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Quasi-limiting behaviour of the sub-critical Multitype
Bisexual Galton-Watson Branching Process

Coralie Fritsch1, Denis Villemonais1,2 and Nicolás Zalduendo3

June 27, 2024

Abstract

We investigate the quasi-limiting behaviour of bisexual subcritical Galton-Watson branch-
ing processes. While classical subcritical Galton-Watson processes have been extensively
analyzed, bisexual Galton-Watson branching processes present unique difficulties because
of the lack of the branching property. To prove the existence of and convergence to one or
several quasi-stationary distributions, we leverage on recent developments linking bisex-
ual Galton-Watson branching processes extinction to the eigenvalue of a concave operator.

1 Introduction

We study the quasilimiting behaviour of bisexual subcritical Galton-Watson branching pro-
cesses (bGWbp). This problem has been studied and largely solved decades ago for classical
sub-critical Galton-Watson processes (see e.g. [19, 17, 2]), but remains open for its bisexual
counterpart. Recent developments in the theory of multi-dimensional bGWbp [9] show that,
under appropriate super-additivity assumptions, the extinction of these processes can be char-
acterised by the eigenvalue λ∗ associated to a positively homogeneous concave operator and,
more precisely, by its position relatively to 1: if λ∗ ≤ 1, then the process is eventually extinct
almost surely, while, if λ∗ > 1, then, with positive probability, the process grows exponentially
fast with rate equal or close to λ∗. We refer the reader to the surveys [1, 12, 16] on bGWbp
and [6, 7, 10, 11] for further references. In this paper, we consider the sub-critical case λ∗ < 1
and show that the process admits infinitely many quasi-stationary distributions. Under an ad-
ditional polynomial moment assumption, we prove that the process admits a finitely generated
family of quasi-stationary distributions and, under an additional irreducibility assumption, a
unique quasi-limiting distribution for compactly supported initial distributions. Although this
is similar to the classical Galton-Watson case, λ∗ is not in general equal to the exponential sur-
vival rate of the process.

Let us introduce more formally our settings and assumptions. Consider p, q ∈N= {0,1,2, . . .}
with p, q ≥ 1, a non-negative vector function ξ :Nq →Np such that ξ(0) = 0, and a family of in-
tegrable random vectors V = (Vi ,·)1≤i≤p , taking value in Nq and whose expectation is denoted
by V. We assume that

∑q
i=1Vi , j > 0 for all j ∈ {1, . . . , q}. We consider a process Z = (Zn)n∈N on

Np which represents the random sequence of the number of couples of each type in the pop-
ulation, and which evolves as follows: given Zn−1 = (Zn−1,1, . . . , Zn−1,p ), we define for n ≥ 1 the
vector of children of the n−th generation (Wn,1, . . . ,Wn,q ) by

Wn, j =
p∑

i=1

Zn−1,i∑
k=1

V (k,n)
i , j , for 1 ≤ j ≤ q,
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where (V (k,n))k,n∈N is a family of i.i.d. copies of V . Then, we set the vector of couples in the
n−th generation as

Zn = (Zn,1, . . . , Zn,p ) = ξ(Wn,1, . . . ,Wn,q ).

The function ξ is referred to as the mating function. For instance, if p = 1, q = 2 and if Wn,1 rep-
resents the number of females and Wn,2 the number of males in the n−th generation, classical
choices for ξ are ξ(x, y) = min{x, y} (the perfect fidelity mating function) and ξ(x, y) = x min{1, y}
(the promiscuous mating function). If p = q = 2, then ξ(x, y) = (x, y) corresponds to the classical
bi-dimensional Galton-Watson process.

For any probability measure µ on Np , we use the notation Pµ and Eµ for the law and as-
sociated expectation of the bisexual Galton-Watson process with initial number of couples Z0

distributed according to µ. As usual, we use the notations Px and Ex when µ = δx for some
x ∈Np . Note that ξ(0) = 0 entails that 0 is absorbing for Z .

We are interested in conditions ensuring the existence of a quasi-stationary distribution for
Z . We recall that a quasi-stationary distribution for Z is a probability measure νQS on Np \ {0}
such that, for all n ≥ 0, PνQS (Zn ̸= 0) > 0 and

PνQS (Zn ∈ · | Zn ̸= 0) = νQS(·).

It is known that (we refere the reader to the book [5] and to the surveys [18, 15] for general
properties and further examples), for any quasi-stationary distribution νQS , there exists θQS ∈
(0,1] such that

PνQS (Zn ̸= 0) = θn
QS and PνQS (Zn ∈ ·, Zn ̸= 0) = θn

QSνQS(·).

In what follows, θQS is referred to as the absorption parameter of νQS .
Throughout the paper, we make the assumption that ξ is super-additive and sub-affine:

Assumption (S). There exists α,β ∈Rp
+ such that

α|x1 +x2|+β≥ ξ(x1 +x2) ≥ ξ(x1)+ξ(x2), ∀x1, x2 ∈Nq , (1)

where | · | is the ℓ1-norm.

This assumption implies that

M(z) = lim
k→∞

ξ(⌊kzV⌋)

k
, ∀z ∈Rp

+

is well defined, bounded over S := {
z ∈Rp

+, |z| = 1
}
, positively homogeneous (i.e. M(az) =

aM(z) for all a > 0 and all z ∈ Rp
+) and concave. We refer the reader to Section 3 in [9], where

other properties of this functional are derived. In addition, we assume that

Assumption (P). M is primitive, which means that there exists n0 ≥ 1 such that Mm(z) > 0 for
all m ≥ n0 and z ∈Rp

+ \ {0}, where Mm is the m−th iterate of M.

In particular, this entails that there exists λ∗ > 0 and z∗ ∈S∗ := {
z ∈ (R+ \ {0})p , |z| = 1

}
such

that the limit

lim
n→∞

Mn(z)

(λ∗)n =P (z)z∗ (2)

exists, where P : Rp
+ → R+ is strictly positive on Rp

+ \ {0}, positively homogeneous and concave
(see [13] for a general development on this theory and Section 4.1 of [9] for an application
to the context of bGWbp). In addition, according to Lemma 37 in [9], ((λ∗)−nP (Zn))n∈N is a
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supermartingale. In particular, λ∗ < 1 implies that (Zn)n∈N goes extinct almost surely for any
initial distribution (see [9] for details).

Our first result states that, in the sub-critical case, the process admits infinitely many quasi-
stationary distributions, indexed by θ ∈ [υ0,1), where

υ0 := inf{υ> 0, such that Ez (υ−T0 ) <+∞, ∀z ∈Np } (3)

with T0 the extinction time.
We also define the exponential convergence parameter θ0 by

θ0 = sup
z∈Np \{0}

sup{θ > 0, liminf
n→+∞ θ−nPz (Zn ̸= 0) > 0}, (4)

with sup;=−∞.

Proposition 1.1. If Assumptions (S) and (P) hold true, then we have θ0 ≤ υ0 ≤λ∗.

Note that, under the assumptions of Theorem 1.3, we have υ0 = θ0 (take f ≡ 1 in (5)).

Theorem 1.2. If Assumptions (S) and (P) hold true and λ∗ < 1, then Z admits a continuum
of linearly independent quasi-stationary distributions. More precisely, for any θ ∈ [υ0,1), there
exists a quasi-stationary distribution with absorption parameter θ.

The proofs of Proposition 1.1 and Theorem 1.2 are detailed in Section 2, where we first state
and prove a general result ensuring the existence of infinitely many quasi-stationary distribu-
tions for Feller processes, and then apply it to the sub-critical bGWbp. We emphasize that in
the classical Galton-Watson case, much more precise results are known (we recommend to the
interested reader the paper [14], where the authors proves a complete result for Galton-Watson
processes and gives, in Section 3, a detailed exposition of the history of the problem, with its
link to the identification of the Martin boundary of the classical Galton-Watson branching pro-
cess). We also refer the reader to [8], where a general existence result for quasi-stationary dis-
tributions is obtained by a renewal/compactness argument.

