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A B S T R A C T 

We consider dynamical environments of (486958) Arrokoth, focusing on both their present state and their long-term evolution, 
starting from the KBO’s formation. Both analytical (based on an upgraded Kepler-map formalism) and numerical (based on 

massive simulations and construction of stability diagrams in the 3D setting of the problem) approaches to the problem are 
used. The debris removal is due to either absorption by the KBO or by leaving the Hill sphere; the interplay of these processes 
is considered. The clearing mechanisms are explored, and the debris removal time-scales are estimated. We assess survival 
opportunities for any debris orbiting around Arrokoth. The generic chaotization of Arrokoth’s circumbinary debris disc’s inner 
zone and generic cloudization of the disc’s periphery, which is shown to be essential in the general 3D case, naturally explains 
the current absence of any debris in its vicinities. 

Key words: methods: analytical – methods: numerical – celestial mechanics – Kuiper belt: general – Kuiper belt objects: indi- 
vidual: Arrokoth. 
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 I N T RO D U C T I O N  

he Kuiper belt object (KBO) 2014 MU69, now called (486958)
rrok oth, w as the second (after Pluto) target object for the New
orizons space mission. Even before the flyby, due to especial
bservational campaigns (Parker et al. 2017 ; Stern 2017 ) it was
lassed as a primordial contact binary (CB), presumably a typical
BO. The flyby of New Horizons close to Arrokoth (January 1,
019) showed that, indeed, Arrokoth has a perfect contact-binary
hape (Cheng et al. 2019 ; Protopapa et al. 2019 ; Stern et al. 2019a ,
 ), although its two constituents are somewhat flattened (Stern et al.
019b ). The ratio of the constituents’ masses turned out to be ∼1/3;
his ratio is rather typical for contact-binary cometary nuclei (see
able 1 in Lages, Shevchenko & Rollin 2018b ). 

No satellites, moonlets, fragments, particles, or any other debris
ave been identified to be present in Arrokoth’s vicinities, although
edicated specialized surv e ys were performed from HST and New
orizons (Kammer et al. 2018 ; Gladstone et al. 2019 ; Spencer et al.
019 , 2020 ). The data obtained during the New Horizons mission
Spencer et al. 2020 ) showed that Arrokoth has no moonlets larger
han 300 m in diameter (i.e. ∼1 per cent of Arrokoth’s full size)
hroughout most of its Hill sphere; it was also found that any rings
round Arrokoth, if present, are at least twice or thrice fainter in
orward and backward scattering than Jupiter’s main ring. 

The problem of emergence and survi v al of such kind of low-mass
aterial is important in two major respects. 
First, cosmogonical: such material, if any, can be formed by

jecta from the CB-forming collision (Umurhan et al. 2019 ); it may
 E-mail: i v an.i.she vchenko@gmail.com , i.she vchenko@spbu.ru 
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epresent remnants from a primordial swarm of solids (McKinnon
t al. 2019 ); it may represent ejecta due to early out-gassing (Shao &
u 2000 ; Thomas et al. 2015 ) or due to close encountering with other
BOs (Nesvorn ́y et al. 2018 ). Any scenario of CBs formation in the
uiper belt, apart from explaining the occurrence of such slowly

otating objects, should explain how the remnant debris are cleared
way (Umurhan et al. 2019 ). 

Second, the problem is obviously important for planning any
urvi v able space missions that include close flybys. 

In Rollin, Shevchenko & Lages ( 2021 ), we explored properties of
he long-term dynamics of particles (moonlets, fragments, debris;
ither ordinary-matter or dark-matter) around Arrokoth, as well
s around similar contact-binary objects potentially present in the
uiper belt. This was performed in the planar (2D) setting: it was

ssumed that the motion of particles are planar and take place
n the rotation plane of Arrokoth, i.e. in the plane orthogonal to
he angular momentum vector of Arrokoth. The host dumbbell
otates in this plane. Gravitational perturbations from the Sun,
hich could invalidate the problem’s planarity (because the dumb-
ell’s rotation plane is almost perpendicular to the ecliptic plane,
ee data below), were not taken into account. In Rollin et al.
 2021 ), the chaotic diffusion of particles inside the Hill sphere of
rrokoth (or, generally, a similar object) was studied by means
f construction of appropriate stability diagrams and by applica-
ion of analytical approaches generally based on the Kepler map
heory. 

As it is well known, rotating CBs create zones of dynamical chaos
round them (Lages, Shepelyansky & Shevchenko 2017 ). Any low-
ass material orbiting in this chaotic zone around a rotating dumbbell

annot survive: sooner or later it either escapes from this zone, or fall
n the host CB’s surface (Lages et al. 2018b ); in this way, immediate
© 2023 The Author(s) 
lished by Oxford University Press on behalf of Royal Astronomical Society 
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icinities of any rotating CB are cleared. The chaotic zone formation 
n this case is due to o v erlap of the orbit-spin resonances between
he orbiting particle and the rotating host dumbbell; any low-mass 

aterial injected into the chaotic zone exhibits chaotic diffusion in 
he eccentricity and other orbital elements, and is sooner or later 
emo v ed (Lages et al. 2018b ). 

In fact, various types of non-uniformly shaped objects, including 
ontact-binary ones, were theoretically studied and identified to 
reate zones of orbital instability around themselves (Mysen, Olsen & 

ksnes 2006 ; Lages et al. 2017 ; Madeira et al. 2022 ). Here we use the
ontact-binary model as one straightforwardly rele v ant to the MU69 
ase. 

Here we consider dynamical environments of (486958) Arrokoth, 
ocusing on both their present state and their long-term evolution, 
tarting from the KBO’s formation. By the dynamical environments 
f Arrokoth, we imply the modes of motion of any actual or possible
opulations of passively gravitating particles inside Arrokoth’s Hill 
phere. 

