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Weyl formulae for some singular metrics with application to

acoustic modes in gas giants

Yves Colin de Verdière∗, Charlotte Dietze†, Maarten V. de Hoop‡,

Emmanuel Trélat§,

Abstract

This paper is motivated by recent works on inverse problems for acoustic wave propaga-
tion in the interior of gas giant planets. In such planets, the speed of sound is isotropic and
tends to zero at the surface. Geometrically, this corresponds to a Riemannian manifold with
boundary whose metric blows up near the boundary. Here, the spectral analysis of the corre-
sponding Laplace-Beltrami operator is presented and the Weyl law is derived. The involved
exponents depend on the Hausdorff dimension which, in the supercritical case, is larger than
the topological dimension.

AMS classification: 11F72, 58C40.

1 Introduction

1.1 Seismology on gas giant planets

Seismology has played an important role in revealing the (deep) interiors of gas giant planets in
our solar system [6, 24]. Indeed, the acoustic spectra and free oscillations have been studied for
Saturn and Jupiter over the past few decades [33, 20, 18]. The excitation of acoustic modes in gas
giant planets presumably occurs through convection in their interiors. The observation of acoustic
eigenfrequencies, that is, the discrete spectrum can be realized, in principle, through visible pho-
tometry, thermal infrared photometry, Doppler spectrometry, and ring seismology for nonradial
oscillations [25, 26] (in particular, in the case of Saturn). In ring seismology and with the Cassini
mission, one measured the “resonances” in the inner C ring of Saturn with visual and infrared map-
ping spectrometer (VIMS) stellar occultations [22, 14, 17]. The rings are gravitationally coupled
to the acoustic modes of the planet (taking self gravitation into account). Detection of Jupiter’s
acoustic eigenvalues has been attempted with ground-based imaging-spectrometry (seismographic
imaging interferometer for monitoring of planetary atmospheres or SYMPA) by measuring line of
sight velocity [32, 18]. Recently, Juno spacecraft gravity measurements have provided evidence for
normal modes of Jupiter [15].
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1.2 Singular Riemannian metrics

On a gas giant planet, unlike a rocky planet, the speed of sound goes to zero at the boundary.
In the geometric mathematical model that we employ hereafter, the rate at which this happens
follows a power law which determines a specific conformal blow-up rate of a Riemannian metric,
thus defining a singular metric. This rate happens to be slower than on asymptotically hyperbolic
manifolds and the boundary is at a finite distance from interior points. The rate is implied by
an equation of state in the upper part of the planet, in general, in the sense of a fit. (For some
models of the speed of sound of Jupiter and Saturn showing this behavior, see [20, Figure 1]
and [23, Figure 1].) Only for a polytrope is the rate exact. Polytropes, for which the pressure
is proportional to a power of the density of mass, have been viewed as relevant simplifications;
models with variable polytrope index have indeed been applied to planet and material models
[34]. Typically, an equation of state is computed numerically using density functional molecular
dynamics simulations with mixtures of chemical elements: The dominant elements in terms of
mass fraction are hydrogen and helium, but also heavy elements are important. The equation of
state is different for the upper part and the deep interior as the helium fraction can be higher
in the interior due to helium rain (helium becoming immiscible with hydrogen at high pressure).
Equations of state play a vital role in the evolution and realization of structure of gas giant planets
[28, 29].

More specifically, if ge is the Euclidean Riemannian metric on a smooth domainX ⊂ IRn+1, then
the speed of sound c can be encoded by the conformally Euclidean Riemannian metric g = c−2ge.
In local coordinates where the boundary of X is (locally) described by u = 0, the polytropic model
suggests that c ∼ u1/2. Indeed, the natural generalization is c ∼ uα/2, that is, c−2 ∼ u−α; through
previous analysis [13] it appears that restricting α according to α ∈ (0, 2) guarantees the presence of
a discrete spectrum as it has been observed. Thus, the Riemannian geometry lies between standard
geometry with boundary and asymptotically hyperbolic geometry. Some of the phenomena in this
geometry are unlike those seen at either end. The extreme case α = 0 corresponds physically
to solid bodies and mathematically to manifolds with boundary, and the other extreme α = 2
corresponds to asymptotically hyperbolic geometry but is far from all planetary models.

Therefore, following [13, Section 1.1], we model a gas giant planet as a smooth manifold X
with a boundary, endowed with a Riemannian metric g on X \ ∂X such that, near ∂X, we have
g = ḡ/uα where ḡ is a well-defined Riemannian metric up to the boundary, and ∂X = {u = 0}
locally. The fact that ḡ is neither zero nor infinite at ∂X implies a specific blow-up rate for g near
∂X. This conformal power-law blow-up is the key geometric feature of gas giant metrics. The
speed of sound might contain jump discontinuities where phase transitions occur (see [27]), that
is, the metric can contain conormal singularities while the manifold consists of multiple “layers”.
A key interior boundary in gas giants corresponds with the transition from molecular to metallic
hydrogen. Accounting for discontinuities in an asymptotic formalism for gas giant seismology was
developed a few decades ago (see [30]).

