Element of a pluri-disciplinary project on karstic reservoir characterization: groundwater modelling of the Dévoluy Massif, France.

Nathan Rispal, Bruno Arfib, Philippe Audra, Pierre Henry, Ludovic Mocochain, Benoît Viguier, Alexandre Zappelli, Helene Miche, Christine Vallet-Coulomb

To cite this version:
Nathan Rispal, Bruno Arfib, Philippe Audra, Pierre Henry, Ludovic Mocochain, et al.. Element of a pluri-disciplinary project on karstic reservoir characterization: groundwater modelling of the Dévoluy Massif, France.. Eurokarst, Jun 2024, Roma Sapienza Università, Italy. 2024. hal-04628392

HAL Id: hal-04628392
https://hal.science/hal-04628392
Submitted on 28 Jun 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - ShareAlike 4.0 International License.
Element of a pluri-disciplinary project on karstic reservoir characterization: groundwater modelling of the Dévoluy Massif, France.

Objectives: the aim of this study is to understand the behavior of a mountainous karstic reservoir. Exploration of hydrodynamic and meteorological data coupled to simulation on KarstMod platform with a snow routine module helps to decipher if discharge variations at the springs are related whether to recharge processes or properties of storage and flow in the reservoir.

How the snow routine works in KarstMod

Case study: the Dévoluy karstic reservoir

Workflow: modelling a snow-influenced karstic aquifer

Discussion

How to use the model once it is well calibrated?

1/ Highlights the variations in flow rate in relation with the conditions of reservoir recharge. Possible causes of variation in recharge in Dévoluy: artificial snow at the ski resort, P and/or T variations due to climate change.

2/ Provides a better understanding of the hydrodynamic of the system in relation with groundwater management: Architecture of the system, contribution of each reservoir to the discharge at spring, water resources.

Conclusion and way-forward

Importance of recharge mechanisms: work is needed on recharge modeling to improve rainfall-discharge modeling with conceptual models (« reservoir or compartments models » like KarstMod). Good model structure is not enough.

Snow routine module is efficient: the degree-day method used by KarstMod is effective when applied to a karstic spring.

KarstMod is free to use and can be downloaded via www.sackard.org.

References and acknowledgments:

