 2, the k-th Brillouin zone consists of a cyclic ring of chambers, each
sharing a vertex with its predecessor and another vertex with its successor along the
cyclic order. For each chamber, we get a set of k − 1 integer points, and we consider
the sets of two consecutive chambers that share a vertex y. If a point a ∈ Z2 belongs
to one set but not the other, then the bisector of 0 and a passes through y. The
integer points whose bisectors with 0 pass through y all lie on the circle centered at
y and passing through 0. By Theorem 3.1, the radius of this circle is at most some
constant times

√
k, so Lemma 5.1 implies that there are at most O(kε) integer points

on this circle, for any ε > 0. The claimed lower bound follows because we need at
least Ω(k1−ε) steps between adjacent chambers of the k-th Brillouin zone to exchange
all points, which is necessary to travel from A(x) to A(−x).

We second prove the upper bound. Let ρ be the radius, which we will specify
later, and consider the integer lattice within the ball B(0, ρ). Set A = B(0, ρ) ∩ Z2

and n = #A, and note that (3.5) implies π[ρ − √2/2]2 < n < π[ρ +
√
2/2]2. Write

Brik(A) for the order-k Brillouin tessellation of A defined in Section 2. For k = 1,
this is the ordinary Voronoi tessellation with one (2-dimensional) region per point,
and for k ≥ 2, Corollary 2.5 asserts that the number of regions is less than [6k − 6]n.

For a ∈ Z2, we call a closed ball a-anchored if a belongs to its boundary, and we
call a point, b ∈ Z2, k-near to a if there is an a-anchored ball, B, with b ∈ intB and
#(B ∩ Z2) ≤ k−1. Now recall that Brik(A) is obtained by drawing the k-th Brillouin
zones of all points in A next to each other. The k-th Brillouin zone of a in A is the
same as in Z2 if all k-near points of a in Z2 also belong to A. By (3.2), the maximum
distance of a ∈ Z2 from a point in its k-th Brillouin zone is Rk <

√
k/π +

√
2/2. It

follows that the disk B(a, 2Rk) contains all k-near points of a. Hence, for all points
a ∈ B(0, ρ − 2Rk) ∩ Z2, the k-th Brillouin zone of a in A is the same as in Z2.
Writing n0 for the number of such points, we use again a volume argument to see that
n0 > π[ρ− 2Rk −

√
2/2]2. The number of remaining points in A is of lower order. To

do the final counting, let χk be the number of chambers in the k-th Brillouin zone of
a point in Z2. The total number of chambers we get for the n0 points is less than the
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number of regions in Brik(A). Assuming k ≥ 2, this implies

χk < [6k − 6]
n

n0
< [6k − 6]

π[ρ+
√
2/2]2

π[ρ− 2Rk −
√
2/2]2

.(5.3)

We can make the ratio as close to 1 as we like by choosing ρ as large as we like. This
finally implies χk ≤ 6k − 6.

The upper bound on the number of chambers extends without adjustment of
constants to general lattices in R2. For a lattice in R2 that contains no four points on
a common circle, the lower bound argument in the above proof implies a matching
linear lower bound. Contrary to lattices, a locally finite point set can have a Brillouin
zone with infinitely many chambers; see [29, Abbildung 3.4] for an example.

5.2. Integer Lattices Beyond Two Dimensions. The proof of the upper
bound in Theorem 5.2 uses Corollary 2.5, which only holds in R2. To generalize to
higher dimension we need a different strategy. Using inversion, we transform the
problem of counting chambers of the k-th Brillouin zone to counting k-sets of a finite
set. We begin by proving that sets of O(k) points suffice for the transformation.
Recall that a point a ∈ Zd is k-near to 0 if there exists a 0-anchored ball, B, such
that a ∈ intB and #(intB ∩ Zd) ≤ k − 1. Theorem 3.1 implies an upper bound on
the number of k-near points.

