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Abstract—We demonstrate that, for periodic systems with
offsets (tasks or flows of messages within a time-triggered
network), the simulation cycle can be confined to the range of
[0, hyperperiod) only under the condition that an idle point exists
at the hyper-period. Furthermore, we establish that ensuring
both (1) contention-freedom and (2) that no offset exceeds the
value of the period minus duration, is a sufficient condition to
guarantee the presence of an idle point at the hyper-period.
Most contemporary methods aiming to eliminate latency are
implicitly based on these properties and fail to propose a schedule
if the input system does not allow a contention-free solution.
Consequently, we propose a heuristic approach to scheduling
periodic flows of frames within time-triggered networks. Our
method focuses on minimizing latency, without necessitating a
solution where every frame at every output port is contention-
free, and it effectively manages the cyclicity problem.

I. INTRODUCTION

This paper is a product of extensive deliberations between
researchers with expertise in real-time scheduling and those
in real-time networks. Since the advent of time-triggered
networks, an increasing number of papers address what real-
time schedulers call an offset-free problem (where the designer
chooses the offset). We have periodic flows of frames to be
sent over a network, and the question to be addressed is how
to assign an offset to the flows in order to be able to schedule
them with low or no latency over the output ports of the
encountered switches. While offset-free systems in real-time
scheduling have been mainly studied from the late 1990s to
the early 2000s, in works such as [1], offset-free studies in
networks are more recent [2], but are more focused on recent
standards, especially regarding Scheduled Traffic in Time-
Sensitive Networking (TSN).

One of the questions that emerged was related to the
cyclicity problem: in real-time scheduling, as established by
the seminal work of [3], the maximum simulation duration
for a task system with offsets is Omax + 2H , where H
represents the hyper-period, given by the Least Common
Multiple (LCM) of the periods of the tasks, and Omax the
largest offset. The schedule over [Omax +H,Omax + 2H) is
guaranteed to repeat infinitely. However, certain reservations
arose when it was observed that every offset-free method
applied to time-triggered network scheduling only considers
the window [0, H). To the best of our knowledge, there is no

formal proof showing that the study can be confined to this
window. We, therefore, decided to investigate the validity and
applicability of this assumption. The methodologies adopted
and our resulting conclusions are elaborated in this paper.

We formally demonstrate that forcing an idle point (a point
where there is no pending work). to occur at time H constrains
the studied window of periodic tasks (or periodic flows) with
offsets to [0, H). Additionally, we establish that a sufficient
condition to obtain this idle point is to (1) ensure that, at
any time in the schedule, at most one frame is ready to be
sent (reffered to as Contention-freedom), and (2) have offsets
not greater than the period minus the duration of the message
(referred to as the Frame constraint in subsequent sections).

Since constraint (1) may be hard, or even unachievable
for some systems, we additionally propose a novel heuristic
able to reduce latency, even if constraint (1) cannot be met.
This heuristic does not invariably comply with the Contention-
freedom constraint, but is not affected by the problem of
cyclicity of the schedule.

The ensuing sections are organized as follows: Sec. II pro-
vides a comprehensive review of published work focused on
the generation of a feasible schedule through the identification
of appropriate offsets for Time-Triggered (TT) Networks.
Sec. III uses straightforward examples to explain why the
assumption of [0, H) as the cycle of a schedule is incorrect
when fulfilling just one of the two conditions (Contention-
freedom OR Frame constraint). Sec. IV explores the essence
of the problem with identifying the beginning of the cyclic part
of a schedule with offsets, by first showing the main result of
the paper – Contention-freedom AND Frame constraints are a
sufficient condition for the cycle to act on [0, H) –, and then
exploring the way the start of the cyclic part of a schedule
can be computed in a general context. In Sec. V, we propose
a novel heuristic method to find a feasible schedule for a given
network and set of periodic flows even when the cycle is not
the first hyper-period. Lastly, Sec. VI offers a description of the
heuristic performance in comparison with the seminal optimal
method.



II. STATE OF THE ART

A. Notation

A switched network, where flows of non-preemptive frames
can be transmitted, is represented as a set of nodes N = {Nk}.
Each node, Nk, represents an output port of either an End
Station (ES) or a Switch (SW). Every link of the network is
operating at a constant transmission rate of r.

The network is used by flows denoted Si with i ∈ N∗. A
flow is defined by the tuple:

Si = {Ci, Ti, {Oi,k}, {Pi,m}} (1)

where Ci is the transmission duration of each periodic frame
of Si (given by its frame size divided by r), Ti is the period of
the flow, {Pi,m} is a set of paths for Si. A path is an ordered
set of nodes. {Oi,k} constitutes an offset for the flow Si in
each node k of {Pi,m}. For the sake of simplicity, we consider
single frame flows only, i.e., there is only one frame to be sent
each period of the flow. For a given flow Si, every path {Pi,m}
starts with the same first node, called source node, but has a
different destination node (concept of multicast flows). Paths
from a given flow cannot rejoin once they have diverged.

B. Schedule synthesis in time-triggered networks

Approaches developed for the generation of schedules can
be primarily categorized into two groups: Satisfiability Modulo
Theories (SMT) or Optimization Modulo Theories (OMT)
constitute a category of optimal methods, while Heuristics
form the other.

1) SMT/OMT methods: The seminal paper that used this
methodology for TTEthernet networks is [2]. This method
produces schedules for network flows that respect SMT con-
straints. The constraints proposed have later been extended to
other protocols, such as TSN standards [4] [5] [6] [7] [8].

SMT methods use constraints to synthesize schedules. We
will use [2] as a reference paper for the constraints with the
additions given by [9] and [10]:

• Path-dependent constraints: The offset of a frame at an
output port must exceed the offset given on any previous
port of the path plus a user-defined variable delay, repre-
senting the maximum switching fabric processing time;

• Bounded switch memory constraints: A set of constraints
limits the number of frames that can be stored in queues
at an output port;

• End-to-end Transmission constraints: The offsets should
be placed in a way that end-to-end latency is bounded by
a given value;

• Application Level constraints: Transcribes precedence
constraints between messages;

• Contention-free constraints: At any time, only one frame
at a time is ready to be transmitted in an output port;

• Frame constraints: Introduced with [9] in 2014 for TTEth-
ernet and with [10] in 2016 for TSN: constraining the
offsets to be in the interval 0 ≤ Oi,k ≤ Ti − Ci.

An analogous formulation as an Integer Linear Program-
ming (ILP) has been proposed in [11].

The constraints are formulated on the frames of the time in-
terval [0, H) because the schedule on this window is assumed
to repeat.

Note that, while optimal, these methods all require the
contention-free constraint, this implies that they cannot pro-
pose a solution if this constraint cannot be met (e.g., if
messages passing by the same ports have co-prime periods).

2) Heuristics: Heuristic methods for schedule synthesis
have been designed for schedule generation within a time-
triggered network. These methods have mostly been studied
in the context of TSN standards.

Various heuristic methods have been proposed since the
seminal paper [2]. The Heuristic List Scheduler [12] minimizes
the time used to find valid schedules within generic time-
triggered networks. In [13], the authors have proposed strate-
gies to guide the SMT schedule generation method defined
in [2]. In [14], the same was done with the help of ILP. A
method based on genetic algorithms has also been proposed
in [15].

