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Abstract—This paper introduces the concept of cross-entropy
and relative entropy of two basic belief assignments. It is based
on the new entropy measure presented recently. We prove that
the cross-entropy satisfies a generalized Gibbs-alike inequality
from which a generalized Kullback-Leibler divergence measure
can be established in the framework of belief functions. We show
on a simple illustrating example how these concepts can be used
for decision-making under uncertainty.
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I. INTRODUCTION

In Shannon’s theory of communication developed in 1948
[1], [2], the measure of uncertainty (MoU), also called en-
tropy, for characterizing a source of information (from signal
transmission standpoint) is defined by Shannon entropy. This
entropy measures the randomness of a probability distribution
P and is usually noted by H(P ). Shannon entropy does not
concern the semantic aspects of the content of a message
but only its transmission [3]–[5]. H(P ) has played a very
important role in the development of modern communication
systems and cryptography [6] until today. According to Cover
and Thomas [7], the cross-entropy denoted by H(P,Q) is
the average number of bits needed to encode data coming
from a source with a probability distribution P when we
use a distribution model Q to define our codebook. Cross-
entropy is commonly used in machine learning as a loss
function [8], and the cross-entropy method is often used in
practice to estimate an unknown true pmf (probability mass
function) based on a test set where Q is the assumed (or
eventually empirical) pmf model. The minimization of the
cross-entropy is related with the principle of the maximization
of the likelihood. That is why cross-entropy plays a major role
in many statistical applications. The relative entropy, often
referred as Kullber-Leibler divergence [9], is the difference
between the cross-entropy and Shannon entropy, and so it is
H(P,Q) − H(P ). All these aforementioned basic concepts
have been well established (and strongly justified) from the
mid of 20th century, and all use the theory of probability as
the fundamental underlying mathematical framework.

In this paper we go beyond the classical probabilistic
framework because we want to work possibly with epistemic
uncertainty represented by non-probabilistic models thanks to
the mathematical framework of belief functions introduced by

Shafer [10], and in this context the legitimate and important
question is to know if it is possible, or not, to extend the
concepts of entropy, cross-entropy and relative entropy for
the belief functions. Concerning the concept of entropy, the
answer is affirmative and very recently a new generalized
entropy measure has been proposed in [11] in the framework of
the theory of belief functions. Concerning the second and third
theoretical questions about cross-entropy and relative entropy
concepts, we give new comprehensive and better answers to
these questions in this paper. This is our new theoretical
contribution in the field. The concrete meaning of relative
entropy and cross-entropy measures in the belief functions
framework is a challenging question because the entropy of
belief function is merely related to the uncertainty of epistemic
knowledge rather than of statistical knowledge. No concrete
meaning of these notions has been firmly established so far.
This interesting open question is left for future research works.

To make the material of this paper quite self-contained, we
recall the basic classical concepts related to entropy (Shannon
entropy, cross-entropy, and relative entropy) in the section II,
and we present the basics of belief functions [10] in Section
III with the new concept of entropy measure of basic belief
mass assignment (BBA) [11] in the section IV. After recalling
a very recent definition of cross-entropy of BBAs [12] based
on the non effective Deng’s entropy definition [13], we present
in the section V a new cross-entropy definition based on our
new effective entropy definition. The section VI presents the
concept of relative entropy of BBAs which can be interpreted
as a generalization of the Kullback-Leibler divergence measure
for belief functions. An example of the use of these concepts
for decision-making under uncertainty is given in the section
VII. Concluding remarks and perspectives are given in the
section VIII.

II. CLASSICAL NOTIONS RELATED TO ENTROPY

A. Shannon entropy

Consider a discrete random variable θ represented by a
probability mass function (pmf) PN = (p1, p2, . . . , pN ), where
pi = P (θi) is the probability of the i-th state θi (i.e.
outcome) of Θ = {θ1, θ2, . . . , θN}. Shannon was interested in
communication systems where the various events were the
carriers of coded messages, and he did justify his entropy
measure as appropriate measure of average uncertainty (or



measure of randomness) of a random variable [1], [2], [6],
[7]. The entropy of a random variable is the average level
of surprisal, or uncertainty inherent in the variable’s possible
outcomes [14]. Shannon entropy is defined by1

H(PN ) , −
|Θ|∑
i=1

P (θi) log(P (θi)) . (1)

By convention, P (θi) log(P (θi)) = 0 if P (θi) = 0. This is
easily justified by continuity because limx→0+ x log x = 0,
which can be proved using L’Hôpital rule [15]. Adding terms
of zero probability does not change the entropy value. In (1)
we use the natural logarithm (i.e. base e logarithm) and in this
case the Shannon entropy value is expressed in nats unity. We
can also use the base 2 logarithm (log2) function instead of
the natural logarithm, and if so the Shannon entropy value will
be expressed in bits. Shannon entropy can be interpreted as a
generalization of Hartley entropy (1928) [16] when presuming
the pmf of equally probable states (i.e. uniform2 pmf P unif

N ),
hence getting H(P unif

N ) = log(|Θ|) = log(N). Note that if we
have a uniform pmf P unif

N defined on Θ with |Θ| = N and
another uniform pmf P unif

N ′ defined on Θ′ with |Θ′| = N ′, and
if |Θ| < |Θ′| then H(P unif

N ) < H(P unif
N ′ ) because log(|Θ|) <

log(|Θ′|) since log(x) is an increasing function. The minimum
value of Shannon entropy is zero, which characterizes a non-
random (or sure) event θj for which P (θj) = 1.

