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Abstract— A theoretical control solution to improve navigation
performance of an aerial vehicle, focusing on a quadcopter vehicle,
is presented in this paper. The main control purpose is to endow
the aerial vehicle with predictive and reactive properties (evasive
maneuvers) to avoid collisions with dynamic objects (or other aerial
agents) that may be in direct collision with it. The proposed control
architecture is formed by three modules: a predictor algorithm, an
upper-level command generator and a lower-level drone controller.
The trajectory predictor algorithm gives a horizon of possible future
positions where an object could collide with the aerial vehicle.
These predictions are sent to the second module which, based on
an artificial particle field, generates velocity commands to avoid
possible collisions. These commands are then sent to the drone
controller, which was designed using the Lyapunov formalism to
guarantee an agile and stable response to the aggressive nature
of the problem. The overall architecture was validated and tested
in real time with different scenarios and using a cyber-physical
twin framework, showing good capabilities to anticipate (predictive
properties) and avoid (reactive properties) imminent collisions.

Index Terms—Reactive control; collision avoidance; dynamic
environment; predictor; unmanned aerial vehicles
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I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) have shown a
great potential for many applications, such as: agriculture,
rescue, transport, inspection of infrastructures, smart re-
sponse to disasters or video recording, among others [1],
[2]. Since its early beginnings, their construction, equip-
ment and control have been significantly improved [3],
[4] making possible to develop novel applications that
move from its classical individual passive tasks into new
active cooperative tasks, like grasping or manipulation
of objects [5], [6], [7], [8]. According to the European
Robotics Strategic Research Agenda (eSRA) [9], UAVs
are intended to be employed in the near future as workers
and co-workers in both private and public activities [8].

A fundamental issue to guarantee a safe integration
of UAVs into civil activities is its capability to avoid
collisions with other environmental objects [10], [11]. In
fact, UAVs will be expected to carry out autonomous tasks
in aerial/terrestrial spaces that will be shared with other
non-cooperative agents; such as, other autonomous UAVs,
Remotely Piloted Aircraft Systems (RPAS), human-driven
vehicles, workers doing different tasks or, in general,
moving obstacles of any kind. A large-scale implemen-
tation of workers UAVs, although having promising fea-
tures, will not be possible unless effective methods to
avoid collisions in open and dynamic environments are
developed.

The problem of avoiding collisions between robots, or
between a robot and the environmental objects, has been
extensively studied in the control literature. The main
collision avoidance algorithms can be categorized into
two groups: optimization-based methods and reactive con-
trollers [10], [12], [13]. The first ones are characterized
by performing an optimization procedure in order to com-
pute a finite-length free-of-collisions trajectory to reach
a desired destination. Conversely, the last ones directly
generate a control output in response to some received
measurements that indicate a possible collision [12].

The most popular optimization-based solutions
go from the classics Rapidly-exploring Random
Trees (RRT) [14], Probabilistic Roadmaps (PRM) [15],
[16] or Curvature-Velocity methods [17]; to some of
its recent extensions [18], [19], [20], [21], [22] and
other similar solutions that are based on optimal or
statistical control [23], [24], [25], [26]. Optimizing
feasible trajectories is found to be advantageous for
moving in known, highly-complex and closed spaces
–such as the interior of buildings, where a wide number
of obstacles and infeasible trajectories may exist. Also,
it is appropriate for robots with complex configurations
or strong moving constraints –such as robotic arms
or non-holonomic vehicles, where the generation of a
feasible collision-free trajectory could be considerably
complex.

However, the optimization-based solutions are proba-
bly not the most effective algorithms to avoid collisions
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between drones operating in open aerial spaces. In order
to compute an optimized collision-free trajectory, the
algorithm needs to know the future trajectories that the
surrounding UAVs are going to follow [20], [22].

Reactive controllers seem to be a more suitable solu-
tion to collision avoidance, as they directly take control
actions based on current measurements of the environ-
mental state. A wide number of reactive controllers have
been proposed for different kind of robots, sensors con-
figurations and scenarios, e.g. [13], [12], [27], [28], [29],
[30], [31], [32]. The most popular approaches are based
on Artificial Potential Fields (APF), Force Field (FF) and
Velocity Field (VF) methods [33], [34], [35], [36], [37].
The main implementation behind these strategies is quite
straightforward: an upper-level controller generates a local
repulsive APF/FF/VF in the vicinity of each UAV. Thus, if
two or more UAVs –which can be now assumed to move
“freely” and independently– get too close to each other,
they will be automatically repelled by the artificial fields;
maintaining always a safety distance between them.

