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ABSTRACT

We deal with the genesis and decay of knots and links made of dislocations in a
cholesteric layer confined in the gap between orthogonal cylindrical mica sheets. The
genesis starts by nucleation of folded unknots driven by a compressive strain. The
nucleation process of the trivial and folded unknots is studied and discussed in detail.
We show that the expansion of the folded unknots leads to their lateral collisions
followed by the coalescence into the torus knots, such as the trefoil knot, or into the
links, such as the Hopf and Solomon links. The viscoelastic decays of knots and links
follow well defined pathes involving topological and geometrical transformations. In
particular, the symmetric configuration of the Hopf link is unstable with respect
to the shrinking of one of its interlaced loops. The final asymmetric configuration,
made of a minimal loop tethered on a large cargo loop, is called the Hopf necklace.
Similarly, the double Hopf necklace is obtained by the elastic decay of the Solomon
link. We emphasize that Hopf necklaces of various orders are quite ubiquitous.

KEYWORDS

unknots, knots, links, necklaces, dislocations, cholesterics, topological defects

1. Introduction

1.1. Objects with a double topological character

Linear topological defects such dislocations or disclinations occur in systems with or-
der parameters resulting from broken symmetries [1,2]. For topological reasons, they
must either end on surfaces or to form closed loops. For mathematicians, closed dis-
location or disclination loops look like closed one dimensional lines embedded in a
three dimensional space. Therefore, from this abstract point of view, they must be
equivalent to unknots or to form knots or links.

After the discovery of the Hopf link (called in French ”double anneau”, see Figure 1f)
made of dislocations in cholesterics by Bouligand [3], Bouligand et al. [4] stressed for
the first time that we have to deal with objects having a double topological character.

Subsequently, Tkalec et al. [5] pointed out that all kinds of knots and links can be
generated in a controlled manner from disclinations of rank m = 1/2 in a suspension
of colloidal microspheres in chiral nematics. Using free energy minimization, Seč et al.
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Figure 1. The ”double anneaux” Hopf link made of dislocation loops in cholesterics [3,4]. a) Two unknots

folded once. a-b) By the coalescence-rewiring of the external segments, AB + CD ⇒ AC + BD, one obtains

an unknot with two folds. c-e) By the coalescence-rewiring of the two folds, EF + GH ⇒ EG + FH, one
obtains the Hopf link made of two interlaced loops. f) The Hopf link generated by the coalescence method in

experiments reported in section 9.2 (5CB/CB15 mixture).

[6] explored a large variety of knots or links made of m = 1/2 disclinations confined is
cholesteric droplets. An exhaustive review of his own and other contributions to the
field of knots and links in liquid crystals was published in 2020 by Smalyukh [7].

Our former studies of knots [8] and tangles [9] made of dislocations in cholesterics
added a new contribution to this field. Recently, we have succeeded in producing torus
knots and links by coalescence of the folded unknots mentioned for the first time in ref.
[8]. As an example we show in Figure 1 that coalescence of two unknots folded once
produces the Bouligand’s ”double anneau” configuration of two interlaced dislocation
loops i.e. the Hopf link.

1.2. Content of this article

This paper is organized as follows:

(1) In section 2, for historical reason, we discuss first the emission of disclination
loops in nematics, conjectured in 1969 by Friedel and de Gennes [10], which is
closely related to the nucleation of dislocation loops in cholesterics. We stress
that this conjecture was proved recently to be true by Long et al. [11] who
reported on the Frank-Reed mechanism of nucleation of disclination loops on
pairs of ±1/2 anchoring defects.

(2) As the genesis of knots and links made of dislocations in cholesterics starts by
nucleation of the folded dislocation loops (folded unknots), in section 3 we extend
the Friedel-de Gennes conjucture to the principle of the emission of the trivial
and folded dislocations loops.

(3) In section 4, we describe the setup and methods used in our experiments.
(4) For the sake of clarity, using as an example systems of concentric dislocation loops

generated by the confinement inside the gap between the crossed cylindrical mica
sheets, we remind in section 5 the structures of dislocations called simple and
double characterised respectively by Burgers vectors b = p/2 and b = p (defined
for the first time by Kleman and Friedel [12]).

(5) Even if knots and links are made of the double dislocations, in section 6 we report,
for the sake of completeness, first on nucleation of individual simple dislocation
loops which are similar to disclinations in nematics. This nucleation is driven by
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a large enough compression of the cylinder/cylinder gap thickness measured by
the Compression Ratio defined as CR = po/p where po is the natural cholesteric
pitch and p is the reduced pitch due to the compressive strain.

(6) Experiments on nucleation of the double dislocation loops (trivial and folded)
are reported in section 7. We show that the Critical Compression Ratio necessary
for nucleation scales with the size Ddef as as (Ddef/po)

−1.
(7) For interpretation of this last result, we will transpose in section 8 the nucleation

model proposed by Zappone and Bartolino [13] to a dimensionless form and use
also results of the recent work of Long et al. [11]. We also discuss nucleation of
the folded dislocation loops.

(8) In section 9, we report on the genesis of links and knots by coalescence of unknots
folded once or twice.

(9) In the next section 10, we analyse first the stability of the crossing in knots and
links and we report on the decay process trefoil knot ⇒ simple Hopf necklace

due to the rewiring of one of the crossings in the trefoil knot. The second decay
process Solomon link ⇒ double Hopf necklace is due to the splitting of one of
the two loops interlaced twice into two loops.

(10) In the last section 11 we show first that the genesis and decay schemes unveiled
in our experiments are different from those in other systems. Finally, we men-
tion that the multiple Hopf necklaces can be obtained by strong mechanical
perturbation of the system of the concentric loops.

2. Emission of disclination loops in twisted nematic layers

2.1. Friedel-de Gennes conjecture

In a short note published in 1969 [10] Jacques Friedel and Pierre-Gilles de Gennes
conjectured that emission of a disclination loop of rank m = 1/2 should occur in a
nematic layer submitted to a large enough twist distortion. They considered a layer of
thickness h, confined between two parallel surfaces providing a strong planar anchoring
conditions for the director ~n, such as the one represented in Figure 2a but without the
±1/2 defects that we will take into account in the next section.

Initially the two anchoring directions are parallel to the y axis so that the angle
φ between them and the y axis is zero. In equilibrium, the director field −→n (z) =
[cosφ(z), sinφ(z), 0] compatible with these boundary conditions is uniform φ(z) = 0.

When the upper surface is rotated by an angle δφ in anticlockwise direction, the
director field in equilibrium can adopt two helical configurations compatible with the
anchoring conditions (see Figure 2d):

φ(z)d = δφ
z

h
; dextrogyre twist (1)

and

φ(z)l = (δφ− π)
z

h
; levogyre twist (2)

The elastic energy density per unit area of these excited helical states depends on δφ.
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Figure 2. Experimental confirmation by Long et al. [11] of the Friedel - de Gennes conjecture [10] about the

emission of disclination loops in a twisted enough nematic layer. a) Perspective view of the experiment of Long

et al. [11]. b) Variation of the elastic energy density per unit surface with the angle δφ of rotation of the upper

surface with respect to the lower one. c) Simplified anchoring pattern containing the ±1/2 singularities. d) Top
view of a small deformation of the disclination segment due to the rotation of the upper surface by the angle

δφ > π/2. e) Semi-circular shape of the dislocation with radius rc = w/2 at the threshold of the emission.

f) Self-collision of the strongly deformed disclination loop. g) Rewiring of the colliding disclination segments
results in emission of an independent disclination loop. h) Stability diagram. The threshold line can be crossed

either by increasing the angle δφ or by decreasing the thickness h.

The energy of the dextrogyre helix

fd =
K22

2

δφ2

h
(3)

grows with δφ (see Figure 2b) while that of the levogyre helix

fl =
K22

2

(π − δφ)2

h
(4)

decreases initially with δφ.
For δφ > π/2, the energy density fl of the levogyre helix becomes lower than that

of the dextrogyre one, fd.
For this reason, Jacques Friedel and Pierre-Gilles de Gennes conjectured in their

paper that the elastic energy stored in the dextrogyre helix could relax through emis-
sion of a disclination loop of rank m = 1/2 surrounding the domain with the levogyre
helix.

They also remarked that the emission of the disclination loop is protected by a
nucleation barrier resulting from the competition between the gain in the surface
energy and the cost of the disclination line. For a loop of radius r, the change of the

4



distortion energy inside it

∆Esurf = πr2(fl − fd) = πr2
K22π

h
(π/2− δφ) (5)

is negative for δφ > π/2 while the energy cost of the disclination line of tension T
(energy per unit length) is

∆Eline = 2πrT (6)

The total change of energy ∆Eloop = ∆Esurf +∆Eline has a maximum at

rmax = h
T

K22π

1

δφ− π/2
(7)

of height

∆Emax =
hT 2

K22

1

δφ− π/2
(8)

At the end of their article, Friedel and de Gennes suggested that surface defects could
help to overcome this energy barrier that hinders the nucleation of the disclination
loop.

