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Physics-Guided Neural Networks for
Intraventricular Vector Flow Mapping
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Abstract— Intraventricular vector flow mapping (iVFM)
seeks to enhance and quantify color Doppler in cardiac
imaging. In this study, we propose novel alternatives to the
traditional iVFM optimization scheme by utilizing physics-
informed neural networks (PINNs) and a physics-guided
nnU-Net-based supervised approach. When evaluated on
simulated color Doppler images derived from a patient-
specific computational fluid dynamics model and in vivo
Doppler acquisitions, both approaches demonstrate com-
parable reconstruction performance to the original iVFM
algorithm. The efficiency of PINNs is boosted through
dual-stage optimization and pre-optimized weights. On the
other hand, the nnU-Net method excels in generalizability
and real-time capabilities. Notably, nnU-Net shows supe-
rior robustness on sparse and truncated Doppler data
while maintaining independence from explicit boundary
conditions. Overall, our results highlight the effectiveness
of these methods in reconstructing intraventricular vector
blood flow. The study also suggests potential applications of PINNs in ultrafast color Doppler imaging and the
incorporation of fluid dynamics equations to derive biomarkers for cardiovascular diseases based on blood flow.

Index Terms— Cardiac flow, color Doppler, deep learning (DL), echocardiography, physics-guided neural net-
works (PGNNs), physics-informed neural networks (PINNs), ultrasound, vector flow imaging

I. INTRODUCTION

AMONG the methods aiming to perform intracardiac flow
imaging by color Doppler, intraventricular vector flow
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mapping (iVFM) [1]–[5] stands out as a post-processing
approach applicable to clinical color Doppler acquisitions.
The iVFM algorithm relies on a constrained least squares
optimization scheme (see Section II-A for more details).

Recently, physics-informed neural networks (PINNs) [6]
have emerged as a novel approach for data-driven optimiza-
tion by integrating neural networks (NNs) and the laws of
physics during the optimization process. The physical laws,
often described by partial differential equations (PDEs), are
incorporated into the loss function to enforce the correctness
of the solutions. Automatic differentiation [7] has proven to
be efficient in computing partial derivatives in PINNs. In
cases involving strong non-linear PDEs in the spatiotemporal
domain, extensions to PINNs, such as conservative PINNs
(cPINNs) and extended PINNs (XPINNs), have been proposed
[8].

PINNs have found applications predominantly in fluid me-
chanics [8]. In the medical field, Arzani et al. [9] utilized
PINNs to recover blood flow from sparse data in 2D stenosis
and aneurysm models. Kissas et al. [10] applied PINNs to
predict arterial blood pressure from 4D flow MRI data. In
the ultrasound domain, PINNs have been primarily used for
modeling wave propagation [11], shear wave elastography
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Highlights

• Our PINNs, with dual-stage optimization and pre-optimized weights, demonstrated flexibility and performance comparable to the
original iVFM approach for vector flow mapping using color Doppler.

• Our physics-guided nnU-Net-based supervised approach achieved robust intraventricular blood flow reconstruction with quasi-
real-time inference, even on sparse and truncated Doppler data.

• Our study introduced innovative AI-driven and physics-guided approaches for clinical vector flow mapping, paving the way for
enhanced diagnostic accuracy of cardiovascular diseases.

[12], and regularizing velocity field given by ultrafast vector
flow imaging [13].

While PINNs have demonstrated effectiveness on sparse
and incomplete data, their application remains unexplored in
scenarios where one or more velocity components are missing,
as is the case in iVFM. Color Doppler imaging provides
only scalar information—the Doppler velocity, representing
the noisy radial velocity—from which we aim to derive both
the radial and angular velocity components of intraventricular
blood flow.

PINNs often require re-optimization for new cases with
different initial or boundary conditions, which can be time-
consuming. A potential solution is physics-guided supervised
learning [14], which produces output that adheres to the laws
of physics by using a physics-constrained training dataset, with
optional physical regularization terms. Once trained, inference
can be performed seamlessly on unseen data, provided their
distribution closely resembles that of the training dataset.

In this paper, we investigated the feasibility of using
physics-based NNs for vector flow mapping, exploring both
a physics-guided supervised approach implemented through
the nnU-Net framework [15] and two variants of PINNs. Our
contributions included:

1) Training a physics-guided supervised approach based on
nnU-Net, which showed high robustness on sparse and
truncated data with nearly real-time inference speed;

2) Implementing two PINNs variants based on the penalty
method to perform vector flow mapping, achieving per-
formance comparable to the original iVFM algorithm;

3) Utilizing dual-stage optimization and pre-optimized
weights from a selected Doppler frame, which enhanced
PINNs’ performance and reduced the optimization time
of PINNs by up to 3.5 times.

II. RELATED WORK

A. Intraventricular Vector Flow Mapping
As introduced in [1], a vector blood flow map within the

left ventricle can be obtained from clinical color Doppler
echocardiography by solving a minimization problem. This
optimization task is governed by two equality constraints: C1,
representing the mass conservation equation, and C2, repre-
senting the free-slip boundary conditions. The first constraint
ensures the 2D free-divergence of the optimized velocity
field, while the second constraint enforces that the normal
component of the blood velocity is zero relative to the endocar-
dial surface. Additionally, a smoothing regularization, further
detailed in Section III-A, is incorporated to impose spatial

smoothness of the velocity field. Equation (1) expresses the
mathematical formulation of this problem.