The main algebraic properties of Shannon entropy are,
see [17] (p. 30) for details: the symmetry, the normality3,
expansibility, decisivity, sub-additivity and recursivity. We
recall that Shannon entropy value H(PN ) is always smaller
than H(P unif

N ) if PN 6= P unif.
N , expressing the fact that the

uniform pmf is the only pmf giving the maximal Shannon
entropy value, and characterizing the maximum of uncertainty
(or randomness), which is called the maximality property.

B. The cross-entropy

Consider a finite set of exhaustive events Θ = {θ1, . . . , θn}
where θi are mutually exclusive (i.e. θi ∩ θj = ∅ if i 6= j).
Suppose that P = {P (θ1) = p1, . . . , P (θn) = pn} is a
probability distribution over the set Θ. Then for any other
probability distribution Q = {Q(θ1) = q1, . . . , Q(θn) = qn}
the Gibbs inequality holds [18]

−
n∑

i=1

pi log(qi) ≥ −
n∑

i=1

pi log(pi) . (2)

The cross-entropy between probability distriputions P and Q
over the same underlying set of events Θ is defined by

H(P,Q) = −
n∑

i=1

pi log(qi) = −
∑
X∈Θ

P (X) log(Q(X)) . (3)

One can easily verify that H(P,Q) = H(P ) when Q = P ,
i.e. when the probability distribution Q coincides with the

1The symbol , means equal by definition.
2for which P (θi) = 1/N for i = 1, 2 . . . , N .
3This stipulates that H(P unif

2 ) = 1 using base 2 logarithm function in (1).

true probability distribution P the cross-entropy value equals
Shannon entropy of P . Gibbs inequality is H(P,Q) ≥ H(P ).

C. The relative entropy
The difference between the cross-entropy H(P,Q) and

Shannon entropy H(P ) is named the relative entropy or the
Kullback-Leibler (KL) divergence [9]), and is often denoted
by4

DKL(P ‖ Q) , H(P,Q)−H(P ) =

n∑
i=1

pi log(pi/qi) . (4)

DKL(P‖Q) measures how the probability distribution P is
different from a second, reference probability distribution Q.
It corresponds to the expectation of the logarithmic difference
between the probability distributions P and Q, where the
expectation is taken using the distribution P . In general the rel-
ative entropy DKL(P ‖ Q) is not symmetric under interchange
of the distributions P and Q and we have DKL(P ‖ Q) 6=
DKL(Q ‖ P ). Therefore, DKL is not strictly a distance even if
it is often abusively called a distance in the literature, even by
Cover in [7]. This relative entropy (i.e. divergence measure)
is important in pattern recognition and neural networks for
making classification, as well as in information theory. Kull-
back and Leibler also proposed a symmetrized measure in
[9] defined as DKL(P ‖ Q) +DKL(Q ‖ P ). Another renown
symmetric version of the KL divergence is the Jensen-Shannon
(JS) divergence defined by Lin in [19]

DJS(P ‖ Q) ,
1

2
DKL

(
P ‖ P +Q

2

)
+

1

2
DKL

(
Q ‖ P +Q

2

)
. (5)

The Jensen-Shannon divergence can be interpreted as the
total Kullback-Leibler divergence to the average probability
distribution (P + Q)/2. This JS divergence is often used in
practice because its square root is a metric often referred to
as Jensen-Shannon distance [20], that is

dJS(P,Q) ,
√
DJS(P ‖ Q) . (6)

Jensen-Shannon divergence has been applied in different
fields of applications (e.g. bioinformatics, social sciences, fire
experiments, machine learning, in deep learning for studying
generative adversarial networks, etc), see [21].

III. BELIEF FUNCTIONS

The belief functions (BF) were introduced by Shafer [10] for
modeling epistemic uncertainty, reasoning about uncertainty
and combining distinct sources of evidence. The answer of
the problem under concern is assumed to belong to a known
finite discrete frame of discernement (FoD) Θ = {θ1, . . . , θN}
where all elements (i.e. members) of Θ are exhaustive and
exclusive. The set of all subsets of Θ (including empty set

4As in [7] (p. 19), in the formula (4) we use the conventions that
0 log(0/0) = 0, 0 log(0/q) = 0, and p log(p/0) = ∞. So, if there is
any X ∈ Θ such that P (X) > 0 and Q(X) = 0, DKL(P‖Q) = ∞.



