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ABSTRACT As renewable energy sources become more prevalent, effective grid balancing becomes crucial
due to their inherent uncertainty. Battery Energy Storage Systems (BESS) can enhance grid reliability and
efficiency by complementing these variable sources. However, to encourage investments in BESS, market
participation must be economically viable for owners. Energy arbitrage is one of the main revenue streams
for BESS allowing them to buy electricity when prices are low and sell it when they become higher, thus
optimizing the revenues. However, in energy markets such as the Day-Ahead market (DA), the BESS owners
submit their bids/offers one day before delivery, without perfect foresight of the future rates. This uncertainty
poses a challenge that limits the energy provision capabilities and can incur a loss of profit due to the
imperfect price forecast. Tailored strategies are then needed to mitigate those uncertainties and minimize
the profit loss. This article proposes different operational planning strategies for a BESS participating in
DA. Specific interest is attached to the explainability of the proposed methods to assure high profits while
reducing the model’s complexity and computational time. The proposed strategies include 1) price forecast
and scenario generation, using Geometric Brownian Motion (GBM) based either on a single-point forecast
or historical data; 2) optimization process; and 3) choice of a single BESS bidding and operating schedule
that is ultimately applied in real-time. Two baselines are introduced, one relying on a back-casting method,
and a second based on traditional stochastic optimization. Several studies have neglected to thoroughly
assess the bidding strategies by evaluating the profit against the actual prices. Hence, this study assesses the
performance of the proposed methods and the baselines relative to the profit obtained in an ideal scenario
with a perfect forecast in the French market over 2021.

INDEX TERMS Bidding strategy, energy markets, energy storage, price uncertainty, optimization.

I. INTRODUCTION
Renewable energy sources, especially wind, and solar energy,
are expected to play a significant role in the world energy
mix in the coming years [1]. The European Commission
has projected an increase in the share of renewable energy
in the final energy consumption of the European Union
(EU) from 18.9 % in 2018 to 32 % by 2030 [1]. However,
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renewable generation volatility challenges grid operations
to maintain stability and ensure a reliable power supply
to consumers. Energy storage systems have emerged as a
solution to tackle these emerging challenges while bringing
more flexibility to the system [2]. As a result, both energy
storage suppliers, and renewable energy producers have
increased market prospects. Thus, the global installed energy
storage industry is expected to reach 741 GW/1,890 GWh by
2030, with batteries accounting for 79 % of the total installed
capacity [3].
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A. ABBREVIATIONS AND ACRONYMS
Abbreviations:

ESS Energy storage system.
BESS Battery Energy storage system.
MILP Mixed integer linear programming.
DA Day Ahead market.
ID Intra Day market.
SOC State of charge.
GBM Geometric Brownian Motion.
AIC Akaike Information Criteria.
SARIMA Seasonal Auto Regressive Integrated Moving

Average.

Indices and time sets

s Scenario index for DA prices.
t Time Index.
S Set of considered scenarios.
T Set of one day time steps.

Parameters:

πda
t Actual energy prices in DA (=C/MWh).

π̂da
t Day before energy prices in DA

(=C/MWh).
π̃da
t Forecasted energy prices in DA

(=C/MWh).
π́t Generated price scenario by Methods A,

B.
dtda Time resolution for DA market (1 h).
Pmax Battery power capacity (MW).
Ecap Battery Energy capacity (MWh).
η−

, η+ Charging and discharging efficiency
(%).

socmax , socmin Maximum and Minimum values for the
state of charge (%).

ρs Probability of occurrence for scenario s.

Variables:

p+/−
t Discharging / charging ESS powers (MW).
pda+/−
t Discharging / charging DA powers (MW).
ut Binary variable, if discharging= 1, if charging=

0.
soct Battery state of charge (%).

B. RELATED WORK
Battery energy storage systems (BESS) are one of the
envisioned technologies for wider storage adoption and can
effectively participate in various markets as energy arbitrage,
reserve, and balancing markets [4]. Due to the flexibility
in the storage sizing, the operation horizon can align with
the trading resolutions of these markets [5]. The optimal
energy arbitrage typically consists of buying energy during
off-peak hours at a lower price and selling it during peak
hours at a higher price. Higher revenues can be expected
with BESS able to generate high revenues by participating in

both Day-Ahead (DA) and Intraday (ID) energy markets [6].
Like all energy markets (and pool markets in general) bids
are submitted before the actual prices are known. Thus,
bidding decisions and control schedules are typically taken
based on price prediction (e.g. on a day-ahead basis) [7].
To address this, researchers have developed operational
planning techniques that account for the uncertainty in energy
or reserve prices.

