
HAL Id: hal-04628208
https://hal.science/hal-04628208

Submitted on 28 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

UAV autopilot architectures versus AADL
Emmanuel Grolleau

To cite this version:
Emmanuel Grolleau. UAV autopilot architectures versus AADL. 3rd ADEPT workshop: AADL by
its practitioners, Jun 2024, Barcelona, Spain. �hal-04628208�

https://hal.science/hal-04628208
https://hal.archives-ouvertes.fr


1

UAV autopilot architectures versus AADL

Emmanuel Grolleau
LIAS, ISAE-ENSMA, Chasseneuil, France; email: grolleau@ensma.fr

Abstract

In the Comp4Drones European projects, the software ar-
chitecture of several open source off-the-shelf autopilots
was studied in order to propose a common abstraction,
the reference architecture. Several tools were developed
in order to give means to drone manufacturer to as-
sess the safety of their underlying autopilot altogether
with their custom components. AADL was one of ADLs
closest to the needs for such a representation, but did
not completely fulfil the needs. This paper addresses
the main points where AADL lacked in offering all the
required concepts.

Keywords: AADL, UAV, autopilot.

1 Introduction
The Comp4Drones ECSEL JU European project took place
from 2019 to 2023, and was aiming at providing a framework
of key enabling technologies for safe and autonomous drones’
applications. The drone manufacturers involved in the project
were using, in general, existing open source off-the-shelf
(OtS) autopilots, such as PX4, Ardupilot or Paparazzi. They
have, nevertheless, always to add software and sometimes
hardware components to give an added-value to their drones.

Custom components, depending on the expected response
time range, may be located on a companion board, limiting
the impact on the stability and responsiveness of the autopilot,
but also implying response times in the order of magnitude of
tenths of milliseconds.

In order to ease integration of such custom components, UAV
autopilots rely on middlewares, such as ROS, or the de facto
communication standard MAVLink. They can also provide
their own specific middleware, like uORB for PX4, or ABI for
Paparazzi.Several middlewares can be interconnected through
software bridges. Customising a drone autopilot using mid-
dlewares is very common, and usually well documented, but
it is at the cost of performance. If the custom component
were to have a shorter response time, in the magnitude of
milliseconds, then the custom component should reside on
the same processor, either in a specific process, if the un-
derlying operating system allows so, or in a specific thread.
Paparazzi even allows custom functions to reside within the
control loop of the attitude controller, giving the availability
for a custom component to be called each time the attitude
controller executes. The frequency of such controller varies
depending on the frame of the UAV, typically from hundreds
of hertz for fixed-wing, to up to several kilo-hertz for a very
unstable rotary-winged drone.

In this paper, we deal the way the custom components of an
autopilot and an UAV can be represented in order to allow the
system safety to be assessed.

2 From COTS to MOTS
From the point of view of a drone manufacturer, an OtS au-
topilot can be seen not as a Component-of-the-shelf (COTS),
but more as a Modifiable-off-the-shelf (MOTS). He has to
design and develop his own component, but integrate it in an
existing, very complex, piece of software and hardware.

The term open source OtS autopilot is not corresponding to
the reality of most autopilots (e.g., PX4, Ardupilot, Paparazzi).
Indeed, they provide software repositories for hundreds of
autopilots to be generated depending on the frame, controller,
operating system, sensors, and actuators. As shown in [1],
Paparazzi autopilot repository regroups over 2100 C (mostly)
and C++ files, for almost a million lines of code, at least 366
compilation files for over 50’000 lines, over 1200 configu-
ration files for over 160’000 total lines. PX4 is in the same
order of magnitude, while more relying on C++ than on C as
a programming language. A specific instance of an autopi-
lot uses less than 10% of the whole content of an autopilot
repository. The selection of the required source files is made
through configuration files and makefiles. As a result, it is
quite challenging for a drone manufacturer, supposed to add
its custom components to such systems, to vouch for their
safety.

3 Specific autopilot architectures
Both for historical reasons and efficiency reasons, the low
level code of autopilots mainly relies on a unique thread
(called core thread hereafter) in charge of collecting the sen-
sors data and telemetry, then state estimation of the drone,
attitude control, actuation of the sensors, position, trajectory
control and error handling. If the system is bare-metal (no
operating system), then input-outputs are done in interrupt ser-
vice routines, while if an operating system is present, threads
are used to handle input-outputs (see [2] for a detailed presen-
tation).

The core thread works like a cyclic executive, as each of its
functions has a specific execution pattern. Some functions
are executed each time the core thread is executed, while
others have a specific period, are are triggered by events (e.g.,
specific data available). Some patterns may even include
precedence constraints, or transactional behaviour, such as
execute this function 20 cycles after this other function is
executed.

ADEPT Workshop



2 UAV autop i lo t arch i tec tures versus AADL

4 AADL shortcomings
The use of an ADL, hierarchically representing existing au-
topilots would help drone manufacturers both to understand
where and how to add their components, especially if they are
to be added at the core of the autopilot. It would also allow
for some analysis, validation, or design exploration tools to be
used. We therefore created a framework, presented in ??, tak-
ing as imput an autopilot instance in Paparazzi, and presenting
the set of threads, as well as a functional decomposition of
the threads. This decomposition is obtained through the use
of LOW GIMPLE, a low level language artefact generated
during compilation with GCC. This choice comes from the
fact that the same representation is used for C and C++, and
that the code is decomposed in 3-address instructions, sim-
plifying the detection of uses of variables, calls to functions,
etc.

The main shortcomings of AADL to finely represent the be-
haviour of the autopilots were:

• Difficulty to represent the cyclic executive core thread
behaviour, with the specific execution pattern of the

functions.

• Difficulty to abstract the (very common) utilisation of
the middlewares, without representing the whole path
followed by the data, knowing that middlewares have
specific scopes (e.g., intra-thread for ABI, inter-thread
for uORB, inter-processes and systems for ROS).

• Since hundreds of functions are called within a thread,
ability to represent hierarchically the content of a func-
tion, sub-functions, etc.

References
[1] S. Kamni, A. Bertout, E. Grolleau, G. Hattenberger, and

Y. Ouhammou, “Easing the tuning of drone autopilots
through a model-based framework,” Journal of Computer
Languages, vol. 77, p. 101240, 2023.

[2] G. Hattenberger, F. Bonneval, M. Ladeira, E. Grolleau,
and Y. Ouhammou, “Design of micro-drone autopilot
architecture with static scheduling optimization,” Un-
manned systems, pp. 1–14, 2023.

ADEPT Workshop