∅, and Θ) is the power-set of Θ denoted by 2Θ. The number
of elements (i.e. the cardinality) of the power-set is 2|Θ|. A
(normalized) basic belief assignment (BBA) associated with a
given source of evidence is a mapping mΘ(·) : 2Θ → [0, 1]
such that5 mΘ(∅) = 0 and

∑
X∈2Θ mΘ(X) = 1. A BBA

mΘ(·) characterizes a source of evidence related with a FoD
Θ. For notation shorthand, we can omit the superscript Θ in
mΘ(·) notation if there is no ambiguity on the FoD we work
with. The quantity m(X) is called the mass of belief of X .
X ∈ 2Θ is called a focal element (FE) of m(·) if m(X) > 0.
The set of all focal elements of m(·) is denoted by FΘ(m) ,
{X ∈ 2Θ|m(X) > 0}. The belief and the plausibility of X
are respectively defined for any X ∈ 2Θ by [10]

Bel(X) =
∑

Y ∈2Θ|Y⊆X

m(Y ) , (7)

Pl(X) =
∑

Y ∈2Θ|X∩Y 6=∅

m(Y ) = 1− Bel(X̄) , (8)

where X̄ , Θ \ {X} is the complement of X in Θ .
One has always 0 ≤ Bel(X) ≤ Pl(X) ≤ 1, see [10].

For X = ∅, Bel(∅) = Pl(∅) = 0, and for X = Θ one has
Bel(Θ) = Pl(Θ) = 1. Bel(X) and Pl(X) are often inter-
preted as the lower and upper bounds of unknown prob-
ability P (X) of X , that is Bel(X) ≤ P (X) ≤ Pl(X).
To quantify the uncertainty (i.e. the imprecision) of
P (X) ∈ [Bel(X), P l(X)], we use u(X) ∈ [0, 1] defined by

u(X) , Pl(X)−Bel(X) . (9)

The quantity u(X) = 0 if Bel(X) = Pl(X) which
means that P (X) is known precisely, and one has
P (X) = Bel(X) = Pl(X). One has u(∅) = 0 be-
cause Bel(∅) = Pl(∅) = 0, and one has u(Θ) = 0 because
Bel(Θ) = Pl(Θ) = 1. If all focal elements of m(·) are single-
tons of 2Θ the BBA m(·) is a Bayesian BBA because ∀X ∈ 2Θ

one has Bel(X) = Pl(X) = P (X) and u(X) = 0. Hence
the belief and plausibility of X coincide with a probability
measure P (X) defined on the FoD Θ. The vacuous BBA
characterizing a totally ignorant source of evidence is defined
by mv(X) = 1 for X = Θ, and mv(X) = 0 for all X ∈ 2Θ

different of Θ. This very particular BBA plays a major role
in the establishment of a new effective measure of uncertainty
for BBA.

IV. ENTROPY OF BASIC BELIEF ASSIGNMENTS

In [22] we did analyze in details forty-five measures of
uncertainty (MoU) of BBAs by covering 40 years of research
works on this topic. Some of these MoUs capture only a par-
ticular aspect of the uncertainty inherent to a BBA (typically,
the non-specificity and the conflict). Other MoUs propose a
total uncertainty measure to capture jointly several aspects of
the uncertainty. Unfortunately, most of these MoUs fail to
satisfy four very simple reasonable and essential desiderata,
and so they cannot be considered as really effective and

5In Shafer’s theory of BFs we work with a closed FoD and the mass of
the empty set must always be equal to zero.

useful. Actually only five MoUs can be considered as effective
from the mathematical sense presented next, but unfortunately
they appear as conceptually defective and disputable, see
discussions in [22]. That is why, a better effective measure of
uncertainty (MoU), i.e. generalized entropy of BBAs has been
developed and presented in [11]. The mathematical definition
of this new effective entropy is given by

U(m) =
∑

X∈2Θ

s(X) (10)

with

s(X) , −m(X)(1− u(X)) log(m(X))

+ u(X)(1−m(X)) . (11)

s(X) is the uncertainty contribution related to X named the
entropiece of X . This entropiece s(X) involves m(X) and
the imprecision u(X) = Pl(X)−Bel(X) about the unknown
probability of X in a subtle interwoven manner. Because
u(X) ∈ [0, 1] and m(X) ∈ [0, 1] one has s(X) ≥ 0,
and U(m) ≥ 0. The quantity U(m) is expressed in nats
because we use the natural logarithm. U(m) can be expressed
in bits by dividing the U(m) value in nats by log(2) =
0.69314718.... This measure of uncertainty U(m) is a con-
tinuous function in its basic belief mass arguments because it
is a summation of continuous functions. In formula (11), we
always take m(X) log(m(X)) = 0 when m(X) = 0 because
limm(X)→0+ m(X) log(m(X)) = 0. Note that for any BBA
m, one has s(∅) = 0 because m(∅) = 0 and u(∅) = 0. For
the vacuous BBA, one has s(Θ) = 0 because mv(Θ) = 1 and
u(Θ) = 0.

This measure of uncertainty U(m) is effective because it
can be proved (see proofs in [11]) that it satisfies the following
four essential properties:

1) U(m) = 0 for any BBA m(·) focused on a singleton X
of 2Θ.

2) U(mΘ
v ) < U(mΘ′

v ) if |Θ| < |Θ′|.
3) U(m) = −

∑
X∈Θm(X) log(m(X)) if the BBA m(·)

is a Bayesian BBA. Hence, U(m) reduces to Shannon
entropy [1] in this case.

4) U(m) < U(mv) for any non-vacuous BBA m(·) and
for the vacuous BBA mv(·) defined with respect to the
same FoD.