2.2. Frank-Reed mechanism of nucleation of disclination loops,

experiment of Long et al.

The Friedel-de Gennes conjecture was verified in a recent experiment performed by
Long at al.[11] who used as the nucleation center a pair of ±1/2 surface defects, sepa-
rated by the distance w, obtained by an adequate patterning of the planar anchoring
on the lower limit surface (see Figure 2a). The planar anchoring on the upper surface
is uniform. This upper surface can rotate around the vertical axis z by the angle δφ.
At the beginning of the experiment, at δφ = 0, a segment of a m = 1/2 disclination is
stretched, for topological reasons, between the surface defects.

Long at al. observed that upon a continuous increase of the twist angle δφ, the
disclination observed from above bows and expands in the plane (x,y) as shown in
Figures 2d-f until the collision of its AB and CD segments defined in Figure 2f occurs.
This self-collision of the disclination loop leads to the rewiring process AB + CD ⇒

AC + BD depicted in Figure 2f and, finally, results in generation of an independent
disclination loop.

The paper by Long at al.[11] contains a very detailed theoretical discussion of this
experiment which is quite subtle when one takes into account the 2D anchoring pattern
in the vicinity of the ±1/2 singularities. For the sake of simplicity, we will suppose
that the two point defects ±1/2 are connected by a narrow surface wall of the width
λ much smaller than the distance w between the defects. Upon crossing this surface
wall, the anchoring direction rotates by π.

Let us consider now the small bowing deformation of the disclination segment shown
in Figure 2d. It leads to creation of the lens-shaped domain of the surface area S with
the levogyre twist distortion (δφ−π/2)/h surrounded by the field with the dextrogyre
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twist distortion (δφ)/h. It is obvious from equations 3 and 4 that for δφ < π/2 one
has fl > fd so that such a domain cannot be stable.

For δφ > π/2, the expansion of the levogyre domain is favored by the inequality
fl < fd but at the same time it is limited by the energy cost of the elongation of the
bow-shaped disclination. The equilibrium shape can be found from the balance of the
Peach-Koehler force par unit length orthogonal to the disclination (this force acting
on dislocations in stressed crystals or liquid crystals is discussed in all details by Long
and Selinger in ref. [14]):

fPK = fd − fl =
πK22

h
(δφ− π/2) (9)

with the Laplace force

fLaplace = −
T

r
(10)

Using fPK + fLaplace = 0 one obtains:

h

r
=
K22

T
π(δφ− π/2) (11)

This relation agrees with the equation 6 from ref.[11] in the approximation φB =
π/2. It tells that the radius of curvature r of the lens-shaped disclination decreases
with the growing twist angle δφ. As long as r is larger then w/2, the lens-like shape
of disclination is stable. For r = w/2, the disclination takes the semicircular shape
shown in Figure 2e. Upon a further increase of the twist angle δφ, the disclination
loop expands so that its radius increases. To satisfy now the equilibrium condition
given by equation 11 the twist angle δφ should be reduced. Even if this can be done
experimentally, this new equilibrium is unstable.

The stability limit of the lens-shaped disclination is thus given by rc = w/2. By
substitution of this relation in equation 11, one obtains:

hc = C(δφ− π/2) (12)

with

C =
w

2

K22

T
π (13)

The stability limit given by equation 12 is plotted in Fig.2h.
In the experiment of Long et al. this limit was crossed by increasing the twist angle

δφ at h = const. Remark 1: The slope C decreases with the distance w between
the anchoring singularities. Therefore, the critical angle δφ at which the nucleation
occurs can be much larger than π when w is small. In such a case the twist distortion
(δφ − π)/h inside the dislocation loop is dextrogyre like outside of the loop but its
amplitude is smaller.

Alternatively, the stability limit can also be crossed by decreasing the thickness
h (i.e. by compression of the twisted cell) at δφ = const. This second method of
nucleation of disclination loops by compression of the twisted cell is analogous to the
nucleation of dislocation loops reported previously [8,15] and in sections 6 and 7 below.
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Figure 3. Reformulation of the Friedel-de Gennes conjecture to the case of emission of dislocation loops

in supertwisted cholesteric layers. a) Production of an excited supertwisted state by a sixfold compression of
the ground state containing six full turns of the cholesteric helix. b) Discrete energy levels have two indices:

N - the number of 2π turns of the helix between the limit surfaces and M = h/p- the number of cholesteric

pitches that can be accommodated without distortion inside the layer. c) Transitions with ∆N = 1/2 result

in emission of dislocation loops called SLL with the Burgers vector b = p/2, while those with ∆N = 1 should

generate dislocation loops called DLL with the Burgers vector b = p (see Figures 4e and 4f). The black arrows

correspond to a serial nucleation of two and three DLL loops connected by crossings into the folded double line
loops (FDLL). (see Figures 1 and 21) .

Remark 2: At first sight, the nucleation of disclination loops by the compression of
the twisted cell (with δφ kept constant) seems to be similar to the nucleation of
dislocations in a crystal slab submitted to a compressive strain. However, there is a
huge quantitative difference between these processes. The elastic limit of crystals in
terms of the strain is small: if the initial thickness of the crystal slab is ho then the
nucleation occurs when the change of the thickness ∆h is of the order of a few percent
of ho. In nematics, the elastic limit is given by equation 12. The critical thickness hc
depends on the twist angle δφ but not on the initial thickness ho of the nematic layer.
Therefore, the compression ratio ho/hc can be infinite when ho ⇒ ∞.

3. Principle of the emission of dislocation loops in supertwisted

cholesteric layers

3.1. Supertwisted cholesterics

In experiments reported here, instead of the twisted nematic, we used a cholesteric
layer of thickness h confined between mica surfaces providing a planar anchoring (see
Figure 3a). We consider this anchoring as strong because in conditions of our ex-
periments (samples with large cholesteric pitches po) the elastic torques exerted on
surfaces are not large enough to alter much the direction of the anchoring or to trigger
the breaking of the anchoring reported by Angelo et al. [16].
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The elastic energy density per unit volume of this system can be expressed as :

gN =
K22

2

(

N2π

h
−

2π

po

)2

=
2π2K22

h2
(N −M)2 =

2π2K22

p2o

(

N

M
− 1

)2

(14)

where N is the number of full cholesteric pitches lodged between the mica surfaces,
po is the natural pitch of the cholesteric helix and M = h/po is the layer thickness
expressed in units of po.

The cholesteric helix is said to be supertwisted when N is larger then M. The
difference N-M measures the degree of the supertwist and the energy density per unit
volume, given by equation 14, varies as (N −M)2.

Alternatively, N/M could be used as the measure of the supertwist because it is
equal to the ratio po/p between the natural pitch po and the pitch p = h/N imposed
by the confinement. In this article, to quantify the supertwist, we will use this second
method with the compression ratio CR defined as CR = N/M = po/p. In the
example shown in Figure 3a where N/M = 6, the natural cholesteric pitch po is
compressed to p = po/6.

Experiments reported in section 7 start from the ground state of cholesteric layers
in which M = N (like the one in Figure 3a). The supertwisted excited states are
then reached by compression of the layer thickness from h = Npo to a smaller value
h =Mpo with M smaller than N .

3.2. Reformulation of the Friedel-de Gennes conjecture

In the case of such supertwisted cholesteric layers, the Friedel-de Gennes conjecture can
be reformulated as follows: transitions between the discrete energy levels of a

supertwisted cholesteric layer should be mediated by emission of dislocation

loops (see Figure 4c).
In terms of the classification elaborated by Kleman and Friedel [12,15], two types

of dislocations can be emitted during transitions between the supertwisted states (see
Figures 4d, 4e and 4f). Those with the Burgers vector b = p/2 are called single (SL),
have optical aspect of thin lines and are equivalent tom = 1/2 disclinations [12,15,17].
Dislocations with the Burgers vector b = p are called double (DL), they appear in
microscope as thick lines and are equivalent to disclinations of rank m = 1 [12,15,17].
We will use this terminology, SL and DL, in the rest of this paper.

3.3. Former studies of nucleation of dislocation loops

Nucleation of dislocation loops in supertwisted cholesteric layers was reported previ-
ously by Zappone and Bartolino [13], by the authors in ref. [8] as well as by one the
authors in ref. [15].

Zaponne and Bartolino, who used a surface force apparatus, reported on the emis-
sion, induced by a compressive strain, of the simple dislocation loops with the Burgers
vector b = p/2.

Our observations reported in ref. [15], made with a different setup, tailored for
observation of dislocations in cholesterics (see section 4), showed that beside dislo-
cation loops with the Burgers vector b = p/2, dislocations with the Burgers vector
b = p could also be nucleated upon a compressive strain. Moreover we have found that
several different modes of nucleation of dislocation loops were possible:
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Individual mode: In the individual mode, dislocation loops were nucleated one after
another. From topological point of view, such individual loops are equivalent to
trivial unknots.

