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In�nite-dimensional Christo�el-Darboux

polynomial kernels on Hilbert spaces

Didier Henrion1,2

Draft of June 28, 2024

In these notes, the Christo�el-Darboux polynomial kernel [7] is extended to in�nite-dimensional
Hilbert spaces, following the �nite-dimensional treatment of [5, Part 1], itself inspired from
[8] and [7].

1 Preliminaries

1.1 Separable Hilbert space

Let H be a separable real Hilbert space equipped with an inner product 〈., .〉 and let
(ek)k=1,2,... be a complete orthonormal system in H with e1 = 1, see e.g. [9, Section 16.3].
Given n ∈ N, consider the projection mapping

πn : H → H
x 7→

∑n
k=1〈x, ek〉ek.

In particular, note that

x = lim
n→∞

πn(x) =
∞∑
k=1

〈x, ek〉ek.

Also note that

|πn(x)|2 =
n∑
k=1

〈x, ek〉2

and

|x|2 = lim
n→∞

|πn(x)|2 =
∞∑
k=1

〈x, ek〉2. (1)
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1.2 Polynomials

Let c0(N) denote the set of integer sequences with �nitely many non-zero elements, i.e. if
a = (a1, a2, . . .) ∈ c0(N) then card{k : ak 6= 0} < ∞. Let us de�ne the monomial of degree
a ∈ c0(N) as

xa :=
∞∏
k=1

〈x, ek〉ak .

This is a product of �nitely many powers of linear functionals. Polynomials in H are de�ned
as linear combinations of monomials

p : H → R
x 7→

∑
a∈spt p pax

a

with coe�cients pa ∈ R indexed in the support spt p ⊂ c0(N). In the in�nite dimensional
case, the notion of degree of a polynomial is twofold. The algebraic degree of p(.) is

d := max
a∈spt p

∑
k

ak

and it corresponds to the classical notion of total degree in the �nite dimensional case. The
harmonic degree of p(.) is

n := max
a∈spt p

{k ∈ N : ak 6= 0}

and it corresponds to the number of variables in the �nite dimensional case.

Given d, n ∈ N, let Pd,n denote the �nite-dimensional vector space of polynomials of algebraic
degree up to d and harmonic degree up to n. Its dimension is the binomial coe�cient

(
n+d
n

)
.

Each polynomial p(.) ∈ Pd,n can be identi�ed with its coe�cient vector p := (pa)a∈spt p ∈
R(n+dn ). For example, if d = 4 and n = 2, then P4,2 has dimension

(
6
2

)
= 15. The monomial

of degree a = (3, 1, 0, 0, . . .) is 〈x, e1〉3〈x, e2〉. It belongs to P4,2 since it has algebraic degree
4 and harmonic degree 2.

1.3 Compactness

A useful characterization of compact sets in separable Hilbert spaces is as follows [4, item
45, p.346, IV.13.42].

Proposition 1 A closed set X ∈ H is compact if and only if for all ε ∈ R there exists n ∈ N
such that supx∈X |x|2 − |πn(x)|2 < ε2.

Compared to the �nite-dimensional case, this enforces additional conditions on the polyno-
mials de�ning compact semialgebraic sets.

Proposition 2 The ellipsoid

X = {x ∈ H :
∞∑
k=1

pk〈x, ek〉2 ≤ 1} (2)
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is compact if the sequence (pk)k=1,2,... is strictly positive and strictly increasing. For example
one may choose pk = k.

Proof: X is closed and bounded since pk > 0 for all k. For x ∈ X arbitrary, let ck(x) :=
〈x, ek〉 and sk(x) :=

∑∞
l=k c

2
l (x) for all k. Let us use Proposition 1 by proving that for all

ε ∈ R there exists n ∈ N such that supx∈X sn+1(x) < ε2.