The maximum of entropy value is obtained for the vacuous
BBA mv over a FoD Θ, because mv characterizes a source
of evidence with a full lack of information. This maximum
entropy value is U(mΘ

v ) = 2|Θ| − 2 (see derivation in [11])
and it represents the sum of all imprecisions of P (X) for all
X ∈ 2Θ. Because for all X ∈ 2Θ \ {∅,Θ} one has u(X) = 1
because [Bel(X), P l(X)] = [0, 1], and one has u(∅) = 0 and
u(Θ) = 0 when considering the vacuous BBA then the sum
of all imprecisions u(X) about P (X) is equal to 2|Θ| − 2. It
is worth mentioning that one has always U(mΘ

v ) > log(|Θ|)
which means that the vacuous BBA has always an entropy
greater than the maximum of Shannon entropy log(|Θ|) ob-
tained with the uniform pmf on Θ.



V. CROSS-ENTROPY OF TWO BBAS

A. Cross-entropy derived from Deng’s entropy

Very recently in [12], Gao et al. proposed a definition of
the cross-entropy of two BBAs inspired by the non-effective
Deng’s entropy Ed(m) proposed earlier by Deng in [13] and
defined as follows:

Ed(m) = −
∑
X⊆Θ

m(X) log(
m(X)

2|X| − 1
) (12)

where m(X) is the mass of belief of any subset X of the
frame of discernment Θ, and where |X| is the cardinality of
X . If m(X) = 0, the term m(X) log( m(X)

2|X|−1
) is set to zero.

Deng’s entropy definition is unfortunately not recommended
because it is non-effective. Indeed, we can have Ed(m) >
Ed(mv) indicating that a non-vacuous BBA m(.) can be more
uncertain than the vacuous BBA mv(.), which obviously is not
appropriate because the vacuous BBA characterizes the state of
total ignorance. As a simple counterexample of Deng’s entropy
consider Θ = {A,B,C} the vacuous BBA mv(.) with mv(A∪
B∪C) = 1, and the non-vacuous BBA m(.) with m(A∪B) =
m(A ∪ C) = m(B ∪ C) = 1/3. Clearly, one gets Ed(m) >
Ed(mv). See the paper [22] for more discussions about other
non-effective entropy proposals. For this counterexample, the
values of Deng’s entropies are

Ed(mv) = −mv(A ∪B ∪ C) log(
mv(A ∪B ∪ C)

2|A∪B∪C| − 1
)

= −1 · log(
1

23 − 1
) = − log(

1

7
) ≈ 1.9459 ,

Ed(m) = −m(A ∪B) log(
m(A ∪B)

2|A∪B| − 1
)

−m(A ∪ C) log(
m(A ∪ C)

2|A∪C| − 1
)

−m(B ∪ C) log(
m(B ∪ C)

2|B∪C| − 1
)

= −3 · 1

3
· log(

1

3
· 1

22 − 1
) = − log(1/9) ≈ 2.1972 .

Based on this non-effective entropy measure, the cross-
entropy defined by Gao et al. [12] between BBAs m1 and m2

is based on a mimicry of the classical cross-entropy definition
using Deng’s entropy, that is

C(m1,m2) = −
∑
X⊆Θ

m1(X) log(
m2(X)

2|X| − 1
) .

Similarly, the cross-entropy between m2 and m1 is

C(m2,m1) = −
∑
X⊆Θ

m2(X) log(
m1(X)

2|X| − 1
) .

Because Deng’s entropy is non effective, we have serious
doubt on the validity of the cross-entropy concept defined
by C(m1,m2) and C(m2,m1) formulas. This matter of fact
justifies the necessity of using a better entropy measure [11]
defined by (10)–(11), and the development of a better cross-
entropy measure. This is what we present in the next section.

B. A new definition of cross-entropy

Based on the definition (3) of cross-entropy in the proba-
bilistic framework, and the definition of the effective general-
ized entropy U(m) given in (10), it seems quite natural to try
to extend directly the concept of cross-entropy of two pdfs p
and q to the cross-entropy of two BBAs m1 and m2 defined
over the same FoD Θ. The extension of the classical cross-
entropy formula (3) applied with generalized entropy U(m)
given in (10) suggests directly the following generic formula
of the cross-entropy between two BBAs

U(m1,m2) =
∑

X∈2Θ

s1,2(X) (13)

with

s1,2(X) , −m1(X)(1− ui(X)) log(m2(X))

+ uj(X)(1−mk(X)) (14)

where indexes i, j and k have to belong to the set {1, 2}.
From this generic formulation, one sees that we could a

priori define eight different cross-entropies between two BBAs
depending on the choice of indexes (i, j, k) listed in Table I.

Table I
POSSIBLE TRIPLETS (i, j, k).

Triplet T = (i, j, k) Value
T1 (1,1,1)
T2 (1,1,2)
T3 (1,2,1)
T4 (1,2,2)
T5 (2,1,1)
T6 (2,1,2)
T7 (2,2,1)
T8 (2,2,2)

It is worth mentioning that if m2 = m1 the cross-
entropy measure coincides with the entropy measure, that is
U(m1,m2) = U(m1,m1) = U(m1).