Fig. 6: The image of the integer lattice under inversion. The dotted lines and circles are the
images of nine vertical and nine horizontal integer lines. The blue unit circle is preserved
by the inversion. Since all integer points other than 0 lie on or outside the unit circle, their
images under the inversion all lie on or inside the unit circle.

Lemma 5.3 (#Near Points). For every integer k ≥ 1, the number of k-near
points of 0 ∈ Zd is O(k), assuming d is constant.

Proof. The center of any 0-anchored closed ball with fewer than k integer points
in the interior belongs to one of the first k Brillouin zones of 0. By (3.2), the distance
of such a point from 0 is at most Rk <

d
√
k/νd +

√
d/2. It follows that all k-near points
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are contained in B(0, 2Rk). By a straightforward volume argument, the number of
such points is bounded from above by the volume of B(0, 2Rk +

√
d/2), which is

νd [2Rk +
√
d/2]

d
< νd

[
2 d
√
k/νd + 3

2

√
d
]d
.(5.4)

Since d is a constant, this volume is O(k), so the number of k-near points is O(k).

For the next step, we invert Rd in the unit sphere using the map ι : Rd \{0} → Rd
defined by ι(x) = x/‖x‖2; see Figure 6. It preserves the unit sphere and exchanges
points inside with points outside this sphere. Importantly, it maps every 0-anchored
ball to a closed half-space that does not contain 0. In particular, it maps a 0-anchored
ball, B, with #(intB ∩ Zd) = k − 1 to a half-space, ι(B), that contains k − 1 points
of A = ι(Zd \ {0}) in its interior. We call these points a (k − 1)-set of A. By
Lemma 5.3, there is a subset A′ ⊆ A of size #A′ = O(k) such that every (k − 1)-set
of A is also a (k − 1)-set of A′. This is interesting because counting k-sets is a much
studied while poorly understood problem in discrete geometry. Nevertheless, non-
trivial bounds on the maximum number of k-sets are known in all finite dimensions,
and the inversion together with Lemma 5.3 implies similar bounds for the number of

chambers of Brillouin zones. Let f
(d)
k (n) be the maximum number of k-sets any set

of n points in Rd can have.

Theorem 5.4 (#Chambers for Integer Lattices). For every k ≥ 1, there exists

a constant, C, depending on d, such that f
(d)
k−1(Ck) is an upper bound on the number

of chambers of the k-th Brillouin zone of 0 ∈ Zd.

At the time of writing this paper, the best known upper bounds for f
(d)
k (n) in which

n = O(k) are f
(2)
k (n) = O(n4/3) in [10], f

(3)
k (n) = O(n5/2) in [26], and f

(d)
k (n) =

O(nd−cd) with cd > 0 small and tending to 0 as d grows in [1]. The bounds in
Theorem 5.4 extend to Delone sets, so it is humbling that we did not get better
bounds even for the integer lattices beyond two dimensions.

5.3. Number of Chambers Experimentally. We illustrate Theorem 5.2 by
showing the number of chambers of the k-th Brillouin zone of 0 ∈ Z2 in the top panel
of Figure 7. As predicted, the curve stays below the straight line of the upper bound
for k ≥ 2. By comparison, the number of chambers for a perturbation of Z2 goes
sometimes above this bound, which is not a contradiction since perturbations are not
necessarily lattices so the bound does not apply. The bottom panel of Figure 7 shows
the cumulative number of chambers for the first k Brillouin zones. The linear upper
bound in the top panel turns into a quadratic upper bound in the bottom panel. The
curve for Z2 stays clearly below that bound.

6. Size of a Chamber. In this section, we prove bounds on the maximum
diameter of a chamber in a k-th Brillouin zone. Bounds on the volume and other
measures follow.

6.1. Integer Lattices. The integer lattice forces the chambers of the k-th Bril-
louin zone to shrink when k increases. To prove a quantified version of this claim,
we begin with an exercise in elementary geometry. While the application of the re-
sult from this exercise is in d dimensions, it is convenient to temporarily add another
dimension and embed Rd in Rd+1.