These repulsive field-based methods, although being
quite effective in many cases, contain some drawbacks
[38]. The most important one for the problem being
considered here –which was also highlighted in [12]–
is that they are just static solutions that only consider
the current position of each agent. In a highly dynamic
environment, where probably some UAVs are moving and
accelerating; a single implementation of static repulsive
fields could not avoid a collision. Indeed, if a collision
is going to happen in less time than the response-time
of the UAV inner controller; then –independently of how
the repulsive field has been configured– the UAV will not
have enough time to modify its velocity; ending in an
inevitable crash, see Figure 1.

As can be seen from the references and the state-
of-the-art of predictive and reactive control, autonomous
collision avoidance in dynamic and open environments is
a field of study that requires a roadmap to achieve. We
propose, as a first step towards this goal, a novel reactive

Fig. 1. Two drones are flying with same direction. The right drone
is moving two times faster the left drone. Up). Using (robust)

controllers without trajectory prediction, the drones are not capable to
avoid the collision even if some before instants the static VF generates

repulsion commands. Down). The left drone includes the trajectory
prediction and then it has estimated the collision horizon of the right
drone. As a consequence, it has already started the evasive maneuver

by this time and, now, it has enough time to avoid the collision.

and predictive controller that allows the drone to avoid
being hit by a dynamic object on a direct collision course.
It has been assumed that information about the object’s
and the drone’s state is known in order to corroborate the
viability of the proposed control strategy.

The solution is developed based on a novel predictor-
algorithm that estimates the future trajectories that other
agents1 –with uncertain or unmodelized motion– may
follow in the near future. The horizons of these predicted
trajectories are then employed to generate predictive
repulsive Velocity Fields (VF) that are sent as desired
commands to the drone controller in order to move
itself, anticipating and avoiding (imminent) collisions, see
Figure 1.

In addition, once the collision horizon is predicted the
controller reacts, by making reactive and aggressive mou-
vements, to produce evasive maneuvers to be transported
far enough of the collision object. This action is only
limited by the physical characteristics of the vehicle used.

The idea of using a predictor in this kind of sce-
nario has already been explored in the literature. The
three most prominent predictors used are based on a
constant-velocity extrapolation [20], [12], on a relatively
complex model-based statistical extrapolation [39], [22],
or on learning movement patterns [40]. The presented
prediction strategy is a viable alternative that is con-
structed based on ideas of some recent results on disturbed
systems and high-order disturbance observers [41], [42].
Our trajectory prediction algorithm is straightforward to
implement and is able to make short-time predictions of
bodies with unmodelized motion. Additionally, it permits
to include model information –if available– in order to
enhance the predictions’ accuracy.

The rest of the paper is structured as follows: in
Section II, the overall reactive and predictive control
architecture is developed. It is further subdivided to
develop in detail each one of the components of the
proposed solution. The predictor algorithm is described in
Section A, followed by the velocity-command generator
in Section B. Sections C and D illustrate the quadcopter
model and the control strategy used to enable aggressive
maneuvers. The main experimental results together with
link to videos of the tests are presented in Section III.
Finally, the conclusions are discussed in Section IV.

II. REACTIVE AND PREDICTIVE CONTROL
SCHEME

Our proposed control architecture is summarized in
Fig. 2. It can be observed from this figure that this control
scheme is composed by a quadcopter system (named
drone layer), a controller (named drone controller), a
predictor (named Predictor) and the desired references
for the control algorithm (named velocity command gen-
erator).

1we use the term agents, including static or dynamics objects and others
kind of vehicles
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Fig. 2. Block-diagram of the reactive and predictive control
architecture. Here, po, vo denote the current position/velocity of the

object, p̂o(t+ ∆t) represents the predicted obstacle position, ∆t

defines the prediction-horizon, ~̇pd means the desired velocity of the
vehicle, ψd is the heading of the drone, ~Fth, ~τ denote the drone’s

control inputs and ~p defines the drone’s position.

A. Trajectory-predictor algorithm

The environment under consideration is characterized
by being dynamic and uncertain. This implies that the fu-
ture position of the moving objects –i.e. the environmental
evolution– can only be predicted with certain accuracy
for short-time intervals. In this subsection, we propose
a short-time trajectory predictor in order to monitor the
environmental evolution. Our solution assumes that the
current position/velocity of the objects, po(t), vo(t), are
available. How this information is obtained is outside the
scope of this work, but some practical solutions include
embedded sensors, such as cameras, lidar, GPS, etc [43].

Based on this information, a predictor algorithm is
constructed from a deterministic perspective in order to
make predictions of the future trajectories, i.e. po(t+∆t).
These predictions contain information about the moving
intentions and they can be effectively used to anticipate
collisions. To further clarify the development of the
algorithm, we will develop this algorithm in 2D, however
it can be extended to 3D withour any loss of generality.

