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Quasi-limiting behaviour of the sub-critical Multitype
Bisexual Galton-Watson Branching Process

Coralie Fritsch!, Denis Villemonais!? and Nicolds Zalduendo?®

September 5, 2024

Abstract

We investigate the quasi-limiting behavior of bisexual subcritical Galton-Watson branch-
ing processes. While classical subcritical Galton-Watson processes have been extensively
analyzed, bisexual Galton-Watson branching processes present unique difficulties because
of the lack of the branching property. To prove the existence of and convergence to one or
several quasi-stationary distributions, we leverage on recent developments linking bisex-
ual Galton-Watson branching processes extinction to the eigenvalue of a concave operator.

1 Introduction

We study the quasi-limiting behaviour of bisexual subcritical Galton-Watson branching pro-
cesses (bGWbp). This problem has been studied and largely solved decades ago for classi-
cal sub-critical Galton-Watson processes (see e.g. [2, 2, ?]), but remains open for its bisexual
counterpart. Recent developments in the theory of multi-dimensional bGWbp [?] show that,
under appropriate super-additivity assumptions, the extinction of these processes can be char-
acterised by the eigenvalue 1* associated to a positively homogeneous concave operator and,
more precisely, by its position relatively to 1: if A* < 1, then the process is eventually extinct
almost surely, while, if 1* > 1, then, with positive probability, the process grows exponen-
tially fast with rate equal or close to A*. We refer the reader to the surveys [?, 2, 2] on bGWbp
and [2, 2, 2, 2, ?] for further references. In this paper, we consider the sub-critical case 1* < 1
and show that the process admits infinitely many quasi-stationary distributions. Under an ad-
ditional polynomial moment assumption, we prove that the process admits a finitely generated
family of quasi-stationary distributions and, under an additional irreducibility assumption, a
unique quasi-limiting distribution for compactly supported initial distributions. Although this
is similar to the classical Galton-Watson case, A* is not in general equal to the exponential sur-
vival rate of the process.

Let us introduce more formally our settings and assumptions. Consider p,g e N=1{0,1,2,...}
with p, g = 1, a non-negative vector function ¢ : N9 — NP such that £(0) = 0, and a family of in-
tegrable random vectors V = (V; )1<;<p, taking value in N and whose expectation is denoted
by V. We assume that Zl.q:l V;j>0forall j€{l,...,q}. We consider a process Z = (Z;) nen OD
N” which represents the random sequence of the number of couples of each type in the pop-
ulation, and which evolves as follows: given Z,_1 = (Z,-1,1,..., Zn-1,p), we define for n > 1 the
vector of children of the n—th generation (Wy1,..., Wy 4) by

p Zn-,i

k, .
Wn,jZZi kz Vl.(yjn),fOIIS]Sq,
i=1 k=1
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where (V&) is a family of i.i.d. copies of V. Then, we set the vector of couples in the
n—th generation as
Zp= (Zn,l;---»Zn,p) = E(Wn,l;---»Wn,q)-

The function ¢ is referred to as the mating function. For instance, if p = 1, g = 2 and if W}, ; rep-
resents the number of females and W,, > the number of males in the n—th generation, classical
choices for ¢ are £ (x, y) = min{x, y} (the perfect fidelity mating function) and ¢ (x, y) = xmin{1, y}
(the promiscuous mating function). If p = g = 2, then {(x, y) = (x, y) corresponds to the classical
bi-dimensional Galton-Watson process.

For any probability measure u on N, we use the notation P, and E, for the law and as-
sociated expectation of the bisexual Galton-Watson process with initial number of couples 7
distributed according to p. As usual, we use the notations P, and E, when u = 6, for some
x € NP. Note that £(0) = 0 entails that 0 is absorbing for Z.

We are interested in conditions ensuring the existence of a quasi-stationary distribution for
Z. We recall that a quasi-stationary distribution for Z is a probability measure vgs on N? \ {0}
such that, for all n =0, Pyos(Zn #0)>0 and

[FDVQS (Zn € | Zl’l # 0) = VQS()

It is known that (we refere the reader to the book [?] and to the surveys [?, ?] for general prop-
erties and further examples), for any quasi-stationary distribution v, there exists 6¢gs € (0,1]
such that

PVQS (Zn # O) = 085 and [FDVQS (Z}’l € ) Z}’l # 0) = GZSVQS()
In what follows, 8¢ is referred to as the absorption parameter of vs.

Throughout the paper, we make the assumption that ¢ is super-additive and sub-affine:

Assumption (S). There exists a, § € Rf such that
alxi + x|+ B = E(xr + X2) = &(x1) + & (x2), Vixg, xp €N, ¢))

where |- | is the ¢! -norm.

This assumption implies that the function 90t : R? — R” given by

kzV
M(z) = lim o(kzVl)
k—o0
is well defined, bounded over S := {zeR”, |z| = 1}, positively homogeneous (i.e. M(az) =
at(z) foralla>0andall z € Rf) and concave. We refer the reader to Section 3 in [2], where
other properties of this functional are derived. In addition, we assume that

Assumption (P). 91 is primitive, which means that there exists ny = 1 such that 91" (z) > 0 for
allm=ngand z€ IRf: \ {0}, where O™ is the m—th iterate of 93T and 971" (z) > 0 means that all
the coordinates of 91" (z) are strictly positive.

In particular, this entails that there exists A* >0and z* € $* := {z € (R \{ODP, |z| = 1} such
that the limit
mn
lim =) =P(2)z" (2)

n—oo (A*)N

exists, where 2 : R” — R, is strictly positive on R” \ {0}, positively homogeneous and concave
(see [?] for a general development on this theory and Section 4.1 of [?] for an application to the



context of bGWbp). In addition, according to Lemma 37 in [?], (A*)™"22(Z,)) ,en iS @ Super-
martingale. In particular, A* < 1 implies that (Z,) ,en goes extinct almost surely for any initial
distribution (see [2] for details).

Our first result states that, in the sub-critical case, the process admits infinitely many quasi-
stationary distributions, indexed by 6 € [vg, 1), where

Vg := inffv > 0, such that E, (U_TO) < +00, Yz eNP} 3)

with Tj the extinction time.
We also define the exponential convergence parameter 6y by

0p= sup sup{f >0, liminf6 "P,(Z, #0) >0}, 4)
zeNP\{0} n—+00

with sup @ = —co.
Proposition 1.1. If Assumptions (S) and (P) hold true, then we have 8y < vy < A*.

Theorem 1.2. If Assumptions (S) and (P) hold true and A* < 1, then Z admits a continuum
of linearly independent quasi-stationary distributions: for any 0 € [vy,1), there exists a quasi-
stationary distribution with absorption parameter 6.