What is the best definition of the cross-entropy of two
BBAs among the eight possible definitions? Or equivalently,
what is the most suitable triplet of indexes (i, j, k) to plug
in the generic cross-entropy formula (14)? To answer to this
important question, we propose to consider as the effective
choice of triplet (i, j, k) the one which allows the information
entropy of a BBA m1 to be less than or equal to its cross-
entropy with any other BBA m2. More precisely, select the
triplet (i, j, k) such that for any BBAs m1 and m2 defined on
the same FoD, the following inequality holds

U(m1,m2) ≥ U(m1) . (15)

Actually for the eight a priori possible definitions of cross-
entropy drawn from (13)–(14), one can easily find by Monte-
Carlo simulations of random pairs (m1,m2) of BBAs that
the choices of triplets (1, 1, 1), (1, 2, 1), (1, 2, 2), (2, 1, 1),
(2, 1, 2), (2, 2, 1), and (2, 2, 2) are not judicious because the
inequality (15) can be violated, see some examples in the
appendix. Because our Monte-Carlo analysis based on 100000



random pairs (m1,m2) of BBAs revealed that the inequality
(15) was satisfied only for the triplet (i, j, k) = (1, 1, 2) for
different cardinalities of frames of discernment tested up to
|Θ| = 10, we did conjecture that the satisfactory definition
of a cross-entropy of two BBAs satisfying inequality (15) is
mathematically defined by (13) with

s1,2(X) , −m1(X)(1− u1(X)) log(m2(X))

+ u1(X)(1−m2(X)) . (16)

The term s1,2(X) defined in (16) is called the cross-
entropiece of X .

Theorem 1: Let m1 and m2 be BBAs defined on the same
frame of discernment. The cross-entropy U(m1,m2) defined
by (13) and (16) always satisfies the inequality U(m1,m2) ≥
U(m1), with equality only if m1 = m2.

Proof: see appendix.

Proposition: If the BBAs m1 and m2 are Bayesian the cross-
entropy defined by (13) and (16) coincides with the classical
cross-entropy given by (3).

Proof: Since u1(X) = 0 for all X ∈ 2Θ for any Bayesian
BBA m1(.), the proposition is immediate.

VI. RELATIVE ENTROPY OF TWO BBAS

It is worth mentioning that the inequality (15) is a gen-
eralization of the well-known Gibbs inequality (2), and it
coincides with Gibbs inequality when the BBAs m1 and m2

are Bayesian BBAs. The generalized relative entropy (GRE)
of two BBAs m1 and m2 that are defined over the same frame
of discernment Θ is naturally defined by

U(m1 ‖ m2) , U(m1,m2)− U(m1) . (17)

Because Theorem 1 holds, one has always U(m1 ‖ m2) ≥
0, with equality if m1 equals m2. As for the classical relative
entropy defined by (4), the GRE is not symmetric under the
interchange of the BBAs m1 and m2, so that in general
U(m1 ‖ m2) 6= U(m2 ‖ m1). Therefore GRE must also not
be considered as a distance. This GRE is a direct general-
ization of Kullback-Leibler (KL) divergence measure in the
framework of belief functions. Using expressions (16) and6

(11) the mathematical definition of U(m1 ‖ m2) is

U(m1 ‖ m2) =
∑
X⊆Θ

[m1(X)(1− u1(X))

· (log(m1(X))− log(m2(X)))

+ u1(X)(m1(X)−m2(X))] . (18)

GRE coincides with KL-divergence formula (4) when the
BBAs m1 and m2 are Bayesian because if focal elements of
m1 and m2 are singletons of 2Θ then u1(X) = 0 and

6with m replaced by m1.

U(m1 ‖ m2) =
∑
X⊆Θ

m1(X)(log(m1(X))− log(m2(X)))

=
∑
X∈Θ

m1(X) log

(
m1(X)

m2(X)

)
(19)

which is equivalent to formula (4) when interpreting the
bayesian BBA m1 as a probability measure p, and the bayesian
BBA m2 as a probability measure q over the set Θ.

VII. EXAMPLE OF APPLICATION

In this section we present an example of the use of the
entropy, cross-entropy and relative entropy concepts defined
in this paper for the purpose of decision-making under uncer-
tainty. More precisely, given a BBA m(.) defined over a FoD
Θ, how to make a decision based on m(.) and how the select
the most pertinent element θi of Θ?

A. Decision using relative entropy
Classically the decision-making from a BBA is based on

the max of Pl(.), on the max of Bel(.), or on the max of
pignistic probability depending on the attitude chosen by the
decision-maker (resp. optimistic, pessimistic or in-between
attitudes). Here we propose to make the decision based on the
relative entropy measure. More precisely, from any BBA m
defined over a FoD Θ = {θi, i = 1, . . . , n}, we calculate the
divergences U(mi ‖ m) for i = 1, 2, . . . , n, where mi is the
BBA focused on the element θi ∈ Θ such that mi(θi) = 1.
We will take as decision θ̂ the element θi for which the
divergence between m and mi is minimal, that is θ̂ = θi?
with i? = arg mini∈{1,2,...,n} U(mi ‖ m).