In the context of BESS participating in the DA market, the
bidding strategies usually consist of three main steps i) price
forecast and price scenarios generation, ii) optimization
process, and iii) evaluation of selected BESS schedule. The
following section provides the related literature review for
each of those steps.

1) PRICE FORECAST AND SCENARIO GENERATION
Several approaches have been presented in the literature
to predict energy prices. One of the simplest assump-
tions is back-casting, which uses historical prices from
the day before to schedule BESS operation for the next
day [1] – i.e. somewhat equivalent to a simple per-
sistent model. Furthermore, the authors in [2] added a
random noise around the persistent profile to introduce
some volatility/uncertainty. The standard deviation of this
added noise displays a fixed value or increases noise with
time [3] – to account for the increasing error for multi-
step-ahead predictions. In [4] and [5], one price profile was
forecasted using the Auto Regression Integrated Moving
Average model (ARIMA) before different potential scenarios
were generated using the Monte Carlo simulation. This
process considered the inter-temporal relation between the
hourly prices using the covariance matrix [6]. In [7], price
uncertainty was modeled by a normal distribution probability
density function (PDF) [8] and a Gaussian distribution
was assumed with a 20 % standard deviation. Dedicated
statistical models have been also used for price forecasting,
as in [9] where a unified unit commitment and economic
dispatch model used a stochastic process for forecasting and
decision-making.

2) OPTIMIZATION PROCESS
After generating the prices, an optimization-based problem
is formulated to reach the optimal BESS schedule that can be
used in the bidding process. Various optimization techniques
are typically implemented to output the scheduling of a BESS
in energy markets: deterministic, stochastic optimization,
and robust optimization are the most commonly used
techniques. The optimization’s output schedules can be
bids in quantity (i.e. energy/ power over time) or bids in
both quantity and prices. Indeed, in the case of large-scale
assets (i.e. significant market power), market prices can be
impacted by individual bids [10]. In reference [11], the
authors investigated the optimal bidding for high-capacity
participants in the Day-Ahead (DA) market, examining how
BESS size and placement affect market prices and owners’
profits. However, when dealing with small-scale BESS, such
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as the 10MWBESS as in this paper context, market influence
is relatively limited. In such a case, the BESS owner can be
considered as a price taker, exclusively submitting quantity
bids that are presumed to be consistently accepted.

In deterministic optimization, the market participant does
not account for uncertainty and assumes a perfect forecast of
the prices. This formulation of the problem is usually used
to evaluate the benefits of a certain market and calculate the
maximum theoretical profits [12]. Price uncertainty can be
integrated with deterministic optimization using backcasting,
where the market participant assumes low volatility of prices
and uses one price profile from historical data to bid for the
following day as investigated in [2]. The results showed that
backcasting is suitable for DA bidding where 93% of the
maximum profits could be achieved considering PJM market
data of 2017. On the other hand, products with more volatile
prices in the intraday market failed to achieve reasonable
results using the same technique [3].
The second optimization technique is stochastic opti-

mization, where the objective function is formulated to
consider multiple potential scenarios along with their prob-
abilities of occurrence [13]. The authors in [14] presented
a multi-scenario optimization problem that focuses on the
bidding of a price-taker BESS in joint energy and reserve
markets with price uncertainty. Similarly, in [15], stochastic
optimization was used for bidding in day-ahead and real-
time price dynamics. Adaptive stochastic optimization has
been introduced also to solve day ahead MILP deterministic
models in [16]. A two-step stochastic unit commitment with
wind power forecast uncertainty was used to schedule the
battery storage in power system operation with renewable
resources [17]. The authors in [18] proposed another
stochastic programming framework to optimize energy and
reserve quantity bids for storage units, considering the
inherent market price volatility due to renewable availability.
Moreover, a multi-stage stochastic optimization has been
used in [24] and [25] to optimize the bids of a wind-PV-
battery hybrid system in multiple markets that included
day-ahead, intraday, and balance markets.

On the other hand, robust optimization does not necessarily
require a wide range of scenarios and can only consider a
boundary of possible changes in prices - e.g. minimum and
maximum expected changes [20]. Despite the feasibility of
the solutions over any realization of prices, it is a conservative
approach that can limit the profits of energy arbitrage. As a
result, robust optimization is mostly proposed for real-time
energymarkets [21]. The work in [7] introduces an innovative
hybrid approach for stochastic and robust optimization
techniques. The method allows the BESS owner to optimally
bid in both DA and ID markets. Stochastic programming
is employed to account for the uncertainties inherent in
DA prices, while a robust optimization approach ensures
conservative decision-making within the ID, particularly in
light of its highly volatile price dynamics. Indeed, robust
optimization stands as an optimal choice for real-time energy
markets, giving the participants the flexibility to adjust their

TABLE 1. Comparison of related bibliography.

risk exposure. As the energy prices in real-time markets are
more volatile, the risks of profitability and competitiveness
increase.