Let c be a positive constant, R ≥ c a radius, and Σ0 a d-sphere with radius
ρ0 = R in Rd+1. We construct a (d − 1)-sphere Σ1 by slicing Σ0 with a d-plane at
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Fig. 7: Top: the number of chambers in the k-th Brillouin zone of 0 ∈ Z2 together with the
linear upper bound and the numbers for a strong perturbation, for comparison. Bottom: the
cumulative number of chambers in the first k Brillouin zones of 0 ∈ Z2 together with the
quadratic upper bound and the cumulative numbers for the strong perturbation. Similar to
Figure 2, the curve of the strong perturbations may be inaccurate beyond k = 34.

distance ρ0 − c from the center of Σ0. It is easy to check that the radius of Σ1 is
ρ1 =

√
2cρ0 − c2, which is necessarily at least c. We iterate and thus get a sequence

of spheres Σi, for 0 ≤ i ≤ d, in which the dimension of Σi is d− i, and the radius of
every subsequent sphere is ρi =

√
2cρi−1 − c2 ≥ c. Writing the radii in terms of R,

we get

ρ1 =
√

2cR− c2 < (2c)1/2R1/2,(6.1)

ρ2 =

√
2c
√

2cR− c2 − c2 < (2c)3/4R1/4,(6.2)

and more generally ρi ≤ (2c)1−1/2
i

R1/2i for 0 ≤ i ≤ d. Write zi for the center of Σi
and observe that its distance to the closest point on Σ0 is

δi = R− ‖zi − z0‖ = R−
√
R2 − ρ2i = R−

√(
R− ρ2i

2R

)2

− ρ4i
4R2

(6.3)

≤ R−
(
R− ρ2i

2R

)
+
ρ2i
2R
≤ ρ2i
R
≤ 4c2

R

(
R

2c

)1/2i−1

= 2c

(
2c

R

)1−1/2i−1

.(6.4)

Observe that all d + 1 centers lie in a d-plane that intersects Σ0 in a (d − 1)-sphere
of radius R, which we denote Σ′0. It follows that δi is also the distance of zi to the
closest point of Σ′0, for 0 ≤ i ≤ d. Of particular interest is the last center, zd, and
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its distance to Σ′0, which is δd. The d-plane that contains Σ′0 is where we apply the
insights from the exercise.

We claim that in Rd, there are necessarily many integer points at distance at most
δd from Σ0. To formulate this claim, we call a point on a (d− 1)-sphere in Rd a pole
if there is an index 1 ≤ i ≤ d such that the point has either minimum or maximum
i-th coordinate among all points of the sphere. A (d−1)-sphere has 2d poles. For the
next definition, we let Rd be the d-plane spanned by the first d coordinate vectors of
Rd+1. An integer (i + 1)-plane is an axis-parallel (i + 1)-dimensional plane in Rd+1

normal to Rd passing through at least one integer point. It is normal to d− i of the
first d coordinate axes and determined by the corresponding d − i values, which are
integers.

The largest open ball in Rd that contains no point in Zd has radius
√
d/2. This

implies that for a (d − 1)-sphere with radius R ≥
√
d in Rd, and for any coordinate

axis, there exists an integer d-plane orthogonal to that axis at distance at least R−
√
d

from the center that contains at least one point of Zd on or inside the sphere. This
motivates us to set c =

√
d.

Lemma 6.1 (Nearby Integer Points). For every (d − 1)-sphere with radius R ≥√
d in Rd, and every one of its poles, there is an integer point at distance at most R

to the center, at most
√

2
√
dR to the pole, and at most 2

√
d(2
√
d/R)1−1/2

d−1

to the
closest point on the (d− 1)-sphere.