Let q1 := p1 and qk+1 := pk+1 − pk, so that qk > 0 for all k. Then

1 ≥ p1c1(x) + p2c2(x) + p3c3(x) + · · ·
= q1c1(x) + (q1 + q2)c2(x) + (q1 + q2 + q3)c3(x) + · · ·
= q1(c1(x) + c2(x) + c3(x) + . . .) + q2(c2(x) + c3(x) + . . .) + q3(c3(x) + · · · ) + · · ·
= q1s1(x) + q2s2(x) + q3s3(x) + · · ·

It follows that the sequence (qksk(x))k=1,2,... is non-negative and summing up at most to one.
So for each ε, we can �nd n such that qn+1sn+1(x) is small enough, and in particular smaller
than qn+1ε

2. �

The Sobolev space of functions whose derivatives up to order m > 0 are square integrable
is a separable Hilbert space [1, Thm. 3.6]. In this space, the squared norm of an element is∑∞

k=1 k
m〈x, ek〉2 and unit balls are therefore precisely of the form (2).

Proposition 3 The Hilbert cube

X = {x ∈ H : |〈x, ek〉| ≤
1

k
, k = 1, 2, . . . }

is compact.

Proof: See [4, Item 70 p. 350]. If x ∈ X then
∑∞

k=n+1〈x, ek〉2 ≤
∑∞

k=n+1
1
k2

can be made
arbitrarily small for su�cient large n and we can use Proposition 1. �

Let C(X) denote the space of continuous functions on X, and let P (X) ⊂ C(X) denote the
space of polynomials on X.

Proposition 4 If X is compact then P (X) is dense in C(X).

Proof: Observe that the set of polynomials on X is an algebra (i.e. the product of two
elements of P (X) is an element of P (X)) that separates points (i.e. for all x1 6= x2 ∈ X, there
is a p ∈ P (X) such that p(x1) 6= p(x2)) and that contains constant functions (corresponding
to the degree a = 0). The result follows from the Stone-Weierstrass Theorem [9, Section
12.3]. �

1.4 Moments

Measures on topological spaces are de�ned as countably additive non-negative functions
acting on the sigma algebra, the collection of subsets which are closed under complement
and countable unions [9, Section 17.1]. Measures on a separable Hilbert space H are uniquely
determined by their actions on test functions.
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Proposition 5 [3, Prop. 1.5] Let µ1 and µ2 be measures on H such that∫
f(x)dµ1(x) =

∫
f(x)dµ2(x)

for all continuous bounded functions f on H. Then µ1 = µ2.

Given a measure µ supported on a subset X of H, and given a ∈ c0(N), the moment of µ of
degree a is the number ∫

X

xadµ(x).

A measure on a compact set is uniquely determined by its sequence of moments.

Proposition 6 Let µ1 and µ2 be measures on a compact set X satisfying∫
X

xadµ1(x) =

∫
X

xadµ2(x)

for all a ∈ c0(N). Then µ1 = µ2.

Proof: If all moments of µ1 and µ2 coincide, then∫
X

p(x)dµ1(x) =

∫
X

p(x)dµ2(x)

for all polynomials on X, and by Proposition 4 for all continuous functions on X. Since
continuous functions are bounded on a compact set X, we can use Proposition 5 to conclude.
�

2 Christo�el-Darboux polynomial

Let µ be a given probability measure on a given compact set X of H. Given d, n ∈ N, the
�nite-dimensional vector space Pd,n of polynomials of algebraic degree up to d and harmonic
degree up to n is a Hilbert space once equipped with the inner product

〈p, q〉µ :=

∫
p(x)q(x)dµ(x).

Let bd,n(.) denote a basis for Pd,n, of dimension
(
n+d
n

)
. Any element p ∈ Pd,n can be expressed

as p(.) = pT bd,n(.) with p a vector of coe�cients.