3) EVALUATION OF THE SELECTED SCHEDULE
For a rigorous validation of any operational strategy, it is
imperative to implement an assessment phase once the BESS
schedule/bidding is settled. This evaluation relies on the
computation of the actual revenues generated by the chosen
operational schedule while considering the actual DA prices.
Simultaneously, the maximum theoretical revenues can be
computed through a deterministic optimization based on a
perfect forecast (once the actual DA prices are known).
Then, an error percentage is assigned to each bidding
strategy, whose performances can then be assessed in terms
of precision with the optimum. It is important to note that
such an evaluation phase is oftentimes neglected in the
literature. Ultimately, many related studies do not evaluate
a specific BESS schedule once the optimization process they
propose is performed. As an example, in the case of stochastic
optimization performances are somewhat evaluated offline
where they merely calculate the total expected profit but
there is not a single schedule that is ultimately decided and
evaluated [13], [18], [22], [25].

Table 1 summarizes some of the reviewed studies to
mitigate uncertainty in DA prices for storage participation
in energy markets. In a study by authors [2], an evaluation
step was presented, but it relied on outdated data from 2016,
making it incongruent with current energy price dynamics.
Conversely, studies by [22] proposed a max-min formulation
for DA bidding in worst-case scenarios, comparing it to the
perfect case, yet the simulations were limited to Compressed
Air Energy Storage (CAES) and did not extend to BESS.
In [7], DA revenues resulting from different scenarios
in stochastic optimization were only compared internally,
lacking a specific reference. Similarly, [13] compared
stochastic optimization results against robust optimization
under different risk levels but omitted consideration of an
optimal case for comparison.

In [23], authors factored probabilistic scenarios into
revenue calculations for the DA market. Nevertheless, the
primary objective was to assess BESS participation in
energy markets and evaluate the impact of stacking services,
accounting for battery degradation. Authors in [4] compared
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the performance of quantity price bids to that of quantity bids
alone. However, the absence of a perfect forecast case as a
baseline hinders the evaluation of how both methods perform
in the real market. Stochastic simulations in [18] scrutinized
the influence of BESS location, size, and efficiency on profits.
Despite introducing and comparing three bidding strategies
in real-time markets, there was no consideration of a perfect
forecast case for comparison.

C. SCOPE OF STUDY AND CONTRIBUTION
The aforementioned works introduced several methods
to mitigate price uncertainty when operating in the DA
market. However, while some studies propose complex
approaches for price forecasting, their practical application
and expected results in an operational context are often
not thoroughly considered. Additionally, the methods for
generating price scenarios either depend on complex models
requiring advanced statistical knowledge or overly simplistic
approaches that add random noise to historical data. These
methods often result in unrealistic price spikes that do not
accurately reflect the evolution of DA market energy prices.

More importantly, the expected profits are not systemati-
cally analyzed against actual prices while applying a given
BESS schedule Many studies, such as those in [13], [18],
[22], and [25] calculate the total expected profit, but without
selecting a single BESS operating schedule, applying it, and
assessing the profit with regards to actual prices.

In this context, this paper proposes end-to-end self-
explanatory operational planning strategies for a BESS
involved in the DA market – i.e. prices forecast and scenarios
generation, optimization for market bidding, and schedule
selection followed by an evaluation that considers actual
prices. The goal is to as close as possible to the maximum
theoretical profits (i.e. obtained with a perfect forecast) while
limiting the complexity of the models so that they can be
rapidly implemented in industry. For the price scenario gen-
eration, two methods based on Geometric Brownian Motion
(GBM) are implemented. GBM is a well-known method
in stock forecasting, but not widely used in energy price
forecasts. We adapt the stochastic process of GBM to capture
the intertemporal relations between the hourly prices with
no need to calculate probability density function or calculate
covariance matrix as usually done in most statistical methods.
Simple backcasting will be used as a baseline to compare
the efficacy of the methods proposed (i.e. optimize the
BESS schedule based on the prices observed the day before
delivery). The study proposes five strategies to select the
BESS bidding schedule from the generated price scenarios.
Conventional stochastic optimization using Sample Average
Approximation (SAA) is considered as a second baseline
for the optimization techniques. An evaluation step is finally
introduced where we compare the five strategies against the
two baselines and a perfect forecast case. All the methods are
assessed in terms of precision with the theoretical maximum
revenue. The work aims tomitigate uncertainties in DA prices
using explainable methods that can be used promptly and

without the need for a great amount of historical data. The
work also evaluates the need for a price forecast, where we
show that adapting GBM to generate price scenarios from
historical provides superior performances than more complex
statistical approaches. The main contributions of this paper
can be then summarized as:

• Complete operational planning for a BESS, including
the forecast, the optimization, and the choice of a single
operating schedule.