The work presented here is a ‘3D continuation’ of the work by
ollin et al. ( 2021 ): from the planar setting of the problem we
roceed to the 3D one. Both analytical (based on an upgraded 
epler-map formalism) and numerical (based on massive simulations 

nd construction of stability diagrams) approaches to the problem 

re used. We assess survi v al opportunities for any debris inside
rrokoth’s Hill sphere. The debris removal is due to either absorption 
y the KBO or by leaving the Hill sphere; the interplay of these
rocesses is considered. The clearing mechanisms are explored, and 
he debris removal time-scales are estimated in the 3D setting of
he problem, taking into account the actual dynamical parameters of 
rrokoth (in particular, its angular momentum vector orientation in 

pace) and gravitational perturbations from the Sun. 

 T H E  PROBLEM  SETTING  A N D  N U M E R I C A L  

IMULATIONS  

.1 The 2D problem 

n the 2D setting of the problem, explored in Rollin et al. ( 2021 ), the
hosen inertial Cartesian coordinate system has the origin at the CB’s
entre of mass, and the equations of motion of a passively gravitating
article with coordinates x , y are given by 

ẋ = v x , 

ẏ = v y , 

˙ x = − m 2 ( x − x 2 ) (
( y − y 2 ) 2 + ( x − x 2 ) 2 

)3 / 2 −
m 1 ( x − x 1 ) (

( y − y 1 ) 2 + ( x − x 1 ) 2 
)3 / 2 , 

˙ y = − m 2 ( y − y 2 ) (
( y − y 2 ) 2 + ( x − x 2 ) 2 

)3 / 2 −
m 1 ( y − y 1 ) (

( y − y 1 ) 2 + ( x − x 1 ) 2 
)3 / 2 , 

(1) 

here the coordinates x 1 , y 1 and x 2 , y 2 designate the Cartesian
ocations of the mass centres of the CB’s constituents with masses
 1 and m 2 , respectively: 

 1 = μ cos ωt, 

 1 = μ sin ωt, 

 2 = ( μ − 1) cos ωt, 

 2 = ( μ − 1) sin ωt, (2) 

here ω is the CB’s angular rotation frequency in units of the CB’s
ritical rotation rate, corresponding to its centrifugal disintegration. 
ote that, if one sets ω = 1, then the equations are nothing but
he usual equations of motion in the planar circular restricted three-
ody problem. We define the mass parameter μ = m 2 /( m 1 + m 2 ),
here m 2 ≤ m 1 . The distance between the mass centres of m 1 and
 2 is constant and is set to unity, d = 1; this defines the length unit.
e set G( m 1 + m 2 ) = 1, where G is the gravitational constant. The

ritical rotation rate (the angular Keplerian velocity of the binary, 
f it were unbound) is ω 0 = 

[
G( m 1 + m 2 ) /d 3 

]1 / 2 = 1. Note that the
ypical rotation rates ω of KBOs range from one fifth to one ω 0 , i.e.
he rotation periods range from one to five, if expressed in critical
eriods; see KBO light-curve data in Thirouin et al. ( 2014 ). 
In Rollin et al. ( 2021 ), we used the physical and dynamical data for

rrokoth as obtained during the New Horizons flyby (Cheng et al.
019 ; Protopapa et al. 2019 ; Stern et al. 2019a , b ). To describe the
mmediate dynamical environments of Arrokoth, we constructed the 
tability chart, namely, the Lyapunov characteristic exponent (LCE) 
iagram, in the ‘pericentric distance – eccentricity’ plane q –e , on
 fine grid of initial conditions. The diagram is shown in fig. 2 in
ollin et al. ( 2021 ), its most prominent feature is the fractal ‘ragged’
order between the chaotic and regular zones. The ragged border is
ormed by orbit-spin resonances between an orbiting particle and the 
otating Arrokoth. The most prominent bands of chaos are formed 
y the p /1 orbit-spin resonances, corresponding to integer ratios of
he particle’s orbital period and Arrokoth’s rotation period. 

.2 The 3D problem 

n the present work, we generalize the dynamical model and explore
he dynamical environments of Arrokoth in the 3D setting of the
roblem, taking into account the actual 3D dynamical parameters of 
rrokoth (in particular, its angular momentum vector orientation in 

pace) and gravitational perturbations from the Sun. In Fig. 1 , the
bject scheme and the adopted coordinate system are graphically 
resented. 
To describe the dynamical environments of Arrokoth, we construct 

tability charts in the q –ω (pericentric distance–angular velocity) 
lane of initial conditions, now in the 3D setting. We choose an
nertial Cartesian coordinate system with the origin at the Arrokoth’s 

ass centre. In addition to the gravitational effect of Arrokoth, 
e take into account perturbations from the distant Sun. The 
ravitational potential of Arrokoth is considered as a potential of 
wo mass points, the distance between which is constant in time.
he z-axis of the coordinate system coincides with the spin axis of
rrokoth. The x and y axes complete the ( x , y , z) set to an orthogonal
ne; see Fig. 1 . 
In the general 3D setting, the equations of motion of a passively

ravitating particle with radius-vector r and velocity v are given by 

ṙ = v , (3) 

˙
 = −G m 1 

r − r 1 
| r − r 1 | 3 − G m 2 

r − r 2 
| r − r 2 | 3 + A pert , 

here 

 pert = −G m �
r − r �

| r − r �| 3 − G m �
r �

| r �| 3 (4) 

s the Solar perturbation; r 1 , r 2 , and r � are the radius-vectors of
rrokoth’s first and second lobes and the Sun, respectively; m 1 , m 2 ,

nd m � are their masses. 
We assume that the gravitational influence of the Sun on the spin

xis orientation and the rotation rate ω of Arrokoth is negligible. The
MNRAS 520, 4324–4335 (2023) 
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M