In (1), (v̂r, v̂θ) denote the estimated radial and angular blood
velocity components. Here, Ω stands for the domain of interest,
i.e., the left ventricle cavity, with its endocardial boundary
denoted by ∂Ω. The term ω indicates the weights of the
data fidelity term. Weights equal to normalized Doppler power
values in the range of [0, 1] were used with in vivo Doppler
data, as they reflect the reliability of the Doppler velocity.
For simulated data, we used ω equal to one. vD refers to the
sign-inverted Doppler velocity (positive velocities for move-
ment away from the probe) to ensure the sign compatibility
between vD and the vr. The vectors nW = (nWr

, nWθ
) and

vW = (vWr
, vWθ

) represent a unit vector perpendicular to the
endocardial wall and a velocity vector of the endocardial wall,
respectively.

The iVFM method [1] linearizes the constrained problem
(1) and solves it using Lagrange multipliers and a least
squares optimization scheme, which reduces the number of
supervisedly determined parameters to just one, namely, the
smoothing regularization weight.

v̂ = (v̂r, v̂θ) = arg min
(vr,vθ)

∫
Ω

ω ∥vr − vD∥ dΩ︸ ︷︷ ︸
closely match the Doppler data

subject to:
C1 = rdiv(v̂) = r

∂v̂r
∂r

+ v̂r +
∂v̂θ
∂θ

= 0 onΩ

C2 = (v̂ − vW) · nW = (v̂r − vWr
)nWr

+(v̂θ − vWθ
)nWθ

= 0
on ∂Ω

(1)

B. Physics-Informed Neural Networks

Unlike the conventional least squares Lagrangian optimiza-
tion, such as in iVFM, PINNs use an iterative scheme with
multi-layer perceptrons (MLPs) to iteratively refine and reach
the optimal solution. PINNs offer the advantage of being
flexible, especially in the optimization scheme, regardless of
the linearity of the problem [6]. When additional complex
physical constraints need to be incorporated, PINNs require
minimal architectural modifications, typically requiring only
the adaptation of the loss function. However, this process can
be challenging when applied to standard approaches involving
non-linear constraints.

When addressing a constrained optimization problem using
PINNs, the problem is reformulated into a series of loss func-
tions, which often involve conflicting objectives. To manage
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(b) Physics-guided nnU-Net

Fig. 1. Architectures of PINNs and physics-guided nnU-Net. A.D. refers to automatic differentiation. In (a), the 2D input of PINNs has a shape of
(B×2), where B is the batch size. r and θ denote radial and angular coordinates. In (b), nnU-Net takes a 4D input of shape (B×5×192×40),
which is the concatenation of sign-inverted dealiased Doppler velocity VD, weight matrix W , left ventricular segmentation S, radial coordinate array
R, and angular coordinate array Θ.

multi-objective optimization in PINNs, a linear scalarization
of the losses is commonly used:

Lµ(θNN) =

N∑
j=1

µjLj(θNN), µj ∈ R>0, (2)

with µj representing the penalty coefficients or the loss
weights, L1,··· ,N being the multiple losses derived from the
original constrained optimization problem, and θNN repre-
senting the network parameters. All the losses involved in
PINNs’ optimization are functions of θNN. However, for better
readability of the equations, θNN is omitted in the subsequent
loss expressions.

Among the methods with linear scalarization, two notable
approaches are the soft constraints and penalty methods.
The soft constraints approach uses fixed penalty coefficients
throughout the optimization. However, determining optimal
coefficients can be challenging, especially as the number of
objectives (N ) increases, making this approach generally less
favored in PINNs optimization.

In contrast to the soft constraints approach, the penalty
method involves varying coefficients. Various techniques have
been proposed to adapt these coefficients during optimization.
Examples include GradNorm [16], SoftAdapt [17] or ReLo-
BRaLo [18]. GradNorm and SoftAdapt dynamically adjust the
loss weights based on the relative training rates of different
losses. ReLoBRaLo can be seen as a combination of the
former two techniques, which incorporates a moving average
for loss weights and a random look-back mechanism. The
random look-back mechanism is controlled by a variable that
determines whether the loss statistics of the previous steps or
those of the first step are used to compute the coefficients.

Recently, an alternative method called Augmented La-
grangian (AL) has been proposed for solving constrained
optimization problems using PINNs [19], [20]. Similar to
the penalty method, the AL approach involves penalty terms,
but it also introduces a term designed to mimic a Lagrange
multiplier.

In situations where optimizing initial or boundary conditions
is difficult, some studies have proposed imposing those condi-

tions as hard constraints by utilizing a distance function and an
analytical approximation of the conditions [21], [22]. Although
it is feasible to impose hard constraints on the output of NNs,
it is often challenging and more appropriate for problems with
several initial or boundary conditions.

III. METHODS

In this study, we addressed the constrained optimization
problem of iVFM (1) through NNs aided by physics: a
physics-guided supervised approach based on nnU-Net and
PINNs using the penalty method. Specifically, we studied two
variants of PINNs: 1) PINNs with the ReLoBRaLo weight-
adapting strategy (RB-PINNs); 2) Augmented Lagrangian
PINNs (AL-PINNs). Schematic representations of the general
architectures of PINNs and nnU-Net for intraventricular vector
flow reconstruction are shown in Fig. 1a and Fig. 1b, respec-
tively.

The following subsections introduce the loss functions to be
optimized in PINNs (Section III-A), provide implementation
details for PINNs (Section III-B to III-E), discuss the physics-
guided nnU-Net approach (Section III-F), and present the
evaluation metrics (Section III-G).