Methods based on the Tabu search algorithm have been
proposed for both TTEthernet [16] [17] [18] and TSN [19].
Another method [20] for TTEthernet has been proposed to
reduce the communication schedule time while maximizing
the uninterrupted gap for non-scheduled traffic. Scheduling in
software-defined networks has also been addressed in [21].
The authors in [22] describe a method that tolerates assignment
conflicts, with an emphasis on in-vehicle systems. A heuristic
algorithm has been proposed [23] to schedule time-triggered
networks on large scale networks with numerous flows. [24]
uses a window-based scheduling algorithm to produce sched-
ules for TSN networks. The algorithms described in [25]
manage topology, routing and schedules synthesis for TSN,
with an emphasis on fault-resilience.

All these methods consider frames over the window [0, H).
Some require their solution to meet the (1) Contention-
freedom constraints at each output ports, and some require
their offsets to meet the (2) Frame constraint. We show in the
sequel that considering [0, H) without both constraints can
produce flawed schedules. We note that these heuristics meth-
ods cannot produce an offset assignment if the Contention-free
constraint cannot be met.

C. Cyclicity of schedules on uniprocessor systems

In time-triggered networks; each output port of a switch
is often regarded as a processor queue, scheduling tasks
which represent message flows, each job representing a frame.
Therefore, while the literature on the problem of cyclicity is
extensive, we can limit ourselves to the papers considering
uniprocessor scheduling.

The problem of finding a cycle in a schedule of periodic
tasks with offsets was initially addressed in [3], [26], where
two fundamental results concerning task systems with offset
on uniprocessor systems are presented. First, it is demonstrated
that an infinite schedule obtained by a priority assignment
(note that the proofs are still valid for any deterministic
and memoryless schedule) for a system of periodic tasks



with offsets and implicit deadlines is valid if, and only if,
it is valid over the interval [0, Omax + 2H), and that the
schedule given over the time interval [Omax+H,Omax+2H)
repeats indefinitely. We will refer to this interval that repeats
as the cyclic part of a schedule. This has been extended
to arbitrary deadlines in [27]. Secondly, in [3], [26] the
problem of determining if a system of asynchronous tasks
is schedulable on a single processor is shown as NP-hard
in the strong sense. In other words, nothing simpler than a
simulation or equivalent, operating over at least a hyper-period,
can be employed to prove schedulability. The problem is that
a hyper-period, unless periods are harmonic, is exponential, as
LCM{1, 2, 3, ...n+ 1} ≥ 2n (see a proof in [28]).

Then, a specific feasibility interval for preemptive fixed-
task priority scheduling algorithms is presented in [1]. The
proposed interval, which takes priorities into account, includes
the cycle if, and only if, the system is feasible by the chosen
priority assignment.

An exact way to compute the acyclic and cyclic parts of
a schedule, which depends on offsets, periods, and durations
only, is presented in [29]. The cyclic part of a valid schedule
produced by any conservative and memoryless scheduler1 for
periodic tasks with offsets is identified as the first interval
of size H following the last extra idle time. It could be
conceptualized as the first interval of length H without any
extra idle time. Moreover, the latest possible extra idle time
appears before Omax + H . In this paper, our objective is
to provide the theoretical groundwork required for methods
trying to assign offsets to eliminate or reduce the interference
on a node, be it a processor scheduling periodic tasks, or an
output port of a switch scheduling periodic message flows. For
this purpose, we revisit [29] and expand upon the findings in
that paper to show what works and what does not work in
the state-of-the-art papers that try to assign offsets to message
flows. To the best of our knowledge, all the proposed methods
limit themselves to the interval [0, H). While in general,
considering only the frames in this window is insufficient
to assign offsets to flows of messages, we identify specific
scenarios where this interval is indeed sufficient.

III. THE PROBLEMS WITH THE HYPER-PERIODS

A. Cyclicity vs. Contention-freedom

In an asynchronous environment, frames from multiple
flows can be competing for the same switch output port.
This competition can cause fluctuation in buffer occupancy
and transmission delays. Such an issue may be mitigated by
scheduling strategies in synchronous networks.

To the best of our knowledge, every proposed method for
scheduling flows within switched networks involves assigning
an offset to each flow in each output port. To achieve this,
periodic flows of frames are conceptualized as frames over
a hyper-period of the periods of the flows. However, there

1Any scheduler based only on the current state of the system, and not
its history, to make a decision. A conservative scheduler does not let the
processor idle if there is pending work. All classic schedulers are conservative
and memoryless.

TABLE I
TRAFFIC PARAMETERS FOR THE EXAMPLES FROM FIG. 1

Flow Period Transmission Time Offset

Example Case 1 1 12 8 0
2 18 5 8

Example Case 2 1 12 8 5
2 18 5 0

Example Case 3 1 7 2 0
2 7 4 4

is a missing link between observations made in scheduling
theory and the assumption that a schedule in an output port
will repeat itself post the initial hyper-period. Without giving
special attention to the properties of the schedule of flows
with offsets, we could encounter schedules where the cycle
fails to repeat itself after the first hyper-period. We illustrate
this phenomenon using straightforward examples.

We introduce a primary example featuring two flows cross-
ing a node, detailed as Case 1 in Tab. I. In this instance, it is
impossible for the two flows to entirely avoid interference. An
overlap is inevitable at some point in the schedule, because
C1 + C2 = 13 > GCD{T1, T2} = 6, where GCD stands
for the Greatest Common Divisor (the method is explained
in Lem. V.2). The simulation of this example is depicted in
Fig. 1(Case 1).

In this example, we can notice that the first hyper-period,
[0,LCM{12, 18}] = 36, is not a cycle that repeats. The
schedule necessitates construction after the latest extra idle
time, occurring at time [21, 22), to yield a cyclic hyper-
period. Given that the processor utilization of the system is
U =

∑
i
Ci

Ti
= 34

36 , in a cycle of length equal to the hyper-
period, we should find exactly two idle times: H(1−U) = 2.
If we consider the first hyper-period [0, 36) (see Fig. 1(Case
1)), there are not only two but three idle times, forming an
idle slot on the time interval [21, 24). The first of these three
idle times is deemed an extra idle time, because if a window
of size H = 36 is presented within the interval [22, 58), it
emerges as the first window of size equivalent to the hyper-
period with precisely two idle times. As a result, to study
the whole behavior of the schedule, we have to consider five
frames for flow 1, and three frames for flow 2, while the cyclic
part contains only three and two frames respectively.

One of the problems that methods assigning offsets face is
that they all consider frames (resp. jobs), while the number
of frames to consider depends on the offsets. Therefore, in
general, for example in SMT, there is a cyclic dependency
between the solution and the input variables. To illustrate this,
if we consider the same periodic tasks as in Case 1, but change
the offsets as O1 = 5 and O2 = 0 (Case 2), the schedule does
not reach its cycle at the same time, and a different number
of frames for each flow should be considered. As depicted in
Fig. 1(Case 2), we see that the latest extra idle time occurs at
time [14, 15), and the schedule repeats on the interval [15, 51).
Therefore, if a method requires considering every frame in a
schedule, it should consider four frames for flow 1 (instead of
five for Case 1), and three frames for flow 2.