Figure 1. The object scheme and the adopted Arrokoth-centred coordinate system. The axis z (shown in green) of the coordinate system coincides with 
Arrokoth’s rotation axis. The x and y axes are in red and blue, respectively. Arrokoth’s heliocentric orbit and orbital plane are in white and grey , respectively . 
The sizes (diameters) of the lobes are ≈20 and ≈14 km, and the mean distance from the Sun is ≈45 au. 
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ocations of the centres of Arrokoth’s two lobes are given by 

 1 = ( r 1 cos ω t, r 1 sin ω t, 0) , 

 2 = ( r 2 sin ω t, r 2 cos ω t, 0) , (5) 

here r 1 and r 2 are the distances from the CB’s mass centre to the
ass centres of its lobes. 
For a host dumbbell, consisting of two round lobes, as Arrokoth is,

he dynamical model given by equations ( 3 )–( 5 ) is obviously suitable.
n vicinities close to the object’s surface, the irregularities of the latter
ay affect the orbiting particles, especially their accretion onto the

bject’s surface. Ho we v er, note that an y particles with the orbital
ericentric distance q � 2 d (where d is the CB’s size) are absorbed
y Arrokoth almost immediately (Rollin et al. 2021 ). 
Equations ( 3 )–( 5 ) were integrated by the 15th order Everhart

nte grator Ev erhart ( 1985 ). The local relative error tolerance was
et to 10 −15 . 

In view of the general scenarios of formation of CB KBOs
McKinnon et al. 2019 ; Umurhan et al. 2019 ), we assume, as in
ollin et al. ( 2021 ), that the post-formation phase of Arrokoth’s
volution starts with the particles initially residing in a disc-like
tructure formed around the merged CB. In case of Arrokoth, the
ircumbinary chaotic zone in the disc may extend up to radii � 6 d
Rollin et al. 2021 ). We sampled 400 angular velocity values from
.01 to 15.78 rad per day; this corresponds to periods from 628.32 d
o 9 hr 13 min. The pericentric distances were sampled from 19 to
30 km with a step of 0.2 km. The parameters of Arrokoth were set
s following: 

(i) The ‘dumbbell size’ of Arrokoth (the distance between the
ass centres of its two lobes): d = 16.1 km. Radii of the components

re R 1 = 10 km and R 2 = 7 km; see fig. 1 in Cheng et al. ( 2019 ). The
otation period of the dumbbell is 15.9 h (Keane et al. 2022 ). 

(ii) The masses (assuming the density value ρ = 0.5 g cm 

−3 ,
ypical for cometary nuclei; see Thomas et al. 2013 ; Jorda et al.
016 ) of the lobes are m 1 = 1.70 · 10 18 g and m 2 = 6.67 · 10 17 g
NRAS 520, 4324–4335 (2023) 
equal to 8.55 · 10 −16 and 3.35 · 10 −16 in the Solar mass units);
herefore, the mass parameter μA = m 2 /( m 1 + m 2 ) ≈ 0.282. 

(iii) The Arrokoth’s orbit around the Sun is considered, for our
urposes, as circular, as its eccentricity is small ( e A = 0.044); for
he semimajor axis value, we set a A = 44.67 au (JPL data base,
hamberlin et al. 2022 ); therefore, the period of motion around the
un is 298.6 yr. 
(iv) The Arrokoth’s obliquity (the angle between the spin axis

f Arrokoth and the normal to its orbital plane) is set to 99.3 ◦, in
ccordance with data in Porter et al. ( 2019 ). 

(v) The initial eccentricity of the disc particles is set to zero. The
articles start orbiting in the Arrokoth’s rotation plane. 
(vi) The computing maximum time is set to 1000 yr, co v ering
3.3 Arrokoth’s revolutions around the Sun. 

The particle’s orbit is integrated until the computing maximum
ime is reached or until the particle collides with the asteroid or
eaves Arrokoth’s Hill sphere, whose radius is ≈50 000 km, equal to

7.5 · 10 −6 in units of the radius of Arrokoth’s orbit around the Sun.
The adopted here maximum computing time (1000 yr) is by far

ufficient for our current purposes, because the total clearing of the
ircumbinary chaotic zone takes place on much shorter (by orders of
agnitude) time-scales, as we find out further on. What is more, the

ypical orbital periods of particles inside the chaotic zone ( ∼hours
r days) are also by far shorter. 
Concerning Arrokoth’s orbital eccentricity, it is very small ( e ≈

.04) therefore we do not e xpect an y visible change in the integration
esults if the eccentricity is taken into account. Further on, we discuss
his issue in more detail. 

In the resulting diagrams in Figs 2 , we represent graphically
he extents of the circum-CB chaotic zone, as determined in our
omputations, with the Solar perturbations not taken into account
Fig. 2 a) and taken into account (Fig. 2 b). 

The diagrams are defined in the ‘particle’s initial pericentric
istance – CB rotation rate’ ( q –ω) frame. In the diagrams, blue colour
eans that the particle collides with the CB’s surface, red colour

art/stad289_f1.eps
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(a) (b)

Figure 2. The stability diagrams. (a) Solar perturbations are not taken into account; (b) Solar perturbations are taken into account. Blue domain: particles 
colliding with the host CB surface; red domain: particles escaping the CB’s Hill sphere; white domain: none of these events taking place in the course of the 
maximum time interval (1000 yr) of integration. Black solid curves: the locations of several orbit-spin resonances of the orbiting particle with the rotating CB. 
The dashed vertical line corresponds to the Arrokoth’s current rotation rate, as determined by Porter et al. ( 2019 ). 