A. PINNs’ Loss Functions

In line with the previous iVFM method, we decomposed
the mathematical formulation in (1) into several objectives
to be optimized [see (3)–(6)]: 1) L1: data fidelity term;
2) L2: mass conservation residual loss (PDE loss); 3) L3:
boundary condition residual loss (BC loss); 4) L4: smoothing
regularization.

For the PDE loss, namely L2, the partial derivatives were
computed using automatic differentiation . On the contrary, for
L4, the partial derivatives were obtained using finite difference
methods with 2D convolution kernels, as spatial smoothness
could not be computed with automatic differentiation. This
was done by setting the weights of the 3 × 3 convolution
kernels to the central finite difference coefficients with second-
order accuracy.
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The norm ∥ · ∥ used for computing the L1, L2, and L3

was the Smooth L1 loss or Huber loss with β = 1.0 and
sum reduction over all the samples unless otherwise stated.
The Smooth L1 loss uses a squared term if the absolute error
falls below β and an absolute term otherwise, making it less
sensitive to outliers than the mean squared error.



L1 = ω ∥v̂r − vD∥ onΩ (3)

L2 =

∥∥∥∥r ∂v̂r∂r
+ v̂r +

∂v̂θ
∂θ

∥∥∥∥ onΩ (4)

L3 = ∥(v̂r − vWr )nWr + (v̂θ − vWθ
)nWθ

∥ on ∂Ω (5)

L4 =
∑

k∈{r,θ}

{(
r2

∂2vk
∂r2

)2

+ 2

(
r
∂2vk
∂r∂θ

)2

+

(
∂2vk
∂θ2

)2
} onΩ (6)

B. RB-PINNs
1) Global Loss: The global loss function to be optimized in

RB-PINNs was defined as:

Lµ,θNN = µ1L1︸ ︷︷ ︸
data fidelity

term

+µ2L2 + µ3L3︸ ︷︷ ︸
PDE & BC losses

+µ4L4,︸ ︷︷ ︸
smoothing

reg.

(7)

where µ1, µ2, µ3 ∈ R>0 are adaptive penalty coefficients, and
µ4 is the smoothing regularization weight. We heuristically set
µ4 to 10−7.5.

Algorithm 1: ReLoBRaLo update strategy

Initialize µj(1) = 1, j ∈ {1, 2, 3}.
for i = 1, . . . , I do

Forward pass and compute losses
Lj(i)← Lj

if i >= 2 then
µ̂
(i,i−1)
j ← nloss × Softmax

(
Lj(i)

T Lj(i−1)+ϵ

)
µ̂
(i,1)
j ← nloss × Softmax

(
Lj(i)

T Lj(1)+ϵ

)
µj(i)← α

(
ρµj(i− 1) + (1− ρ)µ̂

(i,1)
j

)
+(1− α)µ̂

(i,i−1)
j

end
Compute final loss using (7) and do

backpropagation to update network parameters:
θNN ← θNN − ηθNN∇θNNLµ,θNN(i)

end

2) Update Strategy for Loss Weights: Algorithm 1 details
the ReLoBRaLo update strategy introduced in [18] for deter-
mining the loss weights, i.e., µ1, µ2, and µ3. In this algorithm,
nloss represents the total number of losses for which the loss
weights are updated; in our case, nloss = 3. µ̂(i,i′)

j computes
the scaling based on the relative improvement of Lj between
the iterations i′ and i. µj(i) is defined as the weight for Lj at
the ith iteration, obtained through an exponential decay. The
algorithm’s hyperparameters consist of α for the exponential
decay rate, ρ for a Bernoulli random variable with an expected

value close to 1, T for temperature, and I for the total number
of iterations. We heuristically set α = 0.999, E(ρ) = 0.999,
and T = 1.0, as this combination yielded the best results for
our problem. θNN denotes the learnable network parameters,
ηθNN is the learning rate used for updating network parameters,
and ∇θNN is the gradient of the final loss with respect to θNN.

C. AL-PINNs
1) Global Loss: For AL-PINNs, we defined its global loss

as:
Lλ,µ,θNN = L1︸︷︷︸

data fidelity
term

+
〈
λ1,C1

〉
+
〈
λ2,C2

〉︸ ︷︷ ︸
PDE & BC losses

(Lagrange multipliers)

+ 0.5× µ× (L2 + L3)︸ ︷︷ ︸
PDE & BC losses (penalty)

+µ4L4.︸ ︷︷ ︸
smoothing

reg.

(8)

In this equation, λ1 and λ2 are learnable real Lagrange mul-
tipliers related to the two constraints: the mass conservation,
C1, and the free-slip boundary condition, C2. The notation〈
·, ·
〉

refers to the inner product of two vectors. The learnable
penalty coefficient for the two physical constraints is denoted
by µ ∈ R>0. Similar to RB-PINNs, µ4 was set heuristically
to 10−7.5.