Consequently, when Contention-freedom is not met (i.e.,
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Fig. 1. Acyclic and cyclic parts of a schedule, based on parameters from Tab. I

several frames can be concurrently ready to be sent), consid-
ering the first hyper-period of a schedule of tasks or frames
with offsets is not sufficient.

B. Importance of the Frame constraint

We show in this section that meeting the Contention-
freedom constraint is not sufficient to ensure that the schedule
[0, H) repeats itself. We use the Contention-free constraint as
proposed in [10] because it has been simplified to reduce its
complexity compared to previous works.

∀Nk ∈ N ,∀a, b ∈ Nk,F lows, a ̸= b

∀α ∈ [0,LCM{Ta, Tb}/Ta],∀β ∈ [0,LCM{Ta, Tb}/Tb] :

(Oa,k + α× Ta ≥ Ob,k + β × Tb + Cb)∨
(Ob,k + β × Tb ≥ Oa,k + α× Ta + Ca)

(2)

where Nk,F lows is the set of flows crossing the node Nk.
With this set of constraints, the number of frames to take into
account is limited by the number of frames that we can find in
the first hyper-period of length LCM{Ta, Tb}. This constraint
necessitates sequential transmission of frames within a busy
period: a frame can be released only when no other frame is
pending. However, if we do not include the Frame constraint,
the set of constraints given in Eq. (2) is not sufficient to
consider all the frames that appear in the schedule.

This phenomenon is illustrated in a simple example shown
in Fig. 1, with two flows crossing a given node (their charac-
teristics are described as Case 3 in Tab. I).

In this case, the schedule starts to behave cyclically after the
latest extra idle slot that occurs during [2, 3). The schedule
behaves cyclically on [3, 10), and the number of frames to
consider as representing the whole schedule (both acyclic and
cyclic parts) includes two frames of flow 1 and one frame of
flow 2. This implies that, if we limit ourselves to one frame per
flow, in accordance with constraints Eq. (2), we then neglect
the second frame of flow 1, and the delay it incurs due to the
first frame of flow 2. We would therefore conclude erroneously
that, in this system, there is no contention at all. However, this
example does not comply with the Frame constraint. In fact,
the Frame constraint, imposing that Oi ≤ Ti − Ci, would
forbid the first frame of flow 2 to finish after H = 7.

This example shows that when the Frame constraint added
in [9] and [10] is not respected, schedules that do not behave

cyclically from the start can be found. Another risk would
be the generation of a schedule from [0, H) that includes
extra idle times. Because of the extra idle times present in
the schedule, there would be insufficient time dedicated to
frames to be able to schedule every frame in each hyper-
period. Frames would accumulate at the output port until after
a certain number of hyper-periods, queues would reach full
capacity, resulting in frames being dropped.

As a conclusion for this section, if Frame constraints are
met, but some frames have the potential to interfere with
each other, the system may not behave cyclically over [0, H).
Moreover, if we only consider the frames released in the first
hyper-period, but do not respect the Frame constraint, then we
may be led to the erroneous conclusion that no interference
occurs.

In the subsequent section, we demonstrate that the conjunc-
tion of Contention-freedom (i.e., busy periods are limited to
one frame) and Frame-constraint forms a sufficient condition
to guarantee that [0, H) is the cyclic part of a schedule. For
this purpose, we delve into the problem of the cyclicity of
schedules of tasks with offsets in the next section.

IV. CYCLICITY AND ACYCLICITY IN SCHEDULES WITH
OFFSETS

A. Fundamental cyclicity results

To analyze schedulers, it is necessary to establish a compre-
hensive definition of a scheduler in relation to a task system
that requires scheduling. These definitions are derived from
[30]. At any given time t within a schedule, we represent Ci(t)
as the pending work required to complete the ongoing active
job of τi. It assumes a value of zero when the respective task
has no incomplete active job. The cumulative pending work
for processing is defined as C(t)

def
==

∑n
i=1 Ci(t).

Definition IV.1 (Local clock of a periodic task). The local
clock of a task τi, denoted Θi(t), is a non-negative, real-
valued, continuous periodic function modulo Ti, such that
it varies between 0 and Ti − ϵ for any arbitrary small non-
negative ϵ. It is defined on the open interval (Oi − Ti,+∞),
and undefined before. If Oi < Ti, then Θi(0) = (Oi −
Ti)modTi = Ti −Oi, such that the local clock reaches zero
(i.e., Ti modulo Ti) at Oi. If Oi ≥ Ti, then it is undefined at



and before Oi − Ti, and takes the value ϵ > 0 at Oi − Ti + ϵ,
such that it is reset to zero at Oi.

It can be observed that, according to basic algebra [31,
Section 4.5.2], the set of local clocks is periodic with a period
H , commencing from zero if no offset is greater than or equal
to the period, and commencing from the maximum value of
Oi − Ti + ϵ if there exist tasks τi with Oi ≥ Ti.

As tasks are released, the amount of work to be processed
increases. We denote ri(t) as the characteristic release function
of τi, defined as zero everywhere except when its local clock is
zero, i.e., when t satisfies Θi(t) = 0. In this case, ri(t) = Ci.
The total released work at time t is r(t) =

∑n
i=1 ri(t). At

any given time t, the individual workload to be processed for
a task is wi(t) = Ci(t) + ri(t), and this workload decreases
by δ whenever τi is executed in the interval [t, t + δ). The
sum of the individual workloads is denoted w(t). All of these
functions are non-negative since a processor cannot execute
non-existent work.

Definition IV.2 (State of a system, deterministic and memory-
less scheduler). The state of a system at time t is determined
by the values of the individual workloads wi(t) of the tasks
and the local clocks Θi(t). When making a decision, a
deterministic and memoryless scheduler takes the same action
for the same state.

Definition IV.3 (Idle point, idle time, idle slot, conservative
scheduler). An idle point is a moment in time during which
the processor (or the link in a network) is not busy. Utilizing
our notation, an idle point t is characterized by ∀i, Ci(t) = 0,
which is equivalently defined as C(t) = 0, and due to the non-
negative nature of the functions, further equivalent to w(t) =
r(t). During an idle point, the workload is solely determined
by the release of new jobs, if any are present.

The initial idle point following a busy period signifies the
conclusion of said busy period. An idle slot is initiated by
an idle point and denotes a continuous period of inactivity
extending from this idle point until the subsequent job (or
frame) is released. It is defined as a window of size δ > 0
that ensues an idle point at t, satisfying ∀i, ∀θ ∈ [t . . . t+ δ),
ri(θ) = 0.

We establish the concept of an idle time, representing the
shortest possible idle slot. In cases where task parameters are
integers, an idle time takes the form of an idle slot confined to
a unit of time. For rational parameters, the minimum duration
of an idle slot, referred to as an idle time, can be articulated
as 1

LCMd
, where LCMd denotes the least common multiple of

all denominators appearing within the values of task offsets,
durations, and periods.

A conservative scheduler does not leave the processor idle
unless w = 0.