(a) (b) (c)

Figure 3. (a) The cumulative distribution for the survival time of particles, in the cases without (blue) and with (yellow) Solar perturbations taken into account. 
(b) The time to collide or escape as a function of the CB’s angular velocity (rotation rate) and initial perihelion distance. The dashed vertical line marks the 
Arrokoth’s current angular rotation rate, as determined by Porter et al. ( 2019 ). (c) The survi v al time difference between the cases with and without the Sun. 
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eans that it escapes the CB’s Hill sphere, and white colour that
one of such events have happened during the maximum (1000 yr)
nterval of integration. Comparing the diagrams in Figs 2 (a) and (b),
ne finds that in the both considered cases (without and with Solar
erturbations) the results are almost identical: the chaos borders are 
lmost the same. 

In Fig. 3 (a), the cumulative distribution is shown for the time
equired for a particle to collide with Arrokoth or escape Arrokoth’s
ill sphere. One finds that almost all of the particles collide or

scape in 100 yr. A half of the particles has lifetime less than 50 d.
o significant differences in results are observed between the two 

onsidered cases (with or without the Solar perturbations taken into 
ccount). In Fig. 3 (b), the time needed for a particle to collide with
rrokoth or escape Arrokoth’s Hill sphere as a function of Arrokoth’s

nitial perihelion distance and rotation rate is presented. Since there 
re no significant differences, we present solely the case with the 
olar perturbations taken into account. Fig. 3 (c) shows the difference 

n lifetime between the cases with and without the Sun. One may
ee that the difference is typically much less than the lifetime values
hemselves (note that the latter are especially large in the upper-left 
orner of the diagram). Ho we ver, this inference concerns Arrokoth’s
lose vicinities co v ered by the diagram. For much larger orbits, the
olar perturbations become dominant, as discussed further on. 
For Arrokoth’s current rotational period, the particles that are 

loser in orbital radius to Arrokoth’s mass centre than 32 km are
 t
bserved to collide with Arrokoth in several days. This is in accord
ith results by Amarante & Winter ( 2022 ). The particles that mo v e

nitially farther in orbital radius, may collide or escape only if they
ollow orbits close to orbit-spin resonances (resonances between 
article’s orbital period and Arrokoth’s rotation period); therefore, 
he survi v al time can generally be much greater. 

 DISPERSAL  O F  MATTER  A RO U N D  

R R  O K  OTH  

he dif fusion coef ficient is as usual defined as the mean-square
pread in a selected variable (say, energy E ), per time unit: 

 ≡ lim 

t→∞ 

〈 ( E( t) − E 0 ) 2 〉 
t 

, (6) 

here t is time, and the angular brackets denote averaging over a set
f starting values of E ; see Meiss ( 1992 ). 
As determined in the 2D problem setting (Rollin et al. 2021 ),

or a CB like Arrokoth (with the mass ratio μ ∼ 0.1–0.3), the
haracteristic time-scale of the diffusion ( ∼1/ D ) in the immediate
ircumbinary chaotic zone can be as small as ∼10 times CB’s
otation period. This means that the clearing of the chaotic zone
s essentially instantaneous. Although this estimate of the transport 
ime was performed in the diffusional approximation, its smallness 
MNRAS 520, 4324–4335 (2023) 

art/stad289_f2.eps
art/stad289_f3.eps


4328 I. I. She vc henko et al. 

M

m  

e
 

i  

t  

s  

e

�

w  

p

W

W

a

∼  

t  

c  

(  

t  

H  

d  

f

4
T

A  

m  

∼  

f  

s
 

m  

t

R

w  

s  

m  

i  

e
 

w  

a  

m  

a
1

 

e  

s  

h  

1

F

f  

d  

t  

T  

a  

c  

s
 

a  

(  

i  

c  

p  

T  

1  

t  

S  

A  

w  

o  

o  

a
 

S  

(  

b  

g  

b  

e
 

f  

t  

t

a

w  

(  

b  

t
 

o  

m  

I  

i
0  

m

a

w  

m  

s  

t  

a  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/520/3/4324/7008525 by guest on 30 June 2024
eans that, in fact, the transport is not diffusional, but ballistic (Rollin
t al. 2021 ). 

In Rollin et al. ( 2021 ), the ballistic transport character was shown
ndependently by calculating the amplitude of the kick function for
he generalized Kepler map; on the generalized Kepler map theory
ee Lages et al. ( 2017 ), Lages et al. ( 2018b ). The kick function in the
nergy E is given by 

E ( μ, q, ω, φ) � W 1 ( μ, q, ω ) sin ( φ) + W 2 ( μ, q, ω ) sin ( 2 φ) , (7) 

here φ is the CB’s phase angle when the orbiting particle is at
ericenter, and 

 1 ( μ, q, ω) � μν( ν − μ)2 1 / 4 π1 / 2 ω 

5 / 2 q −1 / 4 exp 

(
−2 3 / 2 

3 
ωq 3 / 2 

)
, 

(8) 

 2 ( μ, q, ω) � −μν2 15 / 4 π1 / 2 ω 

5 / 2 q 3 / 4 exp 

(
−2 5 / 2 

3 
ωq 3 / 2 

)
; (9) 

nd, by definition, ν = 1 − μ. 
One may see that, at μ ∼ 1/3, ω ∼ 1 and q ∼2–3 one has W 1 ∼ W 2 

1. Therefore, the single-kick energy variation is ∼1; this means
hat, indeed, any orbiting particle that is initially placed in the CB’s
haotic zone can be ejected from this zone in a few orbital revolutions
Rollin et al. 2021 ). This conclusion, obtained in the 2D setting of
he problem, is not expected to be subject to change in the 3D setting.
o we ver, the statistical behaviour of particles in the removal time
istribution tail can be different. We explore this possibility in the
ollowing Sections. 