Algorithm 2: Augmented Lagrangian update strategy

Initialize λj = 0⃗, µ = 2, j ∈ {1, 2}.
for i = 1, . . . , I do

Forward pass and compute losses
Lλ,µ,θNN(i)← Lλ,µ,θNN

Compute final loss using (8) and do
backpropagation to simultaneously update
network parameters, learnable λj as well as µ:
θNN ← θNN − ηθNN∇θNNLλ,µ,θNN(i)

λj ← λj + ηλ∇λjLλ,µ,θNN(i)

µ← µ+ ηµ∇µLλ,µ,θNN(i)
end

2) Update Strategy for Loss Weights: We applied the gradi-
ent ascent method [20] to update λ1, λ2, and µ, as decribed
in Algorithm 2. In the original approach [20], µ remains
constant throughout the optimization process, but we proposed
to update this penalty coefficient to better adhere to the
original AL method [23]. In our experiments, the gradient
ascent method showed higher optimization stability and was
less prone to gradient explosion compared to the original AL
update rule proposed in [23]. In Algorithm 2, θNN, ηθNN , and
∇θNN represents the learnable network parameters, the learning
rate for updating network parameters, and the gradient of the
final loss with respect to θNN, respectively. ∇λj

· and ∇µ·
denote the gradient of the final loss with respect to λj and
µ; I indicates the total number of iterations; ηλ and ηµ are
the learning rates for the learnable Lagrange multipliers λj

and µ. The selection of appropriate learning rates is critical
in preventing gradient overflow when dealing with physical
losses that involve unbounded Lagrange multipliers. Their
values are discussed in Section IV-B.1.
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D. Dual-Stage Optimization

To improve the convergence of our PINNs, we introduced
a dual-stage optimization strategy: 1) an optimization stage
using the AdamW [24] optimizer for the first 90% of the
iterations to converge to a rough solution; 2) a fine-tuning
stage using the L-BFGS [25] optimizer, which is not sensitive
to learning rates, for the remaining iterations to obtain an
optimal final solution. This approach aimed to reduce the
optimization time of PINNs. An ablation study was performed
using RB-PINNs to assess the potential improvement of this
strategy.

E. PINNs’ Architecture, Weight Initialization, and
Sampling Strategy

1) Network Architecture: For both PINNs implemented in
this paper, we utilized an MLP with six hidden layers, each
containing 60 neurons, with the tanh activation function.
This architecture resulted in approximately 18.6k trainable
parameters.

2) Weight Initialization: We first applied the dual-stage opti-
mization to a Doppler frame selected at the end of the early
filling phase using RB-PINNs. The resulting weights were
then saved as pre-optimized weights and used as initialization
for all subsequent PINNs models before optimization on new
Doppler data. This initialization technique aimed to accelerate
the optimization process of our PINNs and enhance their
performance. A second ablation study was carried out to justify
this choice.

3) Sampling Strategy: Leveraging the regularly spaced polar
grid of color Doppler imaging and its relatively small size, we
utilized all sample points within the left ventricle on the grid
for both data and collocation points. These data points were
used to compute the data fidelity term, while the PDE loss and
smoothness term were evaluated from the collocation points.
For the boundary condition residual loss, all extracted points
on the boundary were considered.

F. Physics-Guided nnU-Net

We trained a physics-guided nnU-Net (refer to Fig. 1b for
its architecture) with configurations similar to those described
in [26, Table I] on both simulations and in vivo data. We
adapted the loss function to L1 loss for supervised regression.
Additionally, to enforce mass conservation in the predicted
velocity field, we incorporated L2 in the loss function as a
physical regularization term with a weight of γ = 10−3. Both
supervised and regularization terms were masked with the left
ventricular binary segmentation, restricting loss computation
to the region of interest. The final loss was expressed as:

Lγ,θNN =
∥∥∥V̂r − Vrref

∥∥∥
1
+
∥∥∥V̂θ − Vθref

∥∥∥
1︸ ︷︷ ︸

data fidelity term

+ γ

∥∥∥∥∥r ∂V̂r

∂r
+ V̂r +

∂V̂θ

∂θ

∥∥∥∥∥
1︸ ︷︷ ︸

PDE loss

,
(9)

where (Vrref , Vθref) represent the reference velocity field given
by simulations or predicted velocity field by iVFM [1], con-
sidered as the gold standard for in vivo data.

Unlike PINNs that directly take coordinates (r, θ) as input,
nnU-Net requires image data. Our nnU-Net’s input was a con-
catenation of: 1) dealiased color Doppler image before scan-
conversion for in vivo data or alias-free image for simulated
data; 2) a weight matrix with normalized Doppler powers in
the range of [0, 1] for in vivo data or containing ones for
simulated data; 3) binary segmentation of the left ventricle
cavity; 4) radial coordinate array; 5) angular coordinate array.
More details about the training dataset are given in Section
IV-A.2.

During training, we applied data augmentations, including
random rotation ([−15, 15]°), random zoom ([0.7, 1.4]), and
random scanline masking. With the latter, a block of n con-
secutive scanlines was randomly masked out with a step size
of m. In our experiments, m = 10 and n was a random integer
between 0 and 9. This strategy simulated sparse Doppler data,
enhancing the model’s robustness and generalizability.

G. Evaluation Metrics
We assessed the performance of RB-PINNs, AL-PINNs,

and nnU-Net using simulated Doppler images from a patient-
specific computational fluid dynamics (CFD) model (see Sec-
tion IV-A.1). Evaluation metrics, including squared correlation
(r2) and normalized root-mean-square error (nRMSE), were
computed by comparing predicted and ground truth velocity
fields within the left ventricle.

1) Squared Correlation: We defined the squared correlation
as follows:

r2vk = Corr(v̂k, vkCFD)
2, k ∈ {r, θ}, (10)

where Corr is the Pearson correlation coefficient.
2) nRMSE: For both the radial and angular components,

we computed the root-mean-square errors normalized by the
maximum velocity defined by:

nRMSE =
1

max ∥vCFD∥2

√√√√ 1

n

n∑
k=1

∥v̂k − vCFDk
∥22, (11)

where n stands for the number of velocity samples in the left
ventricular cavity. For the nRMSE metrics shown in Tables
I, II, and IV, we considered both velocity components and
reported them as (x̃±σrob). Here, x̃ signifies the median, while
σrob = 1.4826×MAD represents the robust standard deviation
(std.), with MAD denoting the mean absolute deviation.

