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Geometrical quantity on random checkerboards on the regular torus

Léa Gohier*

Abstract

In the study of the observability of the wave equation (here on (0,7) x T%, where T¢ is the d-
dimensional torus), a condition naturally emerges as a sufficient observability condition. This condition,
which writes ¢7 (w) > 0, signifies that the smallest time spent by a geodesic in the subset w C T¢ during
time T is non-zero. In other words, the subset w detects any geodesic propagating on the d-dimensional
torus during time 7. Here, the subset w is randomly defined by drawing a grid of n¢, n € N, small
cubes of equal size and by adding them to w with probability € > 0. In this article, we establish a

probabilistic property of the functional ¢7: the random law ¢7 (w?) converges in probability to € as

n — +oo. Considering random subsets w™ allows us to construct subsets w such that 7 (w) = |w|.

1 Introduction

Motivation

Let (M, g) a compact Riemannian manifold. We denote by I" the set of geodesics propagating on M, that
is, the set of projections onto M of Riemannian geodesic curves in the co-sphere bundle S*M.
We consider the wave equation

Ony — Agy = 0; (1)
on (0,7") x M, where A, is the Laplace-Beltrami operator on M with respect of the metric g.

Denoting by dz, the canonical Riemannian volume, we define the observability constant Cr (w) > 0,
where w is a measurable subset of M, as the largest nonnegative constant C' such that the inequality

T
| [t Pasyae > € (1 0. By + 10 0. F-san) @)

where H~! (M) is the dual space of H! (M) with respect to the pivot space L? (M), is satisfied for any
solution y of the wave equation . Thus,

Cr (w) = inf {/OT/W ly (t, x) |*da,dt ' [ (¥ (0,-), 0y (0,°)) |2 (aryx -1 (0r) = 1} :

The wave equation is said to be observable on w in time 7" when Cr (w) > 0. Considering the
definition of Cp (w), studying the observability of the wave equation appears to be difficult. This raises the
question of the existence of sufficient observability conditions. The object ¢ (w) defined below precisely
provides such a condition, through Theorem

Let T > 0, let w be a measurable subset of M, we define

1 T

(T (w) = inf — Xw (7 (t)) dt ; where x,, : {M —{0n

ver' T Jo x— 1, (x).
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Then, for any v € T', we define m? (w) = * fOT Xw (7 (t)) dt. Thus, (T (w) = in% m? (w). The real number
ve

/T (w) represents the smallest amount of time a geodesic from I' spends inside w between 0 and T. At
least when w is open, the condition ¢7 (w) > 0 means that every geodesic from I' intersects w during the
time interval T'. This condition is called the Geometric Control Condition. The following theorem, proved
in [3], provides a sufficient condition for the observability of the wave equation.

Theorem 1.1. If w is open and £ (w) > 0, then the wave equation is observable on w in time T.

Remark 1.2. A similar result on manifolds with boundary is proved in [2]. In this case, the rays are
reflected at the boundary according to the laws of geometric optics.

Thus, ¢ (w) plays a crucial role in problems related to the observability of the wave equation, through
the study of its positivity. The following theorem, proved in [4], also justifies the study of its exact value:

Theorem 1.3 (Large-time observability). Given any T > 0 and any measurable subset w C M, there

evists o € [0 (D), 17 ()] such that the limit o = Tlim ol erists and we have
—+00
. CT (w) . 1
1 - - 4
T—1>I£oo T i 291 (w) ) ( )

. fwM)(x)\deg
where g1 (w) = 12f T o oy

—Ay, and where vy is the canonical Riemannian volume on M ).

(where the infimum runs over the set of all nonconstant eigenfunctions ¢ of

Remark 1.4. Except for pathological examples, the values of /7 (W) and ¢7 (@) are equal.

Let d € N*. In the entire remainder of the article, M will refer to the torus in dimension d, T¢ = R¢/Z4.

Origin of the model

In this subsection, d = 2. The article of Hébrard and Humbert (|5]) gives an algorithm to compute
explicitly #7 (w) when w is a finite union of squares (which will be random later), and when T — +oo0.

v

Figure 1: Example of w (union of black squares).

The following propositions provide an upper bound for 7 (w) for any T > 0.

Proposition 1.5. Let v € T', dense in the torus M, i.e. {y(t)|t € [0,400[} is dense in the torus, then,
my (We) — |wl.
T—+o0

Proposition 1.6. If w C M is Riemann-integrable, then lim sup /7 (w) < |w|.
T—+o0



And then, for all T > 0, ¢7 (w) < |w|. This leads to the question that the article [I] answers using a

|
probabilistic method: Have we sup T (w) =a ?
|w|=c

In this article, we are more interested in studying the behaviour of ¢7 (w) when w is a random domain
than just answering a similar question in the case of a d-dimensional torus. Indeed, we are currently
studying a method that seems more effective for providing a general answer to this type of question.

Presentation of the model

We want to compute the probability that ¢7 (w) > 0 on the d-dimensional torus, where w is a randomly
constructed subset of M. The subset w can be seen as a collection of sensors placed randomly on M, and
(T (w) > 0 represents the ability of w to detect all the geodesics living on M. To do this, we define w
according to the following model:

Let n € N*, we consider a regular grid G" = (¢;,,...4,) in the cube [0, 1]d, consisting of n

1<i1,.,0g<n
n

cells. We have [0,1]Y = | ¢i,...i, where, for every (i1, ...,iq) € [1,n]%, ci,...i, = [(i1 — 1) /n,i1/n] x

o+ X [(ig — 1) /n,iq/n]. For every (i},... i) € 7%, we identify the cube Cit., with the cube ¢;, . ;, of

i
the grid if: for all j € [1,d], i; = i’; [n].

d

Construction of random checkerboards. Let ¢ € [0,1]. We consider the grid G" initially white. We
randomly blacken certain cells of the grid G according to the following procedure: for every (i1,...,i4) €
[0, 1ﬂd, we blacken the cell ¢;, .. ;, of the grid with probability . All choices are assumed to be mutually
independent. In other words, we select the cells to blacken in the grid G" by considering n? independent

Bernoulli random variables denoted (X, ..is)1<;, . i <n» With parameter e. We denote by w the subset

of [0,1]%, defined as the union of all randomly blackened cells.