 C L O U D I Z AT I O N  O F  LOW-MASS  MATTER  IN  

H E  O U T E R  O R B I TA L  Z O N E  

ccording to Rollin et al. ( 2021 ), the originally formed low-mass
atter cocoon inside Arrokoth’s Hill sphere could have suffered
10–100 dispersal events since Arrokoth’s formation epoch; there-

ore, one may expect that Arrokoth’s Hill sphere (as well as Hill
pheres of similar KBOs) nowadays is empty. 

Recall that the radius R H of the secondary body’s (say with mass
 A ) Hill sphere, in units of semimajor axis of the body’s orbit around

he primary mass m 0 , is 

 H = 

(μ

3 

)1 / 3 
, (10) 

here μ = m A /( m 0 + m A ), as usual, is the mass parameter of the
ystem (here, the Sun–Arrokoth one). The orbit of Arrokoth’s any
oonlet should lie within Arrokoth’s Hill sphere. This implies the

nequality a (1 + e ) � R H , for the semimajor axis a and eccentricity
 of the moonlet. 

Given the ‘dumbbell size’ of Arrokoth d = 16 km, it is straightfor-
ard to estimate (Rollin et al. 2021 ) that the chaotic clearing zone

round Arrokoth may have radius of at most ∼100 km, 1 an order of
agnitude less than the New Horizons flyby distance ( ∼3500 km),

nd three orders of magnitude less than Arrokoth’s Hill radius ( ∼5 ·
0 4 km). 
Ho w the lo w-mass matter cocoon inside the Hill sphere may

merge? As revealed in Tremaine ( 1993 ), in any star’s planetary
ystem, there exists a critical semimajor axis at which the chaotic
ighly-eccentric motion inside the host star’s Hill sphere transforms
NRAS 520, 4324–4335 (2023) 

 Note that the ∼100 km limit is in accord with the stability diagrams in 
igs 2 (a) and (b). 

2

b
i

rom the diffusion in energy at approximately constant q to the
iffusion in angular momentum at constant energy. This transition
akes place where the torque from the Galactic tide starts to dominate.
he freezing in energy (equi v alently, in semimajor axis) forms
n ef fecti ve barrier for the escape process; thus it is a necessary
onstituent for the formation of a cocoon of matter inside the Hill
phere. 

In the dynamical environments of a contact-binary KBO, quite
nalogously, the critical radius, at which the diffusion in energy
with the pericentric distance q constant) is stopped and the diffusion
n angular momentum (with the semimajor axis a constant) starts,
an be estimated by equating the frequency of circumbinary orbital
recession to the frequency of the Lidov–Kozai (LK) oscillations.
he latter arise due to perturbations from a distant perturber (Lidov
961 , 1962 ; Kozai 1962 ), the Sun in our case. The criteria for
he Lidov–Kozai effect suppression are described in (section 3.3
hevchenko 2017 ). Note that, at the edge of escape of a particle from
rrokoth’s Hill sphere, its orbital period around Arrokoth is ∼500 yr,
hich is greater (by a factor of two) than Arrokoth’s heliocentric
rbital period (which is ≈300 yr), and is much greater (by five orders
f magnitude) than Arrokoth’s rotation period (which is ≈16 h); thus
llowing one to use averaged equations of motion. 

Consider a close binary orbiting the main central mass m 0 (the
un in our case, m 0 = m �). Thus, we have the primary binary
the Sun–Arrokoth in our case) and the secondary very compact
inary (Arrok oth’s tw o lobes) with masses m 1 > m 2 ; see Fig. 1 for a
eneral scheme. The semimajor axes of the primary and secondary
inaries are designated henceforth a 1 and a 2 , respectively; and their
ccentricities are e 1 and e 2 . 

Michaely, Perets & Grishin ( 2017 ) derived the following formula
or estimating the critical semimajor axis value a crit (below which
he Lidov–Kozai effect is suppressed) for a particle orbiting around
he secondary binary in such an orbital system: 

 crit = 

[ 

3 m 1 m 2 

(
1 − e 2 1 

)3 / 2 

8 m 0 ( m 1 + m 2 )(1 − e 2 ) 2 
| 5 cos 2 i − 1 | 

] 1 / 5 (
a 3 1 a 

2 
2 

)1 / 5 
, 

(11) 

here e and i are the eccentricity and inclination of the particle’s orbit
here the inclination is referred to the orbital plane of the secondary
inary), all other quantities are defined as just abo v e, and e 2 among
hem is set to zero. 

For the Sun–Arrokoth system, one has a 1  a 2 by many orders
f magnitude, whereas the mass of Arrokoth is by many orders of
agnitude smaller than the mass of the Sun, m A = m 1 + m 2 � m 0 .

n our case, the secondary binary is contact therefore it is circular,
.e. e 2 = 0, as already set abo v e. 2 F or a system with e 1 ≈ 0 and i ≈
 

◦ (as the ‘Sun–Arrokoth–disc particle’ initial configuration is) one
ay render formula ( 11 ) in the form 

 crit ≈
[

3 μ1 μ2 a 
3 
1 a 

2 
2 

2(1 − e 2 ) 2 

]1 / 5 

, (12) 

here μ1 = m A /( m 0 + m A ) = m A / m 0 and μ2 = m 2 /( m 1 + m 2 ) =
 2 / m A are, respectively, the mass parameters of the primary and

econdary binaries in our system; m 0 , m 1 , and m 2 are, respectively,
he masses of the Sun and Arrokoth’s lobes ( m 1 > m 2 ); a 1 and
 2 are, respectively, Arrokoth’s orbital semimajor axis (of the orbit
 Besides, we assume that the rotation rate of the contact binary is critical, 
eing equal to the orbital velocity of the lobes around Arrokoth’s mass centre, 
f they were physically unbound. 
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Figure 4. Orbital inclination of a particle as a function of time at various initial orbital semimajor axes. Initially the particle is placed in a circular orbit in the 
plane orthogonal to Arrokoth’s spin axis. 
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round the Sun) and Arrokoth’s dumbbell size; e 1 = 0.04 � 0 is the
ccentricity of Arrokoth’s orbit around the Sun. 