IV. EXPERIMENTAL SETUP AND RESULTS

A. Dataset
1) Patient-specific Computational Fluid Dynamics (CFD)

Heart Model: To validate our approaches, we utilized a new
patient-specific physiological CFD model of cardiac flow
developed by the IMAG laboratory. This model features a
more realistic mitral valve compared to the previous version
[27], [28]. We followed the same method described in [1,
Sec. 2.3] to generate 100 simulated Doppler images evenly
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CFD #1 CFD #2 CFD #3 CFD #4

Fig. 2. Simulated color Doppler image during early filling derived from
patient-specific CFD heart models with four variants of mitral valves.
CFD #1-3 represent cases following mitral valve replacement with a
bioprosthetic valve, while CFD #4 is a normal case.

distributed over a cardiac cycle, with a signal-to-noise ratio
(SNR) equal to 50 dB. Each image comprised 80 scanlines
with 200 samples per scanline. As Doppler power information
was not available, we set the weight for the data fidelity term
in both PINNs and iVFM to one, i.e., ω = W = 1.

2) CFD and In Vivo Apical Three-Chamber (A3C) Training
Dataset for nnU-Net : Based on the CFD model described in
Section IV-A.1, we introduced variations to the mitral valve
geometry, by modifying opening angle and orientation, to sim-
ulate three distinct cases following mitral valve replacement
with a bioprosthetic valve (CFD #1-3) [29]. CFD #1 and #2
corresponded to two different inflow jet orientations, with a
slight increase in mitral valve cross-sectional area in CFD
#2. CFD #3 mimicked blood flow with a wide-opened mitral
valve, resulting in a weak jet with limited penetration. CFD
#1-3 were included as training/validation data for the nnU-Net,
while the unaltered model representing a normal case (CFD
#4) was used for testing. Fig. 2 provides an example of a
simulated color Doppler image during early filling for each
CFD model. Although these four models shared the underlying
cardiac geometry, modifications to the mitral valve resulted in
sufficiently diverse intraventricular flows to reduce the training
bias.

Due to the limited availability of simulated Doppler data
for training a supervised model, we chose to include in vivo
A3C duplex (B-mode + color Doppler) data in our training
dataset. This decision was further elaborated in Section V-A.
These data aligned with the dataset of prior studies [26], [30],
acquired using a Vivid 7 ultrasound system (GE Healthcare,
USA) with a GE 5S cardiac sector probe (bandwidth = 2–5
MHz). Further details about this dataset can be found in [26,
Sec. III-A.1].

We processed the in vivo A3C data to ensure high-quality
training data. We initially filtered out low-quality data, re-
sulting in a compilation of 92 Doppler echocardiographic
cineloops from 37 patients, totaling 2668 frames. Subse-
quently, we performed preprocessing using ASCENT [26],
[31]. This process involved segmenting the left ventricle
cavity on B-mode images to define the region of interest
and boundary conditions, which varied across frames, and
correcting aliased pixels on the corresponding color Doppler
images. Finally, we applied the iVFM method to reconstruct
the 2D vector field in the left ventricle, serving as the gold
standard for training the nnU-Net. For training purposes, the
physics-constrained dataset was split subject-wise into 74/10/8

TABLE I
ABLATION STUDY ON 100 SIMULATED DOPPLER IMAGES USING

RB-PINNS. OPTIMIZATION TIME IS CONSISTENT (100 SECONDS PER

FRAME) ACROSS ALL CONFIGURATION COMBINATIONS. DEFAULT

SETTINGS ARE HIGHLIGHTED IN PURPLE.

vr vθ

✘ ✘ 0.88 0.23 4.3± 2.2
✘ ✔ 0.97 0.57 2.8± 1.2
✔ ✘ 0.96 0.58 2.4± 1.0
✔ ✔ 0.99 0.66 2.2± 1.0

Pre-optimized
weights

Dual-stage
optimization

r2(↑) nRMSE [%](↓)
(x̃± σrob)

clinical cineloops plus 2/1/1 CFD simulations, resulting in
2037/434/197 in vivo and 200/100/100 simulated images for
training/validation/testing.

B. Training Strategies

All methods were implemented in the same PyTorch-based
framework to ensure consistent training and optimization. The
training configurations for each approach were as follows:

1) RB-PINNs and AL-PINNs : For both RB-PINNs and
AL-PINNs, we used a dual-stage optimization strategy, in-
volving two stages with a total of I = 2500 iterations. In
the first stage, we applied AdamW optimization for 0.9 × I
iterations, updating all learnable parameters with a learning
rate of ηθNN = ηλ = ηµ = 10−5. Then, in the fine-tuning stage,
which comprised the remaining 10% of the iterations, we
utilized L-BFGS optimization. In this stage, only the network
parameters were updated, while the learnable loss weights
from the first stage were retained. The L-BFGS optimizer was
configured with a maximum of ten iterations per optimization
step, and the strong Wolfe line search conditions.

This strategy ensured a balance between accuracy and
optimization duration, enhancing the stability and efficiency of
PINNs’ optimization process. The advantage of this strategy
was further demonstrated in Section IV-C.1.