The mathematical study of the spectrum associated with gas giants’ acoustic modes was initi-
ated in [13]. In this paper, we analyze the relevant Laplace-Beltrami operator and we compute the
Weyl law. The study of Weyl asymptotics, which reflects some properties of the singular metric,
is a preliminary step towards analyzing some inverse problems, in view of reconstructing some
features of the internal structure of gas giant planets.
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2 Mathematical model and main results

2.1 Mathematical model

Let X be a smooth compact manifold of dimension n + 1 with a boundary ∂X. Near ∂X, X is
diffeomorphic to [0, 1)×M , where M is a smooth compact manifold of dimension n > 1 and ∂X is
identified with {0} ×M and also with u = 0 where u is a transverse coordinate, locally near ∂X,
ranging over [0, 1). As discussed in Section 1.2, we consider on X a singular Riemannian metric g
that is a smooth metric on X \ ∂X, written near ∂X as

g = ḡ/uα

where 0 < α < 2 and ḡ is a smooth (non-singular) Riemannian metric on X, up to the boundary.
Following [13, Proposition 2], which uses a normal form for the metric near the boundary, due to
[19, Lemma 5.2], we have

g = u−α(du2 + g0(u))

where g0(u) is a smooth Riemannian metric on M (pulled back to the level set u = Cst) depending
smoothly on u ∈ [0, 1).

We make a change of variable. Setting x = x(u) =
∫ u

0
s−α/2ds = (1− α

2 )−1u1−α2 , we get

g = dx2 + x−βg1(x) where β =
2α

2− α
(1)

and g1 = g1(x) is a smooth Riemannian metric on M (pulled back to the level set x = Cst)
depending smoothly on x ∈ [0, 1). We note that, since α ∈ (0, 2), β can take any positive value.
We also note that a polytrope (for any index) corresponds to β = βpoly = 2. We have that
g1(x) = C(α)g0(u) for some constant C(α) > 0.

For any x ∈ [0, 1), denoting by dvx1 the volume measure on M associated to the metric g1(x),
the g-volume is dvg = x−βn/2 |dx| dvx1 . The volume is finite if and only if β < βc, where

βc =
2

n
(2)

is a critical value of β. We will see later that this critical value plays a role in the Weyl asymptotics.
At this point, we can note that βpoly > βc for n = 2.

The following three propositions were proved in [13]. The first proposition concerns the Hauss-
dorff dimenion.

Proposition 1. The Hausdorff dimension of (X, g) is

dH = max

(
n+ 1, n

(
1 +

β

2

))
.

We define δH = n(1 + β
2 ), and note that dH > n+ 1 (n+ 1 is the topological dimension of X)

if and only if β > βc. We give in Appendix A.5 a sketch of the proof of Proposition 1, in which we
also show that dH coincides with the Minkowski dimension of (X, g).

Proposition 2. The Laplace-Beltrami operator 4g, with core C∞0 (X \ ∂X), is essentially self-
adjoint if and only if β > βc.

For β < βc, there exist several extensions of4g, with core C∞0 (X \∂X). In the further analysis,
we consider its Friedrichs extension (that is, “Dirichlet extension”).

Proposition 3. For every β > 0, the spectrum of 4g is discrete.
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We denote the eigenvalues of 4g by 0 < λ1 6 λ2 6 · · · 6 λj 6 · · · with associated eigenfunc-
tions φj , j ∈ IN∗, normalized in L2(X, dvg). We note that, if the volume of X is infinite, i.e., if
β > βc, we have λ1 > 0, in contrast to the usual Riemannian case. The Weyl counting function is
defined by

N(λ) = #{j ∈ IN∗ | λj 6 λ}

where the eigenvalues are counted with their multiplicity. Our objective is to derive a Weyl law
describing the asymptotics of N(λ) as λ→ +∞.

Remark 1. The following fact will be used in Section 3.5. For any ε > 0, there exists δ > 0
such that the metric g is ε-quasi-isometric (see Appendix A.1) to a singular Riemannian metric g̃
on X, smooth on X \ ∂X and given by g̃ = dx2 + x−βg1(0) on (0, δ) ×M . In order to derive a
Weyl law for (X, g) it suffices to derive the corresponding Weyl law for g̃ for any ε > 0 (see, again,
Appendix A.1 for details). This remark is important, because it implies that we mainly have to
work within the so-called separable case.

Separable case. We say that we are in the separable case if the metric g1(x) on M (defined by
(1)) does not depend on x, i.e., g1(x) = g1(0) for any x ∈ (0, 1); we still denote this metric by
g1. In the sequel, we consider [0, 1)×M instead of [0, δ)×M for simplicity of notation, while the
proofs are similar in both cases.

We denote by 4M the Laplace-Beltrami operator on (M, g1). We denote the eigenvalues of
4M by 0 6 ω1 6 ω2 6 · · · 6 ωj 6 · · · with an associated orthonormal basis of eigenfunctions
(ψj)j∈IN∗ . The Weyl counting function for 4M is defined by

NM (ω) = #{k ∈ IN∗ | ωk 6 ω}.