Example: Consider the FoD Θ = {θ1, θ2, θ3}, and after some
fusion processing suppose we obtain the following BBA
m(.) defined by m(θ1) = 0.1, m(θ2) = 0.2, m(θ3) = 0.3,
m(θ1 ∪ θ2) = 0.01, m(θ1 ∪ θ3) = 0.02, m(θ2 ∪ θ3) = 0.07
and m(θ1 ∪ θ2 ∪ θ3) = 0.3. Then we get U(m1 ‖ m) ≈ 2.30,
U(m2 ‖ m) ≈ 1.60 and U(m3 ‖ m) ≈ 1.20. Based on this
result the decision will be θ̂ = θ3 because the divergence
U(m3 ‖ m) = 1.20 is the least value among the values 2.30,
1.60 and 1.20. This decision is consistent with what we
intuitively expect because [Bel(θ1), P l(θ1)] = [0.10, 0.43],
[Bel(θ2), P l(θ2)] = [0.20, 0.58] and [Bel(θ3), P l(θ3)] =
[0.30, 0.69] showing that θ3 is the element of Θ that has the
maximum of belief and also the maximum of plausibility.

Remark 1: We could not use U(m ‖ mi) instead of
U(mi ‖ m). Indeed, we get U(m ‖ mi) = +∞, and thus
cannot decide. But the use of U(mi ‖ m) is how-
ever not completely satisfactory because for mi we
have ui(X) = 0 for all X ∈ 2Θ and U(mi) = 0, so that
U(mi ‖ m) = U(mi,m)− U(mi) = − log(m(θi)). Thus, the
decision is made with only part of the information of m
about θi and not with the other mass values of non-singleton
focal elements of m (if any). Subsequently, a pseudo-distance
inspired by Jensen-Shannon is proposed which uses the whole
BBA information.



B. Decision using Jensen-Shannon pseudo-distance

In [23] we did propose a decision-making method based on
the minimum of belief-interval distance that used Wasserstein
distance. We take for decision θ̂ the element θi for which
the distance d(m,mi) between m and mi is minimal, that is
θ̂ = θi? with i? = arg mini∈{1,2,...,n} d(m,mi). This method
implicitly assumes the uniform distribution of the probability
P (X) in [Bel(X), P l(X)] which is disputable because we
cannot check in practice if this assumption is true, or not.
To circumvent this problem, we propose to replace the belief-
interval distance between BBAs by the Jensen-Shannon-alike
pseudo-distance derived from our relative entropy concept,
which would be defined by

d(m,m′) ,

√
1

2
[U(m ‖ m+m′

2
) + U(m′ ‖ m+m′

2
)] . (20)

Note that d(m,m′) coincides with Jensen-Shannon distance
(6) when the BBAs m and m′ are bayesian BBAs. One has
also d(m,m′) = d(m′,m), d(m,m′) ≥ 0 and d(m,m′) = 0
when m = m′ because U(m ‖ m+m

2 ) = U(m ‖ m), and
U(m ‖ m) = U(m,m)− U(m) = 0.

In our example, we obtain the following pseudo-distances:
d(m,m1) ≈ 0.67, d(m,m2) ≈ 0.60, and d(m,m3) ≈ 0.55.
Based on these values we will take the decision θ̂ = θ3.

Note also that if m is the vacuous BBA (i.e.
m = mv), then in this particular case we will obtain
d(mv,m1) = d(mv,m2) = d(mv,m3) = 0.6656 so that no
clear decision can be drawn from the vacuous BBA since
it does not contain useful information, which makes perfect
sense. Note that the inequality (d(m,m1) = 0.6763) >
(d(mv,m1) = 0.6656) is not surprising because the BBA m
is more unfavorable to θ1 than the vacuous BBA mv is.

Remark 2: We tested (20) against the triangular inequality
d(m,m′) + d(m′,m′′) ≥ d(m,m′′). A crude Monte Carlo
analysis based on millions of random BBAs generated uni-
formly over different frames of discernment up to cardinality
|Θ| = 13 revealed no counterexample. This indicates that such
counterexamples are rare events. However, we tried a refined
Monte Carlo analysis, where the set of focal elements were
generated prior to the BBA. On the basis of 10000 different
generated BBAs and near 500 · 109 combination cases, we
have found a rate of 2 · 10−5 counterexamples to the triangular
inequality. This is quite small. More interestingly, the degree
of violation of the triangular inequality was small, since we
found 1.17 as the maximum value for d(m,m′′)

d(m,m′)+d(m′,m′′) . That
is why we consider d(m,m′) only as a pseudo-distance, i.e. a
semimetric. But our simulations suggest that this semimetric
satisfies a sharp ρ-relaxed triangle inequality:

d(m,m′′) ≤ ρ(d(m,m′) + d(m′,m′′)) with ρ ≥ 1.2 .

In conclusion, the topology induced by this semimetric is
certainly very close to a true metric topology.

Counterexample of triangular inequality:

Consider Θ = {θ1, θ2, θ3} and the three BBAs m, m′ and
m′′ as follows:

m(θ3) = 0.25,m(θ1∪θ3) = 0.19,m(θ2∪θ3) = 0.21,m(Θ) = 0.35 ,

m′(θ1 ∪ θ3) = 0.25,m′(θ2 ∪ θ3) = 0.26,m′(Θ) = 0.49 ,

m′′(θ1 ∪ θ2) = 0.44,m′′(Θ) = 0.56 .