2) Physics-Guided nnU-Net : Our physics-guided nnU-Net
underwent 1000 epochs of training with the following config-
urations: a patch size of (192× 40) pixels, a batch size of 4,
and SGD optimizer with an initial learning rate of 0.01, paired
with a linear decay scheduler.

C. Experimental Results

1) Pre-Optimized Weights and Dual-Stage Optimization En-
hanced PINNs’ Performance: The ablation study presented
in Table I highlights that the combination of pre-optimized
weights and dual-stage optimization in RB-PINNs yielded the
best performance within a fixed optimization time. The dual-
stage optimization strategy significantly reduced the optimiza-
tion time of PINNs methods. Figure 3 provides a visual rep-
resentation of a case where optimization was conducted using
pre-optimized weights with and without dual-stage optimiza-
tion. In this example, single-stage optimization with AdamW
required 3.5× more optimization time to achieve a visually
similar solution compared to dual-stage optimization. Sub-
sequent experiments with PINNs followed this optimization
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T0.4T 3.5T

AdamW
L-BFGS

Optimization time

CFD

Fig. 3. Dual-stage (AdamW + L-BFGS) versus single-stage (AdamW
only) optimization using RB-PINNs initialized with pre-optimized
weights. T refers to the total amount of time required for dual-stage
optimization. In this example, 3.5 × more time is needed for single-
stage optimization (top right) to converge to a similar solution given by
dual-stage optimization (bottom right).

strategy—dual-stage optimization with pre-optimized weight
initialization.

2) NN-based Approaches Aligned with the Original iVFM :
All methods achieved high correlation in the radial velocity
estimation on the 100 simulated color Doppler images derived
from CFD #4, with r2vr

> 0.98 (see Fig. 4). For angular
velocity correlation, both PINNs, RB-PINNs and AL-PINNs
performed similarly to iVFM, r2vθ = 0.659 and 0.669 versus
0.694, while nnU-Net surpassed iVFM (r2vθ = 0.744). This
suggests the effectiveness of a supervised approach in learning
intraventricular blood flow patterns. However, nnU-Net tended
to be less precise when estimating highly negative radial
velocities on simulated Doppler data, potentially due to the
limited CFD training samples. Interestingly, all NN methods
exhibited more errors for the radial component than iVFM,
highlighting the high robustness and precision of the physics-
constrained iVFM approach (see Fig. 5). The nRMSE of
iVFM ranged between 0.2%-1.6% and 1.4%-21.3% for the
radial and angular velocities, respectively. Among all methods,
AL-PINNs had the highest nRMSE for angular velocities
(2.2% to 23.3%). Despite having the highest nRMSE for radial
velocities (3.8% to 6.7%), nnU-Net produced the least errors
in angular velocity estimation (2.3% to 13.3%). A cineloop
showing the reconstructed field by PINNs and nnU-Net versus
CFD can be found in the Supplementary Material Å.

The final optimized values of the penalty coefficients
were (median ± robust std. [min, max]): µ1 = 0.90 ±
0.11 [0.32, 1.00], µ2 = 0.90 ± 0.12 [0.32, 1.02], µ3 =
1.19 ± 0.22 [0.99, 2.36] for RB-PINNs, and µ = 2.02 ±
0.01 [2.01, 2.07] for AL-PINNs.

3) nnU-Net Demonstrated Better Generalizability and Ro-
bustness on Sparse Doppler Data: Table II presents metrics
for each method on both full and sparse simulated Doppler
images. In the evaluation on full data, iVFM achieved the
highest correlation for radial velocities and the lowest nRMSE,

while nnU-Net, trained with the physical regularization term
(PDE loss), excelled in the correlation of angular velocities.
This implies that incorporating physical regularization helps
constrain the nnU-Net’s output to better adhere to the laws of
physics.

As expected, the performance of all methods was signifi-
cantly impacted when evaluated on sparse data, where nine out
of ten scanlines were masked. Remarkably, nnU-Net, which
was trained with both the physical regularization term and
the random scanline masking augmentation, demonstrated the
least decline in performance. It maintained a high correlation
for both radial and angular velocities while achieving the
least nRMSE. This finding underscores the benefit of this
augmentation in supervised learning for enhanced generaliza-
tion. Despite having lower correlations than nnU-Net, iVFM
remained robust, producing a lower nRMSE than RB-PINNs
and AL-PINNs.

4) nnU-Net Exhibited Superior Reconstruction Speed: Table
III provides a comparison of the training, optimization, and
inference times for NN-based approaches against iVFM. These
metrics were computed using a 16 GB V100 GPU for NN
methods and an Intel i5-11500H CPU for iVFM. As the only
supervised approach in the comparison, nnU-Net required 12
hours of training but achieved the fastest per-frame inference
time, taking only 0.05 second. iVFM ranked second, with a
reconstruction time of 0.2 second per frame. Notably, both
PINNs necessitated longer optimization times, around 100
seconds, which is a recognized drawback of this approach.

5) Clinical Application of Vector Blood Flow Mapping: Fig. 6
showcases the intraventricular vector blood flow mapping by
various methods on an in vivo case at different cardiac phases,
including ejection, early filling, diastasis, and late filling. The
reconstructed flow patterns by all methods appear relatively
similar, with iVFM generating the smoothest flow patterns.
Although the prominent vortex was less visible during early
filling, it became more pronounced at the center of the left
ventricle cavity during diastasis. Another example of vector
blood flow reconstruction by all four methods on in vivo data
is given in the Supplementary Material Å.