We consider now the problem of existence of a finitely generated set of quasi-stationary
distributions satisfying an integrability assumption and of convergence of conditional laws to-
ward a quasi-stationary distribution. Since M is concave onRp

+, it is locally Lipschitz onS∗. We
add the following regularity assumption on M, where we use the notation, for all I ⊂ {1, . . . , p},

Z I := {x ∈S such that xi > 0 ∀i ∈ I , xi = 0 ∀i ∉ I },

where, here and across the paper, xi denotes the i th coordinate of x.

Assumption (C). For all I ̸= ;, M is uniformly continuous over Z I .

We also consider the following moment condition, based on the exponential convergence
parameter θ0.

Assumption (M). There exists ς> 1 such that (λ∗)ς < θ0 and such that E(V ς
i , j ) <+∞ for all i , j .

We emphasize that Assumption (M) implies λ∗ < 1, so that the following results applies
in the setting of the sub-critical bGWbp. This assumption also requires implicitly that θ0 > 0,
which is the case in many situations.

The proof of the following theorem is detailed in Section 4. It is based on [3] and make use
of the following function and measure spaces. Given a positive function ϕ onNp \ {0}, we set

L∞(ϕ) := { f :Np \ {0} →R, ∥ f /ϕ∥∞ <+∞}, endowed with the norm ∥ f ∥ϕ = ∥ f /ϕ∥∞
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and
M (ϕ) := {µ non-negative measure onNp \ {0} such that µ(ϕ) <+∞}

where µ(ϕ) = ∫
Np \{0}ϕ(z)µ(dz).

Finally, when Assumption (M) is enforced, we define, for all a ∈ (1,ς) such that (λ∗)a < θ0,
the function Qa :Np \ {0} −→R+ by

Qa(z) =P (z)a .

Note that infQa > 0.
In the following theorem, we say that a process Z is aperiodic if, for all z ∈Np , eitherPz (∃n ≥

1, Zn = z) = 0 or there exists n0(z) ≥ 0 such that, ∀n ≥ n0(z), Pz (Zn = z) > 0.

Theorem 1.3. We assume that Assumptions (S), (P), (C) and (M) are in place and that the process
Z is aperiodic. We fix a ∈ (1,ς) such that (λ∗)a < θ0.

Then there exist ℓ≥ 1 and a family of quasi-stationary distributions ν1, . . . ,νℓ ∈M (Qa) with
absorption parameter θ0 for Z such that any quasi-stationary distribution ν ∈ M (Qa) with ab-
sorption parameter θ0 for Z is a convex combination of ν1, . . . ,νℓ. In addition, there exists a
bounded function j : Np \ {0} → N and there exists, for each i ∈ {1, . . . ,ℓ}, a non-negative non-
identically zero function ηi ∈ L∞(Qa) such that, for all f ∈ L∞(Qa), all n ≥ 1 and all z ∈Np \ {0},∣∣∣∣∣θ−n

0 n− j (z)Ez ( f (Zn)1Zn ̸=0)−
ℓ∑

i=1
ηi (z)νi ( f )

∣∣∣∣∣≤αnQa(z)∥ f ∥Qa , (5)

where αn goes to 0 when n →+∞ which does not depend on f nor on z (but may depend on a).
In addition, the set E := {z ∈Np \ {0},

∑ℓ
i=1ηi (z) = 0} is finite, and any quasi-stationary dis-

tributions for Z in M (Qa) with absorption parameter strictly smaller than θ0 is supported by E.
Finally, there is no quasi-stationary distribution for Z in M (Qa) with absorption parameter

strictly larger than θ0 and, for all z ∈ Np \ {0}, the conditional distribution Pz (Zn ∈ · | Zn ̸= 0)
converges in M (Qa).

Under the additional assumption that the process Z is irreducible (meaning that ∀x, y ∈
Np \ {0}, there exists n ≥ 0 such that Px (Zn = y) > 0), one obtains that, for all z ∈Np \ {0},

θ0 = sup{θ > 0, liminf
n→+∞ θ−nPz (Zn ̸= 0) > 0},

does not depend on z. In the irreducible case, we have the following result, proved in Section 5.

Theorem 1.4. Assume that Assumptions (S), (P), (C) and (M) hold true and that the process Z is
aperiodic and irreducible. We fix a ∈ (1,ς) such that (λ∗)a < θ0.

Then the process Z admits a unique quasi-stationary distribution νQS in M (Qa). Its absorp-
tion parameter θQS is equal to θ0 and there exists a unique positive function ηQS in L∞(Qa), such
that

PνQS (Zn ̸= 0) = θn
0 and Ez (ηQS(Zn)1Zn ̸=0) = θn

0 ηQS(z), ∀n ≥ 0, z ∈Np \ {0} (6)

and ηQS is lower bounded away from 0. In addition, there exist C > 0 and γ ∈ (0,1) such that, for
any probability measure µ ∈M (Qa) and any function f ∈ L∞(Qa), we have∣∣θ−n

0 Eµ
(

f (Zn)1Zn ̸=0
)−µ(ηQS)νQS( f )

∣∣≤Cγnµ(Qa)∥ f ∥Qa , ∀n ≥ 0 (7)

and ∣∣Eµ (
f (Zn) | Zn ̸= 0

)−νQS( f )
∣∣≤Cγn µ(Qa)∥ f ∥Qa , ∀n ≥ 0. (8)
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Finally, for all probability measure µ ∈M (ηQS),

Pµ (Zn ∈ · | Zn ̸= 0)
T V−−−−−→

n→+∞ νQS , (9)

where T V refers to the total variation convergence.

Theorem 1.4 states the existence and the uniqueness of a quasi-stationary distribution νQS

integrating the Lyapunov function Qa . Moreover, (8) and (9) establish the convergence of the
law of the process conditioning to the non-extinction towards νQS for all initial distribution µ

integrating Qa or the eigenfunction ηQS , with moreover an exponential speed of convergence
for µ integrating Qa . In particular, the convergence towards νQS holds for any Dirac mass µ =
δz , with z ∈ E , meaning that νQS is a Yaglom limit. In addition, (7) gives the convergence of the
law of the process without conditioning. In particular, taking f ≡ 1 in (7) leads to the speed of
convergence of the extinction probability towards 0 at speed exactly θ0.

The proofs of the last two results rely in part on recent advances in the theory of quasi-
stationary distributions, which allow to derive several properties from Foster-Lyapunov type
criteria, given in our case by the following proposition.

Proposition 1.5. If Assumptions (S), (P), (C) and (M) hold true, then, for any a ∈ (1,ς) such that
(λ∗)a < θ0, we have

E(Qa(Z1)1Z1 ̸=0|Z0 = z) ≤ θaQa(z)+Ca , ∀z ∈Np \ {0} (10)

for some constants θa ∈ [0,θ0) and Ca > 0.

Remark 1.1. We already observed that θ0 ≤λ∗. One also checks that, at least under the assump-
tions of Theorem 1.4, if P is not linear, then θ0 <λ∗. Indeed, under these assumptions, let νQS

be the quasi-stationary distribution from Theorem 1.4, so that

θn
0 νQS(P ) = ∑

z∈Np \{0}
νQS({z})Ez (P (Zn)) .

Since under the assumptions of Theorem 1.4, the process is irreducible, the support of νQS is
Np \ {0} and hence P is concave not affine on the support of νQS . Using (8), we deduce that
there exist z0 ∈Np \{0} and n ≥ 1 such that P is concave not affine on the support of Pz0 (Zn ∈ ·),
so that, by Jensen (strict) inequality,

Ez0 (P (Zn)) <P (Ez0 (Zn)) ≤P (Mn(z0)) = (λ∗)nP (z0),

where we used Ez0 (Zn) ≤ Mn(z0) (see Lemma 27 in [9]) and the fact that P is superadditive
(since M is superadditive by Assumption (S) and by definition of P given by (2)) for the last
inequality, and the definition of P (see (2)) for the last equality. Similarly, we have Ez (P (Zn)) ≤
(λ∗)nP (z) for all z ∈Np \ {0}. We conclude that

θn
0 νQS(P ) < ∑

z∈Np \{0}
νQS({z})(λ∗)nP (z) = (λ∗)nνQS(P ).