P4
2
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y
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Figure 2: Examples of random checkerboards in dimension d = 3. w! is the union of the black cells. From
left to right : n =5, n=8, n=11, n =16, andsz%.

Let v € T, for every (i1,...,iq) € {1,...,n}", we denote by t;, ., (7) the time spent by 7 in the cell
n

Ciy,....iy Oof the grid G". We have > t;, ., (v) =T. Moreover, 7 can traverse the cell ¢;, . ;, at most

i1, ig=1

d

T + 1 times, and within this cell, the maximum time spent by a geodesic during one passage is %. Thus,
we have:

n

) ) tir,ig (7) T+1Vd tir,oig (V)
Y (i1, . .. 1,...,n}¢ Letd W A d S 5
(/Lla aq’d) € { ’ 7”} ) T T n an ( )

11,..,0q=1



Main result

Theorem 1.7. Let T > 0, let ¢ € [0,1]. The random variable £ (w?) converges in probability to € as

g
n — +oo. In other words, for any 6 >0, lim P (|€T (Wl) — 6‘ > 5) =0.
n—-+o0o

Remark 1.8. The chosen model is particularly suitable for the torus, and the mathematical problem it
poses is interesting. However, if one were to attempt to extend the result to other domains, potentially
less regular, such a model may not generalize well. Another model using a random domain constructed via
a Poisson point process could provide a more generalizable approach. This will be the subject of future
research.

To prove this theorem, we need to show that for any 7' > 0 and any ¢ € [0, 1], we have, for any § > 0:
(i) lim P (0T (W) = e+ 6) = 0;
(i) lim P((* (w?) <e—6)=0.

n——+oo

Furthermore, for each T > 0, /7" (w?) < Tlim (T (w™) ([]: the mapping T +— (T (w?) is nonnegative,
—+00

is bounded above by 1 and is subadditive). Thus, the result remains true as T — +o0o. From this, we

deduce the following corollary:

i T( n\ _
i ) e

Corollary 1.9. Let € € [0,1]. For any 6 >0, lim P (
n—-+0o

>4) =o.

2 Proof of [(i)]

The difficulty of proving Theorem lies in proving The proof of |(i)|is straightforward, and here are
the details:

Proof of. Let v € I'. We have

n n big,ig (Y
o (wl) < mL (Wl) = Z le()Xil,...,id- (6)

i1yeyig=1

Thus, P (¢7' (wl) > e+6) <P (mz (W) >e+6) <P (‘mz (wl) — €| = 6). Then, by applying Tchebychev’s
T

inequality to the random variable m;, (w('), we obtain:

Var (mz (™)) - iT—}—la(l—E)\/g
52 62T n '

P (‘mf (W) —¢e| 26) <
n ) . 2
Indeed, Var (mz Wh) = > (M) Var (Xj,,...i,), due to the independence of (X, ..

11,...,0q=1

Moreover, for any (i1, ...,iq) € {1,...,n}?, Var (Xiy,...ig) =€ (1 —¢). Hence,

n ) ) 2
Var (m} (@) =c(1—¢) Y| (t“""’; (7)> :
i1, 1

71‘4)1@'1 yeenig<n”

Now, for any (i1,...,iq) € {1,...,n}d, baeig®)  THVE g > fipeig@) _ g Thus,

T XTT Tpo L T
01 yeeeyig=1
T+1Vd
T
Hence the result. O



3 Outline of the proof of

In the proof of Theorem [1.7] we use a large deviation result (Proposition in the following) proven in
[1] (Section 3.3, Proposition 1), where the difference with the classical large deviation result is that the
constants \; are not necessary equal to %

Proposition 3.1. Let m > 3 be an integer, and let (A1,...,\;,) be an m-tuple of positive real numbers
m m
satisfying  A; = 1. Assume there exists ¢ > 1 such that for all i, \; < 5. We define V,,, = > N X,
i=1 =1
where (X1,...,X,,) is an m-tuple of independent and identically distributed random variables with a
common expectation € € [0, 1]. Then, for any 6 > 0, there exists C, s > 0 such that

P (|Y;, — €] > 6) < Cesexp (—52%) .

The structure of the proof of Theorem is inspired by [I]: we restrict the study of m%r (Wl) to a
polynomial subfamily of geodesics v. However, both the subfamily of geodesics and the arguments allowing
the study of /7 (w?) are very different from what is presented in [I]. If we were to reuse the same arguments
as in the proof of [1], we would quickly encounter difficulties in adapting them to higher dimensions. The
following paragraph gives the main steps of the proof of Theorem and the next one compares it to the
proof in dimension 2 ([I]).

3.1 Sketch of the proof of

n

The main idea of the proof of [(ii)| is to decompose the sum over all cells in the definition of mz (W) (see
@) into d sums according to the types of hyperplanes (we will say that a hyperplane is of type i € N if
it is orthogonal to the i-th vector of the canonical basis of R?, see Figure .

v

Figure 3: In dimension d = 2: the hyperplanes of type 1 are represented in blue (vertical), those of type
2 in orange (horizontal).