• A framework to generate day-ahead energy price
predictions using Geometric Brownian Motion (GBM)
based either on a single-point forecast or historical data.

• A sensitivity analysis of the revenue to the quality of
forecasts, the prediction scenarios, and the control of the
BESS.

The rest of the paper is organized as follows. Section II
presents the strategy to bid under uncertainty in the DA
market. It proposes two methods for generating price
scenarios in addition to the deterministic and stochastic
modeling of BESS operation in DA. Furthermore, it presents
five strategies to select the optimum operation schedule for
the battery. Section III displays the simulation and results.
Furthermore, a sensitivity analysis between the forecast
quality and the number of considered price scenarios is
presented. Section IV concludes the paper and discusses the
ongoing investigations.

II. THE BIDDING STRATEGY
The technical road map presented in Fig. 1 depicts the overall
planning strategy with the different methods investigated,
especially for the forecasting part with profile generation and
the choice of the BESS schedule.

A. DESCRIPTION OF THE DAY AHEAD (DA) MARKET
DA enables the different market actors as generators (pro-
ducers), consumers, retailers (suppliers), and traders to buy
and sell energy daily. It aims at providing an initial operating
schedule for the TSO to meet the predicted demand for the
next day. DA market has then a horizon of 24 hours and
a resolution of one hour in all European countries except
in the United Kingdom, where the resolution is 30 min [24].
The energy trade is done in power exchange markets, where
the bids are submitted before noon on day d-1 for the energy
trade of day d. BESS can trade in the DA market to perform
an arbitrage taking advantage of the energy price variations
along the day. Hence, the BESS optimizes its operation to
charge at the lowest possible prices and then to discharge at
peak prices. The remuneration of these energy products is
based on quantity (in =C/MWh). The average price for DA
energy products has increased from 51 =C/MWh in 2018 up
to 110 =C/MWh in 2021 and yet increasing due energy crisis
as deducted from the French market data [25]. This shows
the potential of achieving energy arbitrage in the coming
years. Optimization models are needed to decide the optimal
dispatch schedule to maximize the profits. It is assumed
that the BESS owner submits offers at high prices and bids
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FIGURE 1. Framework of two stochastic operational planning methods of a BESS bidding on the day-ahead energy market.

at zero prices to ensure getting selected in the clearing
process. In the scope of this paper, the BESS is considered
a price taker where we only consider small-medium scale
batteries. As a result, the BESS bids/offers are assumed to
not affect the market clearing prices [26]. A mixed integer
linear programming (MILP) model is proposed in the coming
sections to simulate the BESS participation in the DAmarket.

B. SCENARIO GENERATION
1) METHOD(A) - SARIMA AND GBM
In the first method to generate Day ahead (DA) price
scenarios, a Seasonal Auto Regressive Integrated Moving
Average (SARIMA) model is used to generate a single-point
forecast for each day (i.e. single profile). The model uses
a combination of three elements: seasonality, trend, and
residuals to create a forecast for future values of the time
series [27]. Seasonality is used to capture the recurring
patterns of the price that repeat at fixed intervals as hourly
and daily. The trend accounts for non-seasonal differences
and represents the long-term direction and movement of
the time series. The residuals are used to estimate the
unpredictable error [27]. As an example, Fig. 2 illustrates
such a decomposition for prices over a week.

The prices one week before the day of delivery were
given as input for the regression model to predict the
following day. The process involves a stepwise search
procedure and cross-validation to find the most optimal set
of hyperparameters for the SARIMA model. A grid search
is conducted across all possible combinations of parameters
and the combination with the minimum Akaike Information
Criteria (AIC) score is selected [28]. This cross-validation for
the fitted parameters (p, d, q) and (P, D, Q, m)s was done
automatically using the auto_arima package in Python [29].
The details are outside the scope of this paper.

FIGURE 2. Decomposition of one-week historical prices in DA.
a) One-week historical prices, b) Trend component, c) Seasonality
component, d) Residuals component.