Serial mode: In the serial mode several dislocation loops, nucleated in one burst,
were connected by crossings into one superloop which from topological point of
view is equivalent to a multiply folded (twisted) unknot. Zappone and Bartolino
[13] reported that such serial nucleation of dislocation loops occurred also in
their surface force apparatus.

Continuous mode: In the continuous mode, one superloop is generated by the mech-
anism similar to the Frank-Reed mechanism with this difference that the extrem-
ities of the dislocation loop, attached to the surface of a large dust particle, are
located at different levels. In this geometry, the self-collision of the dislocation
resulting in the coalescence-rewiring process (see Figures 2f and 2g) does not
occur.

4. Setup and methods

Our setup is depicted schematically in Figure 4a-c. It was tailored specifically for
optical observations of dislocations in cholesterics and proved more recently to be very
convenient for experiments on the nucleation of dislocation loops. It has the same
crossed cylinders geometry as that of the surface force apparatus used by Zappone
and Bartolino[13].

Freshly cleaved rectangular (25 × 37mm) thin (0.1mm) mica sheets are fixed me-
chanically on plastic curved supports (see Figure 4b). One support, equipped with
a mica sheet, is located on a plate which is mobile in x and y direction (see Figure
4c). The second support, equipped with a mica sheet, is attached to a rotating table
positioned on a second plate which is mobile in z direction by means of a precision
translation stage. The screw of the stage is rotated by means of a long lever coupled
by a yarn to a cylinder rotated by a stepping motor. The precision of this vertical
motion is 0.15 or 0.3µm per step.

Experiments were performed with mica sheets free of inclusions and cleaved carefully
with the aim to avoid as much as possible dust particles and surface steps. For the same
reason, cholesteric mixtures were prepared from filtered 5CB and CB15 materials.
Their pitches po = 3.48µm and po = 10µm are much larger than the pitch po =
0.244µm of the cholesteric (YPDLC-036/R2011) used by Zappone and Bartolino[13].

The lines of the equal thickness h(x, y) = const of the gap between cylinders are in
general elliptic and depend on the radii of curvature R of the cylindrical mica sheets as
well as on the angle between the axes x and x’ of cylinders. In experiments presented
below, the radii of curvature of the two mica sheets were the same (R=50mm) so that
the lines of equal thickness should be circular if the cylinders were orthogonal as shown
in Figure 4a. The elliptic shapes of dislocation lines, for example in the experiment 1
in Figure 8, are due to a deviation from the perfectly orthogonal configuration.

5. Types and indexing of dislocations in cholesterics

Two typical nets of dislocation loops generated with our crossed cylinders setup are
shown in Figure 5a and 5b. Indexing of dislocation lines in these pictures is a quite
subtle issue for several reasons:
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and single dislocation lines proposed by M. Kleman and J. Friedel in their seminal article [12]. g-h) Indexing

convention of single and double dislocation lines. For the sake of simplicity the case of a plane/plane wedge is

depicted here. N indicates the number of full 2π turns of the cholesteric helix lodged between the limit surfaces.

I is the index of dislocations in the wedge. M=h/p is the local reduced thickness of the gap. It can be also seen

as the number of cholesteric pitches that could be lodged between limit surfaces without distortion. i) Process
of emission of one double line loop. Compression of the (N=3,M=3) ground state leads first to the excited

(N=3,M=2) state. When the compression ratio CR=N/M=3/2 exceeds the critical value CCRi, emission of

one double line loops occurs and the new ground state (N=2,M=2) is reached.
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(1) At first sight, systems of dislocation lines appear as composed of concentric
circles but this does not mean that each circle corresponds to one dislocation
loop. As we will see below, such a scheme is quite rare and occurs only when
dislocations are nucleated one after the other.

(2) For topological reasons, dislocation lines must be closed (if they do not end on
surfaces) but this does not mean that each dislocation line has the shape of one
circle. In fact one dislocation line starting from a point P can pass several times
from one circle to an adjacent circle but finally it must return to the point P.
For this reason, dislocation lines self-intersect frequently. Such self-intersections
are present in the loops folded once in Figure 1a or twice in Figure 1b. Due to
the helicoidal symmetry of cholesterics, intersections of dislocations are almost
always stable [15].

(3) When the minimal distance hmin between cylinders vary, the radii of circles
change. They decrease when hmin grows so that circles collapse one after another.
Inversely, when hmin decreases, the radii of circles increase and new dislocations
can be nucleated in the gap.

(4) Collapse of dislocation is free but nucleation of new loops is protected by the
nucleation barrier. For this reason, the elasticity of cholesteric layers is highly
asymmetric [13].

(5) In the absence of bifurcations (splitting of one double line into two single lines,
see Figure 4), single and double dislocation lines can coexist indefinitely inde-
pendently of the thickness of the gap because the splitting DL⇒ SL+ SL and
merging SL+ SL⇒ DL processes are protected by energy barriers.

In this situation, the method of indexing of the disclination loops that appeared to us
as the most convenient and unambiguous uses the general expression for equilibrium
thicknesses accessible for single and double dislocations (see ref.[15]):

hI(r) =
po
4

[

I −
δψ

π/2

]

(15)

with I=1,3,5,... for single dislocation lines and I=0,4,8,... or 2,6,10,... for double dislo-
cation lines. δψ is the angle between the anchoring directions on the lower and upper
mica sheets. Let us note that in fields between dislocation lines the twist angle of the
cholesteric helix must be:

∆ψN = 2πN + δψ (16)

with N=0,1/2,1,3/2,...
To be more explicit, let us consider nets of dislocations shown in Figures 5a and b.

Here, the thickness of the gap is zero in the centre and it grows as h(r) = r2/(2R)
with the radius r. The indexing of lines crossing the dashed lines in Figures 5a and b
was made as follows:

• The line closest to the centre is of the single (thin) type, therefore its index is
I=1.

• The second line in the picture a is also single so that its index is 3.
• The third line is double. Is its index 4 or 6? It cannot be 4 because the twist

angle in the field after the second line must be ∆ψ4 = 2π. In conclusion, it can
only be 6.

11
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In general, the indexing of lines can be made easily using the following rules:

(1) upon passing from a single to another single line, the index I increases by 2,
(2) upon passing from a single to a double line, the index I increases by 3,
(3) upon passing from a double to a single line, the index I increases by 3,
(4) upon passing from a double to another double line, the index I increases by 4.

After determination of the indices I, the radii rI of dislocation loops have been mea-
sured on pictures a and b in Figure 5. Values of r2I are plotted versus the index I in
Figure 5c.

In approximation of small enough tension of dislocations (see section 8.1), the local
thickness hI at positions rI of disclinations should satisfy the geometrical relationship

hI =
r2I
2R

(17)

as well as the equation 15. In result, the following linear relationship should be satisfied:

r2I =
Rpo
4

(

I −
δψ

π/2

)

(18)

The continuous line in Figure 5c represents the linear fit to this equation with R = 50
mm, po = 3.48µm and δψ = 60◦.

6. Emission of individual single disclination loops

Emission of independent single dislocation loops, one after another, during slow re-
duction of the minimal distance between the crossed cylindrical mica sheets appeared
in our experiments as quite rare while nucleation of double dislocation loops was much
more frequent. Nevertheless, as it corresponds to the Friedel - de Gennes conjecture
and was observed by Zappone and Bartolino [13], it deserves a detailed discussion
based on one typical experiment.

The picture in Figure 6a shows a view of the central part of the cylinder/cylinder
gap containing single line loops indexed with integers I ranging from 1 to 21, following
the convention depicted in Figure 4g. This pattern, made of separated (i.e. without
crossings) single line loops, is the result of emission of individual loops during a slow
reduction of the gap thickness at the rate of 0.015µm/s (see the plot in Figure 6b).
We measured the radii rI of the 21 loops in this image and from the plot r2I vs I we
have found that in this experiment the angle δψ between the anchorings was close to
π/2.

The emission and annihilation processes occurring during the slow variation of the
cylinder/cylinder gap were recorder as a time laps movie at the rate of 1 image per
second. Using the ImageJ software, the diagonal line CS defined in Figure 6a was
extracted from each frame of the video. The resulting 3000 lines were stacked in
horizontal direction. The spatio-temporal cross section extracted from the time laps
movie is shown in Figure 6c.

The left half of this picture (reduction of the gap thickness) shows that dislocation
loops were nucleated one after another on the dust particle visible in the series of four
pictures (d).