The general cyclicity theorem, as presented in [29], which
is shown for integer parameters, can be generalized to rational
numbers. It can be expressed as follows:

Theorem IV.1 (CYCLICITY). [29] When relative dead-

lines are not greater than the periods, any feasible schedule
produced by a conservative, deterministic and memoryless
scheduler behaves cyclically with a period H after the latest
extra idle time. This extra idle time occurs in the time
interval [−1, Omax + H) where Omax = max{Oi ∀i} and
H = LCM{Ti ∀i}.

This theorem gains clarity when examined in the context of
Fig. 1 (Case 3). With H = 7 and a processor utilization of U =
6
7 , a feasible schedule must encompass precisely H ·(1−U) =
1 idle time within a cycle. Without this, the schedule would
incur increasing delays across hyperperiods. The interval [0, 7)
encompasses two instances of idle time. Consequently, one of
them becomes an extra idle time.

The first window with exactly one idle time is [3, 10), con-
stituting the cyclic portion of the schedule. The window [0, 3)
represents the acyclic segment of the schedule, culminating in
the final extra idle time [2, 3). This segment is termed “acyclic”
due to its execution only once at the start of the schedule.

It should be noted that the specific case where the latest
extra idle time occurs on [−1, 0) aligns to the case where
the cycle starts at time 0, and the window [0, H) is repeated.
Furthermore, when the latest extra idle time ends at Omax +
H , which is, given Th. IV.1, its latest possible position in a
schedule, we find the upper bound on cyclicity Omax + 2H
presented in [3].

Theorem IV.2. Both acyclic and cyclic parts of a feasible
schedule start and end at an idle point.

Proof. Referring to Def. IV.3, at time 0, w(0) = r(0), which
is an idle point. Now, let’s consider two scenarios: (1) the
absence of an acyclic segment in the schedule. In this instance,
it is defined over the interval [−1, 0) where the workload
is null. Thus, it both commences and concludes at an idle
point, forming an idle time from inception to termination.
The cyclic part of the schedule operates over [0, H): time 0
is an idle point, and in accordance with Th. IV.1, the same
state is attained at H , also representing an idle point. (2) The
presence of an acyclic idle time, denoted as tx, which marks its
termination. Consequently, the acyclic segment of the schedule
is [0, tx), starting at 0 as an idle point and concluding at
tx. Since it remains idle and the scheduler is conservative,
C(tx) = 0, affirming it as an idle point. The cyclic part of the
schedule operates over [tx, tx+H), both instances representing
the same state according to Th. IV.1. Notably, since tx is an
idle point, so is tx +H .

Corollary 1. There is an integer number of jobs (resp. frames)
in the acyclic part of a schedule, and an integer number of
jobs (resp. frames) in the cyclic part of a schedule.

Proof. Following Th. IV.2, since the cyclic part starts and ends
with an idle point, there is no pending job at the end of the
cycle, and every job that is released in this interval is also
ended in this interval.

Cor. 1 bears positive implications for methods working on
flows with offsets, because it implies that frames do not



overlap between acyclic and cyclic parts of a schedule. It is
not sufficient for time-triggered networks where methods limit
the window to [0, H). This is why we need the next theorem
and its derived corollary.

Theorem IV.3. Given the hypothesis that no offset is greater
or equal than the period, a schedule behaves cyclically over
[0, H) if, and only if, there is an idle point at H .

Proof. For the “if”: if there is an idle point at H , since
∀i, Oi < Ti, from Def. IV.1, local clocks behave cyclically
with a period H from time 0. There is an idle point at 0.
Therefore the state of the system (see Def. IV.2), given by the
values of the individual workloads and local clocks, is the
same at time 0 and H . Since the scheduler is deterministic
and memoryless, it makes the same decision, and the same
states will be reached, making the system repeat from time H
what happened from 0 to H . For the “only if”: if there is no
idle point at H , then states at 0 and H are different, and the
system cannot behave cyclically on [0, H).

Th. IV.3 plays a pivotal role in time-triggered networks,
since we can derive the main result allowing some methods
able to guarantee Contention-freedom on one hand, and no
frame spilling after H on the other hand, to generate schedules
that are guaranteed to behave cyclically on [0, H):

Corollary 2. If a schedule of flows with offsets guarantees (1)
Contention-freedom on [0, H), and (2) Frame constraint, i.e.,
0 ≤ Oi ≤ Ti − Ci, then the schedule over [0, H) is repeated
infinitely.

Proof. Contention-freedom in a conservative schedule means
that the workload to be treated at the output is only given
by one task (or frame), which is ended at or before the next
release. This means that for every t such that ∃i, ri(t) > 0,
the next time where there is a j such that rj(t + δ) > 0 is
such that δ ≥ Ci. As a result, each busy period corresponds to
only one request, which is executed as soon as it is released,
and immediately ended by an idle point. Since Oi ≤ Ti −Ci,
for every task, the latest possible release in [0, H) can occur
at H−Ci, and has to be executed alone (contention-freedom)
and end at or before H , making it an idle point. As a result,
0 and H are two idle points, the Corollary is obtained by
applying Th. IV.3..

Corollary 2 holds paramount importance for the integrity of
numerous papers related to offset assignment in switched net-
works. The Frame constraint was initially introduced in 2014
for TTEthernet [9], and later for TSN in 2016 [10]. Despite
this, several papers not employing the Frame constraint claim
that considering frames sent over [0, H) is sufficient. However,
our findings in Section III-A indicate that ensuring Contention-
freedom without the Frame constraint does not guarantee a
cycle over [0, H). Hence, it is prudent for readers to be
aware that some papers may inadvertently overlook this crucial
aspect, potentially affecting the accuracy of their methods.

For the next section, we showcase a method that can cope
with acyclic idle times and provide schedules even when the

two constraints of Cor. 2 are not respected. To the best of our
knowledge, this is the only method allowing that, since its
calculations are based on flows instead of individual frames.

V. A NON CONTENTION-FREE HEURISTIC

In our review of the state-of-the-art, we highlighted that ev-
ery method addressing the offset assignment problem, whether
exact or heuristic, requires a solution that ensures contention-
freedom. However, some systems do not permit such solutions,
posing unsolvable challenges for current methods.

In this section, we introduce a novel heuristic approach suit-
able for time-triggered networks, even when frame contention
is inevitable. By operating at the flow level, this strategy
focuses on direct interaction with flows instead of frames,
freeing us from the constraints of the time window [0, H).

Consequently, this approach can manage systems with flows
that prohibit interference-free solutions, where both SMT-
based methods and heuristics that require contention-freedom
fail to provide a feasible solution. This heuristic, adapted from
GCD+ [32], is denoted as GCD#. We start with an overview of
the main concepts, which closely align with GCD+, focusing
on a single node before expanding the discussion to the
network level.

All parameters described in the subsequent sections are
positive integers. While we could consider rational numbers,
we opt to express every value as an integer for the sake of
simplicity.