Indeed, the key property, based on Thales’ theorem, is that between two consecutive hyperplanes of the
same type, a geodesic spends a constant amount of time. We want to evaluate the infimum of mz; (wl)
over the set of geodesic rays:

1. We start by excluding the geodesics in I' that are completely contained within a hyperplane I'yy in

order to work on a subset of I' where v — mz (w?) is continuous.



2. We partition the set of geodesic rays I'\ 'y living on M into # .2, classes of geodesics I'y, such that
geodesics in the same class encounter the same cells of the grid G” in the same order (see the precise
definition of the set &, in the beginning of Section |5/ and Figure . We are then left with the task
of evaluating the infimum of mf (w?) over the geodesics in the same class.

\
\

c3 / Cs
L~
/4_)

—
]

Figure 4: Examples of geodesics: 1 and o are in the same class, not ;.

3. We evaluate the difference in time spent in w by two geodesics from the same class: we rearrange the
sum in the definition of mf (w?) to handle the different types of encountered hyperplanes separately.
In fact, we treat them differently depending on the number of occurrences of each type of hyperplane:
if a type ¢ hyperplane is encountered only a few times by the geodesics in the considered class,
then, in probability, the impact of this hyperplane type in evaluating |m$ (W) — mz/ (W) | will be
negligible. On the contrary, if a type ¢ hyperplane is encountered a larger number of times, we
can show, by applying Proposition (large deviation result) to the appropriate random variables,
that in probability, the impact of this hyperplane type in evaluating |m:{ (Wl) — m:f, (w2) | will be
exponentially decaying in —y/n.
By treating things in this way, we avoid confronting pathological cases like the one below, whose

probability of occurrence is extremely low but which maximizes the difference ]m%r’ (W2)— mz, (W2)].

Figure 5: Example of 7 and 4’ in the same class and where mz (Wl) > mg, (w?).

4. Finally, we apply Proposition [3.I] to a representative of each class. The previous steps then allow us



=

to reduce the problem to bounding P < inf m5 (wl') <e— 5> by

yEMI'y

—5%nT? —6%V/nT
# | ao (7775 ) + Cress <2d)

)

where C7 and Cb are strictly positive constants. To conclude, it remains to show that the number
of classes #.%; is polynomial in n. This point of the proof boils down to solving an interesting
algebraic problem: bounding the number of ways to separate n points in the plane with a line.

3.2 Comparison with the proof in dimension d = 2

As done in dimension d = 2, our goal is to reduce the study of m,:f (w?l) (time spent by a geodesic v in
w?, see paragraph "Construction of random checkerboards" page|3]) to a subfamily of geodesics (definition
page (1) with a polynomial cardinality in n, and then apply the large deviation result to the geodesics in
this subfamily. In dimension d = 2 (see [I]), the relevant subfamily consists of geodesics passing through
two corners, and it is possible to control the difference between the infimum over the set of all geodesics
and the infimum over the geodesics passing through two corners. In higher dimensions, we encounter
difficulties in generalizing the proof due to the following reason: we start with an arbitrary geodesic, and

using only translations, we aim to bring it to a geodesic passing through a corner;

e In dimension d = 2, the vertices of the grid G" are projected orthogonally to v, which ensures that
when a corner is encountered in the projection, a corner is indeed encountered in the original sense
given in the definition, as seen in the Figure [3.2 Thus, both v and its translation v4 pass through

the same cells until 7, intersects a corner. Therefore, the function s — mz;s (w)

is affine, which is a key point in the proof.

o s S
/

Gy s
[ J
'O
Dl "
.. "
H, s
El P
Al .. *
[ ] *
I o
Bl ..
Fy
Cy
[ ]

Figure 6: Orthogonal projection of M onto v in dimension d = 2.

> A
(4,5)€l(v)



e In dimension d = 3, when performing the same projection (projection of the edges of G" orthogonally
onto 7y), not all corners of the projection are "significant", meaning they do not all correspond to
corners as defined. In fact, two edges can intersect on the projection without actually intersecting in
reality. This leads to spurious corners in the projection. The problem is that these spurious corners
depend on 7 (because they depend on the projection). Therefore, reducing the problem to one of
these spurious corners through translations is not sufficient: Indeed, there are more spurious corners
related to projections than there are geodesics in T', so it wouldn’t even simplify the study of £T (w?).
However, encountering a spurious corner in the projection indicates leaving one of the cells crossed
by v and entering a new one. This causes s — m,:fs (w) to lose its affine character.

D C
E 1 E
D, o K/ i J
. A B
E ‘ - -1
1 J1 0 v
1 | 7 |
H;’,,,J:,: ,/
ol i G
A] z ! :
H| < | | 77777 -
Ly p
O
Ny
Py
O1

Figure 7: Projection of M orthogonally onto v in dimension d = 3. In blue, the "significant" corners; in
orange, the "spurious" corners.

Thus, we already encounter difficulties in dimension d = 3 in trying to reduce, starting from an
arbitrary geodesic in M, to a geodesic passing through a corner.

The idea to extend the proof to higher dimensions has therefore been to group geodesics according to
the different cells they encounter during their trajectory, rather than applying transformations to them.

4 Preliminaries

In this section, we present some results that allow us to restrict the study to 7' € (0,1) (Lemma and
geodesics that are not completely contained in a hyperplane of the grid G" (Lemma . This subset of

I' is where v — mz (w?) is continuous (Lemma (4.2)).

Lemma 4.1. If (ii) is true for every T € (0,1), then (ii) is true for every T > 0.