Since g1 is a smooth Riemannian metric on M , the classical Weyl law for (M, g1) yields that
NM (ω) = γnVolg1(M)ωn/2 + O

(
ωn/2

)
as ω → +∞ where

γn =
1

(4π)n/2Γ
(
n
2 + 1

) (3)

(see [3, Chapter 3E] for the heat trace and then apply the Karamata tauberian theorem, i.e.,
Theorem 3 in Appendix A.2).

Denoting by dv1 the volume measure on M associated to the metric g1 = g1(0), the g-volume
is dvg = x−βn/2 |dx| dv1. Making the change of function f 7→ x−βn/4f , we get the new volume
form |dx| dv1; the Laplace-Beltrami operator on X1 = (0, 1)×M is now given by

4g = −∂2
x +

Cβ
x2

+ xβ4M

where x ∈ (0, 1) and

Cβ =
βn

4

(
βn

4
+ 1

)
.

The proof is straightforward by performing an integration by parts with respect to x in the Dirichlet
form defining the Laplace-Beltrami operator, using the Dirichlet boundary condition at x = 0. We
note that Cβ > 3/4 if and only if the volume of X is infinite. Using the Weyl criterion (see
Appendix A.3), this inequality also implies that Pω defined by (5) below is essentially self-adjoint
for any ω > 0, but not for ω = 0.
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We will need to work first on the non-compact conic manifold X∞ = (0,+∞) ×M endowed
with the metric g = dx2 + x−βg1. Let 4∞ stand for the Laplace-Beltrami operator on (X∞, g).
Invoking a separation of variables, we have

4∞ =
+∞
⊕
k=1

(id⊗ πk) (Pωk ⊗ id) (id⊗ πk) (4)

where

Pω = −∂2
x +

Cβ
x2

+ ωxβ (5)

is a Schrödinger operator on L2((0,+∞), dx) for any ω > 0, and where πk is the orthogonal
projection of L2(M,dv1) onto the subspace generated by ψk and id denotes the identity operator

on L2(X∞, |dx| dv1) (resp., on L2(M,dv1)). Hence, 4∞ is unitarily equivalent to
+∞
⊕
k=1

Pωk .

2.2 Main results

Recalling that g1 is defined by (1), we set G = g1(0) and denote by vG the corresponding volume
form on M . We also recall that βc is defined in (2) and that γn is defined in (3).

Theorem 1. (Weyl asymptotics)

• If β > βc then
N(λ) ∼ A(β, n)vG(M)λdH/2

as λ→ +∞, with

A(β, n) =
nγn(β + 2)

4Γ(1 + dH/2)

∫ +∞

0

Z1(τ)τ
dH
2 −1dτ

where Z1(τ) = Tr(exp(−τP1)) and P1 is the Schrödinger operator on L2((0,+∞), dx) defined
by (5).

• If β = βc = 2/n then
N(λ) ∼ CnvG(M)λ(n+1)/2 lnλ

as λ→ +∞, with

Cn =
1

(n+ 1)(4π)(n+1)/2Γ ((n+ 1)/2)
.

In particular, C1 = 1/8π.

• If β < βc then
N(λ) ∼ γn+1vg(X)λ(n+1)/2

as λ→ +∞.

Remark 2.

• When M = IR/2πZ and X is diffeomorphic to the hemisphere, endowed with the so-called
Grushin metric, the authors of [4] derived the Weyl law using an explicit computation of the
spectrum. We recover their result as a particular case with n = 1 and β = βc = 2.

• To prove Theorem 1, we make use of heat kernels. Alternatively, it is possible to use Dirichlet-
Neumann bracketing. Both methods allow to treat conormal jump singularities of the metric
ḡ inside X that model layering in the gas planet.
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Remark 3. A natural question is whether β can be determined from the Weyl asymptotics.
Indeed, when n is known, β can be determined in the case where β > βc. When β < βc the
question remains open. To shed light on this, it would be useful and interesting to get the next
term in the small-time heat trace expansion (see Section 3.2.2) when β 6 βc.

We next compute the Weyl measures, which are the probability measures wg on X, defined, if
the limit exists, by ∫

X

fdwg = lim
λ→+∞

1

N(λ)

∑
λj6λ

∫
X

f |φj |2 dvg

for any function f : X → IR that is continuous up to the boundary of X. Such measures have been
introduced in [9, 11] in the framework of sub-Riemannian geometry in order to provide an account
of how the high-frequency eigenfunctions concentrate.

Theorem 2. (Weyl measures)

• If β > βc then the Weyl measure is δx=0 ⊗ dvG/vG(M).

• If β < βc then the Weyl measure is the uniform probability distribution given by the normal-
ized volume of (X, g), that is dvg/vg(X).

Using [11, Corollary 7.1], we obtain the following consequence.

Corollary 1. If β > βc then there exists a density-one subsequence (φjk)k∈IN∗ of the sequence of
eigenfunctions that concentrates on ∂X, meaning that for any compact subset K ⊂ X \ ∂X, we
have

lim
k→+∞

∫
K

|φjk |2 dvg = 0.