This implies that θ0 <λ∗ when P is not linear.
It is also known that M(z) = supk≥1

1
k Ekz (Z1) (see Corollary 7 in [9]), and the same calcula-

tion as above shows that, if Ez0 (Z1) <M(z0) for some z0 ∈Np , then θ0 <λ∗ (even if P is linear).

Remark 1.2. When θ0 = λ∗, Assumption (M) requires polynomial moments for V , with expo-
nents that can be arbitrarily close to 1. We leave as an open question whether, in this case,
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L logL type criteria can be obtained, as it is the case in the classical Galton-Watson case (for
which θ0 =λ∗).

In the situation where θ0 < λ∗, one can not choose ς arbitrarily close to 1 in Assump-

tion (M), since it imposes ς > | logθ0|
| logλ∗| . We leave as an open question whether E(V ς

i , j ) < +∞ for

some ς ≤ | logθ0|
| logλ∗| may be sufficient to obtain the conclusion of Theorem 1.3 or 1.4, at least in

some particular cases.

In Section 2, we state a general result for the existence of infinitely many quasi-stationary
distributions, then we prove Proposition 1.1 and Theorem 1.2. Section 3 is devoted to the proof
of Proposition 1.5. Theorems 1.3 and 1.4 are proved in Sections 4 and 5 respectively. For the
proofs of the last two theorems, we make use of Assumption (E) of [4] which is recalled in Ap-
pendix. In Appendix we also state a general result implying Assumption (E) of [4].

2 A simple criterion for the existence of infinitely many quasi-sta-
tionary distributions and application to the bGWbp

In Section 2.1, we first state and prove a result on the existence of a continuum of quasi-stationary
distributions for general sub-Markov kernels on Polish spaces. In Section 2, we apply this result
to the bGWbp.

2.1 General setting

Let (X ,d) be a Polish space endowed with a σ-algebra X that contains the toplogy induced
by d . Let K be a sub-Markov kernel on X , which means that K is a non-negative kernel on X
such that K (x, X ) ≤ 1 for all x ∈ X . We assume that K has Feller regularity, meaning that the
associated operator K : f 7→ K f := ∫

X K (·,dy) f (y) is a well defined functional from Cb(X ) to
Cb(X ) (the set of continuous bounded functions on X ). We say that a probability measure µ on
X is a quasi-stationary distribution for K if, for some λ ∈ (0,1],∫

X
µ(dx)K (x, ·) =λµ(·).

Our aim is to prove that K admits infinitely many quasi-stationary distributions under mild
assumptions.

In the following theorem, we say that a sequence (xn)n∈N ∈ XN tends to infinity if it eventu-
ally leaves any compact set: for all compact subset L of X , there exists nL ≥ 0 such that, for all
n ≥ nL , xn ∉ L. Similarly, we say that a real functional on X tends to infinity when x →+∞ if,
for all R > 0, there exists a compact subset LR of X such that the functional is bounded below
by R on X \ LR . We also define the iterated kernels K n as usual by

K 0(x, A) = 1x∈A , K ℓ+1(x, A) =
∫

X
K ℓ(x,dy)K (y, A) ∀x ∈ X , A ∈X ,ℓ≥ 0.

Theorem 2.1. Assume that there exists a > 0 and (xn)n∈N ∈ XN tending to infinity such that

∞∑
ℓ=0

a−ℓK ℓ(xn , X ) <+∞, ∀n ≥ 0 (11)

and let

a0 := inf{a > 0, s.t. there exists (xn)n∈N ∈ XN tending to infinity such that (11) holds true.} (12)
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Assume also that there exists a1 > a0 such that

∞∑
ℓ=0

a−ℓ
1 K ℓ(x, X ) −−−−−→

x→+∞ +∞. (13)

Then K admits an infinite family of quasi-stationary distributions (µλ)λ∈[a0,a1), with
∫

X µλ(dx)K (x, ·) =
λµλ for all λ ∈ [a0, a1).

Proof of Theorem 2.1. Fix λ ∈ (a0, a1). Since λ > a0 then there exists (xn)n∈N ∈ XN tending to
infinity such that, for all n ≥ 0, the probability measure

µλ,n =
∑∞
ℓ=0λ

−ℓK ℓ(xn , ·)∑∞
ℓ=0λ

−ℓK ℓ(xn , X )

is well defined. We have, for all n ≥ 0,

µλ,nK (·) :=
∫

X
µλ,n(dx)K (x, ·) =

∑∞
ℓ=0λ

−ℓK ℓ+1(xn , ·)∑∞
ℓ=0λ

−ℓK ℓ(xn , X )

= λ
∑∞
ℓ=0λ

−(ℓ+1)K ℓ+1(xn , ·)∑∞
ℓ=0λ

−ℓK ℓ(xn , X )

= λ
∑∞
ℓ=0λ

−ℓK ℓ(xn , ·)−λδxn (·)∑∞
ℓ=0λ

−ℓK ℓ(xn , X )
(14)

≤λµλ,n(·).

We deduce that, for all ℓ≥ 1,

µλ,nK ℓ ≤λℓµλ,n .

In particular, we obtain that∫
X
µλ,n(dx)

∞∑
ℓ=0

a−ℓ
1 K ℓ(x, X ) =

∞∑
ℓ=0

a−ℓ
1 µλ,nK ℓ(X ) ≤

∞∑
ℓ=0

(
λ

a1

)ℓ
= a1

a1 −λ
. (15)

Since we assumed that
∑∞
ℓ=0 a−ℓ

1 K ℓ(x, X ) goes to infinity when x → ∞, this and Prokhorov’s
Theorem imply that the sequence of measures (µλ,n)n∈N is relatively compact for the weak con-
vergence topology.

Let µλ be any adherent point of (µλ,n)n∈N, and observe that µλ is a probability measure.
Since K is assumed to preserve bounded continuous functions, we deduce that, up to a subse-
quence and for the weak convergence topology,

µλK = lim
n→+∞µλ,nK .

But we computed (see (14))

µλ,nK =λµλ,n − λδxn∑∞
ℓ=0λ

−ℓK ℓ(xn , X )
,

where, by assumption,

∞∑
ℓ=0

λ−ℓK ℓ(xn , X ) ≥
∞∑
ℓ=0

a−ℓ
1 K ℓ(xn , X ) −−−−−→

n→+∞ +∞.
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We deduce that limn→+∞µλ,nK = limn→+∞λµλ,n , which is equal to λµλ. We thus proved that
µλK = λµλ, which means that µλ is a quasi-stationary distribution for K with absorption pa-
rameter λ.

It remains to prove that there exists a quasi-stationary distribution with absorption param-
eter a0. Since the set of probability measures µλ, λ ∈ (a0, (a0 +a1)/2), satisfies (15) with a uni-
form upper bound, we deduce that it is relatively compact. One checks as above that any limit
point, when λ→ a0, of this family is a quasi-stationary distribution for K with absorption pa-
rameter a0. This concludes the proof of Theorem 2.1.

Remark 2.1. One easily checks from the proof that the condition that K preserves bounded
continuous functions is stronger than necessary. Actually, it would be sufficient to assume
that K sends a generating family of bounded continuous functions into a family of bounded
continuous functions. For instance, it sufficient to assume that K sends compactly supported
continuous functions to bounded continuous functions.