We get d(m,m′) ≈ 0.1144, d(m′,m′′) ≈ 0.1800 and
d(m,m′′) ≈ 0.3306. Hence d(m,m′) + d(m′,m′′) = 0.2945
which is smaller than d(m,m′′) = 0.3306. So there, the
triangular inequality d(m,m′) + d(m′,m′′) ≥ d(m,m′′) is
violated.

VIII. CONCLUSION

In this paper we have proposed new measures of cross-
entropy and relative entropy of two basic belief assignments
based on the new effective measure of entropy of belief func-
tion presented in 2022. These new concepts are mathematically
well-defined and are direct generalizations of their classical
formulations drawn of the probabilistic framework. It is ex-
pected that these new theoretical concepts will become useful
in some applications for decision-making under uncertainty.
As research perspectives, we hope to improve them a bit more
in order to provide a true Jensen-Shannon metric for belief
functions in a near future. Also, applications of these new
concepts are under development and they will be reported in
future publications.

APPENDIX

A. Counterexamples of inequality (15)

We consider the FoD Θ = {A,B,C} and we give BBAs7

m1(.) and m2(.) such that inequality (15) is violated for the
different choices of triplet (i, j, k) used in the formula (14).
• Consider (i, j, k) = (1, 1, 1) and the BBAs of Table II.

We get U(m1) = 3.9742 and U(m1,m2) = 3.9432. The
inequality (15) is violated because U(m1) > U(m1,m2).

• Consider (i, j, k) = (1, 2, 1) and the BBAs of Table III.
We get U(m1) = 3.7447 and U(m1,m2) = 2.4995. The
inequality (15) is violated because U(m1) > U(m1,m2).

• Consider (i, j, k) = (1, 2, 2) and the BBAs of Table IV.
We get U(m1) = 3.9568 and U(m1,m2) = 2.5086. The
inequality (15) is violated because U(m1) > U(m1,m2).

• Consider (i, j, k) = (2, 1, 1) and the BBAs of Table V.
We get U(m1) = 3.2115 and U(m1,m2) = 2.8616. The
inequality (15) is violated because U(m1) > U(m1,m2).

• Consider (i, j, k) = (2, 1, 2) and the BBAs of Table VI.
We get U(m1) = 2.5542 and U(m1,m2) = 2.2147. The
inequality (15) is violated because U(m1) > U(m1,m2).

• Consider (i, j, k) = (2, 2, 1) and the BBAs of Table VII.
We get U(m1) = 4.5243 and U(m1,m2) = 3.8714.The
inequality (15) is violated because U(m1) > U(m1,m2).

7The numerical values entering in the tables have been approximated to
their fourth decimal for convenience.



• Consider (i, j, k) = (2, 2, 2) and the BBAs of Table VIII.
We get U(m1) = 3.8858 and U(m1,m2) = 3.0406. The
inequality (15) is violated because U(m1) > U(m1,m2).

Table II
BBAS m1(.) AND m2(.).

Focal Elem. m1(.) m2(.)
A 0.2094 0.1199
B 0.0537 0.0885

A ∪B 0.3016 0.2833
C 0.0054 0.0112

A ∪ C 0.0713 0.0539
B ∪ C 0.0712 0.0646

A ∪B ∪ C 0.2874 0.3786

Table III
BBAS m1(.) AND m2(.).

Focal Elem. m1(.) m2(.)
A 0.1443 0.4612
B 0.0695 0.0657

A ∪B 0.0128 0.0291
C 0.0903 0.2119

A ∪ C 0.2922 0.1056
B ∪ C 0.2324 0.0305

A ∪B ∪ C 0.1585 0.0960

Table IV
BBAS m1(.) AND m2(.).

Focal Elem. m1(.) m2(.)
A 0.1585 0.2677
B 0.0180 0.2017

A ∪B 0.2202 0.0566
C 0.0758 0.2432

A ∪ C 0.1396 0.0120
B ∪ C 0.1681 0.1051

A ∪B ∪ C 0.2198 0.1137

Table V
BBAS m1(.) AND m2(.).

Focal Elem. m1(.) m2(.)
A 0.1718 0.0852
B 0.1045 0.0246

A ∪B 0.1721 0.0551
C 0.1329 0.0598

A ∪ C 0.1721 0.2664
B ∪ C 0.2078 0.2391

A ∪B ∪ C 0.0388 0.2698

B. Proof of the Theorem 1

Subsequently, log is the natural logarithm function to the
base of the mathematical Euler constant e. To prove the
Theorem 1, we first prove the theorem 2 below.

Theorem 2: LetM(Θ) be the set of basic belief assignments
over Θ. Then:

arg min
m∈M(Θ)

U(m1,m) = {m1} .

Table VI
BBAS m1(.) AND m2(.).

Focal Elem. m1(.) m2(.)
A 0.2228 0.0284
B 0.2112 0.0617

A ∪B 0.0767 0.3397
C 0.2523 0.0428

A ∪ C 0.0726 0.1748
B ∪ C 0.1196 0.2164

A ∪B ∪ C 0.0448 0.1362

Table VII
BBAS m1(.) AND m2(.).