The obliquity of the secondary binary’s orbital plane (the dumb- 
ell’s rotation plane, in the given case) with respect to the primary
inary’s orbit is assumed to be high enough, so that the Lidov–
ozai effect for particles orbiting around Arrokoth in the plane of its

otation is potentially present (at a > a crit ). Note that the obliquity of
rrokoth’s rotation plane is indeed high, ∼99 ◦ (Porter et al. 2019 ),

s needed. 
For the necessary quantities to substitute in equation ( 12 ), one has:

1 ≈ 1.19 · 10 −15 , μ2 ≈ 0.28, a 1 = 44.54 au ≈ 6.68 · 10 14 cm, a 2 = d
1.6 · 10 6 cm, and we formally set e = 0. Substituting the values of

ll these quantities in equation ( 12 ), one finds a crit � 2100 km. Due
o the specific dependence of a crit on e , the a crit value is by the order
f magnitude the same for circular and eccentric orbits, even at large
 values. As soon as R H � 10 5 km, we find that a crit � R H . 

One may thus be confident that the particles’ random walk in
nergy is ef fecti vely frozen already deep inside the Hill sphere, and
he low-mass matter cocoon may indeed be formed by particles 
eaving the circumbinary chaotic zone, as well as by any low-mass
aterial initially residing in regular orbits in the outer parts of the

ircumbinary disc. 
Such material can be ef fecti v ely ‘cloudized,’ i.e. conv erted from

he planar disc to a non-planar, approximately spherically-symmetric 
loud. Indeed, at a > a crit , the Lidov–Kozai effect is not sup-
ressed; therefore, the highly-eccentric particles may suffer the LK- 
scillations in their eccentricity and inclination. Let us approximately 
stimate the cloudization time-scale. 
MNRAS 520, 4324–4335 (2023) 
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Figure 5. The same as Fig. 4 , but for eccentricity. 
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As abo v e, we assume the CB to mo v e in a circular ( e 1 = 0) orbit
f radius a 1 around the Sun. For the Keplerian orbital elements of a
article orbiting around the CB (in the plane of its rotation) we take,
s usual, the semimajor axis, eccentricity, inclination, argument of
ericenter, longitude of ascending node, and mean anomaly, denoted
y a , e , i , ω, �, and M , respectively. 
In any two-body problem, the Delaunay variables are defined as

see, e.g. Morbidelli 2002 ; Shevchenko 2017 ) 

L = 

[
G( m 

′ + m 

′′ ) a 
]1 / 2 

, l = M, 

G = L (1 − e 2 ) 1 / 2 , g = ω, 

 = G cos i, h = �, (13) 

here m 

′ and m 

′′ are the two masses, and G is the gravitational
onstant. The variables L and l , G and g , H and h form three pairs
NRAS 520, 4324–4335 (2023) 
f conjugate canonical variables. L is a function of the semimajor
xis solely, and thus can be expressed through the orbital energy;
 is the absolute value of the reduced (per unit of mass) angular
omentum, and H is the reduced angular momentum v ector’s v ertical

omponent. Therefore, G is the specific angular momentum, and its
ime deri v ati ve Ġ is the torque (per unit of mass). 

In the presence of a perturbing third body in an outer orbit, the
quation for the Lidov–Kozai evolution of the angular momentum G
f the inner binary is given by 

˙
 = −15 Gm pert a 

2 

8 a 3 pert 
e 2 sin 2 i sin 2 ω (14) 

equation 3.26 Shevchenko 2017 ), where m pert is the mass of the
erturber. In our problem, the perturber is the Sun, therefore, m pert =
 0 , a pert = a 1 . Here Arrokoth is considered as a single gravitating

art/stad289_f5.eps
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Figure 6. The same as Fig. 4 , but for semimajor axis. The semimajor axis excursions to negati ve v alues take place when the orbit becomes hyperbolic, and the 
particle escapes. 
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oint (because the particle’s orbit is assumed to be large enough), and
he particle’s orbital inclination is referred to the primary binary’s 
rbital plane. 
At present, Arrokoth’s rotation plane is inclined by ≈99 ◦ with 

espect to the ecliptic plane (Porter et al. 2019 ), i.e. the obliquity is
xtremal. Therefore, we set sin i � 1 here. Also setting e � 1 (since
ur particles are highly eccentric) and substituting | sin 2 ω| by its
v eraged (o v er an ensemble of particles) value 2/ π, we obtain 

〈 ̇G 〉| = 

15 Gm pert a 
2 

4 πa 3 pert 
. (15) 

et us define the characteristic time-scale for the Lidov–Kozai 
volution as the time needed for G to change by of order of itself.
his is just the characteristic time needed to convert the initial ring
with radius a ) of particles to a spherical cloud, i.e. to make the initial
lanar distribution 3D-isotropic; we designate this time T 3D . 
For a highly-eccentric passively gravitating particle, the reduced 

ngular momentum is given by 

 = 

[
Gm CB a 

(
1 − e 2 

)]1 / 2 � (2 Gm CB q) 1 / 2 (16) 

see equations 13 ), where m CB is the CB’s mass (the mass of
rrokoth, in our case), and a , e , q are the test particle’s semimajor

xis, eccentricity, and pericentric distance, respectively. Equating 
〈 ̇G 〉| � G/T 3D , one obtains 