6) Robustness of nnU-Net on Truncated Clinical Doppler
Data: Unlike other methods that required explicit boundary
conditions, nnU-Net learned these conditions implicitly during
training. This offered an advantage as it reduced the need for
specific knowledge about the flow at the endocardium. Table
IV illustrates nnU-Net’s behavior under Doppler scanline
truncation, achieved by progressively cutting scanlines from
both sides towards the center. The metrics were computed
within the common region remaining after truncation. The
results show stable performance up to a 50% reduction.
However, beyond this threshold, a more pronounced decrease
in performance was observed. Fig. 7 visually demonstrates
nnU-Net’s ability to consistently produce accurate intraventric-
ular vector blood flow reconstructions, even with a significant
70% truncation.

V. DISCUSSIONS

Our study introduces alternative approaches to the physics-
constrained iVFM algorithm [1], leveraging the power of NNs:

https://www.youtube.com/watch?v=cdjIo9sP6pA
https://www.youtube.com/watch?v=7K9z92SIy1M
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TABLE II
METRICS COMPUTED ON 100 FULL AND SPARSE SIMULATED DOPPLER IMAGES

Methods

Full data Sparse data∗

r2(↑) nRMSE [%](↓)
(x̃± σrob)

r2(↑) nRMSE [%](↓)
(x̃± σrob)vr vθ vr vθ

iVFM 1.00 0.69 1.7± 1.0 0.85 0.58 3.2± 2.3

RB-PINNs 0.99 0.66 2.2± 1.0 0.86 0.56 3.4± 1.6
AL-PINNs 0.99 0.67 2.5± 1.0 0.80 0.58 3.5± 1.4

nnU-Net‡ 0.99 0.60 2.3± 0.9 0.67 0.12 6.0± 3.0
nnU-Net† 0.99 0.74 2.1± 0.9 0.64 0.49 6.0± 3.3
nnU-Net 0.98 0.74 2.1± 0.9 0.88 0.71 2.4± 1.0

* indicates data masked every 9 out of 10 scanlines from the center to the borders.
‡ means training without both physical regularization term (PDE loss) and random
scanline masking augmentation.
† signifies training with physical regularization term (PDE loss), but without
random scanline masking augmentation.

TABLE III
COMPARISON OF TRAINING, OPTIMIZATION, AND INFERENCE

TIMES FOR NN-BASED METHODS AND iVFM

Methods Device

iVFM CPU - - 0.2 s

RB-PINNs GPU 18.6 k - 100 s
AL-PINNs GPU 18.6 k - 100 s

nnU-Net GPU 7 M 12 h 0.05 s

No. trainable
parameters

Training
time

Optimization/
inference time

per frame
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Fig. 5. Normalized root-mean-square errors (nRMSE) between CFD-based and estimated velocity vectors by different techniques.

TABLE IV
NNU-NET’S METRICS COMPUTED ON 8 in vivo TEST CINELOOPS OF 197

FRAMES WITH DIFFERENT PERCENTAGES OF SCANLINE TRUNCATION

Percentage of
truncation [%]

r2(↑) nRMSE [%](↓)
(x̃± σrob)vr vθ

20 0.97 0.96 2.4± 1.2
40 0.99 0.92 3.7± 1.5
50 0.99 0.87 4.3± 1.6
60 0.97 0.75 6.5± 2.7
70 0.94 0.59 8.4± 2.9

Note: Comparison made with nnU-Net’s estimated
velocity fields on full scanline data.

PINNs (RB-PINNs and AL-PINNs) and a physics-guided
supervised technique (nnU-Net). These methods offer distinct
strategies for the inherent constrained optimization problem in
iVFM.

In the PINNs framework, we addressed the same optimiza-
tion problem as in iVFM, but solved it differently using gra-
dient descent and NNs. By incorporating governing equations,
such as mass conservation and boundary conditions, PINNs in-
herently enforce physical laws during optimization, potentially
leading to optimized intraventricular vector velocity fields.

On the other hand, the supervised approach (nnU-Net)
was trained on patient-specific CFD-derived simulations and
iVFM-estimated velocity field on in vivo Doppler data. The
network learned the underlying flow patterns while adhering
to physical principles through the use of physics-constrained
labels and the physical regularization term in the loss function.
This approach demonstrated robustness to data limitations,
such as missing scanlines.

A. PINNs versus Physics-Guided nnU-Net

The application of PINNs deviates from the conventional
optimization methods by leveraging NNs to find the optimal
solution, which can be advantageous in complex physical
problems. Although PINNs may not necessarily outperform
analytical or numerical methods in computational efficiency,
approximation accuracy, or convergence guarantees [32], they
offer a unique advantage in terms of flexibility. This flexibility
allows their architecture to remain relatively consistent across
various physical optimization problems by adapting the loss
functions to be optimized.

In our case of intraventricular blood flow reconstruction, we
successfully improved the computational efficiency of PINNs
while maintaining accuracy comparable to iVFM. This was
achieved by implementing a dual-stage optimization with the
use of pre-optimized weights. For future exploration, both
PINNs architectures could benefit from imposing hard bound-
ary conditions rather than optimizing them in the form of soft
constraints. Additionally, better strategies for automatically
determining or learning the optimal smoothing regularization
weight, rather than relying on heuristic search methods, will
be investigated to further improve the robustness of PINNs.

Unlike PINNs, nnU-Net operates within a supervised learn-
ing framework, heavily relying on labeled training data. In
this study, CFD-derived simulations played a crucial role
in providing ground truth velocity fields for training. This
explains the high squared correlation achieved by nnU-Net, as
the simulated training samples shared the exact heart geometry
despite variations in flow patterns due to different mitral valve
conditions.