3 Proofs of Theorems 1 and 2

Our strategy of proof is the following. We first treat the separable case (Sections 3.1 to 3.4). As a
preliminary, we perform in Section 3.1 a spectral study of the 1D Schrödinger operator Pω defined
by (5), deriving exponential estimates for truncated heat traces. Then, in Section 3.2, we estimate
the small-time asymptotics of the truncated heat trace of 4g, near the boundary (actually, on a
cone); the three cases β > βc, β = βc, β 6 βc, must be treated in different ways. In Section 3.3,
using a heat parametrix, we glue together the heat kernel near the boundary and the Riemannian
heat kernel far from the boundary. Finally in Section 3.4 we prove Theorem 1 in the separable
case.

In Section 3.5, we show how to pass from the separable to the general case by using the fact
that the metric g is quasi-isometric to a separable metric. In Section 3.6, we prove Theorem 2.
Our approach uses again heat traces.

3.1 Spectral study of the 1D Schrödinger operators

We consider the family of Schrödinger operators,

P1 = −∂2
x + qC,β(x)

where qC,β(x) = Cx−2 + xβ , C > 0 and β > 0, acting on L2((0,+∞), dx). The operators P1 are
essentially self-adjoint if and only if C > 3/4; when C < 3/4 we consider the Friedrichs extension
of P1 with core C∞0 ((0,+∞)) (see Appendix A.3). The spectrum of P1 is discrete; we denote it by

6



0 < µ1 6 µ2 6 µ3 6 · · · . We derive precise semi-classical asymptotics for the associated truncated
heat trace.

Let χ : [0,+∞) → [0, 1] be a smooth decreasing function with χ ≡ 1 on [0, a] with a > 0 and
χ′ 6 0 everywhere. We note that χ ≡ 1 is included. We define the corresponding truncated heat
trace by

Zχ(τ) = Tr
(
e−τP1χ

)
∀τ > 0.

Let γ = max(1/β, 1/2).

Proposition 4. Given any 0 < τ 6 1, we have

Zχ(τ) =
1√
4πτ

∫ +∞

0

e−τx
β

χ(x)dx+ O
(
τ−γ

)
and for τ > 1,

Zχ(τ) = O
(
e−µ1τ

)
uniformly with respect to χ in both cases.

The counting function N1(µ) = #{j ∈ IN∗ | µj 6 µ} satisfies N1(µ) ∼ Aµ
1
2 + 1

β as µ → +∞
with A =

√
2
π

1
βB(3/2, 1 + 1/β) where B is the Beta function.

Proof of Proposition 4. We first establish an elementary lemma. We denote by QN (resp., QD)
the self-adjoint operator −∂2

x on an interval of length 1 with Neumann (resp., Dirichlet) boundary
condition.

Lemma 1. For 0 < τ 6 1 and ? ∈ {D,N}, we have Tr(exp(−τQ?)) = (4πτ)−1/2 + O(1).

Proof of Lemma 1. The estimate does not depend on the chosen interval. The spectrum of QN is
{n2π2 | n ∈ IN} and the spectrum of QD is {n2π2 | n ∈ IN∗}. Hence both traces differ by 1, and
it suffices to prove the estimate for QN . Writing

Tr(exp(−τQN )) =
1

2

(
1 +

∑
n∈Z

e−τn
2π2

)

and applying the Poisson summation formula gives the result.

We now prove the proposition. We first consider the case where τ 6 1. We are going to apply
Dirichlet-Neumann bracketing with the decomposition (0,+∞) = ∪+∞

j=0Jk where the intervals Jk
are defined below.

Let x0 be defined by qC,β(x0) = min qC,β(x). Then qC,β(x) = Cx−2 + xβ is increasing on
[x0,+∞). Let Jk = [x0 + k, x0 + k + 1] with k > 1 and J0 =]0, x0 + 1]. We have the following
estimates for the Dirichlet and Neumann heat traces Z?k,χ on Jk: for k > 1,

ZNk,1(τ) 6

(
1√
4πτ

+ O(1)

)
e−τq(x0+k) 6

(
1√
4πτ

+ O(1)

)∫ x0+k

x0+k−1

e−τqC,β(x)dx

and

ZDk,χ(τ) >

(
1√
4πτ

+ O(1)

)
e−τq(x0+k+1)χ(x0 + k + 1)

>

(
1√
4πτ

+ O(1)

)∫ x0+k+2

x0+k+1

e−τqC,β(x)χ(x)dx,

(6)
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while
ZN0 (τ) = O(τ−1/2).

The minimax principle implies that each eigenvalue µj is larger than the jth-eigenvalue of the
union for all k of the Neumann problem on the intervals Jk. In this way, we obtain the following
upper bound for the trace with χ = 1:

Z1(τ) 6 O

(
1√
τ

)
+

(
1√
4πτ

+ O(1)

)∫ +∞

x0

e−τqC,β(x)dx. (7)

Noting that ∣∣∣∣∫ +∞

0

(
e−τqC,β(x) − e−τx

β
)
dx

∣∣∣∣ = O(1),

we infer that

Z1(τ) 6
1√
4πτ

∫ +∞

0

e−τx
β

dx+ O
(
τ−γ

)
.