Focal Elem. m1(.) m2(.)
A 0.0443 0.1234
B 0.0892 0.2140

A ∪B 0.2486 0.1321
C 0.0473 0.0962

A ∪ C 0.0562 0.2928
B ∪ C 0.0803 0.0245

A ∪B ∪ C 0.4341 0.1170

Table VIII
BBAS m1(.) AND m2(.).

Focal Elem. m1(.) m2(.)
A 0.0164 0.2007
B 0.0196 0.0967

A ∪B 0.2219 0.1484
C 0.0746 0.2518

A ∪ C 0.1052 0.0996
B ∪ C 0.4906 0.1538

A ∪B ∪ C 0.0717 0.0490

Proof: Let F1 ⊂ 2Θ \ {∅} be the set of focal elements of
m1. First at all, it is noticed that u1(X) < 1 for all X ∈ F1.
Moreover, if there are X ∈ F1 and m ∈ M(Θ) such that
m(X) = 0, then U(m1,m) = +∞. As a consequence, if m
minimizes U(m1,m), then its set of focal elements contains
the set of focal elements of m1.
Optimizations. Let F be such that F1 ⊂ F ⊂ 2Θ \ {∅}. The
proof is done by solving:

min
m:F→R∗+

f(m) (21)

under constraint ∑
X∈F

m(X) = 1 (22)

where

f(m) = U(m1,m) =
∑
∅6=X 6=Θ

u1(X)(1−m(X))

+
∑

X∈F1

−m1(X)(1− u1(X)) log(m(X)). (23)



It is worth noting that m(X) is nothing but the component
of index X of the unknown map vector m : F → R∗+. The
optimization (21) with equality constraint (22) could typically
be solved by means of Lagrangian multiplier method.
Because log(m(X)) is a concave function of m(X), the
term −m1(X)(1 − u1(X)) log(m(X)) is proportional to
− log(m(X)) and is a convex function of m(X). And because
u1(X)(1 − m(X)) is a linear function of m(X), the term
−m1(X)(1 − u1(X)) log(m(X)) + u1(X)(1 − m(X)) is
a convex function of m(X). Therefore, the function f(m)
is a convex function. We are then ensured that Lagrangian
multiplier condition will point, if it is fulfilled, to the minima
of the function.
Lagrangian multiplier is defined for this problem by:

L(m,λ) ,
∑

X∈F1

−m1(X)(1− u1(X)) log(m(X))

+
∑
∅6=X 6=Θ

u1(X)(1−m(X)) + λ[1−
∑
X∈F

m(X)]. (24)

The optimality conditions are:

Dm(X)L(m,λ) = 0 for all X ∈ F .

Where Dm(X)L(m,λ) is the differential of L(m,λ) with
respect to m(X) given by

Dm(X)L(m,λ) =
−m1(X)(1− u1(X))

m(X)
− u1(X)− λ ,

for X ∈ F1, and:

Dm(X)L(m,λ) = −u1(X)− λ , for X ∈ F \ F1 .

Then, the optimal solution for (21) is mopt such that:

mopt(X) =
m1(X)(1− u1(X))

(−λ− u1(X))
, for all X ∈ F1 , (25)

with λ chosen such that:

− λ = u1(X) for all X ∈ F \ F1 , (26)∑
X∈F\F1

mopt(X) +
∑

X∈F1

m1(X)(1− u1(X))

(−λ− u1(X))
= 1 . (27)

Noticed that (25) implies −λ− u1(X) > 0 for all X ∈ F1.

Case F 6= F1: Condition (26) implies −λ ≤ 1 and then:∑
X∈F1

m1(X)(1− u1(X))

(−λ− u1(X))
≥
∑

X∈F1

m1(X) = 1 .

Then by (27), it comes mopt(X) = 0 for X ∈ F \F1, which
contradicts hypothesis that F is the set of focal elements of
m. There is no solution with more focal elements than m1.

Case F = F1: Choice λ = −1 is obvious. Therefore, the

unique minimizer mopt = m1 is obtained.

Conclusion. It has been shown that minimizer of U(m1,m)
only exists if it has the same set of focal elements than m1.
Moreover, it is shown in that case that the only minimizer is
m1. As a consequence:

arg min
m∈M(Θ)

U(m1,m) = {m1} for all m ∈M(Θ) .

Because Theorem 2 holds, we have U(m1,m) > U(m1)
when m 6= m1, and U(m1,m1) = U(m1) when m = m1.
Therefore, U(m1,m) ≥ U(m1) for any BBA m ∈ M(Θ).
Thus the inequality (15) holds, with equality only if m1 = m2,
which completes the proof of the Theorem 1.
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ments, Fusion 2022 Conf., Linköping, Sweden, pp. 1–10, July, 2022.

[12] X. Gao, L. Pan, Y. Deng, Cross entropy of mass function and its
application in similarity measure, Applied Intelligence, Vol. 52, pp.
8337–8350, 2022.

[13] Y. Deng, Deng entropy, Chaos, Solitons & Fractals, Vol. 91, pp. 549–
553, Oct. 2016.

[14] https://en.wikipedia.org/wiki/Entropy (information theory)
[15] R.E. Bradley, S.J. Petrilli, C.E. Sandifer, L’Hôpital’s analyse des infin-
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