Denote by po(t) , po , [po,x, po,y] ∈ R2 (m) the
obstacle position, by vo(t) , vo ∈ R2 (m/s) its velocity
and by mo ∈ R+ (kg) its mass (considering any dynamic
rigid-body). Hence, its movement can be determined by
the Newton’s second law as follows

ṗo(t) = vo(t),

v̇o(t) =
1

mo
Fo(t) , ωo(t),

(1)

being Fo(t) , Fo ∈ R2 the external (unknown) forces
acting on it. Notice from (1) that if the object accel-
erates, it is because there exist some forces (probably
unknown/unmeasurable) that are acting on it. If a more
accurate model for the obstacle movement is available, it
could be used instead of (1). However, Eq. (1) is quite
general and accurate enough for short-time predictions.

From (1), the future obstacle position, po(t+ ∆t), is

po(t+∆t) = po(t)+∆tvo(t)+

∫ t+∆t

t

(t+∆t−s)ωo(s)ds
(2)

Note that Eq. (2) cannot be directly computed in
practice because ωo(s) is not known for s ∈ [t, t+ ∆t].

However, consider that ωo(t) and its first i-derivatives
are observed with the available position/velocity measure-
ments. Then, using a Taylor series decomposition, the
function ωo(s), s ∈ [t, t + ∆t], could be reconstructed
as:

ωo(s) ≈ ω̂o(s) , ω̂o(t)+(s−t)ˆ̇ωo(t)+...+
(s− t)n

n!
ω̂(n)
o (t)

(3)
up to a value n ∈ N and a sufficiently small ∆t; being
ω̂

(n)
o (t) , ω̂

(n)
o ∈ R2 an observation, or estimation, of

ω
(n)
o (t).

Therefore, using (3) in (2), the future obstacle-
trajectory could be predicted by:

p̂o(t+∆t) = po(t)+∆tvo(t)+

∫ t+∆t

t

(t+∆t−s)ω̂o(s)ds.
(4)

From current results on disturbed systems and dis-
turbance observers, a high-order disturbance observer
can be constructed for system (1) in order to estimate
ωo(t) , [ωTo (t), ω̇To (t), . . . , ω

(n)T
o (t)]T . To this purpose,

note that system (1) can be alternatively expressed in the
following extended-state form [42], [44]:

η̇(t) = Ā η(t) + B̄ ω(n+1)
o (t),

yo(t) , C̄η,
(5)

being η(t) , [pTo (t), vTo (t), ωo
T (t)]T and

Ā ,

0 I3 0
0 0 Π1

0 0 Φ

 , B̄ ,

 0
0

Π2

 , C̄ = [I3, I3, 0]

with Φ ,
[
03n×3 I3n ; 03×3 03×3n

]
, Π1 ,

[I3, 03×3n] and Π2 , [03×3n, I3]T .
Eq. (5) is observable, allowing to construct the next

observer that provides estimates of ωo(t):
˙̂η(t) = Ā η̂(t) + L

(
yo(t)− C̄η̂(t)

)
. (6)

Provided that ω(n+1)
o (t) is bounded, the observer (6)

estimates ωo(t) with bounded error for any L such that
(Ā − LC̄) is Hurwitz stable [42]. The matrix L can be
designed by using the standard pole-placement method
so that the eigenvalues of (Ā−LC̄) contain a sufficiently
high bandwidth.

REMARK 1. The embedded system into the drone com-
putes the equations (3), (4) and (6) in order to predict
the future trajectory that each obstacle may follow. To this
purpose, it computes (3)-(4) for ∆t = {0, h, 2h, . . . , Nh};
being h ∈ R a fixed step-size and N ∈ N an integer
defining the prediction-horizon, as illustrated in Fig. 3.
The prediction horizon, Nh, can be regarded as a tuning
parameter. For our application, it can be set equal to
the response-time of the drone controller; so that it
anticipates possible collisions that will not be avoided
by the static VF.

REMARK 2. The observer order is also a tuning param-
eter. The bigger it is, the more derivatives of ω0(t) are
observed. Equations (5)-(6) provide a useful clue to select
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this parameter as they show that the error η(t) − η̂(t)

is driven by ω
(n+1)
0 (t). It is interesting to chose n so

that ω(n+1)
0 (t) is kept small. Thus, for obstacles that are

moving in high-chaotic form –i.e. with high-frequency
accelerations– ω(n+1)(t) grows as n is increased. In these
cases, it is better to reduce n. However, for obstacles
that move with relatively-low accelerations; increasing n
contributes to reduce the observation error.

B. Velocity-command generator

This subsection proposes a velocity-command gener-
ator to set escape-velocities if a possible collision could
happen. The challenge is to provide a safe autonomous
navigation in dynamic environments. It is assumed that
most of the moving objects can be classified as either
static or slowly-moving, or quick agents that could po-
tentially collide with the vehicle.