Proof. Let S0 be a d-sphere with center in Rd and radius R ≥
√
d in Rd+1, and

write B0 for the closed (d + 1)-ball whose boundary is S0. Let S′0 = S0 ∩ Rd, which
is a (d− 1)-sphere of radius R and thus encloses or passes through at least one point
in Zd ⊆ Rd. Because of symmetry, it is sufficient to construct a point p ∈ Zd that
satisfies the conditions of the lemma for one given pole of S′0. Let this pole be the
point with maximum first coordinate among all points of S′0. Let h1 be the integer
d-plane orthogonal to the first coordinate axis, with maximum first coordinate such
that B0 ∩ h1 ∩ Zd 6= ∅. Let S1 = S0 ∩ h1 be the corresponding (d − 1)-sphere, and
note that its radius is r1 ≤ ρ1, in which ρ1 is defined with c =

√
d in (6.1). Write

B1 = B0∩h1 and iterate to get a sequence of d+1 spheres, as before. By construction,
the radii of these spheres satisfy ri ≤ ρi, and their centers have distance di ≤ δi to
their closest points on S′0. Also by construction, each Bi contains at least one point
in Zd, and since its center maximizes the distance to S′0, the distance of this integer
point to the closest point on S′0 is at most di ≤ δi. The case i = d proves the claimed
bounds on the distance to S′0 and to the center of S′0.

To also bound the distance to the pole, observe that p ∈ B1, which is a d-ball

with radius r1 ≤ ρ1 =
√

2
√
dR− d. The distance of the pole to z1, the center of the

d-ball, is at most
√
d, so the distance to p is at most

√
r21 + d ≤

√
2
√
dR.

Let now S(x, r) and S(y,R) be two (d−1)-spheres with centers x, y ∈ Rd and radii
r ≤ R. Assuming x 6= y, an entire hemisphere of S(y,R) lies outside the other sphere,
namely the hemisphere of points a ∈ S(y,R) that satisfy 〈a− y, y − x〉 ≥ 0. We
prove that this hemisphere contains a large cap within which all points have distance
at least some constant times ‖x− y‖ to the closest point of S(x, r). Specifically, if
a ∈ S(y,R) is a point in this hemisphere and θ ≤ π/2 is the angle between a and the
central point, z, of the hemisphere, as in Figure 8, then

‖a− x‖2 = R2 sin2 θ + (R cos θ + ‖x− y‖)2(6.5)

= R2 + 2R‖x− y‖ cos θ + ‖x− y‖2 ≥ (R+ ‖x− y‖ cos θ)2.(6.6)
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The distance of a to the closest point of S(x, r) is therefore ‖a− x‖−r ≥ ‖a− x‖−R ≥
‖x− y‖ cos θ. In words, for every constant angle θ < π

2 , the distance between a and
the closest point of S(x, r) is at least some constant fraction of the distance between
the centers.

y

x

z

θ0

θ0

S(x, r)

S(y,R)

Fig. 8: By assumption, S(y,R) is no smaller than S(x, r). The half-circle of points a ∈
S(y,R) with 〈a− y, y − x〉 ≥ 0 is highlighted. The cone with angle θ0 = arccos

√
2/6 is

guaranteed to contain at least one of the four poles of S(y,R) together with the nearby
integer point.

In the following, we will consider cones, for which we introduce the following
nomenclature. By a cone with apex y ∈ Rd, direction z − y ∈ Rd \ {0}, and angle
θ0 <

π
2 , we mean the set of points v ∈ Rd such that the angle between v − y and

z− y is at most θ0; see Figure 8. We will need θ0 such that at least one of the integer
points that satisfy the conditions of Lemma 6.1 is contained in this cone. For every
direction z − y, there is a pole b of S(y,R) with 〈z − y, b− y〉 ≥ R2/

√
d, and this

is best possible because 〈z − y, b− y〉 ≤ R2/
√
d for all poles if z − y is the diagonal

direction of any of the 2d orthants. Thus any cone with angle at least arccos 1/
√
d

contains at least one pole. We choose the threshold a bit larger so that any such cone
also contains the nearby integer point.

Lemma 6.2 (Poles and Cones). Let Σ be a sphere with radius R ≥ (18d− 1
2 )
√
d.