Similarly, using the fact that the Dirichlet heat kernel is smaller than the global kernel (see [12,
Theorem 2.1.6]), we get from (6) the following lower bound:

Zχ(τ) >
1√
4πτ

∫ +∞

0

e−τx
β

χ(x)dx+ O
(
τ−γ

)
. (8)

Note that the same lower bound is valid when replacing χ by 1− χ.
Now, we use a variant of the fact that

(A+B = A′ +B′, A > A′, B > B′) ⇒ (A = A′, B = B′).

We take A = Zχ, B = Z1−χ, A′ = (4πτ)−
1
2

∫ +∞
0

e−τx
β

χ(x)dx and B′ = (4πτ)−
1
2

∫ +∞
0

e−τx
β

(1 −
χ(x))dx. By (7), we have

A+B = A′ +B′ + O
(
τ−γ

)
and, from (8),

A > A′ + O
(
τ−γ

)
, B > B′ + O

(
τ−γ

)
.

It follows that A = A′ + O (τ−γ) and B = B′ + O (τ−γ). In particular,

Z1(τ) ∼ 1

(4πτ)
1
2

∫ +∞

0

e−τx
β

dx.

Using the Karamata tauberian Theorem (recalled in Appendix A.2), we get

N1(µ) ∼ Aµ
1
2 + 1

β

as µ→ +∞, with the constant A defined in Proposition 4.
We now prove the exponential upper bound for τ > 1. We note that Zχ(τ) 6 Z1(τ). Moreover

all eigenvalues µj of P1 are larger than the minimum q(x0) of q. Then, for τ > 1, we have

Z1(τ) = e−τµ1

+∞∑
j=1

e−τ(µj−µ1) 6 e−τµ1

+∞∑
j=1

e−(µj−µ1).

The Weyl law applied to P1 implies that the sum at the right-hand side converges and thus
Zχ(τ) 6 ce−τµ1 for some c > 0.
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Corollary 2. There exists C1 > 0 only depending on C and β but not on χ, such that, setting
J =

∫ +∞
0

χ(x)dx, we have, for every τ > 0,

Zχ(τ) 6
C1√
τ

min
(
J, τ−1/β

)
.

Proof. The bound involving J follows from the estimate e(τ, x, x) 6 (4πτ)−
1
2 which is valid for

any positive potential q (see [12, Theorem 2.1.6]). The other bound follows from Proposition 4

and from the estimate
∫ +∞

0
e−τx

β

dx = O
(
τ−1/β

)
.

Given any ω > 0, we set
Pω = −∂2

x + Cx−2 + ωxβ . (9)

Proposition 5. For any ω > 0, the operator Pω is unitarily equivalent to ω2/(2+β)P1. In partic-
ular, the spectrum of Pω is ω2/(2+β) times the spectrum of P1.

Proof. Considering the unitary map U : L2(IR+, dx)→ L2(IR+, dx) defined by

Uf(x) = ω
1

2(2+β) f(ω
1

2+β x),

we find that U?PωU = ω2/(2+β)P1.

3.2 Truncated heat asymptotics for the cone X∞

In this subsection, we compute the small-time asymptotics of the truncated heat trace,

Z∞,χ(t) = Tr
(
e−t4gχ

)
where χ is as in Section 3.1 and moreover is compactly supported in [0,+∞), and g is the metric
g = dx2 + x−βg1 on the cone X∞ = (0,+∞) ×M . The manifold M is equipped with the metric
g1 that is independent of x. Here, we do not assume that ∂M is empty: this will be useful in the
proof of Theorem 2. We will only use the Weyl asymptotics on M .

Using the direct sum decomposition given in (4), we have

Z∞,χ(t) =

+∞∑
k=1

Tr
(
e−tPωkχ

)
(10)

where we recall that the ωk are the eigenvalues of 4M and Pω is defined by (9).
We make the following two preliminary observations:

• For k fixed and t→ 0+, we have Tr(e−tPωkχ) = O(t−1/2). This term will be negligible in the
sequel because the global trace is not less than C/t for some C > 0 (since dim(X) > 2).

• For t > 0 fixed, the smooth function f : ω 7→ Tr(e−tPωχ) has a fast decay at infinity: by
Proposition 5,

f(ω) 6 Tr(e−tPω ) = Tr(e−tω
2/(2+β)P1).

The claim then follows from the second assertion given in Proposition 4.

We split the sum (10) into two parts,

Z∞,χ(t) =
∑
ωk<1

+
∑
ωk>1

= Z0
∞,χ(t) + Z1

∞,χ(t).
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The first part, Z0
∞,χ(t), is O(t−1/2) by the first preliminary observation and we thus only have to

estimate the second part, Z1
∞,χ(t). Using Proposition 5 and its proof, we have

Z1
∞,χ(t) =

∑
ωk>1

Tr
(
e−tω

2/(2+β)
k P1χ(·/ω1/(2+β)

k

)
=
∑
ωk>1

Z
χ(·/ω1/(2+β)

k )
(tω

2/(2+β)
k )

and we remark that, for ω > 1, the function χ(·/ω1/(2+β)) is identically equal to 1 on [0, a] (where
a was introduced Section 3.1), so that we can use the estimate of Section 3.1.

Converting this sum into an integral (see Appendix A.2), using the Weyl law on M , we obtain

#{ωk 6 ω} ∼ γnVol(M)ωn/2 as ω → +∞.