The algorithm implements a local static and a pre-
dictive repulsive velocities fields –VFs. The static VF is
just generated with the current position of the obstacle;
whereas the predictive VF depends on the predicted
trajectory of the obstacle. The solution is constructed so
that, if no immediate impact is detected by the predictor
subsystem, the overall architecture behaves as a conven-
tional static VF; which tries to keep a safety distance
with all the objects. However, if an immediate collision
is detected –i.e. a collision that may happen in less time
than the response time of the drone controller– then, the
predictive VF generates an anticipated reaction in order
to increase the amount of time that the UAV has to react.

Our solution follows the classical approaches that
employ security zones around the robot defined by a
security radius, as depicted in Figure 3. Two cylinders
around the drone position, p(t), are defined: a big outer
cylinder of radius rmax and a small inner cylinder of ra-
dius rmin. However, other geometrical forms like spheres,
cubes or boxes can also be considered to define the
different security zones used for the strategy. In practice,
we found that cylinders work best as spheres tended to
generate a reference velocity that could send the drone
too close to the ground or too far up for practical and
illustration purposes. The cubes and boxes have too much
volume around the drone and would prematurely trigger
the predictive action.

On the one hand, the outer security zone generates
(static) repulsive velocities, −→vs(t) ∈ R2, if the obstacle
position, p0(t), falls within it. This repulsive velocity is
expressed as:

−→vs(t) ,

{
− k11

[
rmax − ‖d(t)‖

]2 −→us(t), ‖d(t)‖ ≤ rmax,
0, ‖d(t)‖ > rmax;

(7)
where k11 ∈ R+ is a positive constant gain,
d(t) , po(t)− p(t) and −→us(t) , p0(t)−p(t)

‖p0(t)−p(t)‖ , being po(t)

and p(t) the obstacle and drone coordinates, respectively.

Fig. 3. Illustrative scheme of the reactive and predictive control
architecture.

On the other hand, the inner security zone produces
(predictive) repulsive velocities, −→vp(t) ∈ R2, if the pre-
dicted object trajectory, given by Eqs. (3)-(4), (6), with
∆t = {0, h, 2h, . . . , Nh}, intersects to the inner cylinder
at some point, p̂0(t + nh) with n ≤ N ; as illustrated in
Figure 3. This predictive velocity is proposed as:

−→vp(t) ,

{
−
[
k21

(
N − n)2 + k22

]
−→up(t),

0, @n ≤ N : p̂o(t+ nh) ≤ rmin
(8)

being −→up(t) , p̂0(t+nh)−p(t)
‖p̂0(t+nh)−p(t)‖ and k21, k22 positive

constant parameters.

Observe that (8) depends quadratically on (N − n),
in this way, it quadratically increases as the time to colli-
sion, nh, is reduced. This represents a natural behavior as
far as higher repulsive velocities are desired for smaller
time-to-collision.

These repulsive velocities (7) and (8) are sent to the
drone control system as follows:

~̇pd := ~̇pd (t) = −→vs(t) +−→vp(t), (9)

where ~̇pd denotes the drone desired velocity.

If the drone is tracking position commands –instead of
velocity commands– then the desired position is modified
by adding the following term:

~pd =

∫ t

t0

~̇pd (τ) dτ. (10)

Note that these desired references may induce fast and
high-angle maneuvers that the drone needs to apply. These
unforeseen movements should appropriately carried out
by the drone control system. So it is needed to include a
drone controller for position/velocity tracking that has the
capability of performing agile, fast and high-angle robust
maneuvers. The next section proposes a quaternion-based
controller to this purpose.
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C. Drone system

The quadcopter vehicle is a multi-rotor with parallel
motors, its underactuated dynamics can be expressed
using the quaternion formulation as

m ~̈pe = q ⊗ ~Fqb ⊗ q∗ +m~g + ~ζp

J ~̇Ωe = ~τ − ~Ω× J ~Ω + ~ζΩe

(11)

where ~pe ∈ R3 denotes the error position vector of
the system w.r.t. a local ENU inertial reference frame
and is defined as ~pe := ~p − ~pd, where ~pd represents
the desired position. Note that the desired position was
previously defined for 2D, but it can be extended to 3D
without any loss of generality. m ∈ R+ and J ∈ R3×3

+

are the system’s mass and inertia tensor, respectively.
~Ω represents the angular velocity w.r.t. the body frame.
The effect of the gravity on the system is denoted by
~g ∈ R3, ~Ωe = ~Ω − ~Ωd ∈ R3 defines the angular
velocity error, ~Ωd ∈ R3 is the desired angular velocity,
~Fqb = [0, 0,