The proofs of Proposition[l.1Jand Theorem|[1.2]are detailed in Section[2] where we first state
and prove a general result ensuring the existence of infinitely many quasi-stationary distribu-
tions for Feller processes, and then apply it to the sub-critical bGWbp. We discovered during the
finalization of this manuscript that the general result and its proof, which was part of the PhD
thesis of one of the author [?], has also been proved independently for discrete state space pro-
cesses in the recent preprint [?], using very similar methods.We emphasize that in the classical
Galton-Watson case, much more precise results are known (we recommend to the interested
reader the paper [?], where the author proves a complete result for Galton-Watson processes
and gives, in Section 3, a detailed exposition of the history of the problem, with its link to the
identification of the Martin boundary of the classical Galton-Watson branching process). We
also refer the reader to [?], where a general existence result for quasi-stationary distributions is
obtained by a renewal/compactness argument.

We consider now the problem of existence of a finitely generated set of quasi-stationary
distributions satisfying an integrability assumption and of convergence of conditional laws to-
ward a quasi-stationary distribution. Since 9 is concave on R, it is locally Lipschitz on $*. We
add the following regularity assumption on 9, where we use the notation, forall I c{1,..., p},

Zi:={xeSsuchthat x;>0Viel, x;=0Vi¢I}

where, here and across the paper, x; denotes the i coordinate of x.
Assumption (C). For all I # @, 91 is uniformly continuous over Zj.

We also consider the following moment condition, related to the exponential convergence
parameter 6.

Assumption (M). There exists ¢ > 1 such that (1%)¢ < 8y and such that [E(Vl.cj) <+ooforalli,j.

We emphasize that Assumption (M) implies 1* < 1, so that the following results apply in the
setting of the sub-critical bGWbp. This assumption also requires implicitly that 8y > 0, which is
the case in many situations.



The proof of the following theorem is detailed in Section[4] It is based on [?] and makes use
of the following function and measure spaces. Given a positive function ¢ on N” \ {0}, we set

L) :={f :NP\ {0} = R, | f/@lloo < +oo}, endowed with the norm Ifle=1f/pleo

and
A (p) := {u non-negative measure on N” \ {0} such that u(¢) < +oo}

where () = fun o 9(2IH(d2).
Finally, when Assumption (M) is enforced, we define, for all a € (1,¢) such that (1*)% < 6,
the function Q, : NP \ {0} — R, by
Qa(z) = P(2)“.

Note that infQ, > 0.
In the following theorem, we say that a process Z is aperiodic if, for all z € N?, either P,(3n =
1, Z, = z) = 0 or there exists ny(z) = 0 such that, Vn = ny(z), P,(Z, = z) > 0.

Theorem 1.3. We assume that Assumptions (S), (P), (C) and (M) are in place and that the process
Z is aperiodic. We fix a € (1,¢) such that (A*)% < 6.

Then there exists ¢ = 1 and a family of quasi-stationary distributionsvy,...,vy € M (Qg,) with
absorption parameter 0y for Z such that any quasi-stationary distribution v € 4 (Qg) with ab-
sorption parameter 0y for Z is a convex combination of vy,...,ve. In addition, there exists a
bounded function j : NP\ {0} — N and there exists, for each i € {1,...,¢}, a non-negative non-
identically zero functionn; € L>°(Q,) such that, for all f € L°(Q), alln =1 and all z € NP \ {0},

l4
0" PEL(f(Z)12,20) — Y 1i(@Vi())] = @nQa(@ I fll g, 5)
i=1
where a, goes to 0 when n — +oo which does not depend on f nor on z (but may depend on a).
In addition, the set E := {z € NP \ {0}, Zle n;(z) = 0} is finite, and any quasi-stationary dis-
tributions for Z in 4 (Q,) with absorption parameter strictly smaller than 0 is supported by E.
Finally, there is no quasi-stationary distribution for Z in 4 (Q,) with absorption parameter
strictly larger than 6y and, for all z € NP\ {0}, the conditional distribution P,(Z, € - | Z, # 0)
converges in 4 (Qg).

Remark 1.1. Note that, under the assumptions of Theorem|I.3} we have vy = 6. In fact, taking
f=1in @) leadstoP,(Z, #0) ~p—co 07 1n/@ X6 1;(2). Thenforall v > 0y, forall z € NP\ {0}, we
have [EZ(U_TO) =Y enV (P (Zy-1 #0) =P, (Z, #0)) < co. Then vy < 0y, and Proposition
leads to the equality.

Under the additional assumption that the process Z is irreducible (meaning that Vx,y €
NP\ {0}, there exists n = 0 such that P,(Z, = y) > 0), one obtains that, for all ze N” \ {0},

0o = sup{f > 0, liminf0~"P,(Z, # 0) > 0},
n—+oo

does not depend on z. In the irreducible case, we have the following result, proved in Section[5

Theorem 1.4. Assume that Assumptions (S), (P), (C) and (M) hold true and that the process Z is
aperiodic and irreducible. We fix a € (1,¢) such that (A*)% < 0.

Then the process Z admits a unique quasi-stationary distributionvqs in 4 (Qg). Its absorp-
tion parameter 0s is equal to 0y and there exists a unique positive functionngs in L°(Qg), such
that

Pyos(Zn 200 =0y and E;(Mqs(Zu)lz,20) =0ynqgs(z), ¥n=0,zeNP\{0} (6)



and nqs is lower bounded away from 0. In addition, there exists C > 0 andy € (0,1) such that,
for any probability measure € M (Q,) and any function f € L*°(Q,), we have

06 "Ew (f(Z)12,20) — M) Vos()| < CY" u@Qd) I fllg,, ¥n=0 )
and
|Eu (F(Zn) | Zn #0) = vas(H)] = CY" u@Qa) I flg., ¥Yn=0. (8)
Finally, for all probability measure p € M (1Qs),
Py (Zn €+ Zn #0) ———Vgs, 9)

where TV refers to the total variation convergence.

Theorem states the existence and the uniqueness of a quasi-stationary distribution vgg
integrating the Lyapunov function Q,. Moreover, (@) and (9) establish the convergence of the
law of the process conditioning to the non-extinction towards v for all initial distribution u
integrating Q, or the eigenfunction 7¢s, with moreover an exponential speed of convergence
for u integrating Q. In particular, the convergence towards vs holds for any Dirac mass p =
0, with z € E, meaning that v(s is a Yaglom limit. In addition, (7) gives the convergence of the
law of the process without conditioning. In particular, taking f =1 in (7) leads to the speed of
convergence of the extinction probability towards 0 at speed exactly 8.

The proofs of the last two results rely in part on recent advances in the theory of quasi-
stationary distributions, which allow to derive several properties from Foster-Lyapunov type
criteria, given in our case by the following proposition.