Using Proposition 7 and the definition of f , we get

Z1
∞,χ(t) ∼ nγnVol(M)

2

∫ +∞

1

Zχ(./ω1/(2+β))(tω
2/(2+β))ω

n
2−1 dω.

Making the change of variable τ = tω2/(2+β), we arrive at the following lemma, recalling the δH
was introduced below Proposition 1.

Lemma 2. The following holds,

Z1
∞,χ(t) ∼ nγn(β + 2)Vol(M)

4tδH/2

∫ +∞

t

Z
χ(.
√
t/τ)

(τ)τ
δH
2 −1dτ as t→ 0+ .

The integral,

I(t) =

∫ +∞

t

Z
χ(.
√
t/τ)

(τ)τ
δH
2 −1 dτ (11)

is convergent at τ = ∞ for all β > 0 but, in general, not at τ = 0 because if β 6 βc then
δH
2 − 1 6 1

2 + 1
β − 1. We can compare this with the estimate in Corollary 2.

3.2.1 Case β > βc

We estimate the small-time behavior of I(t) defined by (11). By the monotone convergence theo-
rem, we have

lim
ε→0+

∫ +∞

0

e(τ, x, x)χ(εx) dx =

∫ +∞

0

e(τ, x, x) dx

where e is the heat kernel of P1. Hence, for any τ > 0,

lim
t→0+

Z
χ(.
√
t/τ)

(τ) = Z1(τ).

Using, again, the monotone convergence theorem, we conclude that

lim
t→0+

I(t) =

∫ +∞

0

Z1(τ)τ
δH
2 −1 dτ.

From Corollary 2, we get

Z1(τ)τ δH/2−1 6 Cτ
n
2 (1+ β

2 )−1− 1
2−

1
β e−µ1τ

and β > βc = 2/n implies n
2 (1 + β

2 )− 1− 1
2 −

1
β > −1. Thus, the corresponding limit is finite:

lim
t→0+

I(t) =

∫ +∞

0

Z1(τ)τ
δH
2 −1 dτ < +∞.
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3.2.2 Case β 6 βc

By the second estimate in Proposition 4, the contribution to the integral from 1 to +∞ in the
expression for I(t) (which was introduced in Lemma 2) is O(1) uniformly with respect to t and,
hence, the corresponding part of Z1

∞,χ(t) is O(t−δH/2), which will be negligible. We only need to
estimate the asymptotics of

J(t) =

∫ 1

t

Z
χ(.
√
t/τ)

(τ)τ
δH
2 −1 dτ.

Sub-case β < βc. We prove that there exists a δ > 0 such that

Tr
(
e−t4gχ

)
= O

(
Jδt−(n+1)/2

)
(12)

as t→ 0+. We split the integral,

J(t) =

∫ 1

t

Tr
(
e−τP1χ

(√
t/τ .

))
τ
δH
2 −1dτ = J1(t) + J2(t) =

∫ τ0

t

+

∫ 1

τ0

where τ0 satisfies τ
−1/β
0 = J

√
τ0/t, i.e., τ0 =

(
t/J2

)β/(2+β)
with J =

∫ +∞
0

χ(x) dx as in Corollary 2.
We get upper bounds for J1 and J2 using the upper bounds given in Corollary 2 as follows. Using
the first argument in the minimum, we have

J1(t) 6 C
J√
t
τ
δH/2
0 = CJ1−(nβ/2)t(nβ/4)−(1/2)

Similarly, using the second argument in the minimum, we find that

J2(t) 6 C

∫ 1

τ0

τ−1/βτ (δH/2)−(3/2) dτ 6 CJ1−(nβ/2)t(nβ/4)−(1/2).

Finally,
t−δH/2I(t) 6 CJ1−(nβ/2)t−(n+1)/2

so that we can take δ = 1− (nβ/2). We will use this further in Section 3.4 by choosing J small.

Sub-case β = βc. When β = 2/n, we have to estimate the asymptotics of

J(t) =

∫ 1

t

Tr
(
e−τP1χ(·

√
t/τ)

)
τ (n−1)/2 dτ.

Using the estimate of Proposition 4, we get

J(t) ∼ 1√
4π

∫ 1

t

τ
n
2−1 dτ

∫ ∞
0

e−τx
2/n

χ(x
√
t/τ) dx

modulo terms of smaller order in τ . Using the change of variable y = τx2/n, we get

J(t) ∼ n

4
√
π

∫ 1

t

dτ

τ

∫ ∞
0

e−yy
n
2−1χ

(√
tτ−(n+1)/2yn/2

)
dy =

n

4
√
π

∫ 1

t

dτ

τ
F
(
τ (n+1)/2/t1/2

)
where the function F , defined by

F (X) =

∫ +∞

0

e−yy
n
2−1χ

(
yn/2/X

)
dy,

11



is smooth and satisfies F (X) = OX→0 (X) and limX→+∞ F (X) = Γ(n/2). Using the new variable
u = τ (n+1)/2/t1/2, we get

J(t) ∼ n

2(n+ 1)
√
π

∫ t−1/2

tn/2
F (u)

du

u
,

and finally

J(t) ∼ nΓ(n/2)

4(n+ 1)
√
π
| ln t|

as t→ 0+.