In the second step, Geometric Brownian Motion (GBM)
is used to generate multiple scenarios around the SARIMA
profile. GBM is a mathematical model typically used to
describe the behavior of financial products over time.
It is a continuous stochastic process that assumes that the
logarithmic returns of an asset follow a normal distribution
with constant drift and volatility [30]. In the context of energy
prices, the mean represents the expected price level, and the
volatility measures the uncertainty (or the risk) associated
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FIGURE 3. Generating 50 price scenarios using Method (A) (Day = 304).

with future price movements [31]. Hence, the forecasted
scenarios can capture the continuously compounded growth
rate and better model the underlying dynamics of asset
prices [32]. Since the log return is additive over time, the log
of the entire period can be calculated by summing all the
individual time intervals. Thus, the driftµ and volatility σ can
be calculated as follows in (1) and (2), where N is the number
of data points (π̂w

t ) is the price of one week of historical data,
and t is an hourly time step. A price scenario (π́t ) is generated
by multiplying a percentage profile (gt ) by the forecasted
single-point profile (π̃t ) as shown in (3). Each percentage
profile follows the stochastic formulation (4),where gt is the
percentage at time step t , g0 is the initial point (100 %),
and wt is the random change from the wiener process
(assumed to follow a Gaussian normal distribution). The
percentage change is limited between (60 % - 140 %) of the
one-point forecasted profile. Finally, the process are repeated
to generate 500 price scenarios (π́t,s) by creating multiple
percentage scenario (gt,s), an example of 50 scenarios is
shown in Fig. 3.

µ =
1
N

×

t=168∑
t=0

log
(

π̂
w
t

π̂
w
t−1

)
(1)

σ =

√√√√ 1
N

×

t=168∑
t=0

(
log

(
π̂
w
t

π̂
w
t−1

)
− µ

)2

(2)

π ′
t,s = π̃ t × gt,s (3)

gt = g0 × e(µ−
σ2
2 )t+σ×wt (4)

2) METHOD(B) - PRICE RESIDUALS
The second method to generate price scenarios does not rely
on a specific forecast technique for the sake of simplicity.
Instead, it considers the changes in historical prices over the
two days before the delivery time. The price residuals (r)
(i.e. errors with actual values observed) are calculated as the
difference in the prices between these two successive days
before the delivery day. Then, percentage scenarios (gt ) are
multiplied by the residuals (r) to generate price scenarios as
shown in (5). Compared toMethod(A), the drift and volatility

FIGURE 4. Generating 50 price scenarios using Method (B) (Day = 304).

of the GBM are selected based on the log-returns of the
historical price residuals. An example of generated price
scenarios for one day is presented in Fig. 4. The dependence
on historical data is visible over the first four hours, where
all price scenarios display values close to the observations
the day before – i.e. the price residuals at these hours were
zeros.

π ′
t,s = π̂ t +

(
r × gt,s

)
(5)

3) SCENARIO REDUCTION
To reduce the computational time of the optimization phase
and to assure that the selected scenarios are representative of
all possible cases, a conventional clustering is implemented
on the profiles generated (π́t,s) – with both methods (A)
and (B). The clustering is based on the Euclidian distance
between the scenarios using the K-mean algorithm [12]. The
weights of the representative scenarios (ρt,s) are calculated
based on the size of each cluster. The significance of the
cluster depends on the ratio between the number of scenarios
in each cluster compared to the total number of scenarios.
An example of 10 reduced scenarios (πt,s) for one day is
presented in Fig. 5.

C. OPTIMIZATION PROCESS
1) BASELINE 1: DETERMINISTIC FORMULATION
The day ahead market (DA) has a resolution of one hour and
a horizon of 24 hours, where the bids are submitted at noon
of the day before delivery. The market bids are submitted as
energy products in quantities of (MWh) and the remuneration
for suppliers is in (=C/MWh) [25]. The objective function (6)
models the BESS operation in the DA market, where
t ∈ T is a temporal set representing one day at a resolution
of one hour (dt). The BESS model considers energy storage
capacity (Ecap), maximum charging and discharging rates
(pmax), charging and discharging efficiencies, battery state
of charge’s limits (socmin and socmax), and initial and final
charge states. This deterministic formulation optimizes the
BESS operation based on one price profile that can be either a
perfect forecast profile (πda

t ) or a historical price profile (π̂da
t )
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FIGURE 5. Reduced 10 price scenarios (Day= 304). a) Method (A),
b) Method (B).

to represent the first baseline.

max
pda,−t ,pda,+t

r =

∑
t∈T

πt ×
(
pda,+t − pda,−t

)
× dt (6)

0 ≤ pda,+t ≤ pmax × ut (7)

0 ≤ pda,−t ≤ pmax × (1 − ut) (8)

soct = soct−1 +

(
pda,−t / η−

− pda,+t × η+

)
× dt ×

(
100/Ecap

)
(9)

socmin ≤ soct ≤ socmax (10)

soct=T = soct=0 (11)

Constraints (7) and (8) define the limit of the DA dis-
charging and charging powers to the BESS capacity. A binary
variable ut is introduced to avoid potential simultaneous
charging and discharging - the binary variable denotes the
discharging mode. The state of charge of the battery (soc)
is updated every time step, where charging and discharging
efficiencies (η-, η+) are introduced. The (soc) is limited
by (10) between predefined maximum and minimum state
of charge levels. Equation (11) guarantees that the soc of the
battery at the end of the day is equal to the one at the beginning
of the day.