Proposition 1.5. If Assumptions (S), (P), (C) and (M) hold true, then, for any a € (1,¢) such that
(A")4 < 0y, we have

E(Qa(Z1)1 20120 = 2) <04Qa(2) + Cy, Yz NP\ {0} (10)
for some constants 8, € [0,0y) and C, > 0.

Remark 1.2. We already observed that 8y < 1*. One also checks that, at least under the assump-
tions of Theorem if 22 is not linear, then 6y < 1*. Indeed, under these assumptions, let vs
be the quasi-stationary distribution from Theorem1.4} so that

0pvos(@) = ). vosUhE (P (Zy).
2eNP\ {0}
Since under the assumptions of Theorem 1.4} the process is irreducible, the support of vqs is
NP\ {0} and hence £? is concave not affine on the support of vs. Using (8), we deduce that there
exists zgp € NP \ {0} and n = 1 such that & is concave not affine on the support of P, (Z, € -), so
that, by Jensen (strict) inequality,

Ez, (P(Zn)) < P (B, (Zy)) < PN (20)) = (A7) " P (),

where we used E, (Z,) < 9" (z) (see Lemma 27 in [?]) and the fact that £ is superadditive
(since 91 is superadditive by Assumption (S) and by definition of & given by (@) for the last
inequality, and the definition of 2 (see (2)) for the last equality. Similarly, we have E, (2 (Z,,)) <
(A*)*P(z) for all z e NP \ {0}. We conclude that

Oivos@) < Y. voszh)(A")"P(2) = (A*)"'vs(2).
ZeNP\(0}

This implies that 8y < 1* when 22 is not linear.
It is also known that 91(z) = sup;~; %[Ekz(Zl) (see Corollary 7 in [?]), and the same calcula-
tion as above shows that, if E, (Z;) < 91(zp) for some zp € N”, then 0y < 1* (even if 2 is linear).



Remark 1.3. When 6y = 1%, Assumption (M) requires polynomial moments for V, with expo-
nents that can be arbitrarily close to 1. We leave as an open question whether, in this case,
LlogL type criteria can be obtained, as it is the case in the classical Galton-Watson case (for
which 60 = /1*)

In the situation where 6y < 1*, one can not choose ¢ arbitrarily close to 1 in Assump-
[logfy|
[logA*|*
some ¢ < ||118§gg|| may be sufficient to obtain the conclusion of Theorem or ‘ at least in
some particular cases.

tion (M), since it imposes ¢ >

We leave as an open question whether [E(Vf ) < +oo for

In Section |2} we state a general result for the existence of infinitely many quasi-stationary
distributions, then we prove Proposition[1.1Jand Theorem[1.2] Section[3]is devoted to the proof
of Proposition Theorems|[1.3|and [1.4] are proved in Sections [4] and [5| respectively. For the
proofs of the last two theorems, we make use of Assumption (E) of [?] which is recalled in Ap-
pendix. In Appendix we also state a general result implying Assumption (E) of [?].

2 A simple criterion for the existence of infinitely many quasi-sta-
tionary distributions and application to the bGWbp

In Section[2.1} we first state and prove a result on the existence of a continuum of quasi-stationary
distributions for general sub-Markov kernels on Polish spaces. In Section[2} we apply this result
to the bGWbp.

2.1 General setting

Let (X, d) be a Polish space endowed with a o-algebra & that contains the toplogy induced
by d. Let K be a sub-Markov kernel on X, which means that K is a non-negative kernel on X
such that K(x, X) < 1 for all x € X. We assume that K has Feller regularity, meaning that the
associated operator K : f — Kf := fX K(-,dy) f(y) is a well defined functional from Cy(X) to
Cp(X) (the set of continuous bounded functions on X). We say that a probability measure y on
X is a quasi-stationary distribution for X if, for some A € (0, 1],

fxu(dx)K(x, ) =Aul).

Our aim is to prove that K admits infinitely many quasi-stationary distributions under mild
assumptions.

In the following theorem, we say that a sequence (x,) pen € X N tends to infinity if it eventu-
ally leaves any compact set: for all compact subset L of X, there exists n; = 0 such that, for all
n=ng, x, ¢ L. Similarly, we say that a real functional on X tends to infinity when x — +o0 if,
for all R > 0, there exists a compact subset L of X such that the functional is bounded below
by R on X \ Lr. We also define the iterated kernels K" as usual by

K%(x, A) = 1ycn, K“l(x,A):f K!(x,dp)K(y, A Vxe X,Ac Z,0 =0.
X

Theorem 2.1. Assume that there exists a >0 and (x,) nen € X" tending to infinity such that

oo
a ‘K’ (x,, X) < +00, Yn =0 (11)
/=0

and let

ag :=inf{a > 0, s.t. there exists (xX;) nen € xN tending to infinity such that holds true.} (12)



Assume also that there exists ay > ag such that

[e.@]
Y ar ‘K (x, X)
=0

+00. (13)

X—+00

Then K admits an infinite family of quasi-stationary distributions (113) re(ay,a,)» With [y pa(dx)K(x,-) =
Auy forall A€ [ag, ay).

Proof of Theorem|2.1} Fix A € (ag, a1). Since A > ay then there exists (x,)nen € X" tending to
infinity such that, for all n = 0, the probability measure

XA K ()
YR AR (X, X)

HMAn

is well defined. We have, for all n =0,

K() f (K = St K G
<) = X X,:) =
I"l//l,n Xu/l,}’l ?O:OA,_ZK[()C”’X)
_ /’LZ(;OZO A_([+1)K[+l(xn,')

% A TK (xp, X)

ARG ATIK () — A6, ()

14
?‘;0 A=K (xp, X) (1
= A”A,n(')'
We deduce that, forall ¢ = 1,
:u/l,nKe = A[U/l,n-
In particular, we obtain that
oo ‘0 oo ’ y © (1 l a
f pan(dx) Y ar K (6, X) =) ay ua K X)) (—) = . (15)
X 7=0 7=0 /—o\a1 a—A

Since we assumed that Z?‘;O “1_[ K (x, X) goes to infinity when x — oo, this and Prokhorov’s
Theorem imply that the sequence of measures (1 ;) nen is relatively compact for the weak con-
vergence topology.

Let py be any adherent point of (1) ,)sen, and observe that py is a probability measure.
Since K is assumed to preserve bounded continuous functions, we deduce that, up to a subse-
quence and for the weak convergence topology,

pak= Hm ppnK.

But we computed (see (14))

Ay,
YR AK (3, X))

/J/l,nK = /LUA,n -
where, by assumption,

(o] (&)
Y AR e, X) 2 Y a7 K (e, X)
/=0 /=0

+00.
n—-+oo



We deduce that limy,_. ;o0 13, , K = limy . 400 Ay, which is equal to Apy. We thus proved that
urK = Auy, which means that u is a quasi-stationary distribution for K with absorption pa-
rameter A.

