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Synopsis 

Motivation 

The main drivers of CSF oscillations are currently controversial. 

Goal 

To investigate whether the breathing or cardiac regulated Cerebral blood flow are the major driver of 

CSF dynamics. 

Approach 

Investigate Cerebral blood and CSF flows through the intracranial compartment during free and deep 

breathing using real-time phase-contrast sequence. To quantify the neurofluids volume displacement 

along the cardiac cycle. 

Results  

Both cardiac and breathing cycles influenced neurofluids volume displacements. CSF dynamics is 

significantly correlated with intracranial blood volume change. CSF dynamic acts as a compensatory 

mechanism of intracranial blood volume dynamics. 

 

Impact 

This study confirms that intracranial blood volume change due to cardiac and breathing activities are 

the main drivers of CSF dynamic. This study provides valuable insights for understanding CSF 

circulation's complex mechanism and investigating idiopathic cerebral diseases. 
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Introduction 

Although changes in cerebral blood volume (CBV) were initially recognized as the major driver of 

cerebrospinal fluid (CSF) oscillations1,2, recent advances in real-time phase-contrast MRI (RT-PC) 

have revealed the influence of breathing on CSF dynamics3,4,5.  New mechanistic hypotheses 

challenging the established Monro-Kellie doctrine have emerged, such as CSF flow is driven by the 

thoracic and lumbar spina6.  

Therefore, quantifying both CBV and CSF displacement volume (CSFV) under the influence of 

breathing will provide a better understanding of CSF dynamics. The aim of this study was to measure 

the CBV and CSFV during free- and deep-breathing patterns using RT-PC to investigate whether the 

breathing-modulated CBV fluctuations are the main driving force of CSF oscillations. 

Methods 

− Image acquisition   

12 healthy volunteers (age: 20~34) were examined using a clinical 3T scanner and a 32-channel head 

coil. A finger plethysmograph and a respiratory chest were used to record pulse and breathing signals 

synchronously during acquisition. Each imaging level was acquired twice: once during free-breathing 

and once during deep-breathing.  

For quantification purposes, the intracranial level was selected for CBV measurements, while the 

extracranial level, C2-C3, was used for CSF measurements. The RT-PC used in this study was a multi-

shot, gradient-recalled echo-planar imaging sequence with parallel acquisition technology. Parameters 

were: SENSE=2.5, EPI-factor=7, FOV=140*140mm2, matrix acquisition=70*70mm2. Other 

parameters are shown in Fig.1-A.  

− Extraction of CBV and CSFV 

All image and signal processing were performed using in-house software – Flow 2.07,8. 

Arterial inflow, venous outflow, and CSF oscillations were extracted through post-processing steps, 

including image segmentation, background field correction, and de-aliasing9. 

Venous outflow was adjusted to account for unconsidered peripheral venous drainage and maintain a 

mean venous flow equal to the mean arterial flow. Subsequently, cerebral blood flow (CBF) was 

calculated as the sum of the arterial inflow and venous outflow (Fig.1-B). 

The CBF and CSF flow signals were then integrated over time to obtain CBV and CSFV signals, 

respectively. Finally, to preserve the breathing and cardiac frequency components, both volume signals 

underwent baseline drift correction and high-pass filtering (>0.1 Hz) (Fig.1-C). 
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− Reconstruction of Cardiac- and Breath-Volume Displacement Signals  

Pulse and breathing signal peaks were identified to segment the volume curves according to the 

multiple cardiac and respiratory cycles (Fig.2-A&A’).  This resulted in reconstructed cardiac-

CBV/CSFV and Breath-CBV/CSFV curves, capturing the mean volumetric changes across these 

physiological cycles (Fig.2-B). 

The analysis of the reconstructed volume curves aimed to quantify the breathing effects and to 

investigate the CBV-CSFV correlation. 

Results 

Fig.3 demonstrates that during deep-breathing, compared to free-breathing, inflow decreases by 29%.  

Cardiac-CBV and Cardiac-CSFV amplitudes decrease by 37% and 23%, respectively, partly due to a 

15% shorter cardiac cycle.  Conversely, Breath-CBV and Breath-CSFV amplitudes increase by 207% 

and 326%. 