3.3 The heat parametrix in the separable metric case

We adapt the method of [5] and we use Appendix A.4. We denote by z, z′ some generic points of
X and by z = (x,m), z′ = (x′,m′) generic points of [0, 1) ×M ⊂ X. Let χ be as in the previous
sections, vanishing near x = 1 and extended by 0 inside X. Let η ∈ C∞0 ([0, 1)) so that η = 1 near
the support of χ, and η0 ∈ C∞0 (X), vanishing near ∂X and equal to 1 near the support of 1− χ.
We choose a > 0 so that η0 vanishes for x 6 2a. We claim that

p(t; z, z′) = η(x)e∞(t; z, z′))χ(x′) + η0(x)e0(t; z; z′)(1− χ(x′))

where e∞ is the heat kernel on the cone X∞ and e0 the Riemannian heat kernel generated by the
Laplacian 4g on X \ {x 6 a} with Dirichlet boundary conditions, is a good approximation of the
heat kernel on X as t→ 0.

Proposition 6. Let P (t) be the operator of Schwartz kernel p(t, ·, ·). We have

Tr
(
P (t)− e−t4g

)
= O (t∞)

as t→ 0+.

Proof. We set r(t, z, z′) = (∂t + (4g)z) p(t, z, z′). The kernel r vanishes if x is small enough. By
the local nature of the small-time asymptotics of Riemannian heat kernels (see Appendix A.4),
e∞(t, ·, ·) and e0(t, ·, ·) are O(t∞) close in C∞ topology on [0, 1)×M . Moreover, if x ∈ supp(η′) or
x ∈ supp(η′0), p(t, ·, ·) and e0(t, ·, ·) are O (t∞) in the C∞ topology, because z 6= z′. It follows that
r(t, ·, ·) = O (t∞) in C∞ topology. Therefore, denoting by R(t) the operator of Schwartz kernel
r(t, ·, ·), the trace norm of R(t) is a O (t∞). By the Duhamel formula, using that P (t) → id as
t→ 0+, we have

P (t)− e−t4g =

∫ t

0

e−(t−s)4gr(s) ds.

The result follows because the operator norm of e−t4g is not greater than 1.

3.4 Completion of the proof of Theorem 1 in the separable metric case

Thanks to the previous section, we only have to estimate the trace of P (t). We use the local nature
of the heat asymptotics to show that the contribution of the term η0e0(t)(1 − χ) is equivalent to
(4πt)−(n+1)/2

∫
X

(1 − χ) dvg. We are left to estimate the term that corresponds to the truncated
cone as in Section 3.2. This gives the conclusion when β > βc.

When β < βc, the first term can be made smaller than εt−(n+1)/2 for any ε > 0 by choosing
J =

∫ +∞
0

χ(x) dx small enough as mentioned in Section 3.2.2.

12



3.5 From the separable to the general case

We prove that, for any given ε > 0, the metric g on X is ε-quasi-isometric to a separable metric
gs. We choose δ > 0 so that

|g0(u)− g0(0)| 6 ε(du2 + g0(u))

for any u ∈ [0, δ]. Then, we choose η ∈ C∞0 ([0, δ)), identically equal to 1 near u = 0. We consider
the separable metric gs which coincides with g outside u 6 δ and is given near ∂X by

gs = ηu−α
(
du2 + g0(0)

)
+ (1− η)g.

Then ∣∣∣∣gsg − 1

∣∣∣∣ =

∣∣∣∣η g0(u)− g0(0)

du2 + g0(u)

∣∣∣∣ 6 ε.

Using Appendix A.1, this concludes the proof of Theorem 1 in the general (non-separable) case.

3.6 Proof of Theorem 2

3.6.1 Case β < βc

We consider the heat traces Zf (t) = Tr
(
e−t4gf

)
where f : X → IR is continuous. Let ε > 0.

We choose a smooth function χ : X → [0, 1] that is identically equal to 1 near ∂X and such that∫
X
χdvg 6 ε. Writing g = χf + (1− χ)f , we get

Tr
(
e−t4gf

)
= Tr

(
e−t4g (1− χ)f

)
+ Tr

(
e−t4gχf

)
= J(t) +K(t).

By the local nature of the heat trace asymptotics (see Appendix A.4), we have

J(t) ∼ 1

(4πt)(n+1)/2

∫
X

(1− χ)f dvg

as t→ 0+. Besides,
K(t) 6 ‖f‖∞Tr

(
e−t4gχ

)
.

By (12), and since we can choose ε > 0 arbitrarily small, it follows that

Zf (t) ∼ 1

(4πt)(n+1)/2

∫
X

f dvg

as t→ 0+, which gives the expected result.