It remains to prove that there exists a quasi-stationary distribution with absorption param-
eter ay. Since the set of probability measures uy, A € (ag, (ap + a1)/2), satisfies with a uni-
form upper bound, we deduce that it is relatively compact. One checks as above that any limit
point, when A — ay, of this family is a quasi-stationary distribution for K with absorption pa-
rameter ay. This concludes the proof of Theorem O

Remark 2.1. One easily checks from the proof that the condition that K preserves bounded
continuous functions is stronger than necessary. Actually, it would be sufficient to assume
that K sends a generating family of bounded continuous functions into a family of bounded
continuous functions. For instance, it sufficient to assume that K sends compactly supported
continuous functions to bounded continuous functions.

Remark 2.2. One can easily extends this result to the general setting of non-conservative ker-
nels K. More precisely, assume that there exists a positive function % on X such that Kk < ch
for some ¢ > 0. Then the kernel defined by

1

K(X,A) = m

f K(x,dy)h(y), Vxe X, VAe X,

A

is a sub-Markov kernel to which Theorem may apply. Note that the assumptions would
translate into: for any continuous function f: X - R, x € X — ﬁ f x K(x,dy)h(y) f(y) is con-
tinuous; forall n= 0, X% aa[ Jx K¢ (x,,dy)h(y) < +ooand ﬁ X% al_ng K!(x,dy)h(y) —
+00. In addition, the resulting quasi-stationary measures may not be finite measures if / is not
lower bounded (we only obtain that [y s (dy)h(y) < +ooforall A € [ag, a1)). On the other hand,
if h is lower bounded away from 0, then p is a finite measure.

2.2 Proof of Proposition|l.1/and Theorem|(1.2

In the context of bGWbp, we choose K(x,dy) =P,(Z; € dy, Z; #0) for all x € X = NP\ {0}. We
first prove Proposition (1.1}, as well as that ag < vy, where ay is defined in Theoremand Vg is
defined in (3). Then we prove Theorem|1.2]

First, from their definitions, it is clear that vg <1 and 6y < 1. For all 6 < 6, there exists
ve (0,1) and z € NP \ {0} such that liminf,,_.., v""P,(Z, # 0) > 0. For such v and z, we have
E-(v~T0) =¥ v /P, (Tp = £) with

liminfo ‘P, (Ty=¢) = liminf v P2y £0)—P,(Z, £ 0))
— 00

{—o00

= - l)ligminfv_glP’Z(Zg #0)>0.
— 00

Then E, (v~ 1) = 0o and hence v = vy. We deduce that vy = 0 and hence v = 0,.
In order to prove that ay < vy, we first observe that, for all a > vy, there exists v < 1, such
that v < a and for all z € N” \ {0}, E,(v~T°) < oo. For such v we then obtain

Y a 'Kz, X) =Y a'PTozt+1)< Y a v/ E, (07 ) < Cu L (v 1) < 0.
20 =0 020

This shows that ag < vg.
Using the fact that 22 is lower bounded away from 0 on NP \ {0} (as 2 is strictly positive and
positively homogeneous) and that K(:, X) is bounded by 1 and vanishes at 0 , we deduce that




there exists a constant ¢ > 0 such that, for all # = 1 and all x € NP,
1
K'(x, X) = —E4 (P(Zy)).
c

In addition, (1*)™"22(Z,) is a supermartingale (see Lemma 37 in [?]), so that, forany a € (1%, 1),
R LS 0 yy0
Y a K, X)==) a " (A") P x) < +o0.
=0 € =0

This shows that vy < A*, then Proposition[1.1]holds.
Since 91 is primitive by Assumption (P), Theorem 6 in [2] implies that, for all z € NP\ {0} and
for all n = ny, there exists ¢y > 0 and ky = 1 such that for all k = kg

P(Z, = co(l,...,1) | Zo = kz) > 0.

Applying this result for z taken in each element of the canonical basis of N” and using the
super-additivity of ¢, one deduces that, for any n = ny, there exist constants r > 0 and ¢ > 0
such that

inf P(Z, = ¢)(1,...,1) | Zy=2) > 0.

|z|>1

Using again the superadditivity of the model, we obtain that, for all z,...,z,, with ¢ = 1 and
lzil > 1,

Poiteizy (Zn=0) <P, (Z,=0)--P,(Z,=0) < (1- |§|n>frP(Z” >cy(1,...,1)| Zp = z))’.

and hence

|]:Dz(Zn =0)——0.

|z|] = +o00

In particular, we deduce from Fatou’s Lemma that, for any a; € (0, 1),

o0

a;‘P,(Z, #0)

/=0 |z] =400

+00.

and hence holds true for any a; € (ag, 1) 2 (vp, 1).

We deduce that Theorem [2.1]applies to the subcritical bGWbp. Since quasi-stationary dis-
tributions with different absorption parameters are linearly independent, this proves Theo-
rem[.2

3 Proof of Proposition

We start with the following technical lemma on the regularity of 2.

Lemma 3.1. Assume that Assumptions (S), (P), (C) and (M) hold true. Then, forall1 c{1,...,p},
I # @, the operator 2 restricted to Z is uniformly continuous.

Proof of Lemma Since oM™ = (1*)" 22, it is sufficient to prove that 209" is uniformly
continuous on Zj. But 9" (Z;) < M™(S) which is relatively compact in (R, \ {0})” (since 91
is primitive and bounded by assumption), and €2 is concave and hence it is locally Lipschitz in
(R4 \ {O1P. Tt is thus sufficient to prove that 2" is uniformly continuous on Z;.



Let us first observe that 971 is locally uniformly continuous on (¢ + R, \ {0}) Z; for any € > 0,
since M is uniformly continuous on Z;, bounded on S > Z;, and positively homogeneous.
In order to conclude, it remains to prove that there exists J c {1,..., p} and € > 0 such that
M(Z) < (e + Ry \{0}) Z; (the result then follows by induction). Let x € Z; and let J = {i €
{1,..., p}, M(x); > 0}. Then, for all y € Zj, there exists § > 0 such that dx < y, so that, using the
fact that 91 is increasing and homogeneous, M(y) = 6N (x) and hence J < {i € {1,..., p}, M(y); >
0}. Reciprocally, {i € {1,..., p}, M(y); >0} < J, so that M(y) € R. Z;. Since on S, the norm of N
is bounded from below away from 0 and from above, we have M (Z) c [e1,€2] Z; for some
€1,€2 > 0. This implies that 9t? is uniformly continuous on Z;. We conclude by iteration. O

Let us now proceed with the proof of Proposition|1.5|in two steps: first we show that, for all
ze R\ {0},

1
hmsup| @ —E[Qa(ZD)1 2,201 Zo = Inz]] = (A1) *Qu(2); (16)
n—+oo

second, we extend this to a uniform convergence in z by using the regularity of 22.