∑
i

fi]
T ∈ R3 denotes the main thrust (or

main control input). The thrusts fi ∈ R+, produced by
the motor i ∈ {1, 2, 3, 4} are assumed to depend on the
motor’s angular velocities and usually expressed in the
z-body axis. ~τ = [τφ, τθ, τψ]T ∈ R3 are the torques
produced in the aerial vehicle. q ∈ H is the system’s
attitude in unit quaternion form and q∗ denotes the quater-
nion conjugate term. The vector ~ζk ∈ R3;∀k ∈

{
~p, ~Ωe

}
represents nonlinear uncertainties, unmodeled dynamics,
and/or external and unknown perturbations, like drag
effects and/or wind turbulence.

Notice that (11) is an underactuated system, attractive
for the control and robotic community and a lot control
algorithms have been proposed for stabilizing it. The
design of the control law starts with the assumption that
system (11) is fully actuated, by changing the effect on the
thrust. Thus, even though the system is an underactuated
platform, it can be analyzed and a control law can be
designed for it from this “virtual full-actuated” transfor-
mation. This changes the form of (11) as :

m ~̈pe = ~Fu +m~g + ~ζp (12)

J ~̇Ωe = ~τ − ~Ω× J ~Ω + ~ζΩe
(13)

where ~Fu = [Fx, Fy, Fz]
T ∈ R3 is an independent control

law stabilizing (12).
Observe that (12)-(13) can be seen as two different

actuated systems, nevertheless they are linked by a desired
quaternion, qd, and related with a proposed control law
~Fu ∈ R3 and with the constant thrust vector direction
~Fqb ∈ R3. Therefore, for a given controller ~τ stabilizing
the attitude of the vehicle and doing q → qd will imply
that q ⊗ ~Fqb ⊗ q∗ → ~Fu.

Hence, the quaternion error is defined as qe := q∗d⊗q,
while the desired quaternion is proposed as

qd = qfd ⊗ qψd
(14)

where the attitude quaternions qfd ∈ H and qψd
∈ H are

defined in the following form using the quaternion natural

logarithm and exponential functions [45, Chapter 5]

qfd := e

ln
(
F̂u ⊗ F̂ ∗qb

)
2 ; qψd

:= e

ψdF̂qb
2 (15)

where F̂j := ~Fj/‖~Fj‖; ∀j ∈ {u, qb} represents a
normalized vector and ψd denotes the desired heading of
the vehicle. In addition, qfd describes the shortest path
between q⊗ ~Fqb⊗q∗ and ~Fu and is related with the pitch
and roll movement.

The desired angular velocity can be obtained from
(14) and is denoted as

~Ωd = q∗ψd
⊗ ~Ωfd ⊗ qψd

+ ~Ωψd
(16)

where ~Ωfd denotes the angular velocity for pitch and roll
angles and ~Ωψd

for the heading of the vehicle.

D. Drone controller

For designing the controllers, propose the following
Lyapunov candidate functions as

Vpe = xTp Pp xp (17)

Vqe = xTΩ PΩ xΩ (18)

with xp :=
[
~pTe ~̇pTe

]T
and xΩ :=[

(2 ln qe)
T ~ΩTe

]T
and Pp, PΩ ∈ R6×6 are positive

real symmetric matrices. The velocity error can be
defined as ~̇pe = ~̇p− ~̇pd, where ~̇p is the vehicle’s velocity
w.r.t. the inertial frame.

Differentiating (17) w.r.t. time, and proposing the
position control law ~Fu as

~Fu = −mKpt ~pe −mKdt ~̇pe −m~g (19)

where Kpt,Kdt ∈ R3×3 are the gain matrices, it follows
that

V̇pe = −x̄Tp Qp x̄p +
∂Vpe

∂~̇pe

~ζp
m

with Qp > 0 and[
~0 −Kpt

I3×3 −Kdt

]
Pp + Pp

[
~0 I3×3

−Kpt −Kdt

]
= −Qp (20)

Therefore

V̇pe ≤ −x̄Tp Qp x̄p + ‖Pp‖ ‖xp‖

∥∥∥~ζp∥∥∥
m

(21)

Remark that, due mainly to its physical properties,
aerial vehicles cannot generate infinity energy to compen-
sate infinitely external perturbations. This signifies that
the external perturbations affecting the aerial robot are
assumed to be bounded. Remember that for our study,
the perturbations are considered to be uniform Lipschitz
continuous, implying that∥∥∥~ζp∥∥∥ ≤ Lp ∥∥∥∥[ ~pe