Remark 2.2. One can easily extends this result to the general setting of non-conservative ker-
nels K . More precisely, assume that there exists a positive function h on X such that K h ≤ ch
for some c > 0. Then the kernel defined by

K̃ (x, A) = 1

ch(x)

∫
A

K (x,dy)h(y), ∀x ∈ X , ∀A ∈X ,

is a sub-Markov kernel to which Theorem 2.1 may apply. Note that the assumptions would
translate into: for any continuous function f : X → R, x ∈ X 7→ 1

h(x)

∫
X K (x,dy)h(y) f (y) is con-

tinuous; for all n ≥ 0,
∑∞
ℓ=0 a−ℓ

0

∫
X K ℓ(xn ,dy)h(y) <+∞ and 1

h(x)

∑∞
ℓ=0 a−ℓ

1

∫
X K ℓ(x,dy)h(y) −−−−−→

x→+∞
+∞. In addition, the resulting quasi-stationary measures may not be a finite measure if h is not
lower bounded (we only obtain that

∫
X µλ(dy)h(y) <+∞ for allλ ∈ [a0, a1)). On the other hand,

if h is lower bounded away from 0, then µλ is a finite measure.

2.2 Proof of Proposition 1.1 and Theorem 1.2

In the context of bGWbp, we choose K (x,dy) = Px (Z1 ∈ dy, Z1 ̸= 0) for all x ∈ X = Np \ {0}. We
first prove Proposition 1.1, as well as that a0 ≤ υ0, where a0 is defined in Theorem 2.1 and υ0 is
defined in (3). Then we prove Theorem 1.2.

First, from their definitions, it is clear that υ0 ≤ 1 and θ0 ≤ 1. For all θ < θ0, there exist
v ∈ (θ,1) and z ∈ Np \ {0} such that liminfn→∞ vnPz (Zn ̸= 0) > 0. For such v and z, we have
Ez (v−T0 ) =∑∞

ℓ=0 v−ℓPz (T0 = ℓ) with

liminf
ℓ→∞

v−ℓPz (T0 = ℓ) = liminf
ℓ→∞

v−ℓ (Pz (Zℓ−1 ̸= 0)−Pz (Zℓ ̸= 0))

= (v−1 −1)liminf
ℓ→∞

v−ℓPz (Zℓ ̸= 0) > 0.

Then Ez (v−T0 ) =∞ and hence v ≥ υ0. We deduce that υ0 ≥ θ and hence υ0 ≥ θ0.
In order to prove that a0 ≤ υ0, we first observe that, for all a > v > υ0, for all z ∈Np \ {0} and∑

ℓ≥0
a−ℓK ℓ(z, X ) = ∑

ℓ≥0
a−ℓPz (T0 ≥ ℓ+1) ≤ ∑

ℓ≥0
a−ℓvℓ+1Ez (v−T0 ) ≤Ca,vEz (v−T0 ) <∞.

This shows that a0 ≤ υ0.
Using the fact that P is lower bounded away from 0 onNp \{0} (as P is strictly positive and

positively homogeneous) and that K vanishes at 0, we deduce that there exists a constant c > 0
such that, for all ℓ≥ 1 and all x ∈Np ,

K ℓ(x, X ) ≤ 1

c
Ex (P (Zℓ)) .
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In addition, (λ∗)−nP (Zn) is a supermartingale (see Lemma 37 in [9]), so that, for any a ∈ (λ∗,1),

∞∑
ℓ=0

a−ℓK ℓ(x, X ) ≤ 1

c

∞∑
ℓ=0

a−ℓ(λ∗)ℓP (x) <+∞.

This shows that υ0 ≤λ∗, then Proposition 1.1 holds.
Since M is primitive by Assumption (P), Theorem 6 in [9] implies that, for all z ∈ Np \ {0},

there exists c0 > 0 and k0 ≥ 1 such that for all k ≥ k0

P(Zn0 ≥ c0(1, . . . ,1) | Z0 = kz) > 0.

Applying this result for z taken in each element of the canonical basis of Np and using the
super-additivity of ξ, one deduces that there exist uniform constants r > 0 and c ′0 > 0 such that

inf
|z|>r

P(Zn0 ≥ c ′0(1, . . . ,1) | Z0 = z) > 0.

Using the Markov property and by iteration, this implies that, for all n ≥ 1,

Pz (Zn = 0) −−−−−→
|z|→+∞

0.

In particular, we deduce from Fatou’s Lemma that, for any a1 ∈ (0,1),

∞∑
ℓ=0

a−ℓ
1 Pz (Zℓ ̸= 0) −−−−−→

|z|→+∞
+∞.

and hence (13) holds true for any a1 ∈ (a0,1) ⊃ (υ0,1).
We deduce that Theorem 2.1 applies to the subcritical bGWbp. Since quasi-stationary dis-

tributions with different absorption parameters are linearly independent, this proves Theo-
rem 1.2.

3 Proof of Proposition 1.5

We start with the following technical lemma on the regularity of P .

Lemma 3.1. Assume that Assumptions (S), (P), (C) and (M) hold true. Then, for all I ⊂ {1, . . . , p},
I ̸= ;, the operator P restricted to Z I is uniformly continuous.

Proof of Lemma 3.1. Since P ◦Mn0 = (λ∗)n0 P , it is sufficient to prove that P ◦Mn0 is uniformly
continuous on Z I . But Mn0 (Z I ) ⊂ Mn0 (S) which is relatively compact in (R+ \ {0})p (since
M is primitive and bounded by assumption), and P is concave and thus locally Lipschitz in
(R+ \ {0})p , thus it is sufficient to prove that Mn0 is uniformly continuous on Z I .

Let us first observe that M is locally uniformly continuous on (ε+R+ \ {0})Z I for any ε> 0,
since M is uniformly continuous on Z I , bounded on S ⊃ Z I , and positively homogeneous.
In order to conclude, it remains to prove that there exist J ⊂ {1, . . . , p} and ε > 0 such that
M(Z I ) ⊂ (ε+R+ \ {0})Z J (the result then follows by induction). Let x ∈ Z I and let J = {i ∈
{1, . . . , p}, M(x)i > 0}. Then, for all y ∈Z I , there exists δ> 0 such that δx ≤ y , so that, using the
fact thatM is increasing and homogeneous,M(y) ≥ δM(x) and hence J ⊂ {i ∈ {1, . . . , p}, M(y)i >
0}. Reciprocally, {i ∈ {1, . . . , p}, M(y)i > 0} ⊂ J , so that M(y) ∈R+Z J . Since on S, the norm of M
is bounded from below away from 0 and from above, we have M(Z I ) ⊂ [ε1,ε2]Z J for some
ε1,ε2 > 0. This implies that M2 is uniformly continuous on Z I . We conclude by iteration.
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Let us now proceed with the proof of Proposition 1.5 in two steps: first we show that, for all
z ∈Rp

+ \ {0},

limsup
n→+∞

1

|n|a E
[
Qa(Z1)1Z1 ̸=0 | Z0 = ⌊nz⌋]= (λ∗)aQa(z); (16)

Second, we extend this to a uniform convergence in z by using the regularity of P .

Step 1. As P is positively homogeneous, we have for any z ∈Rp
+ \ {0},

E
[
Qa(Z1)1Z1 ̸=0 | Z0 = ⌊nz⌋]= E[(

P ◦ξ
(

p∑
i=1

⌊nzi ⌋∑
k=1

V (k,1)
i ,·

))a]

= |n|aE
[(

P

(
1

n
ξ

(
p∑

i=1

⌊nzi ⌋∑
k=1

V (k,1)
i ,·

)))a]
.

According to Lemma 30 in [9], we have

1

n
ξ

(
p∑

i=1

⌊nzi ⌋∑
k=1

V (k,1)
i ,·

)
a.s−−−−−→

n→+∞ M(z).

Let I ⊂ {1, . . . , p} be such that M(z) ∈ R∗+Z I , then the above convergence entails that, almost

surely, for n large enough, 1
n ξ

(∑p
i=1

∑⌊nzi ⌋
k=1 V (k,1)

i ,·
)
∈ R∗+Z J for some J ⊃ I . Using Corollary 7

in [9], we have, for all n ≥ 1,

M(z) ≥ 1

n
E [Z1 | Z0 = ⌊nz⌋] = 1

n
E

[
ξ

(
p∑

i=1

⌊nzi ⌋∑
k=1

V (k,1)
i ,·

)]
,

so that we also have J ⊂ I almost surely.
Since P restricted toR∗+Z I is continuous since it is concave, and since M◦P =λ∗P by (2),

we deduce that

P

(
1

n
ξ

(
p∑

i=1

⌊nzi ⌋∑
k=1

V (k,1)
i ,·

))
a.s−−−−−→

n→+∞ P (M(z)) =λ∗P (z).