2) BASELINE 2: STOCHASTIC OPTIMIZATION USING SAA
In this traditional technique, the BESS schedule is obtained
by running the stochastic optimization problem in (12) using
the Sample Average Approximation (SAA) [4]. In which the
expected value of the objective function is calculated over
a finite set of price scenarios to represent the uncertainty.
As expressed in (12), the formulationmaximizes the expected
profits over all the price scenarios (π t,s) taking into
consideration their probability of occurrence (ρs). The BESS
constraints (7) – (11) are aggregated along all the investigated
scenarios (i.e. set S) in the stochastic operation. The result
of this stochastic strategy is a single operating schedule for
the battery that presents the optimal solution for the weighted
average price profile of all price scenarios. The expected
profit of this schedule is calculated using the actual prices
on the day of delivery.

max
pda−t ,pda+t

r =

∑
t∈T

∑
s∈S

ρs ×π t,s ×

(
pda+t − pda−t

)
× dt (12)

In this section, we propose five strategies to generate
the optimal BESS bidding schedule. The optimization is
scenario-based, where the deterministic objective function
is solved for all generated price scenarios resulting in a set
of possible schedules. In practice, only one schedule profile
shall be considered as the actual bidding quantities. Each
strategy then includes a selection process for the optimal
bidding schedule. The DA revenues are then calculated using
the selected schedule and the actual prices of the DA market
to be compared with the perfect forecast case.

3) S1: MOST PROBABLE PRICE SCENARIO
This strategy selects the most probable price scenario (π̄t )
(maximum probability of occurrence) among all generated
scenarios, as shown in (13). Then it solves the deterministic
optimization, which is presented in (6), using this selected
price profile.

π̄ t =
{
πt,s

∣∣ ρs = max (ρs)
}
∀t ∈ T , ∀s ∈ S (13)

max
pda−t ,pda+t

r =

∑
t∈T

π̄ t ×

(
pda+t − pda−t

)
× dt (14)

4) S2: AVERAGE OF ALL BESS SCHEDULES
The second strategy solves the deterministic optimization
problem in (6) once for each scenario with the usage of
the corresponding price profile (πt,s). The result of this
iterative process is a set of possible schedules (pda+t,s , p

da−
t,s ).

The optimal schedule is then selected as the average of the
resulting schedules, as shown in (15).

pda+t , pda−t =

∑
s

(
pda+t,s , pda−t,s

)
s

∀t ∈ T , ∀s ∈ S

 (15)

The following three strategies use the same iterative
optimization problem as discussed in S2. That results
in generating a set of solutions for the BESS schedules

85394 VOLUME 12, 2024



A. Mohamed et al.: Operational Planning Strategies to Mitigate Price Uncertainty

(pda+t,s , p
da−
t,s ). The possible solutions are evaluated based

on different price profiles to select the optimum schedule.
A yield function (y) is introduced to calculate the yield of
each schedule (it is a KPI for evaluation only, not an actual
DA profit). The BESS schedule which achieves themaximum
yield is selected as the optimal one as shown in (16). In each
strategy, the price profiles used to calculate this yield function
are identified.

pda+t , pda−t =

{
pda+t,s , pda−t,s

∣∣∣ ys = max (ys)
}

(16)

5) S3: PRICE SCENARIO-BASED STRATEGY
This strategy calculates the yield of each schedule using the
corresponding price scenario (πt,s), as shown in (17).

ys = πt,s ×
(
pda+t,s − pda−t,s

)
(17)

6) S4: SARIMA PROFILE-BASED STRATEGY
In this strategy, all the schedules are evaluated using one price
profile, which is the SARIMA forecasted price profile that
day (π̃t ) as shown in (18).

ys = π̃ t ×

(
pda+t,s − pda−t,s

)
(18)

7) S5: MOVING MONTHLY AVERAGE PROFILE-BASED
STRATEGY
This strategy proposes the monthly moving average prices
(πm

t ) to evaluate the BESS schedules. Historical data are used
to calculate (πm

t ) for each day and it is used to evaluate the
yield of each scenario as shown in (19).

ys = πm
t ×

(
pda+t,s − pda−t,s

)
(19)

III. OBTAINED RESULTS
Once the optimal BESS schedule is selected, the actual
DA revenues can be calculated daily from the realized
price profiles. Ultimately, the performances of the proposed
strategies can then be compared with the two introduced
baselines, and assessed to compare the optimal case with a
perfect forecast (precisions to the optimum expressed in %).