~̇pe

]∥∥∥∥ ≤ Lp ‖xp‖ (22)

for some Lp ∈ R+. From (21), the above implies that

V̇pe ≤ −
[
‖Qp‖ − ‖Pp‖

Lp
m

]
‖xp‖2 (23)
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which implies that V̇pe ≤ 0 if

‖Qp‖ > ‖Pp‖
Lp
m

(24)

A similar analysis can be done for the attitude dynam-
ics with (18) and using the following algorithm

~τ = J
[
−Kpϑ (2 ln qe)−Kdϑ

~Ωe

]
+ ~Ω× J~Ω, (25)

From the quaternion algebra the following property for
~Ωd can be obtained∥∥∥~Ωd∥∥∥ ≤ L~Ωd

‖2 ln qe‖ (26)

where L~Ωd
∈ R+ is a positive real number. Therefore,

similarly to (22), it follows that∥∥∥~ζΩe

∥∥∥ ≤ L~ζΩe

∥∥∥∥[ 2 ln qe
Ωe

]∥∥∥∥ (27)

for some L~ζΩe
∈ R+. Then the gains matrices,

Kpϑ,Kdϑ ∈ R3×3 are chosen such that[
~0 −Kpϑ

I3×3 −Kdϑ

]
PΩ + PΩ

[
~0 I3×3

−Kpϑ −Kdϑ

]
= −QΩ

(28)
with QΩ > 0. Therefore, this results in

V̇qe ≤ −
[
‖QΩ‖ − ‖PΩ‖

∥∥J−1
∥∥ L~ζΩe

]
‖xΩ‖2 (29)

which implies that V̇qe ≤ 0 if

‖QΩ‖ > ‖PΩ‖
∥∥J−1

∥∥ L~ζΩe
. (30)

Observe that controllers (19) and (25) stabilize ro-
bustly the quadcopter dynamics (12)-(13) for any mission,
even for the trajectory tracking or navigation purposes
(using ~pd and ~̇pd). Note also that the repulsive velocities
(7) and (8) included in ~̇pd, see equation (9), may induce
strong ”undesirable” and ”uncertain” dynamics into the
system, that the controller must tolerate.

The ”uncertain” dynamics come from the sudden
response needed from the drone’s controller in reaction
to the predictive system. The prediction, due to its very
nature, is extremely sensitive and can produce sudden
velocity commands, which translates into an almost in-
stantaneous reference change that the controller must
follow. If the controller’s response time or robustness is
not adequate, it could induce undesirable dynamics, like
oscillations, into the system.

III. EXPERIMENTAL TESTS: REACTIVE DRONE

This section illustrates the main advantages that our
predictive control strategy has over other conventional
collision avoidance controllers that just employ static VFs
–such as (7). As previously mentioned, one of the main
disadvantages of the static solutions is that they may not
avoid collisions with fast moving objects due to the delay
introduced by the inner system dynamics.

An experimental scheme was tested in order to have
an objective comparison between the proposed control
strategy against the static VFs. A person is tasked to

Fig. 4. Scenario for validating the proposed reactive and predictive
control.

attempt to damage the vehicle using a stick while the
drone is ordered to remain in a hover position and only
move to prevent being hit by the stick. See Figures 4 and
5 for an illustration of the configuration. The top of the
stick simulates the moving object with uncertain motion
that needs to be avoided, and the fact that a person is
moving it makes the movements far more unpredictable.
In addition, we chose in this scenario, to use a human
hitting the aerial vehicle, to compare the reactive and bio-
inspired performance of the drone with respect to a fly
when a human try to catch it (the fly reacts very quickly).
Nevertheless, other kind of scenarios can be proposed.

A. Experimental platform

The overall control scheme is implemented in the
drone embedded system. The quadrotor used for the
experiments is an AR Drone with an embedded ARM
Cortex A8 processor at 1 GHz, running Linux 2.6.32, it
also has a 1GB DDR2 RAM at 200 MHz, the sampling
frequency is 200 Hz. The navigation sensors were an In-
ertial Measurement Unit, as well as an OptiTrack Motion
Capture system for position feedback. The motion capture
reference frame uses a local NED frame, but it is trans-
formed into a local ENU frame in order to be compatible
with the proposed control strategy. The hardware of the
quadrotor has been conserved from its factory design,
nevertheless the original software has been completely
replaced by our framework FL-Air (Framework libre AIR)
C++ libraries, such that custom programs can be run,

Fig. 5. Overall scenario for evaluating the performance of the
proposed architecture. A user tries to hit and dammage the aerial

vehicle.
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accessing all states and variables that usually can not be
modified with a brand new Parrot.