A. Scheduling a single node

GCD+ [32] is designed to generate offsets for uniprocessor
offset-free systems. It accepts as input a set of tuples τi ∈
N2 | τi = (Ti, Ci), where Ti denotes the period of the task
(or flow) and Ci represents its duration (be it the Worst-Case
Execution Time for tasks or the transmission duration over a
link for flows). For simplicity in our discussion, we will refer
to each tuple as a ‘task’.

GCD+ strives to achieve (but not guarantee) contention-
freedom, while also aiming for the response-time of each
task to be equal to its execution time. To accomplish this,
the algorithm leverages the semi-harmonicity of offset-free
systems., i.e., it focuses on systems where all the periods Ti are
a multiple of a common factor. Semi-harmonicity is sought to
reduce the exploration space of potential solutions [33]–[37].
This is based on a technique originally used to analyze two
tasks at a time, which is itself based on Lem. V.1, rewritten
here using the modulo operator.

Lemma V.1. [38, Lemma 2] Given two tasks τi and τj , the
minimum time distance between any release time of task τi
and the successive release time of τj is equal to:

∆ij = (Oj −Oi) mod GCD{Ti, Tj} (3)

In a system comprised solely of two tasks τ1 and τ2, it is
possible to represent its execution around the GCD{T1, T2}
circle, such as in Fig. 2. In the figure, if there is no overlap
in execution, then the conditions in Eq. (4) are being met.



Fig. 2. GCD{Ti, Tj} circle, with a representation of τi and τj

Therefore, τ1 and τ2 will never interfere with each other, and
the response time of each task will be equal to its execution
time. Thus, we can assert that if the system of two tasks
respects the following set of inequalities where i = 1 and
j = 2, we can guarantee no interference.

∆i,j ≥ Ci

∆j,i ≥ Cj

(4)

We can extend this technique to assess more than two tasks
simultaneously. This is achieved by employing the concepts
of sections and cycles.

Lemma V.2 (Pairwise non-interference). If every task pair in
a system respects Eq. (4), no interference ever occurs in the
execution of the system, and the response time of each task
equals its execution time.

Observe that Lem. V.2 can effectively replace the
Contention-free constraint as expressed in Eq. (2), because
they are equivalent, yet the former can be computed in
polynomial time, while the latter requires an exponential
time.

Definition V.1 (The overall GCD, Ω). The overall GCD, also
referred to as Ω, is the greatest common divisor of all the
periods (Eq. (5)).

Ω = GCD{Ti ∀i} (5)

Our method operates better on sets of tasks that present
execution times no larger than Ω. Otherwise, it still provides
results, but they will reduce contention heuristically, without
guaranteeing Contention-freedom. In networks, a large Ω is
common: for example, in the switched Ethernet-based network
ARINC 664 part 7 used in civil avionics, every allowed period
for network flows is a power of two milliseconds, and all the
flows have harmonic periods.

Definition V.2 (Cycle). The cycle OC (for OC ∈ N) is the
time window such that OC Ω ≤ t < (OC + 1)Ω.

Definition V.3 (Subperiod, TS). The subperiod TSi of a task
τi is the ratio between its period Ti and Ω (Eq. (6)).

TSi
=

Ti

Ω
(6)

The offset Oi assigned to any task τi can be related to a
specific cycle OCi according to Eq. (7).

OCi =

⌊
Oi

Ω

⌋
(7)

From the definition of Ω, we know that TSi
∈ N ∀i.

Moreover, considering that τi was assigned to cycle OCi , it
is trivial to show that every release time of τi will happen in
cycles k such that k ≡ OCi

mod TSi
.

Lemma V.3. For any given pair of tasks τ1 and τ2, if
GCD{TS1

, TS2
} = 1, they must be released in the same

cycle at some point in the hyper-period of the system, and
if GCD{TS1

, TS2
} > 1, they can be arranged so that they are

never released in the same cycle.

Proof. This proof is related to the Generalized Chinese Re-
mainder Theorem (GCRM). Let {Ti ∈ N | i ∈ [1, n]} and P
be the least common multiple of all Ti. Let a,O1, O2, . . . , On

be any integers. If Oi ≡ Oj mod GCD{Ti, Tj} for 1 ≤
i < j ≤ n, the GCRM states that there is exactly one integer
k that satisfies the conditions:

a ≤ k < (a+ P ), k ≡ Oi mod Ti ∀i ∈ [1, n]

Otherwise, no such integer exists. If GCD{TS1
, TS2

} = 1,
regardless of the first cycle (OC1

and OC2
) where they are

released, OC1 ≡ OC2 ≡ 0 mod 1, and there must exist an
integer k ≡ OC1 mod TS1 ≡ OC2 mod TS2 . Otherwise,
if GCD{TS1

, TS2
} > 1, O1 and O2 might be chosen so that

O1 ̸≡ O2 mod GCD{T1, T2}, making it impossible for
such k to exist.

In light of Lem. V.3, the concept of a section can emerge.
Tasks that have coprime sub-periods must be scheduled con-
sidering they will eventually be released in the same cycle,
and therefore a certain portion of the cycle must be reserved
for each task if we are looking for a Contention-free offset
assignment. However, non-coprime sub-periods will allow
tasks to use the same reserved portion of the cycle, since they
can be assigned to alternating cycles. These reserved portions
are the sections to which the tasks are assigned.

Definition V.4 (Section, Ψ). A section Ψ is a subset of tasks
such that their sub-periods are either all equal to one, or they
must share a common prime factor. Thus, each section is
related to a number, the common factor in the factorization
of the subperiods of the section members (or 1, in the case
where the subperiods are unitary), denoted here as p ∈ P∪{1},
where P is the set of all prime numbers. In order to create a
reserved partition in every cycle for each section, each section
Ψp is given a start time OS relative to the beginning of the
cycle and has a finite size δ, given by Eq. (8).

Ψp.δ = max
∀i|τi∈Ψp

((Oi + Ci) mod Ω)

− min
∀i|τi∈Ψp

(Oi mod Ω)
(8)

Then, for every cycle k ∈ N, the interval [kΩ+Ψp.OS , kΩ+
Ψp.OS + Ψp.δ) is reserved for the execution of tasks in the
section Ψp. In other words, every job of a task in Ψp is only
released at an instant rij such that rij ≥ kΩ + Ψp.OS and
rij + Ci ≤ kΩ+Ψp.OS +Ψp.δ.



Fig. 3. Modular circle of size Ω with example tasks

In each section, OS is assigned as a partial offset to every
task in the section. Inside each section, however, some tasks
might need to occupy the same cycle as well. In these cases,
one of the tasks has to be set to be released only after the other
finishes its execution. For this, an internal offset OIi is added
to the final offset. Hence, the final offset can be obtained from
Eq. (9).

Oi = ΩOCi
+OSi

+OIi (9)

In addition, sections must begin after previous sections
end in order to guarantee the isolation between sections.
Furthermore, to optimally fit every section in the overall GCD,
a section should begin at the instant the previous section ends,
avoiding the creation of small gaps where no section would
fit. This means that, if Ψ1.OS = 0, then Ψ2.OS = Ψ1.δ,
Ψ3.OS = Ψ1.δ +Ψ2.δ, and so forth.