Simulations are performed over two months of historical
data in 2021 for the French electricity market which was
collected from RTE and Entso-e 2021 databases [25].
The considered BESS is a 10 MW/10 MWh storage with
η−

= η+
= 0.9, socmin = 0.2, socmax = 0.9, and soc0 =

socT = 0.5.

A. TWO MONTHS SIMULATIONS
1) RESULTS WITH METHOD (A)
At first, Method (A) is considered to generate price scenarios
for each day over two months (November – December). The
clustering phase is applied for every daily prediction with
reduced numbers of scenarios - 10, 20, and 50 scenarios.
Table 2 displays the obtained results, where the reference
back-casting approach leads to a significant error of 49.3%
(precision to optimum with perfect foresight). The results

TABLE 2. Simulation results for Method (A) over two months.

demonstrate the proposed planning produces superior results
compared to the reference for all investigated strategies to
select the BESS schedule. Analysis reveals that S5, which
employs a monthly moving average of energy prices to
evaluate the schedules, yields the optimal selection of BESS
schedules. S3 is the second-best option, with performance
improving as the number of considered scenarios increases.
Alternatively, using S4 achieves the same level of error
without being dependent on the number of scenarios. Notably,
the first three strategies exhibit a similar range of errors
over all scenarios considered. Finally, it can be concluded
that three out of the five proposed strategies (S3, S4,
S5) overperform the traditional strategy introduced in the
literature with the weighted average of all price scenarios
(Baseline).

A sample of the results in terms of daily profits is presented
over 15 days in Fig. 6, where 50 scenarios are considered.
The results show that usage of Method (A) with S5 always
shows similar or better performance compared to the Baseline
case except on the first day (n=0). The analysis reveals that
this high error in revenues is due to the high error in the
price forecast. An example is (n = 0, 11) where the forecast
error exceeded 30 %. That opens the door to wondering
about the impact of price forecast on the expected revenues
that could be achieved by the proposed bidding strategy (see
Section II-C for further details).

2) RESULTS WITH METHOD (B)
Table 3 displays the results obtained with Method (B) to
generate the price profile scenarios. The results from the
first three strategies to select the BESS schedule do not
significantly improve the revenue compared to the reference
case - error in the range of 44% - 47%. As observed with
Method (A), S5 appears to be the most performant with
around 35 % error with the optimum. More importantly, the
results in Table 3 demonstrate that the overall performance
of Method (B) is inferior to Method (A). The minimum error
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FIGURE 6. Stochastic results for Method (A) over 15 days – using
50 scenarios.

TABLE 3. Simulation results for Method (B) over two months.

reached is 35 % compared to the 28 % that could be reached
using Method (A).

It can also be noticed that the effect of increasing the
number of considered scenarios has a more significant impact
on Method (B). A sample of the results is presented over
15 days Fig. 7, where 50 scenarios are considered. The results
show that S6 always has a similar or better performance
than the reference case. On the other hand, Method (B) has
more points with a similar performance to the reference case
compared to Method (A). This is due to the dependency on
historical data, where both the reference case andMethod (B)
depend on the prices of the previous day.

B. ONE-DAY EXAMPLE
For illustrative purposes over one day, Fig. 8 .a, displays
the optimal charging (-) and discharging (+) quantity bids
for the DA using a perfect forecast case, while the results
of the reference backcasting are displayed in Fig. 8.b. For
the selected day, back casting results in a 91 % error as
the charging/discharging process does not occur in the right
time slots due to errors in price profiles. On the other hand,
the scenarios generated from the SARIMA forecasted profile

FIGURE 7. Stochastic results for Method (B) over 15 days – using
50 scenarios.

FIGURE 8. One-day BESS schedule (a) with the perfect forecast, (b) with
back casting, (c) Method (A)-S5, (d) Method (B)-S5.

(presented in orange Fig. 8.c) could better identify the peaks
on and off for the energy prices of the following days
compared to the prices of the day before. That gave the
BESS owner the possibility to optimize the bidding quantities
at the right hours. As shown in Fig. 8, Method (A), using
10 scenarios, enhances the error in revenues by 76 % and
reduces it to only 15 % error (756 =Ccompared to the optimal
result of 889 =C). On the other hand, Method (B) shows less
performance with an error of 35 % (578 =Ccompared to the
optimal result of 889=C).