However, when trained exclusively on simulated data,
nnU-Net struggled to correctly estimate vector blood flow in in
vivo color Doppler data due to a distribution shift between the
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Fig. 6. Reconstruction of intraventricular vector blood flow in a patient using NN-based approaches and iVFM. The color of the arrows represents
the estimated radial velocity fields.

simulated and real data. This arose from limitations in the cur-
rent physiological spectrum of the simulations. To bridge this
gap, we included iVFM-estimated velocities in our training
data, allowing nnU-Net to learn from solutions representative
of clinical Doppler data generated by the established iVFM

method. As shown in Fig. 6, nnU-Net effectively learned the
underlying flow pattern and physical properties, i.e., the free-
divergence and boundary conditions, from the training samples
generated by iVFM.

Moreover, as illustrated in Fig. 7, nnU-Net can precisely
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Fig. 7. Intraventricular vector blood flow reconstruction from Doppler data with varying percentages of scanline truncation using physics-guided
nnU-Net. The color of the arrows represents the estimated radial velocity fields.

reconstruct intraventricular flow on truncated Doppler data,
where PINNs and iVFM cannot be directly applied as such
due to incomplete and unknown boundary conditions. This
potentially makes nnU-Net the preferred candidate for clinical
applications, especially considering that most clinical Doppler
acquisitions do not capture the entire left ventricular cavity due
to limitations in probe placement or patient anatomy. With the
added advantage of the shortest inference time, nnU-Net has
real-time capabilities suitable for clinical settings. Future work
will focus on generating more patient-specific CFD models
and creating more realistic simulated Doppler data [33] to
avoid the bias associated with using iVFM estimates as a
reference to train our model.

B. Limitations of Color Doppler and Vector Flow Mapping
Conventional color Doppler echocardiography is subject to

various limitations, posing challenges for accurate vector flow
mapping. These limitations include clutter signals arising from
myocardial tissue and valve leaflets, aliasing artifacts caused
by Doppler velocity overshooting beyond Nyquist velocity,
and low spatial and temporal resolutions. While the impact of
clutter signal filtering on flow reconstruction is acknowledged,
its specific effects were not investigated in this study. Our input
data were already clutter-filtered (in vivo non scan-converted
data from a GE scanner) or clutter-free (simulated data). Some
researchers address clutter filtering in color flow imaging using
deep learning (DL) techniques [34].

The clinical color Doppler data used for training and testing
in this study contained only single aliasing, corrected by a
DL-based unwrapping algorithm from our previous work [26].
It is important to note that this algorithm may face limita-
tions in scenarios involving multiple aliasing, particularly in
valvular disease. A potential solution could involve training a
supervised DL model with multi-aliased data and their alias-
free labels, such as in interferometric imaging [35] or color
Doppler imaging of the femoral bifurcation [36].

The temporal resolution of clinical color Doppler, typically
ranging from 10 to 15 frames per second, significantly restricts
the use of temporal information. Consequently, the application
of physical constraints is limited to those that are not time-
dependent, such as mass conservation for an incompressible
fluid. Around 25 harmonics are necessary to accurately record

pressure time derivatives within the left ventricle with a 5%
margin of error [37]. Hence, a color Doppler frame rate of
25 should be ideally sought to characterize intracardiac blood
flow. Although we did not address such a strategy in this
study, one approach would be to use Doppler information
from two or three successive cardiac cycles. To overcome
these limitations, advances in increasing the frame rate of
color Doppler imaging, such as diverging scan sequences
[38], [39], have been explored. Another promising avenue
involves utilizing multi-line transmission [40], especially given
the robust performance of our models on sparse Doppler data,
notably nnU-Net. Higher frame rates offer the possibility of
incorporating more complex physical constraints, including
vorticity, Euler, or Navier-Stokes equations, potentially en-
hancing flow reconstruction accuracy. While this might pose
challenges for the original iVFM due to the non-linear terms
in the equations, it aligns seamlessly with PINNs, requiring
minimal changes to the loss function.

C. Future Directions
The successful application of PINNs in mapping intra-

ventricular vector flow from color Doppler paves the way
for future investigations. Upcoming research will prioritize
the integration of high-frame-rate color Doppler with PINNs
while incorporating the governing Navier-Stokes equations.
This combination aims to leverage the temporal information to
obtain a more accurate velocity field and the pressure gradient
within the left ventricle.

Furthermore, with the development of our fully automated
and robust tools, including left ventricular segmentation,
dealiasing, and velocity field reconstruction using NNs, we
anticipate extracting potential biomarkers from intracardiac
vector blood flow for enhanced clinical insights and diagnostic
capabilities.

VI. CONCLUSION

Our study presents novel approaches based on NNs for
intraventricular vector flow mapping, utilizing gradient-based
optimization through PINNs (RB-PINNs and AL-PINNs) or
physics-guided supervised learning (nnU-Net). These methods
offer contrasting strategies to tackle the ill-posed inverse prob-
lem for vector flow reconstruction. Our results demonstrate
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the remarkable capabilities of both PINNs and nnU-Net in
reconstructing intraventricular vector blood flow fields. Par-
ticularly noteworthy is nnU-Net’s performance, demonstrating
quasi-real-time capability, robustness on sparse Doppler data,
and independence from explicit boundary conditions. These
characteristics position nnU-Net as a promising solution for
real-time clinical applications.
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