 3D � 

2 5 / 2 π

15 

m 

1 / 2 
CB a 

3 
pert 

G 

1 / 2 m pert 

q 1 / 2 

a 2 
. (17) 
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Figure 7. The same as Fig. 4 , but for pericentric distance. 
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ubstituting m CB = m Arrokoth � 2.37 · 10 18 g, m pert = m 0 = 1.989 ·
0 33 g, a pert = a 1 = 44.54 au ≈ 6.68 · 10 14 cm, q = (2–5) d Arrokoth =
3.2–8.0) · 10 6 cm, a = R H ∼ 10 10 cm, one has: T 3D ∼ 0.6–0.9 yr. 

Given that, for a particle orbiting around Arrokoth with the
emimajor axis a ∼ R H ∼ 10 5 km, the orbital period is ∼500 yr,
e see that the conversion process of the periphery of the initial disc
f particles to a spherical cloud, if assessed in the orbital time-scale,
hould be relatively rapid. In what concerns the disc’s inner zone,
ost of the particles escape or are absorbed by Arrokoth in just a

e w re volutions around the CB. 
In Fig. 4 , the evolution of the orbital inclination of particles with

ime is illustrated, as observed in our numerical experiments. The
articles were set to initially have circular orbits with v arious v alues
f the radius, in the plane orthogonal to the spin axis of Arrokoth. In
he figure, the curves of different colours (blue, orange, and green)
orrespond to three different initial values of the semimajor axis;
NRAS 520, 4324–4335 (2023) 
hese values are indicated at each panel. The integration of motion
s performed in the same way as described in Section 2 , but with
he time limit of 250 000 yr; the CB’s rotation rate is set equal to
he current one. The integrated orbits demonstrate that the particles
ith semimajor axes greater than 16 000 km do not survive on times
reater than 50 000 yr. The particles with smaller semimajor axes are
ostly long-lived. 
In Figs 5 –8 , we present, for completeness of the dynamical

icture, the concurrent time evolution of several other than inclination
mportant orbital elements: eccentricity, semimajor axis, pericentric
nd apocentric distances. As in Fig. 4 , the curves of different colours
blue, orange, and green) correspond to three different initial values
f the semimajor axis. 
From Figs 4 –8 , it follows that the numerically observed time-

cales of cloudization of the outer orbital zone are in accord with our
heoretical estimates based on consideration of Solar perturbations,

art/stad289_f7.eps
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Figure 8. The same as Fig. 4 , but for apocentric distance. 
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s provided by equations ( 17 ); indeed, the orbital inclinations, in the
uter zone, rise macroscopically already on the scale of Arrokoth’s 
eriod of motion around the Sun. 
In Figs 4 –5 and 7 –8 , the Lidov–Kozai oscillations are readily

ecognizable, especially clearly in the middle panels of these plots. 
hat is more, as one may deduce from the first (top left-hand) panels,

he Lidov–Kozai effect is indeed suppressed at the orbital radii less
han ∼2000 km, in accord with our prediction made abo v e using
quation ( 12 ): no definite LK-oscillations emerge if a 0 is smaller
han ∼2000 km. 

According to (section 3.2.2 Shevchenko 2017 ), the quantity 

 1 = (1 − e 2 ) cos 2 i = const , (18) 

s conserved during the Lidov–Kozai oscillations, i.e. the vertical 
omponent of the angular momentum squared is constant. This 
elation implies that, if 0 ≤ i ≤ π/2, then the secular variations 
f e and i are coupled in antiphase; whereas, if π/2 ≤ i ≤ π, then
he variations of e and i are coupled in phase. The eccentricity is

aximum at i = 0, and the inclination is maximum at e = 0.
f the initial inclination i 0 is greater than a critical value ( ∼40 ◦;
ee Shevchenko 2017 for review and details), then the maximum 

ccentricity value is essentially insensitive to the value of e 0 (if e 0 �
.1) and can be estimated by means of the formula 

 max ≈
(

1 − 5 

3 
cos 2 i 0 

)1 / 2 

(19) 

Holman, Touma & Tremaine 1997 ; Innanen et al. 1997 ). 
In the Lidov–Kozai theory, the time-averaged semimajor axis is 

onstant with time. As one may see in Fig. 6 , the semimajor axis
s indeed approximately conserved on long intervals of time, but 
ometimes it exhibits small jumps. The cause of these fluctuations 
s as follows. According to equation ( 19 ), if the initial i 0 ∼ 90 ◦ (as
MNRAS 520, 4324–4335 (2023) 

art/stad289_f8.eps


4334 I. I. She vc henko et al. 

M

Figure 9. Two snapshots (at time moments t = 0 and 5470 yr) of the particles’ cloud 3D evolution around Arrokoth. The initial (at t = 0) ring of the particles 
lies in the plane almost orthogonal (inclination 99 ◦) to Arrokoth’s spin axis. The mass parameter μ = 0.28. The blue arrows give the direction to the Sun during 
the simulation. The complete animation of the evolution can be found at ht tps://search-dat a.ubfc.fr/FR- 13002091000019- 2022- 08- 05 Dynamical- environment 
s- of- Arrokoth- prior.html . 
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n the given case) in the course of LK-oscillations the eccentricity
aries almost in the whole interval from zero to unity; this means
hat the pericentric distance periodically goes down to almost zero,
nd thus, from time to time, the particle approaches the central
otating dumbbell and receives, in accord with the Kepler map
heory (Shevchenko 2011 ; Lages et al. 2017 ; Lages, Shepelyansky &
hevchenko 2018a ), a kick in energy, which depends on the approach
istance and the dumbbell’s orientation when the particle is at
ts orbital pericenter. The energy kick affects the semimajor axis;
herefore, the character of the following LK-oscillations is modified,
ut is being sustained until the next close approach to the CB takes
lace. 
The fact that, in the course of the LK-oscillations, the eccentricity