Proof. Let T > 1 and m € N* such that 7" = L €]0,1[. Let’s show that (7 (w?) > ¢ (w?). Let
p >0 and let 7 € T a geodesic such that (7 (wl') + p > mI (wI'). We define, for every k € [0,m — 1],



Yk () = (KT" + -). We then obtain:

1 T k:-‘rl
) oz md W) = 1 /0 Xer (1 (1)) / xer (7 (1)) dt

1 m—1 .7/ 1 m—1

T /0 Xor (v (KT +¢)) d / ))dt = T Z T’m?}C (w?)
k=0

T ,

> ? ET (wa) KT (wg)
k=0
By letting p tend to 0, we obtain £7 (w?) > ¢T" (w?). Hence, we obtain the result. O

We now assume that 7' €]0, 1[. Therefore, any geodesic v € I" crosses at most once the cell ¢;,__;, over
the interval [0, 7).

We denote by I'y C T' the set of geodesics that are entirely contained within a hyperplane of the
grid G". It is clear that v — mI (WP

5 ') is not continuous on the entire I', as shown by the following
counterexample:

AN
N

*\
RN
1 \\
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0 l
| |
0 1
booo
\ 1
\\l
-
1
|
I\ |
\ I
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hyperplane h

Moo R ---
7/ 7/

Figure 8: v is contained within the blue hyperplane h. w is the union of the cubes colored in orange.

Indeed, the sequence of geodesics (’y,i) ,» parallel to v and converging to vy from below the hyperplane h,
satisfies that for every k£ € N, mzl (w?) = C4, where C; > 0 is the time spent by 7} in the cube at the
k

back bottom-right of M. The sequence of geodesics (’yi)k, parallel to v and converging to « from above
the hyperplane h, satisfies that for every k € N, m?;2 (wl) = C1 + Cq, where Cy > 0 is the time spent by
k

*y,% in the cube at the front top right of M (C} is also equal to the time spent by *y,% in the cube at the
back top-right of M). Thus, 7{ and 77 have the same limit ~, but not m,y1 (w) and m; (Wl).
k

£

However, v — m7 (w?) is continuous on the subset I'\I'g.

n

™) is continuous on T\I'g.

Lemma 4.2. v +— mz; (w

Proof. Let v € T\I'g. Let (vk),ey be a sequence of geodesics converging to . We want to show that

(m?, (wg))keN converges to m? (w?).
n
We write xor = > Xiy,igXes, i and mfk (Wi = > Xi1,...,idmr§k (¢iy....ig)- Let’s show

i1, ig=1 i1, ig=1

that for any (i1,...,iq) € [1,n]? the sequence (mzk (Cilv"-vid))keN converges to mg (¢iy,....iy)- Consider

9



,,,,,,,,,,

Similarly, if v (t) ¢ ci,..

cylgy VYR AL DRAAALARAIVEY tAt et vy WA BAVE TR \Y) O M1,.0tdy D AC L, i

Xeiy..i, (V(t)) = 0. Moreover, the set {t € [0,T],v(t) € dci,,..i,} (where Jc;, ., denotes the boundary
) L T
of ¢;,..i,) is finite since v € T'\I'y. As mgk (Ciyooiyg) = %fo Xeiy iy (v (t)) dt, we can conclude by
dominated convergence. O
Lemma 4.3. We have inf mI (w?) = inf mI (w?).
ve inf m] (2) = _int 1)

Proof. Let v € T'y. Then, there exist i € [1,d] and j € N* such that ~ is entirely contained within the
Jj-th hyperplane of type i, denoted as fj. Let ci,...,cn be the cells encountered by v on one side of the
hyperplane f;, and ¢}, .., cy be the cells encountered on the other side of the hyperplane f;: (see Figure

N

left). We then have the following equality: m?; (W) = l; @Yl where, for all [ € [1, N], Y] is the random
variable defined as ¥; = 1 if ¢; € w2 or ¢ € w7, and Y] = 0 otherwise, and t; () denotes the time spent by
7 in the cell ¢; (which is equal to the time spent in the corresponding cell ¢}).

In the example of Figure[9) we have Y1 = Yo =Y3 =Y, =Y; = Y5 =Y, =Y1; = Yi3 =Yi4 =1 and
Ys =Yy =Yg =Y15=0.

Now, let’s consider y; = Ty, 0y for t € ]0, % [, where T4, denotes the translation by the vector te; (see
Figure . We have mft (Wl € r (where I is the subset of I' that contains only geodesics propagating on

N
M without encountering any edges of the grid G"), and mz;t (W) = >, @Xl (where, for all [ € [1, N],
=1
X;=1if ¢ € w? and Y; = 0 otherwise).
In the example of Figure [I0} we have X9 = X3 = Xy = X5 = X1 = X13 = X1y =1 and X; = X5 =
X7 =Xg=Xg=X10=X12=X15=0.

Thus, we obtain inf m’ (w?) > inf m
~er o' € -

z; (w"), and since I C T', we have inf mz (w2) = inf m

~vel vel ~vel

T

5 (Wwe). O

£

C1 Co C3 C4 C15

I H AR .
_HE H HEEEE BB EENENSEEEEESEE

/ / / / /
cl Cy C3 Cy 15

Figure 9: Geodesic 7 € I'g. The orange cells represent the cells of w! that 7 encounters. In this example,
WehaveY1:Y2:}§:H:Y5:}%:Y7:YH:Y13:Y14:1andYngg:Ym:szo.

- H*:%[llllH ] Tt

Figure 10: Geodesic v; € I'\I'y, translated from -. The blue cells represent the cells of w! that 4
encounters. In this example, we have X9 = X3 = Xy = X5 = X131 = X1z =X =1and X; = Xg =
X7=Xg=Xg=X10=X12=X15=0.

Thus, as a consequence of Lemma it suffices to consider the geodesics from I'\I'y.

10



5 Proof of

We recall that by f‘, we denote the subset of I' that contains only geodesics propagating on M without
encountering any edges of the grid G".