Step 1. As 2 is positively homogeneous, we have for any z € R” \ {0},

p nz] el a
E[Qa(ZD)1 2201 Zo = Lnz]] = (9’0{(2 v ]
i=1 k=1
1 (2 Inz) @
n\i=1 k=1
According to Lemma 30 in [?], we have
Lnz;]
(Z Y Vi e,
i=1 k=1

Let I c {1,..., p} be such that M(z) € (R; \ {0})Z], then the above convergence entails that,
almost surely, for n large enough, %f (Z ZL"ZZJ V(k 1)) € (R4 \ {0}) Z; for some J o I. Using

Corollary 7 in [?], we have, forall n =1,
so that we also have J c I almost surely.

Since £ restricted to (R, \ {0}) Z7 is continuous, and since 9To & = 1* 22 by (2), we deduce
that

1 1 p I.nZlJ kl
M) = ~E[Z | Zo=nzll==E|&[ Y. Y vED
n n i=1 k=1

9}’ M(2)) = 1* 2 (2).

@(%E(i Ii ol

J V(k D

In addition, since ¢ is sub-affine, since %Z ZL"Z’ i

is bounded in L¢ by Assumption (M)

and &2 being positively homogeneous, we deduce that 22 (55 (Z ZL"Z’J VA(’C D)) is also bounded
in L¢ (where ¢ > a), and we deduce from the dominated convergence theorem that

[l

—— (AP ().
i=1 k=1 oo
We deduce that holds true. This concludes the first step of the proof.
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Step 2. Fixanon-empty I c {1,..., p} and let £; > 0 be a small number that will be fixed later. Let
ZY,..., 2™ € (1+¢€,)Z; and m; = m(e1) = 1 be such that, for all z € Z;, there exists k = k(z,€;) €
{1,...,m;} such that z < zFand |z-zF| < 2¢1. The existence of this finite family Zl,...,z™m easily
follows from a compactness argument. Let n; = n;(e1) be large enough so that, for all n = n;,

forall ke{l,...,m},

1
E

|n|®

Qa(Z)1 7201 Zo = Inz*]| < A +e)) (A" (z5)“.

Then, since Q, is non-decreasing and since Z; (with Zy = | nz]) is stochastically non-decreasing
with respect to z, we deduce that, for all n = n; and all z € Zj,

1

matlQaZlzzx01 2 = nzl] <1 +£1) (M) ()

a
1
<(1+&1)(AH)%P(2)" sup M
X, yeZ,I(1+€1)x-yl<2&; ‘@(y)

(17)

Since £ is uniformly continuous on Z; and lower bounded away from 0 on Z;, we deduce that
there exists €, small enough so that

a
P(x)
Oq:=(1+e)*(A")4 su <0
! ' ny’€ZI,|(1+511))x—y|52£1 9(}’) 0

This and implies that

1
E[Qa(Z)1z20| Zo = |nz]] <0,2(2)".

In|®

Since any z € NP \ {0} n (R4 \ {0}) Z; can be written as n-= with n = |z| and é € Z, we deduce

|zl
that, for any such z with |z| = n;,

1

|Z|a[E[Qa(Zl)1zl¢o | Zy = 2] <0,2(z2112])".

Finally, the homogeneity of 2 allows us to conclude that Proposition [1.5|holds true for all z €
NP\ {0} N (R4 \ {0}) Z;. Since there are only finitely many subsets I of {1,..., p}, Proposition[1.5]
holds true for all z € NP \ {0}.

4 Proof of Theorem[1.3|

The proof of the first statement relies on Theorem 4.1 [2] and in part on some arguments of the
proof of Theorem 5.1 therein. The main additional difficulty is that our reference exponential
parameter 0y is a priori larger than the one considered in this reference. We overcome this
difficulty in Lemmal4.1below. Another difficulty is that a key part of the argument relies on the
assumption (E1-4) in (2], which does not apply directly when the Lyapunov parameter 6, (in
Proposition[1.5) is only assumed strictly smaller than 6. To overcome this difficulty, we prove
in Proposition[A.1|that this last condition actually entails the assumption (E1-4) in [2].

Fix a € (1,¢) such that (1*)% < 6y and set H = Q,/infQ,. According to Propositionand
since H(z) tends to co when |z| — +00, there exists 6, < 8y such that

E,(H(Z)1
limsu 2(H(Z1)1 2 0)

<0,<yv:=0,+00)/2<0. (18)
ron  H(2) a<¥y:=Wa™o 0

11



In particular, there exist only finitely many communication classes Ej,..., E,, ko = 1, for the
process (Z;,) nen such that

E.(H(Z1)1z20)
S

Vie{l,..., ko}, Iz € E;, such that
H(z)

Note that ky # 0 (otherwise 8g < y). Forall i € {1,..., ko}, we define H; = H1g, and denote by
Y@ the process with state space E; U {0} defined by

v Z, ifZ,€E;
" 0 otherwise.

Note that 0 is an absorbing state for the process Y as E; is a communication class. For all
i€{l,..., ko}, we denote by 6 ; the absorption parameter of Y (V:

69,; = supsup{f >0, 1};@+i{.1<>f0‘"umz(¥,§” #0) >0}

zZ€E;
and we set
We define the set "
Ey:=NP\|{0otu | J Ei .
i=1

By definition of Ey,..., Ey,, we have

E-(H(Z1)1z20) _

Yz e Ep, ) (19)
In what follows, we make use of the following crucial lemma.
Lemma 4.1. We have 0 = 0.
Proof of Lemmal4.1} Our aim is to show that, for all p > 6 vy and all z € N”, we have
l}lllli&fp_nPZ(Zn #0)=0. (20)

This shows that § vy = 6, and hence, as by definition y < 6, that § = 6. The converse inequal-
ity is trivial, concluding the proof of Lemmal|4.1
Foralli# je{l,...,ko}, we have

VzeE;, P,(3n=0,Z,€E;)) >0 orVze Ej, P,(3n=0,Z, € E;) = 0.

If the condition on the left is satisfied, we write E; < E;, otherwise we write E; £ E;. This defines
a partial order on {1,..., ko}. Forall i € {1,..., ko}, we denote by c(i) the maximal length of sets
of distinct indices iy = i,,...,ic; such that E; , <--- < E;, < E;;. We also define, for all £ >1,
the set

ES:={xeE), Jie{l,..., ko} with c(i) = ¢ and x — E;, and x 4 E; ¥ such that c(j) > ¢},

where x — E; means thatP,(3n =0, Z, € E;) > 0, while x /~ E; means thatP,(3n =0, Z, € E;) =
0. We also set

0._ oo max; c(i) ¢
EQ:=E\ Ui Vg,

12



We obtain by proving that, for any fixed p > 0 v y, for all ze NP \ {0},
E-(H(Zp)1z,20) < Cop" H(2) (21)

where C, does not depend on z.