To better understand the concepts, we can work with the
four-task system containing the following tasks:

τ1 = (T1 = 24, C1 = 2)

τ2 = (T2 = 16, C2 = 1)

τ3 = (T3 = 16, C3 = 3)

τ4 = (T4 = 16, C4 = 3)

In this system, Ω = 8. Therefore, TS1 = 3 and TS2 =
TS3

= TS4
= 2. We need then to work with two sections: one

for p = 2 (Ψ2) and one for p = 3 (Ψ3). Ψ3 only contains τ1,
and the other tasks are contained in Ψ2. Choosing the cycle 0
for τ1 and τ2, we can choose cycle 1 for τ4 and again cycle
0 for τ3. Since τ2 and τ3 share the same cycle in the same
section, τ3 needs to have an internal offset OI3 = C2.

Finally, it is now feasible to compute the sizes of the
sections. The size of Ψ3 is 2, and the size of Ψ2 is 4. We
can arbitrarily choose Ψ3.OS to be 0, and then Ψ2.OS =
Ψ3.δ = 2. Hence, every offset is calculated according to
Eq. (9): O1 = 0, O2 = 2, O3 = 3 and O4 = 10.

The visual representation of these calculations can be seen
in Fig. 3. Also, we can observe from Fig. 4 the execution of
the task system divided in cycles, based on Fig. 3. Task τ1 will
have to share a cycle with every other task, but τ2 and τ4, for
example, are never in the same cycle.

Lemma V.4. If Ci ≤ Ω ∀i and tasks are assigned to sections
such that

∑
Ψp.δ ≤ Ω for all sections (considering Ψp.δ = 0

for empty sections), then the tasks are contention-free, and
every task’s response time equals its execution time Ci.

Proof. The proof relies on analyzing each possible task pair
in a system, proving they can never cause any delay in the
execution of one another. Therefore, by design, and taking
into consideration Th. V.2, the whole system of n tasks cannot
present any execution delay.

Considering any task τi, there are three possibilities to
analyze a second task τj :

1) τj is assigned to a different section than τi;
2) τj is assigned to the same section but in a non-congruent

cycle than τi;
3) τj is assigned to the same section and a congruent cycle

to τi.
In the first case, based on the definition of sections, the

execution of tasks inside a section is entirely contained in that
section. Considering the sum of the section sizes is at most
Ω, knowing that GCD{Ti, Tj} is at least equal to Ω, then it
is easy to see that the conditions in Eq. (4) will be respected.

For the second case, knowing that
∑

Ψp.δ ≤ Ω, that each
task execution is contained in the limits of its section, and that
τi and τj do not execute in the same cycle, then each task will
always be executed inside a different cycle. Therefore, every
job of τi will have finished its execution before τj starts, and
vice versa.

For the third case, thanks to the internal offset OI and the
fact that a section size is not greater than Ω, then every job
of τi will have finished its execution before τj starts, and vice
versa.

If the conditions in Lem. V.4 are not satisfied, GCD+ cannot
guarantee contention-freedom. However, it can still provide an
offset assignment. For instance, if we add τ5 to the example
such that T5 = 40 and C5 = 3, GCD+ would need to assign
τ5 to a new section, with p = 5. Therefore, Ψ5 would start
after Ψ2 (hence Ψ5.OS = 6) and would have a size of 3 units,
creating an overlap with the beginning of Ψ3.

In light of Lem. V.4, it becomes clear that the algorithm
choices must seek to maintain section sizes as small as
possible.

B. GCD#

Using the concepts for a single node, GCD# adapts the
method in order to account for flows in a network. For
this adaptation, we considered some properties, which are
commonly done in the context of a Time-Triggered network,
to define a context in which GCD# should perform well. These
are not constraints, since GCD# can be run without these
properties to be true.

1) The maximum transmission time should be smaller than
Ω, the GCD of all the periods of the flows.

2) All nodes operate at the same speed, rendering the Ci

value constant across the network.
3) Since we focus only on scheduling points, only the

output ports of switches and end-stations are considered,
and will be designated as nodes of the network. Flows
passing through the same node can interfere with each
other, while flows that never share a common node
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Fig. 4. Execution of the example tasks divided in cycles

cannot directly interfere with each other (even if they
pass through the same switch).

4) The time taken for any frame to be received and resent
by any node is constant (“Store & Forward”, or S&F
cost). This time is dependent on the time required by the
largest frame to be processed by a node and is constant
across all the network.

5) The time taken for any frame to be transferred between
any two nodes is zero, but is accounted for in the Store
& Forward delay.

6) The end-to-end delay, i.e., the time it takes for any frame
to arrive at its destination, regarding the time it was sent
from its source node, is smaller than Ω.

Assumptions 2, 3, 5, and 6 are common in the literature.
Assumption 1, coupled with Assumption 4, is due to the fact
that GCD# works globally on the flows by assigning a unique
offset to each flow at its source node. This offset will be
incremented by the S&F delay with every hop of the network.
Since there is a unique GCD circle used to compute the offsets,
if a message cannot fit in this circle, then contention cannot
be avoided by GCD#. In this case, as shown Sec. VI-A, GCD#
still provides offsets, but the existence of contention is highly
probable. Note that if such event occurs locally on any output
port of a node, it is not possible to avoid contention, even
for optimal methods. We can note that in real TT networks,
Assumption 1 is generally met.

The algorithm consists of five phases: choosing the section
for each flow; choosing a cycle for each flow in a given
section; choosing an internal offset for every flow that shares
a section and a cycle with another; calculating section sizes;
and calculating the final offset.

1) Choosing the section: The task of selecting sections
can be characterized as a bin-packing problem. We aim to
determine the appropriate “bin” for each flow such that the
cumulative size of all the “bins” is minimized. It is important
to note that each flow will carry a specific weight, contingent
upon its placement within the section. To address this, GCD#
employs a Best Fit Decreasing algorithm, as elucidated in the
subsequent paragraphs.

Every flow with TS = 1 must be assigned to Ψ1, and every
flow for which TS is composed of a single prime number p
must be placed in the corresponding section Ψp. Among the
other flows, the one with the highest value for C is the first
to be analyzed.

If none of the potential sections have flows assigned to them,

preference is given to the smallest prime pL. since it has
the highest probability of also composing other sub-periods
(considering the probability of a prime number to compose
a random natural number). By doing so, we enhance the
probability of sharing the section with other flows. This strat-
egy avoids the creation of superfluous sections, subsequently
minimizing the overall section sizes (Lem. V.4).

If a potential section is already occupied by a flow, the
preference is given to the occupied section. This might reduce
the need to increase section sizes, since adding the flow to a
new section would definitely increase the section’s size from
0 to Ci, while only in the worst case the already occupied
section would need to have its size increased by Ci. Yet, in
more favorable cases, the ability to alternate cycles could result
in a more modest (or even nonexistent) increment in section
size.

Amongst the occupied sections, the preference is given ac-
cording to a score function. The score represents an estimation
about how many occupied cycles there are in the section (since
no cycles were defined) with respect to a candidate Si, and is
given by Eq. (10). This equation is based on the principle that
each flow Sj ∈ Ψp will have a chance of 1/GCD{TSi

, TSj
}

to occupy a cycle congruent to the cycle assigned to Si.
However, if a score is above the value of 1, we consider that it
loses meaning, since there exists a chance that every cycle is
already occupied, and the best choices for assigning Si in this
case would require information we do not have yet. Therefore,
the score is limited to 1.