Then every cone with apex at the center of Σ and angle θ0 = arccos 1/(3
√
d) contains at

least one pole of Σ together with the nearby integer point as constructed in the proof
of Lemma 6.1.

Proof. Write y for the center of Σ and let z be an arbitrary point on the sphere.
Before showing the claim for the cone with apex y, direction z−y and angle θ0 (below
denoted by θ0-cone), we consider a cone with the same apex and direction but a smaller
angle ϕ (below denoted by ϕ-cone): As mentioned above, every cone with angle
ϕ = arccos 1/

√
d contains at least one pole, b. Let Σ2 be the (d − 2)-sphere obtained

by slicing Σ with the (d−1)-plane of points a that satisfy 〈a− y, b− y〉 = R(R−
√
d).

The radius of Σ2 is ρ2 =
√

2
√
dR− d. We need to show that θ0 − ϕ is large enough

for the θ0-cone to not only contain b, but also Σ2, and thus also the integer point
nearby. Using the triangle inequality on the unit sphere, we observe that it suffices
to show that the angle of the cone defined by Σ2 is less than θ0 − ϕ. We begin by
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computing the squared (Hausdorff) distance between the (d−2)-spheres at which the
boundaries of the cones with angles ϕ and θ0 (in the same direction) intersect Σ. By
intersecting with a plane that passes through z−y, we see that this is the same as the
squared distance between the points (R cosϕ,R sinϕ) and (R cos θ0, R sin θ0), which
is

R2(cosϕ−cos θ0)2+R2(sin θ0−sinϕ)2 ≥ R2(cosϕ−cos θ0)2 ≥
(
R√
d
− R

3
√
d

)2
= 4R2

9d .

(6.7)

With the assumed lower bound on R, this is at least 4 times the squared radius of Σ2,
which is ρ22 = 2

√
dR − d. Hence ρ2 is at most half the (Hausdorff) distance between

the two (d− 2)-spheres, which implies that the cone with angle θ0 contains Σ2.

We are now ready to prove the main result of this subsection.

Theorem 6.3 (Size for Integer Lattices). For every d ≥ 2, every chamber in the

k-th Brillouin zone of 0 ∈ Zd has diameter at most O(k(−1+1/2d−1)/d). Specifically, for

k ≥ νd(18d
√
d)d, the diameter is bounded from above by (18d

√
d)·νd1/d·k(−1+1/2d−1)/d.

Proof. Let x and y be points in the k-th Brillouin zone of 0, and let S(x, r)
and S(y,R) be the spheres with centers x, y ∈ Rd and radii r = ‖x‖ and R = ‖y‖.
Assuming the distance between x and y exceeds the claimed upper bound on the
diameter, we prove that x and y belong to different chambers by showing that S(x, r)
and S(y,R) enclose different sets of integer points. We get r,R > d

√
k/νd −

√
d/2

from Theorem 3.1. By the assumed lower bound on k, we have d
√
k/νd ≥ 18d

√
d and

therefore R ≥ 18d
√
d− 1

2

√
d, so we can apply Lemma 6.2. Furthermore, R > 2

3
d
√
k/νd,

although the constant could be improved.

Assuming r ≤ R, the hemisphere of points a ∈ S(y,R) with 〈a− y, y − x〉 ≥ 0 lies
outside S(x, r). By Lemma 6.1, there are integer points enclosed by S(y,R) whose
distance from the sphere is at most

2
√
d

(
2
√
d

R

)1− 1

2d−1

< 2
√
d

(
3
√
d d
√
νd

d
√
k

)1− 1

2d−1

<
Dk

3
√
d
,(6.8)

in which Dk = (18d
√
d) · νd1/d · k(−1+1/2d−1)/d. Note that ‖x− y‖ > Dk, by as-

sumption. The extra factor is 1/(3
√
d) = cos θ0, so there exists an integer point on or

enclosed by S(y,R) that lies outside S(x, r). Hence x and y lie in different chambers,
which implies the claimed upper bound on the diameter.