Let &4 be the set of sequences of cells (cy, .. ., cx) such that there exists a geodesic v € I that traverses
the cells ¢y, ..., c; in this order, and only those cells.

We divide T into # P subsets fp #£0,p=(c1,...,c,) € Py, as follows: for all v € fp, ~ traverses the
cells ¢y, ..., ¢k in this order, and only those cells. Thus, two elements belonging to the same f‘p encounter
the same cells of the grid G" in the same order. For any p € &4, we consider v, € fp as a representative
of the class f‘p.

5.1 Number of classes

~

The objective of this subsection is to evaluate the number of classes I'y, p € &4, and more particularly to
show that this number is polynomial in n.

Lemma 5.1. #%; is polynomial in n.
Lemma 5.2. If Lemma/|5.1] is true for d = 2, then it is true for any d > 2.

Proof. For any i, j € [1,d] such that i # j, we denote Py (i, j) the set of ways to place hyperplanes of type
i with respect to those of type j on the trajectory of a geodesic of I'. We assume that # %5 = #;(2,1)

is polynomial in n. Then, #Py < [[ # (P4 (i,7)). Indeed, if we fix the order of hyperplanes of type i
1#]

with respect to those of type j, the order of hyperplanes of type ¢ with respect to those of type k, and the

order of hyperplanes of type j with respect to those of type k, then the sequence formed by hyperplanes

of type i, j, and k is determined. Then, # Py < (#2, (2, 1))(5) is polynomial in n. O

We now consider the case where d = 2.
Let (i,7) be a vertex of the grid G,,. We will denote C(3, j) as the cell of the grid G,, whose lower-left

vertex is (4, j) (see Figure [L1)).

C(2,3)

Figure 11: Notation for the cells of G".

Consider two vertices (i,7) and (i, j') of the grid G,,. Without loss of generality, we assume that i’ > i
and j' > j. We denote ¢ = C(i,j) and ¢ = C(¢, j').

11



Figure 12: Example of fixed starting and ending cells.

We denote X
P(c,d) = {p € ‘ny eIy, v(0) € cand y(T) € c'},

the set of classes of geodesics that start at position ¢ and end at position ¢’. We denote
f‘(c,c’) = {’y el ‘ dp e P(c,d), v € f‘p} ,

the set of geodesics in I' that start at position ¢ and end at position ¢.
Proposition 5.3. #%(c,c) is polynomial in n.

Proof. Counting the sequences of cells p € £ taken by the geodesics of [' amounts to counting the
sequences of hyperplanes in G" crossed by them. Let S(c,) = {(k,l) € S|i<k < and j <l<j'}
be the set of vertices in the grid G™ contained in the rectangle formed by the cells ¢ = C(i,j) and
d = C(i,j). For any v € I, let Y (v) be the time at which ~ intersects the k-th vertical hyperplane
(type 1 hyperplane) of the grid G, and let t () be the time at which v intersects the I-th horizontal
hyperplane (type 2 hyperplane) of the grid G" for any k € [i + 1,i'] and I € [j + 1,5']. Define S1(vy) =
{(k,1) € S(c,d) [t} (v) <t (v)} as the set of vertices in S(c, ') located in the upper-left triangle delimited
by v, and similarly, let Sa(v) = {(k,1) € S(c,d) [t} (v) >t/ (v)} be the set of vertices in S(c, ) located
in the lower-right triangle delimited by ~y. Thus, S;(7y) and Sa(y) form a partition of the set of vertices
S(e, d).

Claim 5.4. Let 7,7 € f(c, ). Then, v and v are in the same class if and only if they separate the
vertices of the grid G, in the same way, i.e., if and only if S1(v) = S1(7/).

Proof. Let’s assume that v and 4/ are in the same class. Let’s show that Si(y) = S1(v/). Take (k,1) €
S1(7y). We want to demonstrate that (k,1) € S1(7/), i.e., t} (') < tH (/). By assumption, (k,1) € S1(7), so
t,‘c/(’y) < tfl (7). Therefore,  intersects the k-th vertical hyperplane before encountering the I-th horizontal
hyperplane of the G" grid. Now, 7 and 4/ are in the same class by assumption, meaning these two
geodesics intersect the same hyperplanes of G" and in the same order. Thus, 4/ intersects the k-th vertical
hyperplane before encountering the [-th horizontal hyperplane of the G" grid. Hence, tx(’y') < tf{ ().
Therefore, S1(y) C S1(7'), and then S1(y) = S1(7’) because v and ' play symmetric roles.

Conversely, let’s assume that S1(vy) = S1(7'). Let’s show that v and 4/ are in the same class, meaning
these two geodesics intersect the same hyperplanes of G" and in the same order. Since ~,7 € f‘(c, ),
it is obvious that « and + intersect the same hyperplanes of the G™ grid, i.e., the i-th to ¢'-th vertical

12



hyperplanes and the j-th to j'-th horizontal hyperplanes of the G" grid. It remains to show that « and +/
intersect them in the same order. Moreover, since i’ > i, v and 7/ intersect the vertical hyperplanes from
left to right. In other words, for any ki, ko € [i+1,4], if k1 < kg, then tkvl (7) < th2 (7) and t,‘c/l () < t,‘é ().
Similarly, since j > j, v and 7/ intersect the horizontal hyperplanes from bottom to top. That is, for any
li,la € [7+1,7],if l1 <o, then tf('y) < tg('y) and tf(y’) < tg(’y’). Take k € [i+1,¢] and I € [j+1, 5],
and assume that ¢} (v) <t/ (). Then, (k,I) € S1(v), by the definition of Si (7). Now, Si(y) = S1(v') by
assumption, so t} (7') < tH(v/). Similarly, if t{ () > tf(v), then ¢ (v') > tH ('), because Sa(y) = S2(7').
Hence, v and 4/ are in the same class. O

This proves that #2(c, ¢) is bounded by the number of ways to strictly separate n? points with a line
in the plane.