Ψp.score(Si) = min

1,
∑

∀i|Sj∈Ψp

1

GCD{TSi
, TSj

}

 (10)

2) Choosing a cycle: Once every flow has been assigned
to a section, the next step is to determine the cycles for each
flow. For each section, its flows are analyzed according to
a decreasing order of their message sizes, as large messages
have greater impact. Since we consider that the end-to-end
delay is smaller than Ω, each flow Si will occupy only cycles
congruent to a single value k mod TSi

.
To achieve this, a vector of possibilities is constructed, with

size TSi , populated with zeros. Then, by analyzing every other
flow Sj in the same section which has already been assigned,
and checking that they do cross with the analyzed flow Si

(sharing the same node at some point), Cj is added to every
position in the vector of possibilities that are congruent to OCj

mod GCD{TSi , TSj}. Assigning Si to any of these positions



guarantees that Si and Sj will eventually share the same cycle
(Lem. V.3). Therefore, the best choice is the position in the
vector with the lowest sum – ideally, 0.

3) Choosing an internal offset: Once each flow has been
assigned a cycle, the internal offsets are analyzed for every
flow. To assign an internal offset to a flow Si, we only need to
consider flows Sj that cross Si, are in the same section, have
a congruent cycle (mod GCD{TSi

, TSj
}) and have already

been assigned an internal offset OI . If no such Sj exists, then
OIi = 0.

The “Store & Forward” (S&F ) constant needs to be con-
sidered. If Sj shares a certain node Nk with Si, and Nk is the
nth node for both the respective paths, then both flows will
experience the same S&F delay. In this case, the flows must
be analyzed as if there was no S&F , and the internal offset
is chosen such that the following conditions are true ∀j:

OIi ≤ OIj ⇒ OIi + Ci ≤ OIj

OIi > OIj ⇒ OIi ≥ OIj + Cj

(11)

However, if Nk is the nth node for a path of Si but the (n+
1)th for Sj , this means that, when their frames arrive in Nk, Sj

will be late by one S&F delay relatively to Si. Therefore, for
every flow Sj that complies to the aforementioned conditions,
there needs to be a correction. If Sj is in advance with respect
to Si, we must subtract the proper number of S&F delays
from OIj in the conditions in Eq. (11). If it is late, we must
add the number of S&F delays to OIj .

4) Calculating section sizes and the final offset: To calcu-
late each section size, the execution order between sections
must be defined. GCD# arbitrarily chooses the order based
on the number p related to the section: if p1 < p2, then Ψp1

precedes Ψp2 .
The size of any section Ψpi can be calculated in two parts,

illustrated in Eq. (12):
1) For each flow in the section, the transmission times are

added to the respective internal offset. Amongst the sums
for each flow, the maximum value is the first part of the
section size (equivalent to Eq. (8)).

2) A margin is calculated to account for possible differ-
ences in S&F times. If we are analyzing Ψpi

which
precedes Ψpj

, we must take into account the maximum
possible amount of S&F delay a flow Si ∈ Ψpi

will
have relative to any other flow Sj ∈ Ψpj . Then, add that
value to the size of the section such that, for every node,
no flow of the following section will be transmitted
before any flow of the preceding section.

Ψ.δ = max
∀i|Si∈Ψ

(OIi + Ci) + marginL (12)

After this is done for every section, including the last one
(which must be considered as preceding the first section due
to the cyclicity), then every OS can be calculated. For every
section, OS is the sum of the sizes of preceding sections
(disregarding the cyclicity). In other words, the OS for the
first section is 0; for the second, it equals the size of the first
section; for the third, it equals the sum of the sizes of the two
first sections; and so on.

ES1

ES2

ES3

ES4SW1 SW2

Fig. 5. Topology used in the synthetic case for evaluating GCD# collisions

TABLE II
PARAMETERS OF THE DIFFERENT FLOWS IN GCD#’S TEST CASE

Test case Flow Transmission Time Period GCD#’s offsets

Test case 1
1 2 4 0
2 1 8 6
3 3 8 2

Test case 2
1 1 8 0
2 1 8 2
3 3 6 1

Therefore, the offsets for each flow can finally be calculated
according to Eq. (9).

VI. EXPERIMENTS

In this section, we will firstly work on a synthetic network
in order to have a better glance into GCD# in the case of
heavily loaded switches or configurations that do not respect
the properties highlighted in Sec. V-B. Then, we will compare
the performance of GCD# against the SMT-based formal
method delineated in [4] (using the Z3 solver). We specifically
selected this method as, to the best of our knowledge, there
is no available heuristic method and SMT is used in several
heuristics as a basis for solution exploration.

All experiments are coded in monothreaded Python 3.11
running under Fedora Linux 38 on an AMD Ryzen 9 5900HS
CPU (up to 4.6 Ghz on one core) with 24 GB of RAM.

All networks used hereinafter will use the following speci-
fication: 1 Gb/s links, resulting in a unit-time of 1 ns.

A. Pushing GCD# to its limits

We introduce hereafter two test cases to demonstrate the
performance of GCD# under extreme conditions. The ob-
jectives are to study the outcomes of GCD# when the load
reaches 100% in a node and to understand its behavior when
a transmission time exceeds the GCD of all periods.

These test cases use the topology depicted in Fig. 5, with
three flows following a partly shared path. Their parameters
are detailed in Tab. II. In every test case, the traffic scheduling
policy of each node is non-preemptive rate-monotonic and we
assume a S&F delay equal to the transmission time of the
largest frame (3 time units in both test cases). Due to parameter
choices, a SMT solver would not be able to produce results.

1) Highly loaded switch: Scheduling becomes challenging
with high traffic loads. As GCD# cannot always produce
optimal solutions, it sometimes produces a solution that is not
collision-free. The simulation result for test case 1 is shown
in Fig. 6. The following end-to-end delays can be infered: 10
for v1, 7 for v2, and 6 for v3. The cycle that will recur within
each node is highlighted with a gray background. A white part
preceding a gray section corresponds to an acyclic idle time.
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Fig. 6. Simulation of test case 1 described in Tab. II

Let n be the number of hops. The end-end Delay in a
Collision-Free system (DCF) is (n-1) times the duration of
S&F plus the transmission time of the analyzed frame. For
our scenario, this would have been respectively 8, 7, 6 units
of time for v1, v2 and v3. Collision leads to a 25% increase
of end-to-end latency for v1 compared to DCF.

From this simulation, we can infer the scheduling windows
as anticipated in a TSN IEEE 802.1Q network [39]. Such
a mechanism, based on “doors”, will allow the addition of
unscheduled traffic to the existing flows, without jeopardazing
their scheduling. In our diagram, a white line means that
unscheduled traffic transmission can begin: the door is open.
A gray line corresponds to a “guard band”, during which,
ongoing transmissions can continue but new ones can’t start. A
black line means that unscheduled transmissions are blocked:
the door is closed. The size of the guard band should be at
least the maximum transmission time of an unscheduled frame
(1 in the example of Fig. 6).