In addition, since ξ is sub-affine, since 1
n

∑p
i=1

∑⌊nzi ⌋
k=1 V (k,1)

i ,· is bounded in Lς by Assumption (M)

and P being positively homogeneous, we deduce that P
(

1
n ξ

(∑p
i=1

∑⌊nzi ⌋
k=1 V (k,1)

i ,·
))

is also bounded

in Lς (where ς> a), and we deduce from the dominated convergence theorem that

E

[(
P

(
1

n
ξ

(
p∑

i=1

⌊nzi ⌋∑
k=1

V (k,1)
i ,·

)))a]
−−−−−→
n→+∞ (λ∗)aP (z)a .

We deduce that (16) holds true. This concludes the first step of the proof.

Step 2. Fix a non-empty I ⊂ {1, . . . , p}. Let ε1 > 0 be a small number that will be fixed later and
let z1, . . . , zm1 ∈ (1+ε1)Z I , m1 = m(ε1) ≥ 1, be such that, for all z ∈Z I , there exists k = k(z,ε1) ∈
{1, . . . ,m1} such that z ≤ zk and |z−zk | ≤ 2ε1. The existence of this finite family z1, . . . , zm1 easily
follows from a compactness argument. Let n1 = n1(ε1) be large enough so that, for all n ≥ n1,
for all k ∈ {1, . . . ,m1},

1

|n|a E
[
Qa(Z1)1Z1 ̸=0 | Z0 = ⌊nzk⌋

]
≤ (1+ε1)(λ∗)aP (zk )a .
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Then, since Qa is non-decreasing and since Z1 (with Z0 = ⌊nz⌋) is stochastically non-decreasing
with respect to z, we deduce that, for all n ≥ n1 and all z ∈Z I ,

1

|n|a E
[
Qa(Z1)1Z1 ̸=0 | Z0 = ⌊nz⌋]≤ (1+ε1)(λ∗)aP (zk(z,ε1))a

≤ (1+ε1)(λ∗)aP (z)a

(
sup

x,y∈Z I ,|(1+ε1)x−y |≤2ε1

P ((1+ε1)x)

P (y)

)a

.

(17)

Since P is uniformly continuous on Z I and lower bounded away from 0 on Z I , we deduce that
there exists ε1 small enough so that

θa := (1+ε1)a+1(λ∗)a

(
sup

x,y∈Z I ,|(1+ε1)x−y |≤2ε1

P (x)

P (y)

)a

< θ0.

This and (17) implies that

1

|n|a E
[
Qa(Z1)1Z1 ̸=0 | Z0 = ⌊nz⌋]≤ θaP (z)a .

Since any z ∈Np \ {0}∩ (R+ \ {0})Z I can be written as n z
|z| with n = |z| and z

|z| ∈ Z I , we deduce
that, for any such z with |z| ≥ n1,

1

|z|a E
[
Qa(Z1)1Z1 ̸=0 | Z0 = z

]≤ θaP (z/|z|)a .

Finally, the homogeneity of P allows us to conclude that Proposition 1.5 holds true for all z ∈
Np \ {0}∩ (R+ \ {0})Z I . Since there are only finitely many subsets I of {1, . . . , p}, Proposition 1.5
holds true for all z ∈Np \ {0}.

4 Proof of Theorem 1.3

The proof of the first statement relies on Theorem 4.1 [3] and in part on some arguments of the
proof of Theorem 5.1 therein. The main additional difficulty is that our reference exponential
parameter θ0 is a priori larger than the one considered in this reference. We overcome this
difficulty in Lemma 4.1 below. Another difficulty is that a key part of the argument relies on the
assumption (E1-4) in [4], which does not apply directly when the Lyapunov parameter θa (in
Proposition 1.5) is only assumed strictly smaller than θ0. To overcome this difficulty, we prove
in Proposition A.1 that this last condition actually entails the assumption (E1-4) in [4].

Fix a ∈ (1,ς) such that (λ∗)a < θ0 and set H = Qa/infQa . According to Proposition 1.5 and
since H(z) tends to ∞ when |z|→+∞, there exists θa < θ0 such that

limsup
|z|→+∞

Ez (H(Z1)1Z1 ̸=0)

H(z)
≤ θa < γ := (θa +θ0)/2 < θ0. (18)

In particular, there exist only finitely many communication classes E1, . . . ,Ek0 , k0 ≥ 1, for the
process (Zn)n∈N such that

∀i ∈ {1, . . . ,k0}, ∃z ∈ Ei , such that
Ez (H(Z1)1Z1 ̸=0)

H(z)
> γ.

Note that k0 ̸= 0 (otherwise θ0 ≤ γ). For all i ∈ {1, . . . ,k0}, we define Hi = H1Ei and denote by
Y (i ) the process with state space Ei ∪ {0} defined by

Y (i )
n =

{
Zn if Zn ∈ Ei

0 otherwise.
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For all i ∈ {1, . . . ,k0}, we denote by θ0,i the absorption parameter of Y (i ):

θ0,i = sup
z∈Ei

sup{θ > 0, liminf
n→+∞ θ−nPz (Y (i )

n ̸= 0) > 0}

and we set

θ̄ = max
i∈{1,...,k0}

θ0,i .

We assume that E1, . . . ,Ek , k ∈ {1, . . . ,k0}, are the communication classes such that θ0,i = θ̄, so
that maxi≥k+1θ0,i < θ̄.

We define the set

E ′
0 :=Np \

(
{0}∪

k0⋃
i=1

Ei

)
.

By definition of E1, . . . ,Ek0 , we have

∀z ∈ E ′
0,
Ez (H(Z1)1Z1 ̸=0)

H(z)
≤ γ. (19)

In what follows, we make use of the following crucial lemma.

Lemma 4.1. We have θ̄ = θ0.

Proof of Lemma 4.1. Our aim is to show that, for all ρ > θ̄∨γ and all z ∈Np , we have

liminf
n→+∞ ρ−nPz (Zn ̸= 0) = 0. (20)

This shows that θ̄∨γ≥ θ0 and hence θ̄ ≥ θ0, while the converse inequality is trivial, concluding
the proof of Lemma 4.1.

For all i ̸= j ∈ {1, . . . ,k0}, we have

∀z ∈ E j , Pz (∃n ≥ 0, Zn ∈ Ei ) > 0 or ∀z ∈ E j , Pz (∃n ≥ 0, Zn ∈ Ei ) = 0

If the condition on the left is satisfied, we write Ei ≺ E j , otherwise we write Ei ̸≺ E j . This defines
a partial order on {1, . . . ,k0}. For all i ∈ {1, . . . ,k0}, we denote by c(i ) the maximal length of sets
of distinct indices i1 = i , . . . , ic such that Eic ≺ ·· · ≺ Ei2 ≺ Ei1 . We also define, for all ℓ≥ 1, the set

Eℓ
0 := {x ∈ E ′

0, ∃i ∈ {1, . . . ,k0} with c(i ) = ℓ and x → Ei , and x ̸→ E j ∀ j such that c( j ) > ℓ},

where x → Ei means that Px (TEi <∞) > 0, while x ̸→ E j means that Px (TE j <∞) = 0. We also
set

E 0
0 := E ′

0 \∪maxi c(i )
ℓ=1 Eℓ

0 .

We obtain (20) for all Z ∈Np \ {0} by proving that, for any fixed ρ > θ̄∨γ,

Ez (H(Zn)1Zn ̸=0) ≤Cρρ
n H(z), ∀z ∈Np \ {0} (21)

where Cρ does not depend on z. This last inequality is immediate for all z ∈ E 0
0 (see beginning

of Step 1 below) and is proved for all z ∈∈ Ei ∪E c(i )
0 , i ∈ {1, . . . ,k0}, by induction on c(i ).