A chamber with diameter D can be enclosed in a cube with edges of length D.
This implies that the volume of the chamber is bounded by Dd. Theorem 6.3 thus
implies that the volume of a chamber in the k-th Brillouin zone of 0 ∈ Zd is at most

O(k−1+1/2d−1

).

We can also get lower bounds for the maximum diameter and volume. For ex-
ample, Zonek(0,Z2) has unit area and by Theorem 5.2 consists of O(k) chambers. It
follows that the average and therefore also the maximum area of a chamber in this
zone is Ω(k−1). By Lemma 2.2 and Theorem 3.1, the k-th Brillouin zone surrounds 0
at a distance about

√
k/π from 0. The sum of diameters is therefore at least Ω(k

1/2),
which implies that the average and therefore the maximum diameter of a chamber is
Ω(k

− 1/2). Using Theorem 5.4, similar but weaker lower bounds can be obtained for
integer lattices in d ≥ 3 dimensions.
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The authors of this paper believe that the bound in Theorem 6.3 extends to
lattices, but it does not extend to Delone sets. Indeed we will see shortly that the
bounds break down even for perturbations of the integer lattice.

6.2. Perturbed Integer Lattices. As proved above, the size of the largest
chamber in the k-th Brillouin tessellation of the integer lattice approaches zero as k
goes to infinity. This property is not necessarily shared by arbitrarily small pertur-
bations of Zd.

Theorem 6.4 (Size for Perturbed Integer Lattices). For every τ < 1
2 , there

exists a perturbation ϕ : Zd → Rd with magnitude at most τ such that for every k ≥ 1,
there exists a point bk ∈ ϕ(Zd) such that its k-th Brillouin zone contains a chamber
with diameter at least τ and volume at least νd[

τ
2 ]d.

Proof. Let τ < 1
2 . We first define a local perturbation, ϕk, to create a large

chamber in the k-th Brillouin zone of a specific point, ϕk(0) = 0, and for a specific
integer, k. For k = 1 no perturbation is needed because the 1-st Brilloun zone (the
Voronoi domain) of the integer lattice contains a ball of radius 1

2 .

For k ≥ 2, we construct P = ϕk(Zd) with ϕk(0) = 0 and ‖a− ϕk(a)‖ ≤ τ for
every a ∈ Zd \ {0}. Let x be an interior point of Zonek(0,Zd), which implies that
k − 1 ≥ 1 integer points lie in the interior of B(x, ‖x‖), 0 lies on its boundary, and
all other integer points lie outside the closed ball. We have ‖x‖ > 1

2 , else the ball
could not contain an integer point in its interior. We construct P by moving the
points a ∈ Zd other than the origin orthogonally away from the sphere bounding
B(x, ‖x‖) if their distance to the closest point on the sphere is less than τ . Letting
δ = |‖x− a‖ − ‖x‖| be this distance, we define

ϕk(a) =


a− (τ − δ) · x−a

‖x−a‖ if ‖x‖ < ‖x− a‖ < ‖x‖+ τ,

a+ (τ − δ) · x−a
‖x−a‖ if ‖x‖ − τ < ‖x− a‖ < ‖x‖,

a otherwise.

(6.9)

The integer points with distance at least τ from the sphere remain where they are,
and the others are moved to a location at distance τ from the sphere. Since τ < 1

2 ,
the images of the integer points are distinct. Let y ∈ Rd have distance less than τ

2
from x. By construction, every point of P in the interior of B(x, ‖x‖) is in the closure
of B(x, ‖x‖ − τ) which is included in the interior of B(y, ‖y‖) because the distance
between the centers of these balls is smaller than the difference of the radii. Similarly,
every point of P outside the closure of B(x, ‖x‖) is outside the interior of B(x, ‖x‖+τ)
and thus also outside the closure of B(y, ‖y‖). Hence, x and y belong to the same
chamber in the k-th Brillouin zone of 0 ∈ P . By construction, this chamber contains
a ball with radius τ

2 and therefore has the claimed diameter and volume.