We conclude the proof by applying Lemma : the number of ways to strictly separate n? points with
a line in the plane is polynomial in n, so #%(c, ) is polynomial in n. O

5.2 Geodesics from the same class

3, (w2)| for two geodesics v and

(W), v € Tp, by mzp (wl), where ~, is a fixed

n

The objective of this subsection is to control the difference ’mz (WZ)—m

T
v

~" in the same class fp. The goal is to approximate any m
representative of fp.

In the following, we fix p € Z,.

Let N, +1 € N* be the number of cells in the grid G" that are encountered by the geodesics in fp.
We denote ¢y as the starting cell for the geodesics in f‘p, and for each i € [1, N,], ¢, the (i + 1)-th cell
encountered by the geodesics in fp.

For any ~ € f‘p, for each i € [1,N,], we denote s;(y) as the time at which 7 intersects its i-th
hyperplane. Additionally, we set so(y) = 0 and sy,11(y) = T. For any v € f‘p and ¢ € [1,d],
we define k; + 1 € [1,N,] as the number of hyperplanes of type i that v intersects. This quantity
depends only on p and not on the choice of v in fp. We then denote, for each j € [0, k], t;- (v) as the

time at which v intersects its j + 1-th hyperplane of type . It should be noted that for any v € T,
{si(v)|ie[1,N,]} = {t; () ‘ i€1, Np]]}, and more precisely, there exists a bijection ¢, : [1, N,] —

{(,4) | i €[1,d], j € [0,k;]} such that for any v € T',, for any i € [1,d], s; () = to, (i) (7), see Figure

s2(7) = tg (7) | |

/1

Figure 13: Hlustration of the notations on a geodesic v in dimension d = 2.

1if ¢ ewl

We define Nj, + 1 random variables (X;);cpo v, as follows: for any i € [0, N,], X; = .
P 0 otherwise

The (Xi)ie[[o, N,] are therefore independent random variables, identically distributed as Bernoulli random
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variables with parameter €.
Let v € I'y, we can then write :

N, N, N,
1 <& 1 1 &
ml (W) == (i1 (1) — s () Xi = = > si1 (1) Xi— T > i) X
=0 1=0 1=0
Np 1 Np 1
*Zsz-i-l ) Xi — = Z Sit1 (7) Xit1 = Z sit1 (7) (Xi — Xit1) +XNp+1
:ZDZ Xiy = Yig) + Xnyi1,
i=1 j=0

by grouping the hyperplanes by types and renaming the (X;, X;11) as (Xj;,Yi;). We observe that X;; and
Y;; do not depend on v but only on the different encountered hyperplanes and their order, which is the
same for every element of f‘p.

Let v € f‘p, let i € [1,d]. Between two consecutive hyperplanes of type ¢, v spends a constant time
o’ () (Thales’ theorem).

/
/

/

Figure 14: Example in dimension d = 2: ~ spends the same time as () between two consecutive
hyperplanes of type 2.

We observe that A _
0<th(y) <o’ (7); (7)
and 0 < T — t',‘ﬁ (v) < a' (), where t} (v) and t};i (v) are regpectively the' meeting ti.mes of the ﬁrst and
last hyperplane of type i encountered by 7. Moreover, k;a' (v) < T =t (v) + kia’ (v) + T =t} (7) <
(ki +2) o (), which implies

T . T
oY <a'(y) < o (8)
ki (1+2)
Moreover, for any j € [0, k;], ' ' '
t5 (v) =to (v) +jo’" (7) - (9)

Lemma 5.5. Let 7,7 € f‘p. Leti € [1,d]. For any j € [0, k], t;- (v) — t; (] < %—Z.
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Proof. We have Z k; = Np, so there exists i € [1,d] such that k;, > p. Let i € [1,d]. Let j € [0, k],
i=1

there gxists Ji S [0, k4, ]| such that t;‘; (7) < t; (7) < t;‘: +1 (7). Then, since v et 4 are in the same I, we
have 99 (') <t (7') < t;O_H (7). By using (9), and (8], we obtain :

i () =2 (7)

<t ()~ ()

<T_|_: T T <T+“2T<3T<3dT
< kio Ji kio k‘io <1+ 2) = kio JZk? = kio = Np.

= [t (v) + jia® (v) =t (7) — jiea® (7) + i o () = o™ (¥)]

Moreover, t] () - t;? (7) = a® (7) < & < 4. Hence,
th(y) =5 (V) <0 (7) — £ (+)

£ (1) = 15 () + 85 (1) = 1 (7))

dl"  3dT  4dT

NN, TN,

Similarly, t;'- ) — t;'. (7) < %. .

T
’Y/ (W?) .
hyperplanes based on their number of occurrences along the trajectories of v and 4. In the first sum, we
consider those encountered less than /N, —1 times, and in the second sum, we consider those encountered

more than /NN, — 1 times by the geodesics of f‘p. We have

We aim to evaluate ‘mg (WZ) —m

To do so, we will separate, in the sum, the types of

d | &
1 i .
|m w?)—m$ (W] < fz (5 (v) —t5 (7)) (Xi5 — Yiy)
i=1|j=0
1 k‘z kz
<7 2 (60 =6 () X =Y |+ 7 > (t5 () = t5 (7)) (X — Vi)
i€[1,d] 7=0 1€[1,d] j=0
ki<y/Np—1 ki>\/Np—1
<7 O =650)) X =Yi)| + 7 D |l =t (V)] D (X — ¥eg)
i€1,d] 7=0 i€[1,d] j=0
ki<y/Np—1 ki>y/Np—1
ki
+af (v) =o' (V)] D (X = Yi)|| ; (10)
j=0

by @

Let’s first focus on the left-hand term of , with the following lemma.