The right half of the Figure 6c shows that upon the regular increase of the
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location loops labeled with the index I=1,3,...,23 (defined in Figure 4g) are independent. They were nucleated
on the dust particle indicated in the picture (d) by the arrow. b) Linear variation of the minimal gap thickness

hmin in time. The rate of variation is ∓0.015µm/s. c) Spatio-temporal cross section extracted from a video

along the line CS defined in (a). d) Pictures of the dislocation loop with the index I=5 taken at intervals of 1

s during expansion after nucleation on the dust particle. The pitch of the cholesteric helix in this experiment
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Figure 7. Determination of the critical compression ratio CCR = hI/hc for the emission of individual single
dislocation loops in the experiment depicted in Figure 6. In this experiment the anchorings make the angle

δψ ≈ π/2. The thickness hI is given by the equation 15 : hI = I(po/4) + 1/4. hc is the thickness at which the

dislocation loop with the index I is nucleated.

gap thickness, the dislocation loops shrink and finally collapse smoothly. The rate
dhmin/dt = 0.015µm/s is so small that the size of loops during their shrinking is close
to equilibrium. However, a closer look at the spatio-temporal cross section unveils
that trajectories of the collapsing dislocation loops do not coincide with trajectories
of isochromes i.e. of lines of constant gap thickness.

To be more precise, let us compare the trajectory of the dislocation with the index
I=3 with the trajectory of the isochrome in its vicinity indicted with a dashed thick
red line. Clearly, the trajectory of the dislocation is retarded with respect to that of
the isochrome and the retardation grows when the dislocation approaches the center
of the cylinder/cylinder gap where the variation of the Peach-Koehler force (given in
equation 22) with the radius r tends to zero.

For this reason, in Figure 6c, ideal, non retarded trajectories of dislocations are indi-
cated with dashed thin lines. In terms of the model presented in section 8.1, the reduced
gap thickness at which the I-th dislocation is in equilibrium (the Peach-Koehler force
vanishes) is given by hI = (po/4)(I − δψ)/(π/2)..

Using this property, the gap calibration is done graphically using Figures 6b and c.
The corresponding values of hI/po are plotted versus I in Figure 7 (red crosses). The
red line with the slope 1/4 corresponds to the equality hI = (po/4)(I + 1).

The left half of the spatio-temporal cross section in Figure 6b is not symmetric with
respect to the right half because there is a barrier for nucleation of dislocation loops
occurring during the compression of the gap. The values of the reduced thickness
hc/po at which nucleation of dislocation loops occurs are plotted with blue crosses
in Figure 7. The staircase-like line in this graph visualises the sequence of events in
this experiment. The vertical dashed lines correspond to the slow compression of the
cylinder/cylinder gap. The horizontal arrows represent emissions of single dislocation
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loops leading to the reduction of the index I by 2.
The critical compression ratio CCR = hI/hc is plotted in Figure 7 with black circles.

Remarkably, it is almost constant with the mean value < CCR >= 2.2.
For the purpose of the forthcoming discussion in section 9.1. ”Nucleation of SL loops

on the pair of ±1/2 anchoring defects” let us note that the nucleation centre is well
visible in the picture labeled 1s in Figure 6d. Its radius is of the order of po = 15µm.

7. Emission of individual double disclination loops

As the emission of individual double lines loops is more frequent then that of single
lines loops, we were able to perform several experiments of this kind. For the purpose
of this article we selected three experiments differing by the size of the nucleation
centre. Their results are presented in Figures 8, 9 and 10 using the scheme similar to
that of Figure 6.

7.1. Experiment 1

The picture in Figure 8a shows a view of the central part of the sample containing
double line loops indexed with integers I ranging from 10 to 42, following the conven-
tion depicted in Figure 4h. Remark: In this picture, the thickness in the centre of the
cylinder/cylinder gap is not zero.

The spatio-temporal cross section extracted along the line CS defined in (a) from a
video recorded in this experiment is shown in Figure 8c.

The left half of this picture (reduction of the gap thickness) shows that dislocation
loops were nucleated one after another on the dust particle indicated by an arrow in
the picture (a) and which appears as the horizontal black line in the spatio-temporal
cross section. Let us note that this nucleation centre is shifted with respect to the
centre of the cylinder/cylinder gap.

The right half of the Figure 8c shows that upon the regular increase of the gap
thickness, the dislocation loops shrink and finally collapse smoothly. For calibration of
the reduced gap thickness hI/po at the position of the dust particle we used intersec-
tions of dislocations’ trajectories with the horizontal trajectory of the dust particle. In
terms of the equation 15, the reduced gap thickness at which the I-th dislocation is in
equilibrium (the Peach-Koehler force vanishes) is given by hI = (po/4)(I− δψ/(π/2)).

Within the approximation δψ = 0, the gap calibration is done graphically using
Figures 8b and c. The corresponding values of hI/po are plotted versus I in Figure 11a
(red crosses). The red line with the slope 1/4 corresponds to the equality hI/po = I/4.

From the left half of the spatiotemporal cross section in Figure 8b we determined
the values of the reduced thickness hc/po at which nucleation of dislocation loops
occurs. They are plotted with blue crosses in Figure 11a. The staircase-like line in
this graph visualises the sequence of events in this experiment. The vertical dashed
lines correspond to the slow compression of the cylinder/cylinder gap. The horizontal
arrows represent emissions of dislocation loops leading to reduction of the index I by
4.

The critical compression ratio CCR = hI/hc is plotted in Figure 11a with black
circles. Remarkably, it is almost constant with the mean value ¯CCR = 1.38.
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Figure 8. Nucleation of individual double dislocations loops, one after the other, on a dust particle. Experi-

ment 1 : a) Dislocation loops labeled with the index I=10,14,...,42 (defined in Figure 4g) are independent. They

were nucleated on the dust particle indicated by the arrow. b) Linear variation of the minimal gap thickness

hmin in time. The rates of the thickness variations are dh/dt ∓ 0.03µm/s. c) Spatio-temporal cross section

extracted from a video along the line CS defined in (a). d) Pictures of dislocation loops taken during their

expansion after nucleation on the dust particle. In this experiment, polarisers were removed. The pitch of the
cholesteric helix in this experiment is po = 3.48µm.
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Figure 9. Nucleation of individual double dislocations loops, one after the other, on a dust particle. Experi-
ment 2. a) Dislocation loops labeled with the index I=10,14,...,42 (defined in Figure 4g) are independent. They

were nucleated on the dust particle indicated by the arrow. b) Linear variation of the minimal gap thickness

hmin in time. The rate of the thickness variation is ∓0.03µm/s. c) Spatio-temporal cross section extracted
from a video along the line CS defined in (a). d) Pictures of the dislocation loop N=11 taken during its ex-

pansion after nucleation on the dust particle. In this experiment, polarisers were removed and the pitch of the

cholesteric helix is po = 3.48µm.
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iment 3. a) Definition of the line CS used for extraction of a spatio-temporal cross section from a video. The

picture shows an expanding dislocation loop nucleated on the dust particle indicated with an arrow. b) Linear

variation of the minimal gap thickness hmin in time. It is calibrated using the right part of the spatio-temporal

cross section. c) Spatio-temporal cross section extracted from a video along the line CS defined in (a). Let’s

note, in its central part, the presence of trajectories of single line loops (thin lines) emitted from the dust

particle. They are useful for indexing of the double line loops: a pair of single lines is counted as one double

line. In this experiment, polarisers were removed and the pitch of the cholesteric helix is po = 3.48µm.
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Figure 11. Determination of the critical compression ratio CCR = hI/hc for emission of individual double

dislocation loops. a) Experiment 1 in Figure 8. b) Experiment 2 in Figure 9. c) Experiment 3 in Figure 10.

7.2. Experiment 2

The second example of the emission of individual double line loops is illustrated in
Figure 9. Here, the spatio-temporal cross section in the picture (c) shows that nine
loops, labelled with the index I=10,14,...,46 (defined in Figure 4h), are emitted from
the dust particle indicated with arrows in pictures (a) and (c). Like in experiment 1,
this nucleation centre is shifted with respect to the centre of the cylinder/cylinder gap.

As above, for calibration of the gap thickness hI/po in the (x,y) position of the dust
particle we used the right half of spatio-temporal cross section where intersections
of trajectories of collapsing loops with the trajectory of the dust particle occur for
h(I) = Ipo/4 (see equation 23).

After calibration, values of the critical thickness hc/po at which nucleation of loops
occurred were determined from the left part of the spatio-temporal cross section.

Results of this second experiment are summarized in the plot of Figure 11b.
The mean value of critical compression ratio for emission of individual loops deter-

mined from this plot ¯CCR = 1.75 is higher than ¯CCR ≈ 1.5 found in the experiment
1.

7.3. Experiment 3

The third example of the emission of individual double line loops is illustrated in Figure
9. Here, the spatio-temporal cross section in the picture (c) shows that nine loops,
labelled with the index N=34,38,...,66 (defined in Figure 4h), are emitted from the
dust particle indicated with arrows in pictures (a) and (c). Like in experiments 1 and
2, this nucleation centre is shifted with respect to the centre of the cylinder/cylinder
gap.