In this particular case, the tests are performed indoors
and most of the state information for the vehicle and the
obstacle is acquired with the aid of an external motion
capture system. This does not undermine the results, as
any noise in the vehicle’s state can be mitigated using
a wide array of filtering techniques, such as a Kalman
filter. The Optitrack system measures the stick position,
po(t), and its velocity, vo(t), and sends it to the drone2.
The drone predicts the future stick trajectory according to
Remark 1 with h = 0.01 (sec) and N = 50. The security
zones are defined with rmin = 1.5 m and rmax = 2.5 m.
The velocity-command generator gains ((7) and (8)) are
set to k11 = 10, k21 = 0.002 and k22 = 2.5. They were
tuned experimentally and can be used in other scenarios if
physical drone parameters or sensors are not changed. The
observer is designed with n = 1 and L =[1.5, 1.5, 1.5,
-0.2, -0.2, -0.2, -13.6, -13.6, -13.6, 130.4, 130.4, 130.4;
0.1, 0.1, 0.1, 4.7, 4.7, 4.7, 107.3, 107.3, 107.3, 1115.9,
1115.9, 1115.9]T .

The quaternion-based control laws, (19) and (25),
have been experimentally tuned using a circle reference
trajectory with constant speed. The gains obtained were
mKpt = I3 0.4, mKdt = I3 0.3, J Kpϑ = I3 1.5 and
J Kdϑ = I3 0.1. In order to have a fair comparison, the
same gains and platform was used for all test scenarios.

REMARK 3. Obviously, this strategy could be used in
other type scenarios, such as: surveillance, building in-
spections, trajectory tracking, or even when the vehicle is
moving. For a practical implementation in other environ-
ments, it is just needed to add the desired references (9)
or (10) to the specific ones that are being considered.

B. Experimental tests

In what follows, different experiments are reported in
order to illustrate how the proposed control architecture
behaves. Three scenarios are proposed for better illus-
trating the behavior of the components of the control
architecture.

Scenario A: the mobile object is moving with a slow
velocity in the direction of the aerial robot. The drone tries
to keep a safety distance with respect to the object. The
goal here is to illustrate the performance of the static VF
(~vs(t) in equation (7)). This term is generated whenever
the obstacle falls within the cylinder defined by rmax
see Fig. 3. Observe in Fig. 6-up that the vehicle tries
to maintain a safety distance of 2.5 m with respect to the
object in order to keep safe. A video of this experiment
can be seen at https://youtu.be/LovW4c2FGSA.

The bottom plot, in Fig. 6, depicts the lateral compo-
nents of the reference and drone velocities, vs,y(t), ṗy(t),

2The perception system only measures the position, but the velocity is
computed onboard the embedded system using a Kalman filter.

respectively. It is seen that the drone response-time is
about 0.5 s, i.e. there exist a time-delay of approximately
0.5 s between the reference signal and the drone velocity.
This delay, which is a normal consequence due to the
nature of the system’s dynamics, makes the vehicle unable
to avoid collisions with sufficiently fast-moving objects.
In fact, if the same experiment is repeated in a more
aggressive environment (where the object moves in the
drone’s direction with a velocity ṗo,y > rmax

0.5 ), it is found
that the collision will not be avoided only with the static
term, ~vs(t).

Fig. 6. Data extracted from the maneuver of Video 1.

Scenario B: in this scenario a human tries to hit
quickly the aerial robot. A video of this experiment can
be seen at https://youtu.be/eGGn5cgoINs. The bottom
video represents the system response when only the term
~vs(t) is considered; whereas top video represents the
system response when only the predictive-term, ~vp(t), is
considered. In this scenario, observe that when only the
term ~vs(t) is used, the drone is not fast-enough to avoid a
possible impact. In fact, the user needs to stop the hit in
order to not damage the vehicle. However, when using the
predictive term, ~vp(t), the collision is avoided. This can be
clearly seen in Figure 7, which contains the data extracted
from this experiment. Note that the predictive-term starts
generating repulsive velocities before the static-term. This
predictive nature allows start the maneuver before so that
the drone has time-enough to avoid the impact.

Observe also from Figure 7 that this fast maneuver
implies big roll angles, φ ≈ 80o and φ ≈ 50o. Both
movements are done without losing the vehicle stability.
This is possible as far as a quaternion-based controller is
being used in the closed-loop system. A linear controller
based on Euler angles could not be capable to hold the
stability in these kind of maneuvers.

The experiment of scenario B clearly illustrates the
main role of vp(t), which is: i) generating anticipated
repulsive velocities if an immediate impact is detected; ii)
doing nothing if no impact is detected. A third experiment
was carried out using scenario B, whose main goal is
to illustrate in a graphical form the behavior of the
predictive term. A third video of this experiment can
be seen at https://youtu.be/AjbeMfaNUt0. The computed
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Fig. 7. Extracted from the maneuver of Video 2.

predictions, po(t+∆t), are overlapped into the video and
the prediction po(t+nh) intersecting to the inner cylinder,
is highlighted with a red circle. Observe that, as soon as
the obstacle starts moving in the drone direction with fast
velocity, the computed predictions rapidly intersect to the
inner cylinder generating anticipated repulsive velocities.