Lemma 5.6. Let i € [1,d] such that ki < /N, — 1. Then, for all 6 > 0, if N, > 2

ki

S8

N =

o

gM
|
“;
>
o
=
N
WV
([e%)
[l
o
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Proof. Let 6 > 0. By the triangle inequality and Lemma we have:

ks k;
R ' 1 &
Plz D (B0 =) (X =Yig)| 26 | <P 5 |60 =15 (V)] 1X55 = Yig| >0
j=0 =0
k.
4d
<SP D 1 Xij—Yiyl=26
Np &=
7=0
Now, for all j € [0, k;], we have | X;; — Y| <1, so
i Ad
P Z 7) =5 (7)) (X = Yi)| =6 <P(Np(k+1) 5)

The following lemma allows us to address the right-hand term in the sum ([10)).

Lemma 5.7. Leti € [1,d]. For all 6 > 0, there eﬂcists Ci,s > 0 such that:

() —ti (o] ki 5201
P(W S (X — Vi) + 20]( Xij — Yij) /5> gci,éexP(%).

Proof. Let 6 > 0. We have

\a v) ‘()]

[th (1) — 1 ( Lot ) =2t (]IS~
P Z ij — Yij) T ZOJ(Xij—Yij) >0
j:
k . .
to (v) — 1 () 0 o () - (V] IN 5
<P | Z >0 | +P | - | > J(Xi = Yi) >3 (11)
k}i kz’
But | > (X5 —Yij)| < | X (Xij—¢)| + |2 (e = Yij)|, and since for all j € [0, k;], X;; et Y;; follow the
§=0 §=0
same distribution, we obtain by Lemma that:
[t (1) =t (] |5 5 [t ()~ 16 (] |5 5
P T Z(Xz’j—Yz‘j) z5 | 2P T ) (Xij—e)| > 7
Jj=0 7=0
4d | & 5
<P D (Xij—e) >
p j=0
k.
4d - )
< 2P X > n )
ki—‘_ljfo( i €) 4

because N, > k; + 1. By applying the large deviation result from Proposition to the centered

k‘i k?i
random variable Y} := %H > (Xij —¢), there exists C; ; > 0 such that P (k 1|2 (Xij—e)| = i) <
’ =0

j=0
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C} s exp <$> Hence,
85 () — & ()] | 5 —52(k; + 1)

Z 1] > ) < 201{75 exp <28d2> )

7=0

P

which upper bounds the first term on the right-hand side of inequality . Let’s now consider the second
term. By similar arguments as before and using for the second inequality, we obtain:

a' () —a' (V)] IS~ s a' () —a' (V)| N~ 5
P | | Z](Xij—yz'j) =S| <2P | | Z](Xij_5) > -
T 2 T ’ 4
7=0 7=0
k.

2 . 0

<2]P) . 7 27

lei (ki + 1) ;J( i—¢) 1

By applying the large deviation result to the centered random variable Yk’i = kg 1)

> i) Cl's exp (M) Hence,

Xij — ¢€), there

v
.
X

ki
exists C's > 0 such that P <k(k2+1) Y i (X —e)
) 1 T ]:0

ol — ot (~ i _52(.
pl] MT ””iymmwm> Uﬁ@(éﬁfn)

Thus, becomes:

th (v) —th ( o' (v) =" (V)] |~
p( B0 Z i 7 ‘Zﬂ&r%ﬂ>5
=0
—0°(k; + —§2 k; +1 —62 k; +1
QC'Jexp <2(8c12)> + 20{:5 exp <(24)> <2 (Cz(,é + CZJ) exXp <2(8d2)> .

9 .
Let § > 0 and n > 2562%. Then, we have N, > 22—?2. Indeed, a geodesic in I', spends at most ‘/E
N, \f

time in the same cell. Therefore since the elements of I, traverse N, cells, T is upper bounded by Np~2,
which implies N, > & f Therefore, by Lemmas and we obtain:

d k;
1 K2
=1 |j5=0
1 ki . 5
<P T Z (tj (7)_tz ('7)) (XZJ Yi]) = 5
1€1,d] 7=0
ki<y/Np—1
1 ki ) ki s
+F T Z ‘té () (7” (X” ij)| T ‘a a' (’YI)‘ Z] (X Y;J) > 2
lGIIl,d]] ]:O jZO
ki>\/Np—
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1 i i 1
< DL Pl DGO -5() (X - Yy)| > o
i€[1,d] =0
ki </Np—1
1 b . L 5
T P T \tﬁ () =t (7/)‘ (Xij ij "“0‘ —a (’Y’)‘ ZJ(XZJ Yij)l| = 24
i€[1,d] J=0 J=0
k;>+/Np—1
—6%,/N, —(52\/Fp
S| 2 Cfew (w < (ﬁ?ﬁﬂ < 5) P\ g )
i€]1,d]
ki> Np—l
by setting, for all ¢ € [1,d] such that k; < \/N, — 1, C; 5 =0.
Then, as N), f’ we obtain, by noting C = d <zgﬁ?}§]] C; 5)
) ) N
P(‘mz(we) —mz, (W] =6) < Cexp| ——— | -
21043
Then, since this inequality holds for all v, € r D>
—82/nT
P( sup |m (W) —m7, (W] =6 | <Cexp 5712 . (12)
7€l ! 21047

5.3 Conclusion

This section summarizes the previous two sections.

Let § > 0, we assume that n > We recall that for every p € Py, v, € f‘p denotes a representative

of the set Fp.