Let

Mµ
d,n :=

∫
X

bd,n(x)bd,n(x)Tdµ(x)

be the moment matrix of order (d, n) of measure µ, which is the Gram matrix of the inner
products of pairwise entries of vector bd,n(.). This matrix is positive semi-de�nite of size(
n+d
n

)
. If it is non-singular, then it can be written as

Mµ
d,n = QSQT =

(n+dn )∑
i=1

siqiq
T
i
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with qi(x) := qTi bd,n(x) and qTi M
µ
d,nqj = si if i = j and 0 if i 6= j.

The Christo�el-Darboux (CD) kernel is then de�ned as

Kµ
d,n(x, y) :=

(n+dn )∑
i=1

s−1
i qi(x)qi(y) = bTd,n(x)(Mµ

d,n)−1bd,n(y)

and the CD polynomial is de�ned as the sum of squares diagonal evaluation of the kernel

pµd,n(x) := Kµ
d,n(x, x).

Lemma 1 The vector space Pd,n equipped with the CD kernel is a RKHS (reproducible kernel
Hilbert space).

Proof: The linear functional p 7→ 〈p(.), Kµ
d (., y)〉µ has the reproducing property:

∀p ∈ Pd,n, 〈p(.), Kµ
d,n(., y)〉µ =

∫
X

p(x)Kµ
d,n(x, y)dµ(x)

=

∫
X

p(x)bd,n(x)T (Mµ
d,n)−1bd,n(y)dµ(x)

= pT
(∫

X

bd,n(x)bd,n(x)Tdµ(x)

)
(Mµ

d,n)−1bd,n(y)

= pT bd,n(y) = p(y)

and it is continuous:

∀p ∈ Pd,n, 〈p(.), Kµ
d,n(., y)〉2µ ≤

∫
X

p(x)2dµ(x)

∫
X

Kµ
d (x, x)dµ(x).

�

3 Christo�el function

The Christo�el function is de�ned as

Cµ
d,n : H → [0, 1]

z 7→ min
p∈Pd,n

∫
X

p2(x)dµ(x) s.t. p(z) = 1.
(3)

Lemma 2 For each z ∈ H, the minimum is

Cµ
d,n(z) =

1

Kµ
d,n(z, z)

=
1

pµd,n(z)

and it is achieved at

p(.) =
Kµ
d,n(., z)

Kµ
d,n(z, z)

.
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Proof: It holds

1 = p2(z) = (

∫
X

Kµ
d,n(x, z)p(x)dµ(x))2

≤
∫
X

Kµ
d,n(x, z)2dµ(x)

∫
X

p2(x)dµ(x)

= Kµ
d,n(z, z)

∫
X

p2(x)dµ(x)

so

Cµ
d,n(z) ≥ 1

Kµ
d,n(z, z)

.

Now observe that the polynomial

p(.) :=
Kµ
d,n(., z)

Kµ
d,n(z, z)

∈ Pd,n

is admissible for problem (3), i.e. p(z) = 1 and hence

Cµ
d,n(z) ≤

∫
X

Kµ
d,n(x, z)2

Kµ
d,n(z, z)2

dµ(x) =
1

Kµ
d,n(z, z)

.

�

Lemma 3 The CD polynomial has average value∫
X

pµd,n(x)dµ(x) =

(
n+ d

n

)
.

Proof: ∫
X

pµd,n(x)dµ(x) =

∫
X

bd,n(x)T (Mµ
d,n)−1bd,n(x)dµ(x)

= trace(Mµ
d,n)−1

∫
X

bd,n(x)bd,n(x)Tdµ(x)

= trace I(n+dn ) =

(
n+ d

n

)
.

�

4 Asymptotic properties

Let d ∧ n := min(d, n).

Lemma 4 For all z ∈ X, it holds limd∧n→∞C
µ
d,n(z) = µ({z}).
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Proof: Let z ∈ X. First observe that Cµ
d,n(z) is bounded below and non-increasing i.e.