As previously, for calibration of the gap thickness hN/po in the (x,y) position of the
dust particle we used the right half of spatio-temporal cross section where intersections
of trajectories of collapsing loops with the trajectory of the dust particle occur for
h(I) = I(po/4).

After calibration, values of the critical thickness hc/po at which nucleation of loops
occurred were determined from the left part of the spatio-temporal cross section.

Results of this third experiment are summarized in the plot of Figure 11c.
The mean value of critical compression ratio for emission of individual loops de-

termined from this plot < CCR >= 1.25 is smaller than those in experiments 1 and
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Figure 12. Plot of the critical compression ratios determined in Figure 11 versus the reduced size of defects

D̃def = Ddef/po. The continuous line represents the power law CCR− 1 = 3.5/D̃def .

2.

7.4. Critical Compression Ratio CCR

The values of the critical compression ratio CCR for nucleation of double dislocation
loops determined in Figures 11a, 11b and 11c are respectively: 1.38 (exp.1), 1.75 (exp.2)
and 1.25 (exp.3). At first sight, they depend on sizes Ddef of the nucleation centres
shown in inserts of the three plots. We estimated Ddef with accuracy of 3µm as:
43± 3µm (exp.1), 17± 3µm (exp.2) and 28± 3µm (exp.3).

Anticipating on the theoretical models of the nucleation process presented below,
in Figure 12 we plotted CCR − 1 versus the reduced size of defects D̃def = Ddef/po.

The continuous line in this diagram represents the law CCR− 1 = 3.5/D̃def .

8. Model of nucleation of individual loops

As the critical compression ratio CCR is a dimensionless quantity it can only be
function of the dimensionless ratios d̃ = d/po and D̃ = D/po (D=2R, R is the curvature
radius of mica sheets) as well as of the index I of dislocation loops:

CCRI = CCR(d̃, D̃, I) (19)

To find this scaling relationship, we will analyse the balance of forces acting on dislo-
cation loops.

8.1. Scaling analysis of the equilibrium conditions

Let us consider a double dislocation with the index I = 2(2N − 1) separating fields
with (N − 1) and N full pitches p of the cholesteric helix (see Figure 4h). If h(r) =
hmin + r2/D is the local gap thickness at the r position of the dislocation then the
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Figure 13. Scaling analysis of forces acting on the dislocation loop with I=10. a) Variation of the reduced

force f̃ = f/(4π2K22/po) with the reduced radius r̃ = r/po for different values of the reduced tension T̃ =
T/(4π2K22) and of the reduced minimal thickness of the gap h̃min = hmin/po. b) Variation of the reduced

energy F̃ with the reduced radius r̃ = r/po for T̃ = 10 and r̃min = 1.7. c) Variation of the stable (maximal)

and unstable (minimal) equilibrium radii r̃ of the I=10 loop with the minimal thickness of the gap h̃min.
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densities per unit surface of the elastic energy in adjacent fields are given by:

fN−1 =
K22

2

(

(N − 1)2π

h(r)
−

2π

po

)2

h(r) (20)

and

fN =
K22

2

(

N2π

h(r)
−

2π

po

)2

h(r) (21)

Their difference

fPK = fN − fN−1 =
4π2K22

po

(

hI
h(r)

− 1

)

(22)

with

hI = (4N − 2)po/4 = Ipo/4 (23)

is the Peach-Koehler force per unit length acting on the dislocation with the index I. It
vanishes when h = hI and is directed in outward direction when h < hI (for simplicity,
we assume that the anchorings are parallel, i.e. δψ = 0). In the case of the straight
wedge shown in Figure 4g, the expression h = hI determines equilibrium positions of
dislocations.

Remark: In the case of single dislocations separating fields with N − 1/2 and N
full pitches, the factor (N − 1) in equation 20 should be replaced by (N − 1/2). With
this modification, the expression 23 becomes:

hI = (4N − 1)po/4 = Ipo/4 (24)

In the cylinder/cylinder geometry of the gap, the dislocation has a circular shape
with radius r so that it is also submitted to the centripetal Laplace force fLaplace =
−T/r resulting from the tension T of the dislocation line.

Equation

ftot(r) =
4π2K22

po

(

hI
h(r)

− 1

)

− T/r = 0 (25)

representing the balance of forces depending on r can have two, one or zero solutions
determined by the values of the strain (hI/h(r)− 1) and of the dislocation tension T.

Discussion of all experimental results in terms of these solution is easier when the
equation 25 is rewritten, using dimensionless variables r̃ = r/po, D̃ = D/po, h̃I = hI/po
and h̃min = hmin/po, in a dimensionless form

f̃tot =
ftot

4π2K22/po
=

(

h̃I

h̃min + r̃2/D̃
− 1

)

−
T̃

r̃
= 0 (26)
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with

T̃ =
T

4π2K22
(27)

8.1.1. General case, two solutions

As stated above, equation 26 can have two, one or zero solutions. To be more precise,
let us consider the case of the dislocation with the index I=10 for which h̃10 = 5/2
and, using the values po = 3.48µm of the pitch and D = 105µm, let us set D̃ to 2.9
104.

In Figure 13a we show three plots of the function f̃(r̃). The first plot, calculated
with T̃ = 10 and h̃min = 1.7, shows that the equation f̃(r̃) = 0 (see equation 26) has
two solutions r̃1 = 134 and r̃2 = 22 indicated respectively with blue and red circles.

The first solution r̃1 = 134 represents the stable equilibrium of forces acting on the
loop because it corresponds to the minimum of the potential

F̃ (r̃) = −

∫ r̃

0
f̃tot(r̃)2πr̃dr̃ (28)

plotted in Figure 13b.
The second solution r̃1 = 22 is unstable because it corresponds to the maximum of

the potential F̃ (r̃).
The second plot of the Figure 13a was calculated with the same value of the tension

T̃ = 10 but with a smaller value of the minimal thickness : h̃min = 1. As expected,
the stable radius (blue circle) of the dislocation increases because it migrates to the
thicker part of the gap. On the contrary, the unstable radius (red circle) decreases as
shown.

When the tension of the dislocation and the minimal thickness tend to zero the
radius of the disclination tends to its value resulting from purely geometrical consid-
erations.

8.1.2. General case, one solution in the stability limit

For a given tension T̃ = 10, the radius of the disclination loop depends on the minimal
thickness of the gap. It is maximal, r̃ = 264, for h̃min = 0 (see Figure 13c). When h̃min
increases, the loop shrinks and for h̃min = 1.7 its radius becomes r̃ = 134 as discussed
previously (see Figure 13c).

If the tension T̃ was zero, the radius of the loop could shrink, being always stable,
progressively to zero during the further increase of the gap thickness to its maximal
value I/4 = 2.5 allowed for the I=10 dislocation. However, when the tension of the
dislocation is finite, for example T̃ = 10 (see Figure 13c), the stable and unstable
solutions of equation 26 converge to the same value r̃ = 64 when the minimal thickness
of the gap reaches the critical value h̃min = 2.02. For h̃min > 2.02 the dislocation I=10
cannot be stable and must collapse.
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8.2. Nucleation of dislocation loops

8.2.1. Critical radius and energy barrier

Once the I=10 loop collapsed, one can ask the question ”how to restore it?”. Obviously,
the minimal thickness of the gap must be lowered below the critical value of 2.02. For
example, the thickness can be set to the value h̃min = 1.7 used in Figure 13c.

This condition is necessary but not sufficient for the recovery of the I=10 loop
because there is the energy barrier F̃b to overcome defined in Figure 13b.

We will show now that the height of the barrier, which depends on the tension T̃
and on the minimal thickness h̃min, tends to zero when h̃min → 0.

For the sake of simplicity we will consider the case of the infinite diameter D̃ for
which the gap thickness does not depend on r̃. In this approximation, the potential
F̃ has only one maximum corresponding to the equilibrium of forces given by the
equation

f̃tot =
ftot

4π2K22/po
=

(

h̃I

h̃min
− 1

)

−
T̃

r̃
= 0 (29)

which is nothing else but equation 26 in the limit D̃ → ∞.
The maximum of the barrier is thus situated at the dimensionless critical radius

r̃b =
T̃

(

h̃I

h̃min

− 1
) (30)

and its dimensionless height (in units of 4π2K22po) is given by

F̃b =
πT̃ 2

h̃I

h̃min

− 1
(31)

Both the critical radius and the barrier height tend to zero when the compression rate
h̃I/h̃min tends to infinity.

8.2.2. Can nucleation of DL dislocations be homogeneous?

In experiments reported in section 7, double line loops are nucleated at relatively small
critical compression ratios CCRI = hI/hmin, ranging between 1.25 and 1.75, for which
the height of the nucleation barrier is finite so that one can ask if nucleations of double
lines could be homogeneous i.e. triggered by thermal fluctuations.