62T

Lemma 5.8. For all p € Py, there exists C > 0 such that P (mz;p (W) <e— 6) C'exp ( (‘STJFF{)Q)

NP
(W) => %Xi, where for each i € [1, N,], t; (7p) denotes the time

£

Proof. Let p € &;. We have mgp

i=1
NP
spent by 7, in the cell ¢;. Moreover, ) ti(;p) = 1, and for each i € [1, N,], ti(;p) < \/Egjl). Thus, by
i=1
applying Proposition to the random variable mz;p (w!), there exists C' > 0 such that :
—62N,T —§%nT?
P(mz (w?)§5—5><0exp<p)gCeXp(n>. O
! Vd(T +1) d(T +1)

~ For each p € &y, we define I, = Fp N I:\FH, which is the closure of f‘p in I\I'y. Thus, we have
', ¢ T'p, and I', contains the geodesics of I'), and also the geodesics that intersect at least one edge

without being fully contained in a hyperplane of G". Therefore, I'\I'y = (J I',. Hence:
PEPy
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: T n _ : : T n
gt 1) - (3, (3 m00) <o)

Z]P’(mfm )SE—(S).
v€lp

pES,

Let p € 2, let’s evaluate P < inrf mz (W) <e— 5). By continuity of v — mz (w?) on I'\I'y, we
vE€lp

have

]P’(inf m?(w?)ée—&) :IP(inf mg(w\?)ée—é).

el ~vely

Then,

: T/( n _ : T /( n T n T n
P(lnf m., (wg)és—é) —P(;élff: my (wg) —m5 (W) +my, (W) <5—6>
p

=P ( inf (mz (W2 — mfp (w?)) + m?p (W) <e—9¢

+P < inf (mz (wl) — mg’p (w?)) + mzp (Wl <e—=9§6

n o ) )

<m@0%)<6—2)+P<Eg(m?@@—##;WQ)é—)
p

T n 5

<P mvp(w5)<5—f + P

0 4]
<P<mz(”)<s2)+lf"<sup)m )m?p(w?)}Q).
v€elp

. T ny _ T n >
g@mwwm

We then upper bound each term using the results previously obtained: the left-hand side term using
Lemma and the right-hand side term using (12)). Thus, there exist C; > 0 and Cs > 0 such that:

52,72 82 /T
P(inf mg (w?) <€—5> < Crexp <5nT)> + Caexp (6 ﬁT>
1245

~vel'y 4d (T +1

Thus,

P inf mZl w?) ) P | inf m <e—-90
<7€F\FH PY( 6 Z ('yEFp ) )

PEPy

—62nT? —62y/nT
<Y [Crexp () + Chexp <n
ey 4d(T + 1) 2127
—62nT? —62y/nT
< - _ - v
< H#Py | Crexp <4d(T+ 1)> + Cs exp ( STy >
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Finally, by Lemma since #22; is polynomial in n,

lim IP’( inf m,{’(w") §5—5> =0.
n—+oo  \~yel\I'y

A An arithmetic problem

Let ai,...,a, € R? such that a; # aj if i # j. Let A = {a1,a9,...,a,} the set formed by these points.
We define

A(A) = {{S, A\S}|S € Z(A) such that there exists a line v such that y N .A = () and ~ splits S and A\S}.

Lemma A.1. There exists P € R[X] such that for any set of n points in the plane A = {ai,...,an},
#A (A) < P(n), i.e. the number of ways to strictly separate n points with a line in the plane is polynomial
mn.

Proof. Consider a set A = {aj,ag,...,a,} of n points in the plane. The directions are parameterized by
the real projective line P!(R), which is identified with [0, 7| through the angle formed by a direction and
the x-axis. For any 4,j € [1,n], let 8(i,j) € P}(R) be the direction of the line passing through a; and
aj. Let D(A) = {6(i, ) € P(R) | 4,5 € [1,n]}, be the set of directions formed by two points in A. Then
N :=#D(A) < (3) = w Let 0 < 61 <6y <--- <Oy <7 be the elements of D(A). Let v be a line in
the plane such that v N A = (). Then, v splits A into two sets, S1(y) and A\S1(y) where Si(7) is the one
that contains a;. We also identify the partition {Si(7), A\S1(7)} with the set Si(7) that contains a;. For
any 0 € PL(R), let P(6) = {S1(7) |~ line with slope 6} be the set of partitions of points in A according
to the direction 6. Let i € [1, N —1]. Let 0,6’ €]6;,6,11], let us show that P(0) = P(#'). Let A € P(6),
then there exists v a line with slope 6 such that A = S;(7). Let us show that A € P(¢'), i.e., there exists
~" a line with slope 6 such that A = S1(7’). We translate v orthogonally until it intersects a point of .A.
This transformation does not alter the slope of the resulting line. Let 4 be the resulting line. Then, there
exists a single point a € A such that a € 4 (a is unique since 6 ¢ D(A)). We then rotate 4 with center a
until it has slope . Note that during this rotation, the line with slope e [9 '] does not intersect any
other points of set A, since 6 ¢ D(A). Let 74 be the resulting line. The line 4 contains a and splits the
other points into:

o (S1(M\{a}, A\S1(7)) if a € 51 (7);
o (S51(7), A\(S1(y) U{a})) if a & S1(7).

By slightly othogonally translating 4 in the good direction, we obtain a line o/ with slope ¢ such that
Y NA=0and S1(y) = A.

Furthermore, for any ¢ € [1, N — 1] and 0 €]0;,0, 11, #P(0) < n+ 1 (by translating a line with slope
6 in the plane, we sweep through the set of n points of A).

Thus, #A (A) < (N +1) (n +1) < (%H) (n+1).
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6

Figure 15: Example of a set A = {a1,...,as} and representation of 4 and ¥ for ~, 6 and ¢’ fixed
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