Remarking that, by definition, Eg U {0} is an absorbing set, then is immediate for all
z € E) by (19). In the following, we first obtain in Step 1 two useful inequalities (see and
below). Then, we prove forallze E; U Eg(’), i€{l,..., ko}, by induction on c(i) in Step 2.

Step 1. We first observe that, for all £ = 1 and all z € E¢, using (19),
E, (H(Zn)l 2e Eg) <y"H(z) < p"H(2). 22)
We now prove that, forall i € {1,..., ko} and all z € E;,
E-(H(Zy)1z,eE,) < Cp"H(z). (23)
In order to do so, we consider the set

E,(H(Z)1
Ki:{zeEi, 2(H(Z1) Zl;é0)> }

H(z)
For all z € E;, since p > 6 and by definition of 0,
B -n (@) —
lrllr_r}lg)fp P.(Y,” #0)=0. (24)
Since K; is finite according to (18), we deduce that there exists a constant C > 0 such that
P.(Zn€ E) =P, (V) #£0) < Cp", Vze K;. (25)

In what follows, the constant C may change from line to line. Moreover, denoting Tx, = min{¢ =
0, Zy € K;}, we deduce from the definition of H and of K; that

P.(ZneE;jand n<71g;) <E;(H(Zy)1z,eE, and ”<TKi) <y"H(z), Vz€ E;. (26)

Hence, for all z € E; and all n = 0, we have, using the strong Markov property at time 7,
n
P.(Z,€E)<P;(ZycEiand n<71g,)+ Z P.(tk, = ¢) sup Py(Zy-¢ € E))
=0 YEK;

n
<yY"H@)+ Y P.(tx, = 0)Cp"™"
/=0

n
<Y'H@)+ ) (>0 1 H(Zp1)Cp" ™
/=0

n
<y"H(2)+ Y vy 'H(z)Cp"™*
/=0

< Cp"H(z2), 27)
where C may depend on p and y. Finally, from (10), we obtain for all z € E;

Ca

infQ,

lEZ(H(Zl)IZIEEi) = HtlH(Z) +

13



Then, iterating this property and using (27), we deduce that

n—-1 C
E-(H(Zw)1z,er) <SOTH@) + Y. ﬁeg""‘lpz(zz € Ej)
/=0 a
<y"H(2) +nfi "-1Cp H(z)
sy PR p

<Cp"H(z),

where C may depend on p and y. This proves forall z€ E;.

Step 2. Assume that there exists ¢ = 0 such that holds true for all z € EO,...,EOC and all
z € E; with ¢(i) < c (this is true for ¢ = 0 as we already saw that holds true for z € Eg).
If ¢ = max;eq,.., k) (i), then there is nothing to prove. Otherwise, let i € {1,..., ko} such that
c(i)=c+1.

Denote by T; the first exit time from E; by (Z,) ,en and let us use a similar computation as
in the end of Step 1. For all z € E; and all n = 0, we have

n
E-(H(Zn)127,20) =E.(H(Zw)1z,e6) + Y Ez (11,201 2,20E7 (H(Zy-0)12, ,#0))
=1

n
<Cp"H(D)+ Y Ex (11,201 2,20Cop" " H(Zp))
/=1

where we used 23), the Markov property, the fact that, conditioning on 7, € E;,

Zr, e{otu Eg u |J E;almostsurely,

l<c c(j)=c

and the induction assumption. Then, there exists C, > 0 such that

n
Eo(H(Zn)12,20) < Cp"H(D) + Y Ex (11501Cop"  (0uH(Zp 1) + Ca)
/=1

n
<Cp"H(D)+ Y Ex(11501Cpp"“ Ou+ CIH(Zr1)
/=1

where we used the Markov property at time £ —1 and Proposition[1.5] We deduce from that

n
Po(Zy#0) < Cp"H(2) +Cp(0,+Ca)C Y p" ' H(2)
/=1

<C(n+1)p"H(2)

for some C > 0, which depends on p but not on z neither 7. Since this is true for any p >0 v y,
this proves for all z € E; with c(i) = c+ 1.

By the same arguments, using instead of and the fact that, starting from E(‘j“, at
the exit time T; of E{*!, we have

ZpetuJESu |J E;almostsurely,

l<c c(j)sc+1

one shows that this also holds true for all z € Eg”.

This concludes the proof of Lemmal4.1 O
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From now on, we assume withoutloss of generality that the communication classes Ej, ..., Ej,
are indexed in the following way : there exists k € {1,..., ko} such that, for all i € {k+1,..., ko},
0o,; <0, and, for all i € {1,...,k}, Bp,; =60 = 0y. Forany i € {k+1,..., ko}, we have, fixing any

.....

(see (23)),
E.(H(Zp)1z,e) < Cop" H(2), VZ€ E;,
where C,, is a positive constant which may depend on p. Setting

ko
Ey:=Eyu | Ei
i=k+1
one easily checks, using the last inequality and (I9), that, for any r € (yV p, ), there exists C > 0
such that

[EZ(H(Zn)ln<TEO) <C,r"H(z), Vz€ Ey

with Tg, the first exit time of Ey.

Note also that, from Proposition[L.5|since inf H = 1, there exists Cy > 0 (possibly larger than
0o) such that, for all ze NP\ {0}, E;(H(Z1)1z0) < C,wH(2).

In order to apply Theorem 4.1 in [2], which implies the first part of Theorem it then
remains to prove that, for all i € {1,..., k} and all z € E;, we have

105" (f(Z)1z,cE) — hi(@ui ()| < Ca"Hi(@) | fllm, Yn=0,VYfel®H), (28)

for some C > 0, a € (0, 1), some non-negative non-zero function h; and some probability mea-
sure u; on E;. In order to do so, its is sufficient to check Assumptions (E1-4) in Section 2
of [2]. These conditions are recalled in the Appendix and we will more precisely check Assump-
tions (E1), (E2"), (E3) and (E4), which is sufficient to obtain (E1-4) according to Proposition[A.1]
Fixing i € {1,..., k}, we define the set

E,(H;(Z;)1
Kizz{zeEi, 2(H;(Z1) Zl¢o)>y}’

H;(2)

which is finite according to (18).
Since E; is a communication class and the process is assumed to be aperiodic, there exists
nj = 0 such that

P =
c = x,lyrgg- IPX(Zni = y) >0.