Homogenous nucleation excited by thermal fluctuations could occur if the height of
the energy barrier was of the order of kT. WithK22 = 3·10−12N and po = 3.48·10−6m,
the energy unit 4π2K22po of the potential barrier is of the order 4 · 10−16J i.e. to
105kT at room temperature. Using equation 31, we can say that in the best case of
CCR = hI/hmin = 1.75, the thermally excited nucleation would be possible if T̃ 2 was
of the order of 8 · 10−6 or if T̃ was of the order of 3 · 10−3.
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Figure 14. Determination of the reduced tension T̃ from measurement of the stability range of the I=10 DL
loop. a) Spatiotemporal cross section extracted from a video. rmax and rrmin are the maximal and minimal

stable radii of the I=10 loop. c) Plots of r̃min, r̃max and r̃max/r̃min calculated numerically from equation 26
using D̃ = 290000µm. With rmax/rrmin = 4.1 determined in (a), one obtains T̃ ≈ 10.

8.2.3. How large is the tension of the double line with the index I=10?

This critical value of the dimensionless tension T̃ = 3·10−3 that would be necessary for
the thermally excited homogeneous nucleation is much smaller than the one, T̃ = 10
that we used in the discussion of the stability of dislocation loops in section 8.2.1. This
order of magnitude was in fact inferred from experimental facts reported below.

Let us consider first the Figure 14b which shows variations of r̃min, r̃max and of
the ratio r̃max/r̃min calculated numerically as functions of T̃ for the loop I=10. The
monotonic variation of the ratio r̃max/r̃min with the tension T̃ allows to determine the
tension of the I=10 dislocations from measurements of its minimal and maximal radii.

For this purpose we recorded a video showing modifications of the size of the I=10
loop during slow variations of the minimal gap thickness hmin. Figure 14a shows the
spatio-temporal section extracted from this video. The maximal radius of the I=10
loop on this picture is rmax = 688 pixels. By means of small and slow variations of
hmin we also determined the minimal stable radius of the loop rmin ≈ 168 pixels. The
ratio rmax/rmin determined by this means is thus 4.1 which corresponds to T̃ = 10 in
the plot of Figure 14b.

In conclusion, the thermally triggered nucleation of the I=10 dislocation loop is not
plausible because its tension T̃ is much larger than 3 · 10−3.

Remark: The insert in Figure 13c shows that if the value of T̃ = 3 · 10−3 was used
in calculations, the minimal stable radius r̃min would be of the order of 5 so that with
r̃max ≈ 269 (see Figure 13) the ratio r̃max/r̃min would be of the order of 54.

Once the possibility of the homogeneous (i.e. thermally triggered) nucleation is
eliminated we have to consider the heterogenous nucleation.

8.3. Nucleation of SL loops on the pair of ±1/2 surface defects

In the light of the recent experiments of Long et al.[11] we can ask what would be
the critical compression ratio for nucleation SL loops on a pair of the ±1/2 surface
defects separated by the distance w. From considerations in section 2.2 we know that
the Frank-Reed mechanism involves the energy barrier corresponding to the critical
radius of the dislocation loop r = w/2.

Let us suppose that the nucleation defect visible in Figure 6d-1s is similar to the
pair of the ±1/2 surface defects. Its radius is rd ≈ 15µm. Knowing that po = 10µm
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Figure 15. Crude simulation of nucleation of a double dislocation loop. a) Non singular director field ~n(x, z)

of a double dislocation (parallel to the y axis and located at z=p/2) obtained by mapping from the degeneracy

space of the uniaxial order parameter (North hemisphere) onto the rectangular real space domain −ξ/2 < x <

ξ/2, 0 < z < p. The field ~n(x, z) is generated by three successive rotations applied to the vector (1,0,0). b)
Rotation by the angle θ around the y axis followed by rotation by the angle φ around the z axis. c) Rotation

by the angle −θ around the y axis. d) Simulation of nucleation of a double dislocation loop.
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Figure 16. Comparison of director fields in Figure 15 with models of double dislocations proposed by Kle-
man and Friedel [12]. a) Non singular Kleman-Friedel model. b) Kleman-Friedel model containing a pair of

disclinations τ+1/2 and τ
−1/2. c) Alternative non singular version of the field shown in (b).
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in this experiment, we have r̃d ≈ 1.5. From the Figure 7 we know that the critical
compression ratio in this experiment is CCR = 2.2. Using equation 29 we obtain
T̃SL ≈ r̃d ∗(CCR−1) = 1.5∗1.2 = 1.8. As we will have seen above in section 8.2.3, the
value of the reduced tension of dislocations can be estimated from measurements of
their maximal and minimal radii rmin and rmax. In the case of the double dislocation
discussed in section 8.2.3 we obtained the estimate T̃DL ≈ 10, five times larger than
T̃SL = 1.8.

These two results, T̃DL ≈ 10 and T̃SL = 1.8 cannot be compared directly because
they were obtained with samples having different pitches. We intend to perform addi-
tional experiments allowing to measure T̃DL and T̃SL in the same sample.

8.4. Generation of a double dislocation by a continuous deformation of

the twisted director field

As already mentioned in section 7, nucleation of double line loops with the Burgers
vector of length p was observed in experiments much more frequently than that of
single line loops with the Burgers vector p/2. At first sight, this fact seems to contradict
expectations resulting from studies of dislocations in crystalline solids where the elastic
energy per unit length of dislocations grows with the length b of the Burgers vector as
b2.

Explanation of this apparent paradox involves the fundamental topological differ-
ence between the single and double dislocation lines that was emphasized by Kleman
and Friedel [12] in their seminal article (see Figures 4e and f): the director field of
single dislocation lines contains always a singular core while that of double dislocation
lines can be non singular for topological reasons. The absence of the singular core in
double dislocation lines has two consequences:

(1) their director field is continuous everywhere
(2) they can be generated (or suppressed) by a continuous deformation of the

cholesteric helix

An example of such a deformation leading to generation of a double dislocation loop
is illustrated in eight pictures of Figure 15d.

To explain how these pictures were generated let us consider first the generation of
one DL dislocation parallel to the y axis and located at x=0, z=p/2. Its director field
~n(x, z) shown in Figure 15a was obtained by three successive rotations applied to the
director n=(1,0,0):

~n(x, z) = R̂−1
1 ∗ R̂2 ∗ R̂1 ∗ (1, 0, 0) (32)

where R̂1 is rotation around the y axis by the angle θ (see Figure 15b)

θ = (π/8) ∗ (tanh(x/ξ + 1) ∗ (tanh(z/ζ)− tanh((z − p)/ζ)) (33)

R̂2 is rotation around the y axis by the angle φ = πz/p (see Figure 15b) and R̂−1
1 is

the rotation inverse to R̂1.
The eight pictures of Figure 15d were obtained in same manner with this difference

that not one but two parallel dislocation lines were generated at the same time.
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Figure 17. Spiral-shaped double line folded superloop. a-b) Nucleation on an invisible imperfection located

on the lower mica sheet. The critical compression ratio of this nucleation event was CCR = 3.6. b-d) Expansion

driven by the Peach-Koehler force. e-h) Crude simulation of the expanding loop. From topological point of view

it is a toroidal coiled unknot U12,1.
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8.5. Nucleation of the folded superloops

In very clean samples (filtered components) with relatively large cholesteric pitches
po > 2µm confined between mica sheets free of visible imperfections, nucleation of
the individual double dislocation loops considered in this paper is in fact quite rare.
Instead of that, we observed nucleation of series of loops connected into superloops by
two-levels crossings.

As an example we show in Figures 17a-d nucleation and expansion of a superloop
made of 12 connected double line loops. This nucleation event occurred at the critical
compression ratio CCR = 3.6 which is about two times larger then the values of CCR
of individual nucleations. In samples with a very large pitch po ≈ 40µm, CCR can be
of the order of 14.

We have found that the number of folds Nf in folded superloops depends on two
parameters: the initial thickness N of the cholesteric layer and the critical compression
ratio CCR. In the present article we discussed the limit case of nucleation of the
individual dislocation loops (Nf = 0) occurring when CCR = hI/hc is smaller than
2. For larger values of CCR, nucleation of the primary loop on a surface imperfection
is followed by nucleation of secondary loops on the kink carried by the primary loop
(see Figure 11 in ref.[8]).

We postpone a more detailed report on nucleation of folded superloops to another
paper. Here, in the next section we will focus on generation of knots and links by
coalescence of the superloops folded once or twice.