aries here almost in the whole interval from zero to unity means
hat the particle periodically approaches the parabolic separatrix (the
order between the elliptic and hyperbolic types of motion) and thus,
ue to perturbations, may easily become unbound. This explains the
bserved (in Figs 4 –8 ) rapid removal of the low-mass matter from
he disc at the radii � 2000 km, where the LK-oscillations are not
uppressed. 

On the other hand, as we have found out in Section 3 , at radii
 100 km the disc is rapidly cleared because, if close enough to

he rotating dumbbell, the motion is chaotic. Therefore, solely the
aterial that has initial orbital radii in the interval from ∼100 to
 2000 km may survive. 
At the LK-resonance centre, for a massless particle with orbital

eriod P orb and semimajor axis a (all other notations are as adopted
bo v e) the period of LK-oscillations can be rendered in the form 

 LK ≈ P orb 
m A 

m 0 

(a 1 

a 

)3 (
1 − e 2 1 

)3 / 2 
(20) 

Mazeh & Shaham 1979 ; Holman et al. 1997 ; Shevchenko 2017 ).
he periods of patterns in Figs 4 –5 and 7 –8 are in accord with
quation ( 20 ). E.g. according to Fig. 5 , the quasiperiodic eccentricity
ariations, where they can be effectively identified, have the time
eriods of ∼10 000 yr (at a 0 = 4000, 6000, and 8000 km) and
1000 yr (at a 0 = 21 500, 22 000, and 24 000 km), and the same

pproximate values are respectively produced by equation ( 20 ), as
ne may straightforwardly verify. 
NRAS 520, 4324–4335 (2023) 
How principal is the circular approximation for Arrokoth’s orbit
round the Sun? Setting e 1 = 0.044 (for Arrokoth’s actual elliptic
rbit), instead of e 1 = 0 in equation ( 20 ), results in a difference in
 LK of only ∼0.2 per cent; therefore, taking into account Arrokoth’s
ccentricity is of no importance for our estimates, which are made
y the order of magnitude. Besides, the smallness of this difference
hows that the eccentricity is as well essentially unimportant in
umerical integrations (of the kind presented in previous Sections)
hen one is interested in the general dynamics character. 
As a graphical illustration of the ‘cloudization’ phenomenon, an

ttached animation 3 and its two snapshots (Fig. 9 ) demonstrates how
n initial planar ring of particles evolves, in the course of time, into
 comple x 3D aggre gate, arising due to Solar perturbations. In this
imulation, 1000 particles were initially placed in circular orbits with
nitial radii ranging from r min = 20 000 km to r max = 23 000 km. The
imulation was performed o v er 10 000 yr; this is a typical time range
s used abo v e to construct Figs 4 –8 . 

Fig. 9 , right-hand panel, exhibits the evolved 3D aggregate as
ormed to the moment t = 5470 yr (chosen here as a representative
ne); the left-hand panel demonstrates the initial particle distribution.
he evolved semimajor axes a of the particles’ orbits are mostly
istributed in the range 20 000–26 000 km; ho we ver, in the course
f evolution, some particles achieved a > R H and escaped (and
ere therefore remo v ed from the computation) in agreement with
igs 4 –8 . Furthermore, the eccentricity distribution rapidly becomes
niform, whereas the inclination distribution shows broad peaks
hose number and locations vary with time. Analysis of these

omplex spatial structures will be conducted elsewhere in further
tudies. 

 C O N C L U S I O N S  

n this article, we have considered dynamical environments of
486958) Arrokoth, focusing on both their present state and their
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ong-term evolution, starting from the epoch of formation of the 
bject. 
Both analytical (based on an upgraded Kepler-map formalism) 

nd numerical (based on massive simulations and construction of 
tability diagrams) approaches to the problem have been used. 

Our main conclusions are as following. 

(i) In the 3D setting, the clearing process of the chaotic circumbi- 
ary zone is practically instantaneous, as it is in the planar case
explored in Rollin et al. 2021 ). 

(ii) In the inner orbital zone (closer than 130 km to Arrokoth) most
f the particles (more than ≈60 per cent) that collide with Arrokoth
r escape its Hill sphere do it in ∼50 d. For Arrokoth with its current
otation rate, the particles with initial orbital radius less than 32 km
ollide with Arrokoth in several days. For more distant ones, this
akes up to ∼10–100 yr. 

(iii) The numerically observed time-scales of cloudization of the 
uter orbital zone are in accord with theoretical estimates, based on 
onsideration of Solar perturbations, as demonstrated and discussed 
bo v e in Section 4 . 

(iv) In the outer orbital zone, the particles that are initially 
arther than ∼18 000 km from Arrokoth cannot survive due to Solar
erturbations. The particles that are initially farther from Arrokoth 
han ∼100 km and closer than ∼18 000 km are mostly stable. 

(v) The generic chaotization of Arrokoth’s circumbinary debris 
isc’s inner zone and generic cloudization of the disc’s periphery, 
howed by us to be essential in the general 3D case, naturally explains
he current absence of any debris in its vicinities. 
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