Fig.4 illustrates that in both breathing states, a significant correlation was presented between the 

amplitudes of Cardiac-CBV and Cardiac-CSFV, as well as between the amplitudes of Breath-CBV 

and Breath-CSFV.  No significant amplitude differences were observed between Cardiac/Breath-CBV 

and Cardiac/Breath-CSFV during deep-breathing. Moreover, Cardiac-CBV/CSFV amplitudes are 

cardiac period dependent, whereas Breath-CBV/CSFV amplitudes correlate with the breathing period 

only during deep-breathing. 

During free-breathing, CSF flows consistently toward the intracranial compartment during inspiration.  

However, deep-breathing induces significant phase shifts in three cases, marked in red in Fig.5. 

Discussion  

Free-breathing can affect CBF and CSF flow10; therefore, CBV changes must be considered in CSF 

dynamics studies11. This study demonstrates a strong correlation between CBV and CSFV 

displacements due to cardiac and breathing activities. 

Using pulse and breathing signals for segmentation and reconstruction of Cardiac-CBV/CSFV and 

Breath-CBV/CSFV partially overcomes the challenges of simultaneous CBF and CSF measurements. 

This study demonstrated a clear symmetry between CBV and CSFV. Moreover, this approach 

facilitates the observation of the volume displacement direction during the different respiratory phases. 

The ability of CSF to regulate CBV changes was more pronounced during deep-breathing (Fig.4).  

This interesting phenomenon is possibly related to alterations in intracranial compliance; however, 

further investigation is worthwhile. 



ISMRM 2024, Traditional Poster 4923 

Proc. Intl. Soc. Mag. Reson. Med. 32 (2024) 

Although ultra-low frequency components (<0.1 Hz) of CBV and CSFV were observed, they were not 

analyzed in this study due to frequency resolution limitations. Future studies could further investigate 

this phenomenon. 

Conclusion 

This study confirms that changes in CBV resulting from cardiac and breathing activities are the main 

drivers of CSF dynamics, the free physiological breathing activity makes a minor contribution to CSF 

dynamics. This study provides valuable insights into the mechanism of CSF circulation and its 

potential clinical diagnostic applications in certain diseases. 

 

Figures (5/5)  

 

Figure 1: A) Imaging levels and RT-PC parameters. The intracranial section comprises three arteries 

and two sinuses. B) Flow curves obtained via post-processing software. CBF is the sum of inflow and 

λ*outflow, where λ represents the ratio between mean inflow and outflow values. C) After integrating 

the CBF and CSF curves, baseline drift is removed, and ultra-low frequencies below 0.1 Hz are filtered, 

resulting in the final CBV and CSFV curves. 
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Figure 2: The CBV and CSFV under free breathing (A) and deep breathing (A') were segmented into 

multiple independent volume curves using pulse and breathing signals. B) Reconstruction of the 

independent cardiac cycle volume curves as Cardiac-CBV and Cardiac-CSF. Reconstruction of the 

independent breathing cycle volume curves as Breath-CBV and Breath-CSFV.  

 

 

Figure 3: Results of each parameter under free breathing and deep breathing. The data of each group 

were detected by the Shapiro-Wilk test normal distribution. Differences in mean values and 

correlations of parameters under both breathing modes were analyzed using t-test and Pearson's test. 

Statistical significance was denoted by * for p-value < 0.05 and ** for p-value < 0.01. 
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Figure 4: A) Correlation heatmap (Pearson’s test) of each parameter during free and deep breathing. 

Free-Cardiac-CBV indicates the amplitude of the Cardiac-CBV curve under free breathing, Deep-

Breath-CSFV indicates the amplitude of the Breath-CSFV curve under deep breathing. B) The 

distribution of amplitudes for Cardiac-CBV and Cardiac-CSFV under the two breathing patterns. C) 

The distribution of amplitudes of Breath-CBV and Breath-CSFV under the two breathing patterns. 

 

 

Figure 5: Breath-CBV (purple) and Breath-CSFV (green) curves for all participants during free 

breathing (top) and deep breathing (bottom) patterns. The curves are arranged in ascending order of 

deep breathing period. The y-axis represents the volume displacement (-0.6ml~0.6ml for free breathing 

and -1.8ml~1.8ml for deep breathing), and the x-axis denotes the percentage of the breathing period 

from expiration (blue) to inspiration (red). The breathing period is labeled in each plot.  
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