Note that the above construction can be performed for each k with a different
point bk ∈ Zd instead of 0. By Theorem 3.2, additional perturbations of the integer
points outside the ball B(bk,

d
√
k/νd +

√
d/2 + τ) cannot destroy the large chamber

created by the perturbation. Hence, we can choose the points bk with increasing
distance from each other so that the respective balls do not intersect and thus the
modifications do not interfere, yielding one perturbation ϕ that creates large chambers
for every k.

6.3. Size Experimentally. We illustrate Theorems 6.3 and 6.4 by showing the
maximum area and maximum diameter of the chambers in the k-th Brillouin zone
of 0 in Figure 9. For Z2, both quantities tend to zero as k goes to infinity, which is
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consistent with the graphs in the two panels, where we multiply with k1/2 and k1/4,
respectively. For perturbations of Z2, there are examples for which both measures stay
above a positive constant even for arbitrarily large k, in which the constant depends
on the strength of the perturbation. In our experiment, we pick a perturbation at
random, and it may be unlikely that we get one whose maximum area and maximum
diameter do not tend to zero.

Fig. 9: Top: the maximum area of a chamber in the k-th Brillouin zone of 0 in Z2 times k1/2,
and the same for two perturbations of the integer lattice. Bottom: the maximum diameter
of a chamber in the k-th Brillouin zone of 0 times k1/4 in the same sets. Similar to Figure 2,
the curves of the weak and medium perturbations may be inaccurate beyond k = 56 and
k = 52, respectively.

7. Discussion. Brillouin zones originate with Léon Brillouin’s work on the prop-
agation of electron waves in crystal lattices [7]. This paper addresses fundamental
geometric and combinatorial questions about these zones. The study is interesting
already for the integer lattices, which together with their perturbations are the fo-
cus of this paper. We expect that most of our findings extend to general lattices in
Euclidean space, if not verbatim then in spirit. Some of our results also extend to
broader categories, such as periodic sets and Delone sets; see the comments following
the proofs of the theorems throughout this paper. The reported work opens a number
of questions for future inquiry:

1 Are the bounds proved throughout this paper tight? In particular:

a Can the O(k) bound on the number of chambers of 0 ∈ Z2 proved
in Theorem 5.2 be complemented with an Ω(k) bound for the same
quantity?
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b Can the upper bound on the number of chambers in the k-th Brillouin
zone of 0 ∈ Zd given in Theorem 5.4 be improved to O(kd−1)? Equiva-
lently, does the inversion of Zd through the unit sphere in Rd have only
O(kd−1) k-sets?

c Is the bound on the maximum diameter of a chamber in the k-th Bril-
louin zone of 0 ∈ Zd proved in Theorem 6.3 asymptotically tight? Fig-
ure 9 suggests it is in R2.

2 Recall the notion of distortion of the boundary of the k-th Brillouin zone
introduced in Section 4.3 (see Figure 5). Prove or disprove that the distortion
converges to 4/π, which we note is the universal constant for the distortion of
Voronoi paths in the plane [3, 14].
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Appendix A. Computational Background.
We support our theoretical findings with data that counts and measures Brillouin

zones and their chambers in R2. To generate this data for the integer lattice, we use
a cut-off, m > 0, and construct the arrangement defined by the bisectors of 0 and
all integer points in [−m,m]2 \ {0}, denoted Am. There are about 4m2 lines forming
an arrangement of O(m4) vertices, edges, and chambers. Using a classic incremental
algorithm, Am can be computed in time O(m4) [11, Chapter 7]. We use Am to collect
the data, and for this we need to know how many Brillouin zones in Am are also in
A∞.