,

Step 1. We first observe that, for all ℓ≥ 0 and all z ∈ Eℓ
0 , using (19),

Ez

(
H(Zn)1Zn∈Eℓ

0

)
≤ γn H(z) ≤ ρn H(z). (22)
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In particular, since E 0
0 ∪ {0} is a closed set, this shows (21) for all z ∈ E 0

0 .
We now prove that, for all i ∈ {1, . . . ,k0} and all z ∈ Ei ,

Ez (H(Zn)1Zn∈Ei ) ≤Cρn H(z). (23)

In order to do so, we consider the set

Ki = {z ∈ Ei ,
Ez (H(Z1)1Z1 ̸=0)

H(z)
> γ}.

For all z ∈ Ei , since ρ > θ̄ and by definition of θ̄,

liminf
n→+∞ θ−nPz (Y (i )

n ̸= 0) = 0. (24)

Since Ki is finite according to (18), we deduce that there exists a constant C > 0 such that

Pz (Zn ∉ Ei ) =Pz (Y (i )
n ̸= 0) ≤Cρn , ∀z ∈ Ki . (25)

In what follows, the constant C may change from line to line. Moreover, denoting τKi = min{ℓ≥
0, Zℓ ∈ Ki }, we deduce from the definition of H and of Ki that

Pz (Zn ∉ Ei and n < τKi ) ≤ Ez (H(Zn)1Zn∉Ei and n<τKi
) ≤ γn H(z), ∀z ∈ Ei . (26)

Hence, for all z ∈ Ei and all n ≥ 0, we have, using the strong Markov property at time τKi ,

Pz (Zn ∉ Ei ) ≤Pz (Zn ∉ Ei and n < τKi )+
n∑
ℓ=0

Pz (τKi = ℓ) sup
y∈Ki

Py (Zn−ℓ ∉ Ei )

≤ γn H(z)+
n∑
ℓ=0

Pz (τKi = ℓ)Cρn−ℓ

≤ γn H(z)+
n∑
ℓ=0

Pz (Zℓ ̸= 0 and ℓ−1 < τKi )Cρn−ℓ

≤ γn H(z)+
n∑
ℓ=0

γℓ−1H(z)Cρn−ℓ

≤Cρn H(z),

where C may depend on ρ and γ. Finally, iterating (10) and using the last inequality, we deduce
that

Ez (H(Zn)1Zn∉Ei ) ≤ θn
a H(z)+

n−1∑
ℓ=0

Ca

infQa
θn−ℓ−1

a Pz (Zℓ ̸= 0)

≤Cγn H(z)+
n−1∑
ℓ=0

Ca

infQa
γn−ℓ−1CρℓH(z)

≤Cρn H(z),

where C may depend on ρ and γ. This proves (23) for all z ∈ Ei .

Step 2. Assume that there exists c ≥ 0 such that (21) holds true for all z ∈ E 0
0 , . . . ,E c

0 and all z ∈ Ei

with c(i ) ≤ c (Steps 1 shows that this is true for c = 0). If c = maxi∈{1,...,k0} c(i ), then there is
nothing to prove. Otherwise, let i ∈ {1, . . . ,k0} such that c(i ) = c +1.

13



Denote by Ti the first exit time from Ei by (Zn)n∈N and let us use a similar computation as
in the end of Step 1. For all z ∈ Ei and all n ≥ 0, we have

Ez (H(Zn)1Zn ̸=0) = Ez (H(Zn)1Zn∈Ei )+
n∑
ℓ=0

Ex
(
1Ti=ℓEXℓ

(H(Zn−ℓ)1Zn−ℓ ̸=0
)

≤Cρn H(z)+
n∑
ℓ=0

Ex

(
1Ti=ℓCρρ

n−ℓH(Xℓ)
)

where we used (23), the fact that

ZTi ∈ {0}∪ ⋃
ℓ≤c

Eℓ
0 ∪

⋃
c( j )≤c

E j almost surely ,

and the induction assumption. We then obtain

Ez (H(Zn)1Zn ̸=0) ≤Cρn H(z)+
n∑
ℓ=0

Ex

(
1Ti>ℓ−1Cρρ

n−ℓ(θa H(Xℓ−1)+Ca)
)

≤Cρn H(z)+
n∑
ℓ=0

Ex

(
1Ti>ℓ−1Cρρ

n−ℓ(θa +Ca)H(Xℓ−1)
)

where we used the Markov property at time ℓ−1 and Proposition 1.5. We deduce from (23) that

Pz (Zn ̸= 0) ≤Cρn H(z)+Cρ(θa +Ca)C
n∑
ℓ=0

ρn H(z)

≤C (n +1)ρn H(z).

Since this is true for any ρ > θ̄∨γ, this proves (21) for all z ∈ Ei with c(i ) = c +1.
The same arguments show that this also holds true for all z ∈ E c+1

0 .
This concludes the proof of Lemma 4.1.

From now on, we assume without loss of generality that there exists k ∈ {1, . . . ,k0} such that,
for all i ∈ {k +1, . . . ,k}, θ0,i < θ̄, and, for all i ∈ {1, . . . ,k}, θ0,i = θ̄ = θ0. For any i ∈ {k +1, . . . ,k0},
we have, fixing any ρ ∈ (max j∈{k ′+1,...,k}θ0, j , θ̄) and using the same method as in Step 1 from the
proof of Lemma 4.1,

Ez (H(Zn)1n<Ti ) ≤Cρρ
n H(z), ∀z ∈ Ei ,

where we recall that Ti is the first exit time from Ei by (Zn)n∈N and where Cρ is a positive con-
stant which may depend on ρ. Setting

E0 := E ′
0 ∪

k0⋃
i=k+1

Ei ,

one easily checks, using the last inequality and (19), that, for any r ∈ (γ∨ρ, θ̄), there exists Cr > 0
such that

Ez (H(Zn)1Zn∈E0 ) ≤Cr r n H(z), ∀z ∈ E0.

In order to apply Theorem 4.1 in [3], which implies the first part of Theorem 1.3, it remains
to prove that, for all i ∈ {1, . . . ,k ′} and all z ∈ Ei , we have∣∣θ−n

0 Ez
(

f (Zn)1Zn∈Ei

)−hi (z)µi ( f )
∣∣≤Cαn Hi (x)∥ f ∥Hi , ∀n ≥ 0, ∀ f ∈ L∞(Hi ), (27)
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for some C > 0,α ∈ (0,1), some non-negative non-zero function hi and some probability mea-
sure µi on Ei . In order to do so, its is sufficient to check Assumptions (E1-4) in Section 2
of [4]. These conditions are recalled in the Appendix and we will more precisely check Assump-
tions (E1), (E2’), (E3) and (E4), which is sufficient to obtain (E1-4) according to Proposition A.1.
Fixing i ∈ {1, . . . ,k ′}, we define the set

Ki :=
{

z ∈ Ei ,
Ez (Hi (Z1)1Z1 ̸=0)

Hi (z)
> γ

}
,

which is finite according to (18).
Since Ei is a communication class and the process is assumed to be aperiodic, there exists

ni
1 ≥ 0 such that

c i
1 := inf

x,y∈Ki

Px (Zni
1
= y) > 0.

Note that Ki ̸= ;, since it would imply that θ0,i = θ0 ≤ γ. Fix zi ∈ Ki . Then, for all z ∈ Ki ,

Pz (Zni
1
∈ ·) ≥Pz (Zni

1
= zi )δzi (·) ≥ c i

1νi (·∩K ),

for νi = δzi . This entails (E1). In addition, taking ϕ1 = Hi and θ1 = γ < θ0 = θ0,i , the condition
(E’2) is an immediate consequence of the definition of Ki .