C. SENSITIVITY ANALYSIS ON THE FORECAST QUALITY
The analysis reveals that the accuracy of the SARIMA
forecast varies in the range of 5 % to 45 %. Furthermore,
the previous results showed that the number of considered
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TABLE 4. Simulation results for Method (B) over two weeks.

TABLE 5. Sensitivity analysis for forecast quality and number of
scenarios.

scenarios has an impact on the profits. Hence, in this section,
a sensitivity analysis on the impact of the forecast quality is
performed over twoweeks while considering the best strategy
to select the BESS schedule (i.e. S5). It should be noted that
Method (B) is not dependent on any forecast, as it only uses
historical prices to generate scenarios. Thus, for Method (B)
the only sensitivity is the number of considered scenarios.
The results in Table 4 indicate that the error is drastically
reduced by 14% when considering 100 scenarios compared
to only 10 scenarios. It also is noted that considering a low
number of scenarios (10 in this case) can result in worse
results than the reference case.

In this sensitivity analysis, only S5 is used with Method
(A) to select the BESS schedule over the two weeks. The
forecast quality of the price profiles was classified into ranges
of 0 - 10 %, 10 – 20 %, 20 – 30 %, and 30 – 40 %. for a
different number of scenarios. The results of the sensitivity
analysis, in Table 5, indicate a strong correlation between the
price forecast errors and the revenues. In scenarios with low
forecast error (0-10%), the revenue error was relatively low,
and the results were notably improved by 22% compared to
the reference case.

Furthermore, the results show that low error could be
reached by only considering a low number of scenarios
which decreases the computational time. On the contrary, for
forecast errors ranging from 10 to 40 %, it was necessary
to consider a high number of scenarios to outperform the
reference case. As an example, in the case of high forecast
errors (30 - 40 %), the performance only exceeded the
reference case when considering 100 scenarios. The study
emphasizes the importance of selecting the proper number
of scenarios according to the available forecast quality
as the results vary over a wide range of revenue errors
(minimum = 20 % – maximum = 53 %). It can be concluded
that in situations where the forecast error exceeded 20 %,
the study suggests relying only on historical prices by

using Method (B) to generate price scenarios. With forecast
error higher than 20 %, Method (A) could not exceed the
performance of Method (B) even with a greater number of
scenarios.

IV. DISCUSSION
The proposed methods aim to maximize the profits of the
BESS by performing energy arbitrage while mitigating the
uncertainty of the energy prices in the DA market. However,
in the case of considering a BESS as a part of a microgrid
that includes intermittent sources and loads, the objective of
the BESS will aim to minimize the total operating cost [21].
The bidding problemwill then be more challenging due to the
multiple sources of uncertainty, including the power output of
renewables, load variation, and DA prices.

The provision of other ancillary services, such as the
Frequency Containment Reserve (FCR) could be also con-
sidered. The operational planning for FCR will be adapted
according to the structure of the market, where the revenues
depend more on the reserve (=C/MW) rather than the activated
energy (=C/MWh). Hence, the uncertainty of energy prices
will not affect the profits in such a market. On the other hand,
the uncertainty of the frequency measurements will affect the
BESS activation schedule, which may lead to huge penalties
in case the BESS does not have enough energy at the time
of activation. In future studies, management strategies are
proposed to control the state of charge level of the BESS
while participating in the FCR market to maximize profits.

V. CONCLUSION
The bidding strategy includes price forecasting, price sce-
nario generation, and a stochastic optimization process before
five strategies are compared against traditional stochastic
optimization to select the best BESS schedule. Two methods
are proposed to generate price scenarios using Geometric
Brownian Motion (GBM) - Method (A) involves forecasting
one-point price profiles using SARIMA and Method (B)
depends on the price residuals between each two successive
days (no forecast needed). A reference case has been also
introduced by using back-casting, where the prices of the day
before are used to bid for the next day. Finally, all methods
are compared to the optimum case with a perfect forecast.

The simulation results indicate that both methods outper-
form the reference case. Moreover, the results show that
Method (A) (average of 28 % error) exceeds Method (B)
(average of 35 % error) compared to the reference case
(49 % error). On the other hand, Method (B) requires less
computational time and less data as no forecast is needed.
Finally, a sensitivity analysis over two weeks demonstrates
that the performance of stochastic optimization usingMethod
(A) is dependent on the accuracy of the forecast In cases
where the forecast accuracy is over 80 %, it is recommended
to employ Method (A), achieving low errors of revenues
around 20 % compared to 42 % in the reference case.
Alternatively, Method (B) is preferable with only 30 %. The
analysis also revealed that considering a high number of
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scenarios is more critical for Method (B) which is a tradeoff
between computational time and complexity as no forecast is
required. The proposed strategy can provide a guide for BESS
operators dealing with a third party to get the price forecast.
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