Note that K; # @, by definition of E;. Fix z; € K;. Then, for all z € Kj,
Po(Zy ) 2P. (2, =2)6, Oz clvit-nK),

for vi = 6. This entails (E1). In addition, taking ¢; = H; and 01 =y <0y = 0y ;, the condition
(E’2) is an immediate consequence of the definition of K; and the fact that z — E;(H;(Z1)1 z,¢E,)
is bounded on K; by Proposition[1.5
For all x, y € K; and n = 0, we have, using the Markov property at time ni and the fact that
P, (Z, € E;) is non-increasing in n (as {0} is absorbing for the process y®),
Po(Zn € E) 2 Px(Zyy i € ED) 2 Px(Z = Y)Py(Z € E) = clPy(Z, € Ey).

i
nvni-nj

This proves (E3).
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Finally (E4) holds true since we assumed that the process Z is aperiodic and E; is a com-
munication class. This concludes the proof of (§). In addition, any quasi-stationary distribu-
tion v € 4 (Q,) with absorption parameter 6y satisfies v({x, j(x) = 0}) = 1 (see Proposition 2.3
in [?]). Integrating (5) with respect to v implies that v is a convex combination of vy,...,v,. This
concludes the first part of Theorem|L.3]

To conclude the proof of Theorem itremains to prove that the set E = {z e NP\{0}, 3" ;¢ ni(2) =
0} is finite and that any quasi-stationary distribution with absorption parameter strictly smaller
than 0, is supported by E.

We first observe that Theorem 4.1 in [?] also implies that j = 0 on the set E. Assume on the
contrary that E is not finite and fix zg € N”\ {0} such that Zle 1i(zp) > 0and j(zp) = 0 (existence
of such a point z; is guaranteed by Proposition 2.3 in [?]). We observe that

. . —n
1rllr3+1§of90 P, (Zn #0) > 0.

Then, by primitivity of 901, there exists ny such that for all x € N” \ {0} we have 91" (x) > 0.
This implies that for k > 0 large enough we have Py (Z,, = zp) > 0. Indeed, if it is not the case,
we can conclude using Theorem 6 in [?] that

20 _

E(Zn, | Zo=kx
M™(x)= lim E(Zn, | 2o = kx) no | Zo )s lim = =0,
k—+00 k k—+o00 k
which is a contradiction. Then, we have for any z large enough P,(Z;,, = z9) > 0. Hence, using
the fact that E is not finite and hence contains arbitrarily large points, there exists z € E and
z(’) > zp such that P,(Z,, = z(')) > 0. By super-additivity of &, we have [P’Z(r)(Zn #0) =P, (Z, #0)
and hence

Lminfly P, (Zp,+n #0) > 0.
n—+oo

As we noticed that j = 0 on the set E, this is not compatible with the definition of E and (). We
have thus proved by contradiction that E is finite.

Let vs be a quasi-stationary distribution for Z in .4 (Q,) with absorption parameter 6 s <
0y. Then (B) implies that Zle vos(n;) = 0 and hence the support of v is included in E. This
concludes the proof of the penultimate assertion of Theorem|[1.3]

To conclude, it remains to prove that there are no quasi-stationary distributions for Z in
A (Qg) with absorption parameter strictly larger than 6. This is a direct consequence of (5).
Indeed, since j is bounded, integrating this inequality with respect to a quasi-stationary distri-
bution vs with absorption parameter 0s, and taking f = 1, shows that

limsupH(}”n_”J”wegs < +00,
n—+oo

and hence 0¢s < 0.

5 Proof of Theorem[1.4

Fix a € (1,¢) such that (1*)? < 0y, and consider the Lyapunov type property with constants
0, and C, from Proposition We make use of Section 2 in [2]. In a first step, we check
that Assumption E therein (recalled in the Appendix below) holds true for the process under
consideration. In a second step, we prove (6), (7) and (8) and (9) using the results of [2].

Step 1. Assumption (E) holds true. Fix 0 € (04,0p). As £ is strictly positive on Rf \ {0} and
positively homogeneous, we can fix r; = p large enough so that Q,(z) = ch—aea forall |z| = 1y, so
that

E,(Qu(Z1) <0,Q4(2) + Co<01Qu(2), VYzeNP suchthat|z|=r;. 29)
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Letusset K = {z e NP\ {0}, |z| < r1} and ¢ = Q,/infQ, (note that infQ, > 0 by Assumption (P)).
We deduce from the irreducibility and aperiodicity properties that there exists n; = 0 such
that

c1:= inf Py(Z, =y)>0. 30)
x,yeK

Setting v =0(1,...1), this entails property (E1).

We have infg; = 1, so that the first line of (E2) is satisfied. Moreover, according to (29), the
third line of (E2) also holds true.

Choosing 6, € (01,6y), we deduce from the definition of 8y and the irreducibility of Z that

+00,
n—+oo

02_" min P, (Z, #0)
iefl,...,p}
where e; is the i*"* element of the canonical basis of N”. Since, by the super-additivity of ¢, the
process Z is stochastically non-decreasing in the initial condition and since, for all z € N? \ {0},
there exists i € {1,..., p} such that z = ¢;, we deduce that

0;," inf P,(Z,#0)=60," min P, (Z, #0) +00.
iefl,...,p

zeNP\ (0} H—too

Let n = 1 be large enough so that 6, " inf enp\ 0} P2 (Z, # 0) = 1, and set, for all z € NP \ {0}
1 n-1 k
@2(2) = P — Z 92_ P,(Zi #0).
Zk:o 02 k=0

We have, for all z € N” \ {0} and using the Markov property at time 1,

n-l1 k n-1 .

(Z 0, )Ez((PZ(Zl)lZl;éo) =) 0;"P.(Zks1 #0)
k=0 k=0

n
=0, ) 0;"P.(Z #0)
k=1

n-1
=6, (Z ez‘k) 2(2) +02(0;"P(Z, #0)— 1)
k=0

n-1
> 6, (Z 055 p2(2).

k=0

As a consequence the second and fourth lines of (E2) are satisfied. Note also that we have
infyevioy 2 = m.

For all x,y € K and n = 0, we have, using the Markov property at time n; and the fact that
P, (Z, #0) is non-increasing in n (as {0} is absorbing),

Px(Zn#0) =2Px(Znyn, #0) Z2Px(Zp, = y) Py(vanl—nl Z0)=c I]:Dy(Zn #0).

This proves (E3).
Finally (E4) holds true since we assumed that the process Z is aperiodic and irreducible.
We have thus proved that Assumption (E) holds true for Z absorbed when it leaves N7 \ {0}.
This concludes the first step.