For all x, y ∈ Ki and n ≥ 0, we have, using the Markov property at time ni
1 and the fact that

Px (Zn ̸= 0) is non-increasing in n (as {0} is absorbing),

Px (Zn ̸= 0) ≥Px (Zn∨ni
1
̸= 0) ≥Px (Zni

1
= y)Py (Zn∨ni

1−ni
1
̸= 0) ≥ c i

1Py (Zn ̸= 0).

This proves (E3).
Finally (E4) holds true since we assumed that the process Z is aperiodic. This concludes

the proof of the first part of Theorem 1.3.

To conclude the proof of Theorem 1.3, it remains to prove that the set E = {x ∈Np \{0},
∑

i∈I ηi (x) =
0} is finite and that any quasi-stationary distribution with absorption parameter strictly smaller
than θ0 is supported by E .

We first observe that Theorem 4.1 in [3] also implies that j ≡ 0 on the set E . Assume on the
contrary that E is not finite and fix z0 ∈Np \{0} such that

∑ℓ
i=1ηi (z0) > 0 and j (z0) = 0 (existence

of such a point z0 is guaranteed by Proposition 2.3 in [3]). We observe that

liminf
n→+∞ θ−n

0 Pz0 (Zn ̸= 0) > 0.

Then, by primitivity of M, there exists n0 such that for all x ∈Np we have Mn0 (x) > 0. This
implies that for k > 0 large enough we have Pkx (Zn0 ≥ z0) > 0. Indeed, if it is not the case, we
can conclude using Theorem 6 in [9] that

Mn0 (x) = lim
k→+∞

E(Zn0 | Z0 = kx)

k
≥ lim

k→+∞
z0

k
= 0,

which is a contradiction. Then, we have for any z large enough Pz (Zn0 ≥ z0) > 0. Hence, using
the fact that E is not finite and hence contains arbitrarily large points, there exists z ∈ E and
z ′

0 ≥ z0 such that Pz (Zn0 = z ′
0) > 0. By super-additivity of ξ, we have Pz ′

0
(Zn ̸= 0) ≥ Pz0 (Zn ̸= 0)

and hence

liminf
n→+∞ θ−n

0 Pz (Zn0+n ̸= 0) > 0.

This is not compatible with the definition of E and (5). We have thus proved by contradiction
that E is finite.
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Let νQS be a quasi-stationary distribution for Z in M (Qa) with absorption parameter θQS <
θ0. Then (5) implies that

∑ℓ
i=1νQS(ηi ) = 0 and hence the support ofνQS is included in E . Since E

is finite and since E is a closed set for the Markov chain, we deduce, by usual finite dimensional
linear algebra arguments, that νQS belongs to the convex hull of any maximal family of positive
left eigenvector of the transition matrix of Z restricted to E . This concludes the proof of the
penultimate assertion of Theorem 1.3.

To conclude, it remains to prove that there are no quasi-stationary distributions for Z in
M (Qa) with absorption parameter strictly larger than θ0. This is a direct consequence of (5).
Indeed, since j is bounded, integrating this inequality with respect to a quasi-stationary distri-
bution νQS with absorption parameter θQS , and taking f ≡ 1, shows that

limsup
n→+∞

θ−n
0 n−∥ j∥∞θn

QSPz (Zn ̸= 0) <+∞,

and hence θQS ≤ θ0.

5 Proof of Theorem 1.4

Fix a ∈ (1,ς) such that (λ∗)a < θ0, and consider the Lyapunov type property with constants θa

and Ca from Proposition 1.5. We make use of Section 2 in [4] In a first step, we check that
Assumption E therein (recalled in the Appendix below) holds true for the process under con-
sideration. In a second step, we prove (6), (7) and (8) and (9) using the results of [4].

Step 1. Assumption (E) holds true. Fix θ1 ∈ (θa ,θ0). As P is strictly positive on R
p
+ \ {0} and

positively homogeneous, we can fix r1 ≥ p large enough so that Qa(z) ≥ Ca
θ1−θa

for all |z| ≥ r1, so
that

Ez (Qa(Z1)) ≤ θaQa(z)+Ca ≤ θ1Qa(z), ∀z ∈Np such that |z| ≥ r1. (28)

Let us set K = {z ∈Np \{0}, |z| ≤ r1} andϕ1 =Qa/infQa (note that infQa > 0 by Assumption (P)).
We deduce from the irreducibility and aperiodicity properties that there exists n1 ≥ 0 such

that

c1 := inf
x,y∈K

Px (Zn1 = y) > 0. (29)

Setting ν= δ(1,...,1), this entails property (E1).
We have infϕ1 = 1, so that the first line of (E2) is satisfied. Moreover, according to (28), the

third line of (E2) also holds true.
Choosing θ2 ∈ (θ1,θ0), we deduce from the definition of θ0 and the irreducibility of Z that

θ−n
2 min

i∈{1,...,p}
Pei (Zn ̸= 0) −−−−−→

n→+∞ +∞,

where ei is the i th element of the canonical basis of Np . Since, by the super-additivity of ξ, the
process Z is stochastically non-decreasing in the initial condition and since, for all z ∈Np \ {0},
there exists i ∈ {1, . . . , p} such that z ≥ ei , we deduce that

θ−n
2 inf

z∈Np \{0}
Pz (Zn ̸= 0) ≥ θ−n

2 min
i∈{1,...,p}

Pei (Zn ̸= 0) −−−−−→
n→+∞ +∞.

Let n ≥ 1 be large enough so that θ−n
2 infz∈Np \{0}Pz (Zn ̸= 0) ≥ 1, and set, for all z ∈Np \ {0}

ϕ2(z) = 1∑n−1
k=0 θ

−k
2

n−1∑
k=0

θ−k
2 Pz (Zk ̸= 0).
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We have, for all z ∈Np \ {0} and using the Markov property at time 1,(
n−1∑
k=0

θ−k
2

)
Ez (ϕ2(Z1)1Z1 ̸=0) =

n−1∑
k=0

θ−k
2 Pz (Zk+1 ̸= 0)

= θ2

n∑
k=1

θ−k
2 Pz (Zk ̸= 0)

= θ2

(
n−1∑
k=0

θ−k
2

)
ϕ2(z)+θ2

(
θ−n

2 Pz (Zn ̸= 0)−1
)

≥ θ2

(
n−1∑
k=0

θ−k
2

)
ϕ2(z).

As a consequence the second and fourth lines of (E2) are satisfied. Note also that we have
infNp \{0}ϕ2 ≥ 1∑n−1

k=0 θ
−k
2

.

For all x, y ∈ K and n ≥ 0, we have, using the Markov property at time n1 and the fact that
Px (Zn ̸= 0) is non-increasing in n (as {0} is absorbing),

Px (Zn ̸= 0) ≥Px (Zn∨n1 ̸= 0) ≥Px (Zn1 = y)Py (Zn∨n1−n1 ̸= 0) ≥ c1Py (Zn ̸= 0).

This proves (E3).
Finally (E4) holds true since we assumed that the process Z is aperiodic and irreducible.
We have thus proved that Assumption (E) holds true for Z absorbed when it leavesNp \ {0}.

This concludes the first step.

Step 2. Conclusion of the proof. Theorem 2.1 in [4] implies that there exists a unique quasi-
stationary distribution νQS in M (Qa) and that (8) holds true (using the fact that in our case, ϕ2

is lower bounded away from 0). Theorem 2.3 in this reference also implies that there exists an
associated non-negative eigenfunction ηQS ∈ L∞(Qa) with eigenvalue θQS > 0, where θQS is the
absorption parameter associated to νQS , such that infK ηQS > 0 and

θ−n
QSP·(Zn ̸= 0)

L∞(Qa )−−−−−→
n→+∞ ηQS(·). (30)

Since the process is irreducible, for all z ∈Np \{0}, there exists n ≥ 0 such thatPz (Zn = (1, . . . ,1)) >
0 and hence

θn
QSηQS(z) = Ez (ηQS(Zn)1Zn ̸=0) ≥ ηQS((1, . . . ,1))Pz (Zn = (1, . . . ,1)) > 0,

so that ηQS is positive. We thus proved (6) (for the absorption parameter θQS which we prove
below to be equal to θ0). Finally, since ξ is super-additive, θ−n

QSPz (Zn ̸= 0) and hence ηQS in-
creases with z, so that ηQS is lower bounded away from 0. Corollary 2.7 in [4] shows that (7)
holds true, and, taking f ≡ 1, also implies that θQS = θ0.Finally, (9) is an immediate conse-
quence of Corollaire 2.11 in [4]. This concludes the proof of Theorem 1.4.