Figs. 8-9 contain the extracted data of this experiment.
Fig. 8 represents, in the x−z plane, the stick and the drone
trajectories as well as the computed predictions at four
time-instants. Observe in this figure how the proposed
predictor extrapolates the current trajectory. This predictor
allows to extrapolate curve trajectories of unmodelized
motions in a very simple form that would not be possible
with other approaches. On one hand, predictions based on
statistical approaches tends to increase their variance the
further steps into the future one takes. This translates into
an increasingly bigger volume that would prematurely
trigger the drone’s reaction. On the other hand, a model
with constant velocity restricts the movement of the
trajectory to lines and omits the effect of second order
dynamics on the system.

Fig. 9 represents the extracted data in the x − y
plane where, additionally, the security cylinders have been
included. Note in the upper-right plot that, as soon as
the obstacle movement has been initiated, the computed
predictions are intersecting to the inner cylinder before
they have reached the bigger cylinder. This generates
an anticipated reaction that allows the drone controller
to have some additional tenths of second to modify its
velocity so that, now, the collision can be avoided.

Fig. 8. Extracted from the maneuver of Video 3.

Fig. 9. Extracted from the maneuver of Video 3. Plot x− y

Finally, a last scenario C is proposed to evaluate
the predictor behavior with respect to false intentions
to hit the drone. The main purpose is to show that the
aerial vehicle is, in fact, analyzing the future objects
trajectories and, if none affects to its safety, then none
reaction is commanded. This experiment can be seen at
https://youtu.be/B2DbJ9c28I4. Observe in the video that
the vehicle does not move if the obstacle goes slowly or
in another direction. It only reacts whenever it detects an
immediate impact. Similarly to Fig. 9, Fig. 10 contains
the extracted data during the maneuver at the 25 seconds
mark in the video; where a hit was directed in another
direction that will not cause a collision. In this case, it can
be seen how the computed predictions do not intersect to
the inner cylinder and, thus, no anticipated escape velocity
is generated as this object movement will not impact to
the drone.

IV. Conclusions

A reactive and predictive control scheme for evasive
maneuvers in aerial robots was proposed in this paper.
This reactive scheme endows to the aerial robot the
capabilities of performing predictive evasive maneuvers
if an imminent collision may happen.
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Fig. 10. Extracted from the maneuver of scenario B. Plot x− y

The solution is composed by three modules: a novel
trajectory predictor algorithm, a velocity-command gen-
erator and a robust quaternion-based controller. The tra-
jectory predictor was constructed from a simple model-
free perspective based on some recent results on dis-
turbed systems and disturbance observers and it is able
to make short-time predictions of bodies with unmod-
eled/uncertain motion. The velocity-command generator
was then constructed by combining a conventional static
repulsive Velocity-Fields (VF) with a novel predictive
VF in order to anticipate for imminent collisions. The
predictive VF is found to be quite useful to compensate
for the inherent delay caused by the system dynamics.
The quaternion-based controller was designed by using
the Lyapunov theory.

The overall architecture was experimentally tested in
an aerial drone whose security was compromised. The
experiments shown the main advantages that the insertion
of the predictive term brings to the conventional solutions
based on repulsive VF. Future works could be focused
on implementing this strategy in aerial aerial robots
navigating in environments where other non-cooperative
agents are evolving.

Observe that our main goal for the presented work
was indeed to develop a theoretical control solution to
improve navigation behavior of an aerial vehicle, focusing
on a quadcopter vehicle, when it navigates in the presence
of non-cooperative agents. From a control point of view,
the algorithm was conceived for having a good perfor-
mance even in open and dynamic environments and in
the presence of non-cooperative agents that are moving
randomly. Note that, we proposed a practical proof of
concept (cyber-physical twin) of the theoretical solution.
This practical validation gave us a reasonable prediction

of the reliability for analyzing future performances and
allowing to adapt the algorithm to future behaviors or
scenarios.

The presented work is a step in the direction of
autonomous navigation in dynamic environments. Some
of the possible research venues that could be explored
include the addition of more objects. Because the pre-
sented velocity-command is based on VFs, it is possible
to present local minima under certain conditions, but
this can be avoided by improving the velocity-command
algorithm.

Other scenarios can also be considered to test its
viability, including outdoor tests. These would require the
inclusion of more sensors like cameras, laser rangefinders,
acoustics sensors, etc. for detecting obstacles.
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