2) Frame size superior to the GCD of the periods: In
this second test case, our objective is to observe how GCD#
responds to configurations where the Ω value is less than
the transmission time of the largest frame. The corresponding
simulation is depicted in Fig. 7. Based on the parameters
provided in Tab. II, the GCD is determined to be 2. In contrast,
the transmission time for the largest frame (from v3) is 3.

For this simulation, we have chosen to exclusively display
the output port of SW2. From the diagram, we can see that the
largest frame (v3) collides with both v1 and v2. Such collisions
are inevitable since the maximum available space within each
GCD circle is 2. In that case the worst case end-to-end delays
for v1 and v2 are impacted and their respective delays are
both 10. Meaning that the increase of the worst case end-to-
end delays is equal to 42% compared to DCF.

B. GCD# compared to SMT

1) Synthetic configuration: The objective of this case study
is to compare GCD# to SMT when applied to a compact

Fig. 7. Simulation of test case 2 described in Tab. II

synthetic configuration. For this study, we choose to use a
configuration sourced from [40] (both topology and flows).

All the flows in this network originate from End Systems
(ES)[1,2,3] transiting trough two Switches, and ultimately
reach ES[4,5,6]. Every flow is dispatched from ES[1,2,3] and
may arrive at one or several of the other End Systems.

The output from the SMT solver can fluctuate based on
the ID attributed to the constraints (i.e., the sequence in
which the constraints are added to the solver or the effect of
removing and reinserting the constraints), whereas the results
from GCD# remain constant. As the same configuration could
yield multiple outcomes, each experimentation on SMT is
repeated 10000 times with different IDs. On average, GCD#
is 14.63% better than SMT for end-to-end delays, running in
53 ms on average for SMT, against less than 1 ms for GCD#.
Both manage to guarantee Contention-freedom, but GCD#
performs better than SMT, because SMT stops at the first
feasible offset assignment, without trying to minimize end-
to-end delays. Yet, GCD# runs with a handicap since it takes
the maximum S&F delay into consideration for each frame.

2) Orion test case: Orion is a spacecraft developed by
NASA. Its network topology is described in [41], and a flow
path was proposed in [40] for end-to-end delay analysis using
network calculus. We generated flows with the following ran-
dom parameters: frame size (72 to 1542 bytes, in accordance
with the Ethernet and IEEE802.1Q standards), period, deadline
(higher than period) and path (in a set of predefined paths).

The topology of the network is depicted in Fig. 8. Periods
were chosen as multiples of 7500, following a real-world
random distribution, to considerably reduce SMT computation
time. As a result, we obtained 625µs as the gcd. S&F delay
were capped at 12,336 ns (max Eth. frame with Interframe
gap), respecting the execution time condition of GCD# (no
frame shall exceed the gcd). The network is loaded with 100
flows, having one sender and one or more destinations.

Conducting 100 evaluations led to the following results:
• End-to-end delays are on average 72.82% better with

GCD# compared to SMT;
• On average SMT end-to-end delays reach 61.32% of

their dealdline, against 0.19% for GCD#;
• The average computing time of GCD# is about 0.02 s,

whereas SMT takes 188 s to build and 47 s to solve.
In Fig. 9, we showcase key results from the comparison of

SMT and GCD# for a representative test case. On the left-
hand graph, for most of the destinations (rather than flows,
because a flow can have multiple destinations), GCD# has
better results in terms of end-to-end latencies, whereas SMT
is not efficient for most of the destinations). On the right,
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Fig. 9. Key values of the comparison of SMT and GCD# with 100 TT
flows (left: Relative improvement of GCD# over SMT in terms of end-to-end
latencies; right: End to end delay relative to the deadline (%))

the end-to-end delays are plotted relatively to their deadlines.
We can see that GCD# delays are stacked under 5% of the
deadline, while SMT delays can go up to 90% of the deadline.

The main difference between SMT and GCD# regarding
end-to-end delay is due to SMT assigning arbitrary offsets
to each node, while GCD# assigns aligned offsets for each
following node in the network.

After executing 10,000 test runs, we found GCD# delivering
non-collision-free solutions 1.34% of the time. By construc-
tion, the SMT method does not yield such invalid results.

We conducted another experiment involving 200 flows and
ten executions. Increasing the number of flows in SMT poses
a considerable challenge, as the frame constraint causes an
exponential increase in the number of constraints to be for-
mulated. On average, it took 680 s to generate the constraints
and 348 s to solve them in the case of SMT. In contrast, GCD#
only required 63 ms to identify a solution, while providing an
end-to-end delay reduction of 90%.

The values from Fig. 10 are even more favorable towards
GCD# than in the previous case. On the left side, only a hand-
ful of delays tend to be better with SMT than GCD#, whereas
the vast majority of destination show superior performance
with GCD#. Relatively to the deadlines, GCD# consistently
positions all end-to-end latencies within a 0-5% range, whereas
SMT results scatter broadly across the percentage spectrum.
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Fig. 10. Key values of the comparison of SMT and GCD# with 200 TT
flows (left: Relative improvement of GCD# over SMT in terms of end-to-end
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VII. CONCLUSION AND PERSPECTIVES

We have formally shown that the most recent approaches
to address the problem of finding offsets in time-triggered
networks by (1) avoiding any frame interference, and (2)
meeting the Frame constraint, can limit the study to the time
interval [0, H). We illustrated on examples why both of the
constraints taken independently are not sufficient alone to
guarantee that the first hyper-period is repeating. To address
this, we revisited some classic cyclicity results, which we
extended to show several interesting results that can be useful
for studies of tasks or flows of frames with offset. Particularly,
we showed that both cyclic and acyclic parts of a schedule
start and end at an idle point, implying that there is an integer
number of jobs or frames in both parts of a schedule. This
can be useful for optimization methods that require working on
jobs or frames rather than tasks or flows. Moreover, we showed
that the necessary and sufficient condition for a schedule to
behave cyclically over [0, H) is that there is an idle point at
H . This is what allowed the main result to be shown.

Finally, we proposed a heuristic method called GCD#,
which seeks to (but does not require to) completely avoid
interference, and therefore is able to cope with a schedule
that does not necessarily cycle over [0, H). It is based on the
Generalized Chinese Remainder Theorem, but decomposes the
time in cycles, sections and offsets within sections in order to
take into account the semi-harmonicity of the periods. Using
the offsets given by the heuristic and the algorithms to find
the cycle, one can create a correct schedule for a TT Network.
Note that if some frames can be concurrent, each switch
should have enough waiting queues to allow controlling each
concurrent flow individually. To the best of our knowledge,
this is the first heuristic method that does not have to respect:
(1) avoid frame interference and (2) meet the Frame constraint.

In the future, we plan to include in GCD# a more realistic
approach to account for the “Store & Forward” delay, with a
value that depends on the size of the message and possible
previous messages. Also, improvements can be made in order
to account for limits in the number of queues available per
switch. Heterogeneous networks, where the transmission rate
is not uniform, can also be a target for future improvements.
Finally, the complexity of finding the exact starting point of
the cyclic part of a schedule is still an open problem.
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