Cµ
d′∧n′(z) ≤ Cµ

d∧n(z) whenever d ∧ n ≤ d′ ∧ n′, so limd∧n→∞C
µ
d,n(z) exists. If p is admissible

for problem (3), it holds ∫
X

p2(x)dµ(x) ≤ p2(z)µ({z}) = µ({z})

so limd∧n→∞C
µ
d,n(z) ≤ µ({z}). Conversely, for given d, n ∈ N, let

p(x) := (1− |πn(x− z)|2)d ∈ P2d,n

and observe that p(z) = 1 so that p(.) is admissible for problem (3) and

Cµ
2d+1,n(z) ≤ Cµ

2d,n(z) ≤
∫
X

p(x)2dµ(x)

≤
∫
B(z,d−

1
4 )

dµ(x) +

∫
X\B(z,d−

1
4 )

(1− |πn(x− z)|2)2ddµ(x)

where B(z, r) := {x ∈ X : |x− z| ≤ r}. For all x ∈ X \B(z, d−
1
4 ), using (1) it holds

|x− z|2 =
n∑
k=0

〈x− z, ek〉2 +
∞∑

k=n+1

〈x− z, ek〉2 ≥ d−
1
2

and hence

(1− |πn(x− z)|2)2d = (1−
n∑
k=0

〈x− z, ek〉2)2d ≤ (1− d−
1
2 +

∞∑
k=n+1

〈x− z, ek〉2)2d

from which it follows that

lim
n→∞

∫
X\B(z,d−

1
4 )

(1−|πn(x− z)|2)2ddµ(x) ≤ lim
n→∞

(1−d−
1
2 +

∞∑
k=n+1

〈x− z, ek〉2)2d = (1−d−
1
2 )2d.

Combining these asymptotic expressions we get

lim
d∧n→∞

Cµ
d,n(z) ≤ lim

d→∞

∫
B(z,d−

1
4 )

dµ(x) + (1− d−
1
2 )2d = µ({z}).

�

If µ is absolutely continuous with respect to e.g. the Gaussian measure restricted to X
[2, 3], then it follows from Lemmas 3 and 4 that the Christo�el function on X decreases to
zero linearly with respect to the dimension of the vector space Pd,n. Equivalently, the CD
polynomial on X increases linearly with respect to the dimension. This is in sharp contrast
with its exponential growth outside of X, captured by the following result.

Lemma 5 Let d, n ∈ N. For all z ∈ H such that minx∈X |πn(x− z)| ≥ δ > 0 it holds

pµd,n(z) ≥ 2
δ

δ+diamX
d−3

where diamX := maxx1,x2∈X |x1 − x2|.
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Proof: Let δ ∈ (0, 1) and let

q(x) :=
Td(1 + δ2 − |πn(x)|2)

Td(1 + δ2)

where Td is the univariate Chebyshev polynomial of the �rst kind of degree d ∈ N. This
polynomial of x ∈ H is such that

� q(0) = 1,

� |q(x)| ≤ 1 whenever |πn(x)| ≤ 1,

� |q(x)| ≤ 21−δd whenever 0 < δ ≤ |πn(x)| ≤ 1,

see [6, Lemma 6.3]. Now let

p(x) := q

(
x− z

δ + diamX

)
, δ̄ :=

δ

δ + diamX

so that if z ∈ H is such that minx∈X |πn(x− z)| ≥ δ > 0 then

0 < δ̄ ≤
∣∣∣∣πn( x− z

δ + diamX

)∣∣∣∣ ≤ 1

for all x ∈ X. Note that p(.) ∈ P2d,n and p(z) = 1 so that p(.) is admissible in problem (3)
and hence

Cµ
2d,n(z) ≤

∫
X

p(x)2dµ(x) ≤
∫
X

(21−δ̄d)2dµ(x) = 22−2δ̄d ≤ 23−2δ̄d.

Also Cµ
2d+1,n(z) ≤ Cµ

2d,n(z) ≤ 23−2δ̄d and since δ̄ < 1, it holds Cµ
2d+1,n(z) ≤ 23−δ̄(2d+1), from

which we conclude that Cµ
d,n(z) ≤ 23−δ̄d. �
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