9. Genesis of links and knots by coalescence of folded unknots

9.1. Conjecture on shapes of links and knots confined between the

cylindrical mica sheets

From topological point of view, detailed shapes of knots and links do not matter. On
the contrary, shapes of real physical knots made of disclinations or dislocations are
determined by the elastic and viscous interactions. The case of links and knots made
of dislocations in cholesteric layers confined between the cylindrical mica sheets was
considered for the first time in ref.[8] where we formulated the conjecture illustrated
here in Figure 18. The equilibrium shapes represented in Figures 18b-f are composed
of coaxial circular loops interconnected by radial crossings. The circular loops and the
radial crossings delimit fields with well defined numbers N of the cholesteric pitches.

The radii of the circular loops depend on the minimal thickness in agreement with
considerations in section 5.

9.2. Coalescence of superloops folded once

Collisions between folded superloops nucleated and expanding simultaneously are lead-
ing to the coalescence-rewiring processes such as the one represented schematically in
Introduction in Figure 1 where the Hopf link was generated by coalescence of two
superloops folded once. Below, in Figure 19 we show the same process occurring in a
sample with a smaller pitch po ≈ 2µm. At this stage of the discussion, it is important
to stress that in order to generate the Hopf link, the crossings in the two coalescing
folded superloops should have the same sign in terms of the convention used in the
theory of knots (see f.ex. ref. [18]). In Figures 1 and 19 this sign the same : ”-” . It
is easy to check that if the two crossings had different signs, the collision-coalescence
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Figure 18. The recent conjecture on shapes of unknots, knots and links flattened physically by the con-

finement in the crossed cylinders wedge [8]. N labels the number of cholesteric pitches in fields delimited by

dislocation lines. a) Perspective view of the confinement of the trefoil knot between the two crossed cylindrical

surfaces. b) The shape imposed by the confinement of the unknot folded once. c) The same for the unknot

folded twice. d) The same for the Hopf link. e) The same for the trefoil knot. f) The same for the Solomon link.

process would produce two disjoined trivial loops. Remark: The cholesteric helix in
the 5CB/15CB mixtures is dextrogyre. For this reason, the primary loop nucleated by
the compressive strain has the dextrogyre helical shape and is buckled with the kink
[15]. During expansion of such primary loop, the secondary loop is nucleated on the
kink and one obtains a superloop with one fold connected to the primary loop by the
crossing with the sign ”-” (see Figures 19i and 19j).

In the experiment depicted in Figure 19 nucleation of the folded loops occurred on
very small surface imperfections invisible in microscope. We arrived at this conclusion
because when this experiment is repeated several times, nucleation of the two folded
loops occurs in the same (x,y) positions.

What kinds of surface defects could be used for a well controlled manner for the
genesis of the folded superloops? This is the most challenging issue that we intend to
solve in future. If the method of preparation of adequate surface defects was known,
it would be possible to generate a larger variety of knots and links. As an example we
show in Figure 20 knots and links obtained by coalescence of nf1 superloops folded
once. All of them belong to the class of torus knots and links. With nf1 odd, one
obtains torus knots while with nf1 even, one gets torus links.

9.3. Coalescence of superloops folded twice

One can also ask what kind of knots and links could be obtained by coalescence of
superloops folded twice or more. The case of the coalescence of two superloops folded
twice is analysed theoretically in Figure 21. Here, from topological point of view,
the first coalescence-rewiring process AB + CD ⇒ AC + BD gathers two (folded)
unknots from Figure 21a into one (multiply folded) unknot in Figure 21b. The second
coalescence-rewiring process EF + GH ⇒ EG + FH transform the unknot into the

31



200 ma b c ed

f

A

A

E EG
G

F FH H

C

C

D

N=3

crossing «-»

N=3

N=2
N=2

N=1
N=1

D

B

B hg

i j

kink

fold

crossing 

primary helical loop

N

C2

k l

N

N+1

N+1

N+1

N+1

N

N N+1

cross section

coalescencetop view

m

tangleN+1 N+1

Lehmann

cluster

N+1 N+1

N+2

N+2

N
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ation of two superloops folded once. b-e) Expansion of the two superloops leading to two successive collision-
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EF + GH ⇒ EG + FH rewiring. Coalescence of the two folds results in generation of the Hopf link. i) Dex-
trogyre helical shape of the primary loop buckled with a kink. j) Fold nucleated on the kink during expansion

of the primary loop. The sign of the crossing connecting the fold to the primary loop is ”-”. k) Cross section:

symmetry C2 of the double dislocation with the Burgers vector b = p. Top view: the difference between the left

and right sides of the dislocations is represented graphically by the dashed and full lines. l) During the collision

of two expanding dislocation loops, the contact between their full line sides leads to the rewiring. m) During the
collision of two expanding dislocation antiloops (N+1 pitches inside, N pitches outside), the contact between

their dashed line sides leads to first to formation of the Lehmann cluster. Under a strong enough tensile strain,

the overlapping transition occurs and tangles are generated [9].
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process IJ +KL⇒ IK + JL one obtains the knot with four crossings which topologically is equivalent to the

trefoil knot.

Hopf link (see Figure 21c). The third coalescence-rewiring process IL+KL⇒ IK+JL
transforms the Hopf link into the knot with four crossings of the same sign which is
equivalent to the trefoil knot (see Figure 22b).

Experimental generation of the trefoil knot by coalescence of two unknots folded
twice depicted in Figure 22a is more complex. Here, after nucleation of two unknots
folded twice labeled U3,1, two other unknots folded once labeled U2,1 are nucleated
too. In spite of this perturbation, after the collapse of small loops inside the dashed
circles, one obtains finally the knot with four crossings of the same sign. Figure 22b
shows that the ”untwist” Reidemeister move (transformation conserving the topology
of the knot) applied to this knot with four crossings suppresses the crossing 3 and one
obtains the classical conformation of the trefoil knot with three crossing.

10. Decay of knots and links

10.1. Stability of the crossings

We have pointed above that knots and links can be generated by coalescence of folded
unknots. This mechanism can be seen as gathering together the crossings belonging
previously to the unknots.

Are these knots and links made of dislocations in cholesterics stable? To answer
this question we have to examine in more details the structure and the stability of
their Achilles’ heels - the radial connections between the coaxial circular loops. Each
of these connections is made of dislocations pairs with the total Burgers vector b = 0
and some energy per unit length Tpair such as the one shown in Figure 23a. Here, the
tension Tpair is balanced at the crossing point by the tensions T of the dislocations 1
and 2. Knowing the angle α12 ≈ 45◦ one obtains Tpair ≈ 1.85T .

Due to the fact that the z position of edge dislocations in equilibrium depends on
their orientations (see ref. [15]), the dislocations 1 and 2 are located at different levels
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layer submitted to a compressive strain (sample with the equilibrium pitch po = 40µm). Let us emphasize

that the all four crossings have the same sign ”-”. b) The Reidemeister move ”untwist” applied by thought

to the red segment suppresses the crossing 3 and transforms the knot with four crossings into the classical

conformation of the trefoil knot with three crossings. c) If the crossing 4 had the sign + instead of -, the knot

with four crossings would be equivalent to the trivial unknot U1,1.

12

12

a

b

1

1

1

1
1

2

2

2

2

2

2

c

z

pair of dislocations

crossing

T

Tpair

T

kink

kink

contact

contact

z

12

d

f

g

z

e

z

h

z

z

p

Figure 23. Breaking of a pair of dislocations by reconnection of its crossing. a) Top view, picture taken with

a microscope. b) Schematic perspective view of the crossing. c) Perspective view of the same crossing with a

kink located on the dislocation 1. d) The kink moving in the direction of dislocation 2. e) The kink in contact

with the dislocation 2. e-g) Rewiring of the contact crossing. h) Result of the rewiring of the crossing: the

dislocation pair is broken and it retracts.

35



a

d

b c

e

N=4

N=3

N=2

f g

0.5 mm

h

i j k

l m n

N=3

N=3N=3

N=4
N=4

tangle

N=2

1

1

2

2
3 3

2
2

3

3

Figure 24. The trefoil knot and its decay into the Hopf link. a-e) Generation of the trefoil knot by coalescence
of three unknots folded once. f-k) Observation of the transformation of the trefoil knot into the Hopf link by

the non Reidemeister move: breaking of the crossed dislocation pair ”1”. l-n) Schematic representation of the

transformation of the trefoil knot into the Hopf link. n) The necklace configuration of a minimal loop tethered

on the cargo loop.

z1 and z2 (see Figure 23c) such that

∆z = z1 − z2 = po
180◦ − α12

360◦
(34)

In this situation, the crossing seems to be stable (immune against the rewiring) but
in fact it has a lethal enemy: kinks of the height p such as the one located on the
dislocation 1 in the vicinity of the crossing as shown in Figure 23d. As this kink is
mobile, it can come to the crossing and collide with the dislocation 2 (see Figure 23e).
This collision leads to the rewiring of the crossing shown in Figures 23f, g and h. After
this event, the broken dislocation pair contracts. Remark: From topological point of
view, the dislocation pair can be broken because its total Burgers vector is b = 0.
Below we will see how the trefoil knot is transformed into the Hopf link by breaking
of one of its three dislocation pairs.