Step 2. Conclusion of the proof. Theorem 2.1 in [?] implies that there exists a unique quasi-
stationary distribution vs in .4 (Q,) and that (8) holds true (using the fact that in our case, ¢»
is lower bounded away from 0). Theorem 2.3 in this reference also implies that there exists an
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associated non-negative eigenfunction s € L*°(Q,) with eigenvalue 6gs > 0, where s is the
absorption parameter associated to v(s, such that infx nos > 0 and

L*(Qa)

n—-+oo

0osP-(Zn #0) 1qs(). €29)

Since the process is irreducible, for all z € NP\{0}, there exists n = 0 such thatP,(Z, =(1,...,1)) >
0 and hence

QZSUQS(Z) =E:(ngs(Zn)lz,20) =ngs((,..., 1P (Z, =(1,...,1)) >0,

so that 1¢g is positive. We thus proved (6) (for the absorption parameter 6,5 which we prove
below to be equal to 8y). Finally, since ¢ is super-additive, Hég[FDZ(Zn # 0) and hence 7n¢s in-
creases with z, so that n¢gs is lower bounded away from 0. Corollary 2.7 in [?] shows that
holds true, and, taking f = 1, also implies that 8ps = 0y. Finally, (9) is an immediate conse-
quence of Corollary 2.11 in [2]. This concludes the proof of Theorem|[1.4]

A Sufficient criterion for the exponential convergence to a quasi-sta-
tionary distribution

In Section 2 of [?], the authors state that Assumption (E) is sufficient to prove exponential con-

vergence toward a quasi-stationary distribution. Let us recall this assumption, with the nota-

tions and settings of the present paper.

In what follows, we consider a process (Z;) ,en €Volving in a measurable state space EU {0},
where 0 ¢ E is an absorbing point.

Assumption (E). There exists a positive integer n;, positive real constants 61,605, c1, ¢z, c3, two
functions ¢1, ¢, : E — R, and a probability measure v on a measurable subset K c E such that

(E1) (Local Dobrushin coefficient). Vz € K,

P.(Zp, €)=z c1v(-NnK).

(E2) (Global Lyapunov criterion). We have 0; < 6, and

infg(z) =1, supg;(z) <oo
z€E zeK

inf @2 (z) >0, supp,(z) <1,
zeK z€E
Ez(@1(Z1)12,20) <0191(2) + 21k (2), VZEE
[Ez((pZ(ZI)lZlyéO) = 92(,02(2), VzeE.
(E3) (Local Harnack inequality). We have

SupyEKPy(Zn #0)
sup - <
nez, lnnyK Py (Zn # 0)

C3.

(E4) (Aperiodicity). For all z € K, there exists n4(z) such that, for all n = n4(z),

P,(Z,€K)>0.
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Our aim is to show that the condition involving the function ¢, can be replaced by a condi-
tion involving 6y, where

6o = supsup{f >0, l%minfe_"Pz(Zn #0) > 0}, 32)
—+00

zZeE

More precisely, we consider the following assumption.
(E2’) We have 6; <6y and

infp;(2) =1, supg;(z) <oo
z€E zeK

Ez(p1(Z£1)12,20) < 0191(2) + 21k (2), VZ € E. (33)

Proposition A.1. Assume that there exists a positive integer ny, positive real constants01, cy, ¢, c3,
a function @1 : E — R, and a probability measurev on a measurable subset K c E such that (El),
(E’2), (E3) and (E4) hold true. Then, for any@, € (01,0y), there exists @, such that Assumption (E2)
holds true.

Proof. Inafirststep, we prove that, for any 0> € (61,6y), there exists n = 1 such thatinf,ex 0, "P.(Z, €
K) = 1. In a second step, we conclude by building a function ¢, which satisfies Assump-
tion (E2).

Step 1. Assume on the contrary that there exists 0, € (61,0) such that, forall n = 1, infcx 0, "P,(Z;, €
K) < 1. Then, using (E1), we deduce that, for all n = n,,

1> inf 03P (Zy € K) 2 0," 1Py (Zy-n, € K)
ZE

and hence that, for all n = 0,

ny

0
Py(Zy € K) < 2-01.
C1
Applying iteratively, we deduce that, forall z€ E, forall n = 1,
n
Eo(@1(Zn)1z,20) <07 @1(2)+¢2 Y 07 *Po(Z 1 € K).
k=1

Integrating with respect to v and using the two previous inequalities, we get

I’ll—l

n n 9
Ev(@1(Zn)12,20) <OV +c2 Y 07 Py (Z_1 € K) <0 vip) + 2 Y 07 F 20 05 < C'0y,
k=1 k=1 1

(34)

for some constant C’ where we used the fact that v(¢p;) < supg ¢ < +oo and 6; < 0.
For all z € E and all n = 0, we have, denoting 7x = min{k =0, Z; € K} and using the strong
Markov property at time 7,

n
P2(Zy #0) S Ez(01(Zn)1 2,201 n<r) + ) P(Tk = k)supP,(Z,,_ # 0)
k=0 yeK

n
<07p1(2)+ Y Po(Tk = K)csPy(Zy—i #0),
k=0
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where we used for the first term in the right hand side, and (E3) for the second term. Since
we also have, by for all k =2 and trivially for k =1,

Ptk = k) <P, (Zk_1 20, k—=1<Tg) <Ez(p1(Zi-D)1 2 201 k-1<1) <05 11(2),
and since Py (Z,_ # 0) < Ey(¢1(Z,-1)1z, ,+3), we deduce from the previous inequality and
from that
n
P.(Zy#0) < |07+ 05 1esC'027% | 1 (2).
k=0

In particular, for all z € E, for all 8 > 6, > 64,
H_an(Zn # a) - 0»
n—+oo

then, by definition of 6y, we get 8y < 8,, which contradicts assumption 6, € (61, 6y).
This concludes the proof of our first step: for any 0, € (61,0y), there exists n = 1 such that
infoex 0,"P,(Z, € K) = 1.

Step 2. Fix 0; € (01,00) and let n > 1 such that inf,ex 0, "P.(Z, € K) = 1, and define the function
n—1 "
¢2:2€ E—Cp, Y 05 P (Z; € K)
k=0
-0

-1
with Cp, := (i_—ez) . Then, inf,ex ¢2(2) > 0 and sup . ¢2(2) < 1. In addition,

n—-1 n
Ez(02(Z1)17,29) = Co, 3, 05 P2(Zis1 € K) = Cp,02 Y 0, P (Zx € K)
k=0 k=1
=022(2) + Cy,02 (0, "Po(Z, € K) — 1k (2)).

Since 92_”|]3’Z(Zn € K) —1x(2) = 0 for all z € K (by definition of n) and for all z € E\ K (since for
such z, we have 1x(z) = 0), we deduce that

Ez(p2(Z£1)17,20) = 02¢2(2), VZz€ E.

This concludes the proof of Proposition[A.1] O
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