A Sufficient criterion for the exponential convergence to a quasi-stationary
distribution

In Section 2 of [4], the authors state that Assumption (E) is sufficient to prove exponential con-
vergence toward a quasi-stationary distribution. Let us recall this assumption, with the nota-
tions and settings of the present paper.

In what follows, we consider a process (Zn)n∈N evolving in a measurable state space E ∪{∂},
where ∂ ∉ E is an absorbing point.
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Assumption (E). There exist a positive integer n1, positive real constants θ1,θ2,c1,c2,c3, two
functions ϕ1,ϕ2 : E →R+ and a probability measure ν on a measurable subset K ⊂ E such that

(E1) (Local Dobrushin coefficient). ∀z ∈ K ,

Pz (Zn1 ∈ ·) ≥ c1ν(·∩K ).

(E2) (Global Lyapunov criterion). We have θ1 < θ2 and

inf
z∈E

ϕ1(z) ≥ 1, sup
z∈K

ϕ1(z) <∞

inf
z∈K

ϕ2(z) > 0, sup
z∈E

ϕ2(z) ≤ 1,

Ez (ϕ1(Z1)1Z1 ̸=∂) ≤ θ1ϕ1(z)+ c21K (z), ∀z ∈ E

Ez (ϕ2(Z1)1Z1 ̸=∂) ≥ θ2ϕ2(z), ∀z ∈ E .

(E3) (Local Harnack inequality). We have

sup
n∈Z+

supy∈K Py (Zn ̸= ∂)

infy∈K Py (Zn ̸= ∂)
≤ c3.

(E4) (Aperiodicity). For all z ∈ K , there exists n4(z) such that, for all n ≥ n4(z),

Pz (Zn ∈ K ) > 0.

Our aim is to show that the condition involving the functionϕ2 can be replaced by a condi-
tion involving θ0, where

θ0 = sup
z∈E

sup{θ > 0, liminf
n→+∞ θ−nPz (Zn ̸= ∂) > 0}, (31)

More precisely, we consider the following assumption.

(E2’) We have θ1 < θ0 and

inf
z∈E

ϕ1(z) ≥ 1, sup
z∈K

ϕ1(z) <∞

Ez (ϕ1(Z1)1Z1 ̸=∂) ≤ θ1ϕ1(z)+ c21K (z), ∀z ∈ E . (32)

Proposition A.1. Assume that there exist a positive integer n1, positive real constants θ1,c1,c2,c3,
a functionϕ1 : E →R+ and a probability measure ν on a measurable subset K ⊂ E such that (E1),
(E’2), (E3) and (E4) hold true. Then, for any θ2 ∈ (θ1,θ0), there existsϕ2 such that Assumption (E2)
holds true.

Proof. In a first step, we prove that, for any θ2 ∈ (θ1,θ0), there exists n ≥ 1 such that infz∈K θ
−n
2 Pz (Zn ∈

K ) ≥ 1. In a second step, we conclude by building a function ϕ2 which satisfies Assump-
tion (E2).

Step 1. Assume on the contrary that there exists θ2 ∈ (θ1,θ0) such that, for all n ≥ 1, infz∈K θ
−n
2 Pz (Zn ∈

K ) < 1. Then, using (E1), we deduce that, for all n ≥ n1,

1 > inf
z∈K

θ−n
2 Pz (Zn ∈ K ) ≥ θ−n

2 c1Pν(Zn−n1 ∈ K )
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and hence that, for all n ≥ 0,

Pν(Zn ∈ K ) < θ
n1
2

c1
θn

2 .

Applying (32) iteratively, we deduce that, for all z ∈ E , for all n ≥ 1,

Ez (ϕ1(Zn)1Zn ̸=∂) ≤ θn
1ϕ1(z)+ c2

n∑
k=1

θn−k
1 Pz (Zk−1 ∈ K ).

Integrating with respect to ν and using the two previous inequalities, we get

Eν(ϕ1(Zn)1Zn ̸=∂) ≤ θn
1 ν(ϕ1)+ c2

n∑
k=1

θn−k
1 Pν(Zk−1 ∈ K ) ≤ θn

1 ν(ϕ1)+ c2

n∑
k=1

θn−k
1

θ
n1−1
2

c1
θk

2 ≤C ′θn
2 ,

(33)

for some constant C ′ where we used the fact that ν(ϕ1) ≤ supK ϕ1 <+∞ and θ1 < θ2.
For all z ∈ E and all n ≥ 0, we have, denoting τK = min{k ≥ 0, Zk ∈ K } and using the strong

Markov property at time τK ,

Pz (Zn ̸= ∂) ≤ Ez (ϕ1(Zn)1Zn ̸=∂1n<τK )+
n∑

k=0
Pz (τK = k)sup

y∈K
Py (Zn−k ̸= ∂)

≤ θn
1ϕ1(z)+

n∑
k=0

Pz (τK = k)c3Pν(Zn−k ̸= ∂),

where we used (32) for the first term in the right hand side, and (E3) for the second term. Since
we also have, by (32) and for all k ≥ 1 and trivially for k = 1,

Pz (τK = k) ≤Pz (Zk−1 ̸= ∂, k −1 < τK ) ≤ Ez (ϕ1(Zk−1)1Zk−1 ̸=∂1k−1<τK ) ≤ θk−1
1 ϕ1(z),

and since Pν(Zn−k ̸= ∂) ≤ Eν(ϕ1(Zn−k )1Zn−k ̸=∂), we deduce from the previous inequality and
from (33) that

Pz (Zn ̸= ∂) ≤
(
θn

1 +
n∑

k=0
θk−1

1 c3C ′θn−k
2

)
ϕ1(z).

In particular, for all z ∈ E , for all θ > θ2 > θ1,

θ−nPz (Zn ̸= ∂) −−−−−→
n→+∞ 0,

then, by definition of θ0, we get θ0 ≤ θ2, which contradicts assumption θ2 ∈ (θ1,θ0).
This concludes the proof of our first step: for any θ2 ∈ (θ1,θ0), there exists n ≥ 1 such that

infz∈K θ
−n
2 Pz (Zn ∈ K ) ≥ 1.

Step 2. Fix θ2 ∈ (θ1,θ0) and let n ≥ 1 such that infz∈K θ
−n
2 Pz (Zn ∈ K ) ≥ 1, and define the function

ϕ2 : z ∈ E 7→Cθ2

n−1∑
k=0

θ−k
2 Pz (Zk ∈ K )

with Cθ2 :=
(

1−θn
2

1−θ2

)−1
. Then, infz∈K ϕ2(z) > 0 and supz∈E ϕ2(z) ≤ 1. In addition,

Ez (ϕ2(Z1)1Z1 ̸=∂) =Cθ2

n−1∑
k=0

θ−k
2 Pz (Zk+1 ∈ K ) =Cθ2θ2

n∑
k=1

θ−k
2 Pz (Zk ∈ K )

= θ2ϕ2(z)+Cθ2θ2
(
θ−n

2 Pz (Zn ∈ K )−1K (z)
)

.

Since θ−n
2 Pz (Zn ∈ K )−1K (z) ≥ 0 for all z ∈ K (by definition of n) and for all z ∈ E \ K (since for

such z, we have 1K (z) = 0), we deduce that

Ez (ϕ2(Z1)1Z1 ̸=∂) ≥ θ2ϕ2(z), ∀z ∈ E .

This concludes the proof of Proposition A.1.
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