10.2. Decay of the trefoil knot into the Hopf necklace

In the experiment depicted in Figure 24 two remarkable events occurred. The series of
five pictures (Figures 24a-e) represents schematically generation of the trefoil knot by
coalescence of three unknots folded once. The next six pictures (Figures 24f-k) show
the transformation of the trefoil knot into the Hopf link. The first picture in Figure 24f
shows the central part of the trefoil knot corresponding to the dashed square area in
the scheme of Figure 24l. The next picture shows retractation of the broken dislocation
pair 1. The next two pictures (Figures 24h-i) show the shrinking and collapse of the
field labeled N=3 due to an increase of the gap thickness. In Figure 24i, the two fields
N=3 are separated by the dislocation pair resulting from the connection of pairs 2 and
3.

As the crossings 2 and 3 located at extremities of this unique dislocation pair have
the same sign inherited from the trefoil knot, we have to deal with the Hopf link in
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representation of the transformation.

an unusual configuration. Upon a further increase of the gap thickness, the fields N=2
shrink and a tangle defined in ref.[9] is formed as shown in Figures 24j and m.

The subsequent evolution of this Hopf link is remarkable. One of the dislocation
loops forming the Hopf link shrinks until it reaches its minimal stable size. The con-
figuration of the minimal loop threaded on the cargo loop is the hallmark of the
cholesteric order parameter [4]. We propose to call it the Hopf necklace. As we will
see in the next section a double Hopf necklace results from the decay of the Solomon
link. Its structure will be discussed in more details in the forthcoming paper in memory
of Gerard Toulouse.

10.3. Decay of the Solomon link to the double Hopf necklace

The Solomon link shown in Figures 25a and 25i was obtained by coalescence of four
unknots (superloops) folded once. It has the structure conjectured in Figure 18h: two
circular loops interconnected by four dislocation pairs with crossings of the same sign.
From topological point of view, it is made of two interlaced closed loops drawn with
red and blue lines in Figure 25i.

Due to a small increase of the gap thickness, the central field N=2 shrinks and
segments AB and CD of the red loop collide. The rewiring AB + CD ⇒ AC + BD
splits the red loop into the red and green loops interlaced with the blue loops.

In the experiment, this collision-rewiring process leads to the evolution shown in
Figures 25b-d. The final configuration in Figure 25d can be seen as made of three
N=3 fields, F1, F2 and F3, separated by dislocation pairs. Due to their tension Tpair
the two dislocation pairs contract until the fields F1 and F3 reach their minimal size.
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the minimal due to its collision with the kink.

The final configuration in Figures 25h and 25i is that of a double Hopf necklace: two
minimal loops tethered on one large cargo loop.

10.4. Stability of minimal loops

To start with the discussion of this issue, let us examine the continuation of the
experiment represented above in Figure 25 on generation of the Solomon link that
evolved into the configuration of the double Hopf necklace. Upon a further increase
of the gap thickness, the cargo loop shrinks as it shown in four pictures labeled 0s,
10s, 20s and 30s in Figure 26a. The two minimal loops labeled ml1 and ml2 are well
visible in the first three pictures but in the fourth picture (30s) the minimal loop
lm2 is missing. The reason of this disappearance is the fatal encounter between the
minimal loop ml2 and the kink present on the cargo loop. Result of such an encounter
is visualized in the series of five pictures in Figure 26b obtained in another experiment
with a sample characterised by a much larger pitch po ≈ 50µm. Clearly, the minimal
loop is absorbed by the cargo loop. Details of this encounter are visualized in the series
of five schemes in Figures 26c-f. The collision between the kink and the minimal loop
leads to the rewiring AB + CD ⇒ AC +BD represented in Figures 26c and d.
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Figure 27. Differences in scenarios of the genesis and decay of knots and links. a) Theoretical genesis of the

Hopf link by a frontal collision of two elliptical unknots [20]. Two crossings are rewired. b) The Hopf link in

cholesterics is generated by coalescence of two unknots folded once. c) Theoretical decay of the Hopf link [21]

involves first its transformation into an unknot by the rewiring of one of its two crossings followed by shrinking

and the final collapse of the unknot. d) Decay of the Hopf link in cholesterics starts by its deformation into the

Hopf necklace by shrinking of one of the linked loops to its minimal size. The shrunk loop remains tethered on
the larger cargo loop. The subsequent shrinking of the cargo loop leads first to the symmetric configuration of

linked minimal loops that finally collapse together.

11. Final remarks

11.1. Comparison with the classical schemes of the genesis and decay of

knots and links

In this paper we explored experimentally, by optical means, the genesis and decay
of knots and links made of dislocations in cholesterics. Do the processes observed is
our experiments agree with observations made in other systems and with theoretical
schemes obtained by numerical simulations?

Generation and transformations of knots and links by rewiring of crossings have been
observed by optical means in two other systems: (1) disclinations in chiral nematic
colloids [5], (2) vortices in classical fluids [19]. In the first case, the rewiring of the
crossings was driven by local Nematic ⇒ Isotropic ⇒ Nematic phase transitions
driven by heating with a focussed laser beam [5]. In the second case, the rewiring was
spontaneous.

Ricca [20] conjectured that knots or links can be also obtained by frontal collisions
of vortex unknots of adequate shapes. As an example we show in Figure 27a the genesis
of the Hopf link by rewiring of the two crossings of two colliding elliptical unknots.
This scheme is different from the genesis of the Hopf links by lateral collision of folded
unknots observed in our experiments (see Figure 27b.)

The decay of the Hopf link observed in our experiments (see Figure 27d) is also
different from the minimal unlinking pathway proposed by Liu et al. [21] (see Figure
27c). In the theoretical scheme, the decay of the Hopf links involves two steps: (1)
transformation of the Hopf link into the unknot by rewiring of one of its two crossings,
(2) shrinking and collapse of the unknot. In our experiments, the decay of the Hopf
link involves three steps: (1) shrinking of one of the interlaced loops until it reaches its
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Figure 28. Genesis of a multiple Hopf necklace. a) Initial pattern of loops and superloops. b) Dense tangle

of dislocations generated mechanically by rapid and large changes of the gap thickness hmin. b-d) Elastic

relaxation. d) Arrows indicate three of seventeen minimal loops visible in this picture. e-g) Views of few
minimal loops at higher magnification. h) Geometry of the texture in picture g.

minimal size. By this means, the classical Hopf link is transformed into its asymmetric
configuration made of a minimal loop tethered on a large cargo loop, (2) shrinking of
the cargo loop until it reaches its minimal size, (3) shrinking and the final collapse of
the minimal Hopf link as a whole.

11.2. Hopf necklaces

The Hopf necklace, i.e. the asymmetric configuration of the Hopf link made of a min-
imal loop tethered on a large cargo loop, was observed for the first time by Bouligand
[3]. We have seen above that the decay of the Solomon link passes also through the
asymmetric configuration which, in this case, is made of two minimal loops tethered
on the large cargo loop (see Figures 25d and l). Remarkably, this configuration, that
can be called the double Hopf necklace, was predicted theoretically by Bouligand
et al.[4].

Let us stress that in our experiments with the double dislocation lines, the con-
figuration of multiple Hopf necklaces made of several minimal loops tethered on
cargo loops turned out to be quite ubiquitous. The reason for which they have been
not reported previously is probably the small size of the minimal loops of the order
of the cholesteric pitch; in samples with micrometric and submicrometric pitches they
can be easily confused with dust particles trapped by dislocations.

We have seen in our experiments that knots and links made of the double dislo-
cations can be generated by two other methods : (1) rapid Isotropic ⇒ Cholesteric
thermal quench used presumably by Bouligand [3], (2) strong mechanical perturba-
tion of the system of the concentric dislocation loops by flows due to rapid and large
changes of the gap thickness hmin.

The second method turned out to be very efficient for production of the multiple
Hopf necklaces. Indeed, in one of experiments (see Figure 28) we have found 25
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minimal loops tethered on multiply folded cargo loops. Production of such multiple
Hopf necklaces occurs in two stages. It starts by a strong deformation of the initial
loops and superloops convected by complex flows, that could seen as turbulent,
accompanied by rapid nucleation of new small folded superloops. After this initial
stage that lasts for a few seconds, one obtains a dense and complex texture of folded
dislocation loops. As the total length of dislocations in it is multiplied by a factor of
order of the order of 100 with respect to the initial length of superloops in equilibrium,
this texture relaxes elastically by the collision, rewiring and shrinking processes into
the multiple Hopf necklace. The characteristic time of this relaxation depends on the
pitch of the cholesteric helix and is of the order of 10 minutes for po ≈ 50µm. The
relaxation process driven by the decrease in the free energy of the distortion follows a
special topological path which remains to be found.
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