Similarly, we collect the data for perturbations of Z2 by constructing the corre-
sponding arrangements of perturbed bisectors. As explained in Section 2.5, we require
that 0 ∈ Z2 is not perturbed, and we call the perturbation weak, medium, and strong
if every integer point, a ∈ Z2, is mapped uniformly at random to ϕ(a) ∈ a+ [−τ, τ ]2,
in which τ = 0.02, 0.10, and 0.50, respectively. Write Am(ϕ) for the arrangement of
bisectors defined by 0 and all ϕ(a) with a ∈ [−m,m]2 \ {0}. Again we need to know
how many Brillouin zones of Am(ϕ) are also in A∞(ϕ).

Lemma A.1 (#Correct Brillouin Zones). Let ϕ : Z2 → R2 be a perturbation of
strength τ . For every k < π

4 [m+ 1−
√

2− (2
√

2 + 1)τ ]2, the k-th Brillouin zone of 0
in Am(ϕ) is also the k-th Brillouin zone of 0 in A∞(ϕ).

Proof. Let b ∈ Z2 \ [−m,m]2 and note that the distance of 0 from the bisector
defined by 0 and ϕ(b) is at least 1

2 [m + 1 − τ ]. The restriction of Am(ϕ) to the
disk with center 0 and radius 1

2 [m+ 1− τ ] is therefore the same as the restriction of
A∞(ϕ) to the disk. By Theorem 3.2, the first k Brillouin zones of 0 for a perturbation
with magnitude

√
2τ are contained in the disk of radius Rk(0) <

√
k/π +

√
2/2 +

√
2τ .

Combining these bounds gives
√
k/π +

√
2/2 +

√
2τ < 1

2 [m + 1 − τ ], and therefore

k < π
4 [m+ 1−

√
2− (2

√
2 + 1)τ ]2 is a sufficient condition for Rk(0) < 1

2 [m+ 1− τ ].

For example, setting m = 9 and τ = 0.02, 0.1, and 0.5, we get k < 56.8, 52.8, and 34.9,
respectively. In words, the data we compute for weak, medium, and strong perturba-
tions are correct up to k = 56, 52, and 34, respectively, and possibly contaminated
by missing bisectors beyond these values of k; see the captions of Figures 2, 4, 5, 7,
and 9.

Two or more lines in R2 are concurrent if they all share a common point. A non-
trivial numerical aspect of the computations is the recognition of concurrent bisectors
as such. This is especially important when we count chambers in the highly degenerate
bisector arrangement defined by the integer lattice. We use rational arithmetic to
recognize concurrency, as we now describe. Let a = (a1, a2) and b = (b1, b2) be two
linearly independent integer points. The bisectors of 0, a and 0, b intersect in the
center of the unique circle that passes through 0, a, b. To compute this point, we solve
the linear system

2a1x1 + 2a2x2 = a21 + a22,(A.1)

2b1x1 + 2b2x2 = b21 + b22.(A.2)

Using Cramer’s rule, we get x1 = ∆1/∆ and x2 = ∆2/∆, in which ∆ = 2a1b2−2b1a2,
∆1 = (a21 + a22)b2 − (b21 + b22)a1, and ∆2 = a1(b21 + b22) − b1(a21 + a22). Assuming
the coordinates are integers of absolute size at most m, we have |∆|, |∆1|, |∆2| ≤
4m3. In this paper, we use m ≤ 9, so each of these integers can be represented by
1 + log2(4m3) ≤ 13 bits.
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To implement a perturbation, we scale up the integer lattice by a factor p =
10000 and randomly pick ϕ(a) from the integer points pa + [−q, q]2, in which q =
200, 1000, 5000 depending on whether we desire a weak, medium, or strong pertur-
bation. This way the coordinates of the perturbed points are still integers so that
concurrent lines can be recognized with rational arithmetic as described above. By
construction, the coordinates of the perturbed point have absolute size at most pm+q.
Accordingly, the relevant determinants satisfy |∆|, |∆1|, |∆2| ≤ 4[pm + q]3. For the
above choices, we have pm+ q ≤ 95000 < 217, so each of them can be represented by
1 + log2(4[pm+ q]3) ≤ 54 bits. This is still well within the limit of a 64-bit computer
word.
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