3.6.2 Case β > βc

We give the proof in the case β > βc. The case β = βc is treated similarly. Let us first prove that
the support of the Weyl measure is contained in ∂X. If supp(f) ∩ ∂X = ∅, we get again by the
local nature of the heat asymptotics that

Tr
(
e−t4gf

)
= O

(
t−(n+1)/2

)
while, by the Weyl law given in Theorem 1, we have

t−(n+1)/2 = o
(
Tr
(
e−t4g

))
as t → 0+. Hence, it suffices to consider functions f of the form f = 1D where D = [0, a] × D1

with D1 a piecewise smooth domain in M .
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We recall that, according to [12, Chapter 5, Theorem 2.1.6], we have

0 6 eD(t,m,m) 6 eX(t,m,m) ∀m ∈ D (13)

where eD is the Dirichlet heat kernel on D.
We set D′ = [0, a]× (M \D) and D′′ = X \ [0, a]×M . For any domain K, we denote by ZK

the Dirichlet heat trace and by Z ′K(t) =
∫
K
ZX(t,m,m) dvg(m). We have

ZD(t) ∼ C Vol(D1)t−dH/2, ZD′(t) ∼ C Vol(M \D1)t−dH/2 (14)

and ZD′′(t) = o(t−dH/2) as t → 0+. Note that for (14), we used the proofs in Section 3.2 for
the case where the n-dimensional manifold M (here: D1 and M \ D1) can have a boundary.
The sum (Z ′D + Z ′D′ + Z ′D′′)(t) = ZX(t) is equivalent to C Vol(M)t−dH/2 by Theorem 1. Hence,
(Z ′D + Z ′D′)(t) ∼ CVol(M)t−dH/2. On the other hand, thanks to (13) we have

ZD 6 Z ′D, ZD′ 6 Z ′D′ , ZD′′ 6 Z ′D′′ .

It follows that
Z ′D(t) ∼ CVol(D1)t−dH/2

as t→ 0+, which yields the desired result.

4 Discussion and open problems

In this article, motivated by the propagation of acoustic waves in gas giant planets, we derived the
Weyl law for the Laplace-Beltrami operator on a smooth compact Riemannian (n+1)-dimensional
manifold X with boundary whose metric blows up near the boundary. Many new questions emerge.
We present some of them.

Quantum Ergodicity and Quantum Limits. We have seen in Corollary 1 that, if β > βc,
then a density-one subsequence of eigenfunctions concentrates on ∂X. This is a preliminary result
towards Quantum Ergodicity (QE).

Recall that, on a locally compact space U endowed with a probability Radon measure µ, given
a self-adjoint nonnegative operator T on L2(U, µ), of discrete spectrum λ1 6 λ2 6 · · · 6 λj 6
· · · → +∞ associated with an orthonormal eigenbasis Φ = (φj)j∈IN∗ of L2(U, µ), a Quantum Limit
(QL) of Φ is a probability Radon measure ν on U that is a weak limit of a subsequence of the
probability measures |φj |2 µ, i.e., there exists a subsequence (jk)k∈IN∗ such that∫

U

f |φjk |2 dµ −→
k→+∞

∫
U

f dν ∀f ∈ C0
c (U). (15)

We say that QE holds for (T,Φ) if there exists a QL ν on U and a subsequence (jk)k∈IN∗ of density
one such that (15) holds.

One may wonder whether, when β > βc, a QE property on M would imply a QE property
on X. Proving this fact certainly requires fine spectral properties of Schrödinger operators (see
[1]). Besides, inspired by [9, Theorem B], we wonder what can be said on QLs supported on
∂X = {0}×M : are they invariant under the geodesic flow of (M,G) (where G = g1(0))? Defining
QLs on T ?M will already be a challenge.

Inverse problems on spectra. A natural question is: does the spectrum of X determine the
spectrum of M? Attacking this problem certainly requires developing appropriate trace formulas,
as in [8].
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Closed geodesics. Recalling that G = g1(0) where g1 is defined by (1), it is natural to view
geodesics on (M,G) as limits, in an appropriate sense, of geodesics on (X, g). A natural question is
then: do there exist some closed geodesics of X accumulating on (converging to) closed geodesics
of ∂X = M? We refer to [7] for a similar question investigated in the framework of contact
sub-Riemannian 3D manifolds. Here again, having appropriate trace formulas might be useful.

Observability properties. The study of the Weyl asymptotics is a first step towards solving
some inverse problems. As explained in Section 1, the knowledge of spectrum properties can already
be used to check the validity of some models, but the main objective in the physical context would
be the ability to reconstruct some features of the internal structure of the planets, based on the
observation of acoustic waves. The feasibility of such an inverse problem is mathematically modeled
by an observability inequality, which can be settled as follows for half-waves. Given any T > 0
and any subset ω of X, we say that the observability property holds true for (ω, T ) if there exists
a positive constant CT (ω) such that∫ T

0

∥∥∥1ω eit√4gφ∥∥∥2

L2(X,dvg)
dt > CT (ω)‖φ‖2L2(X,dvg) ∀φ ∈ L2(X, dvg). (16)

– When β < βc, we expect that (16) holds as soon as ω is open and (ω, T ) satisfies the Geometric
Control Condition (GCC, see [2]), like in the classical case of a non-singular Riemannian metric.

– When β > βc, an obvious necessary condition for (16) to hold is that ω contain an open neigh-
borhood of a subset of ∂X. Indeed, take φ in (16) to be a highfrequency eigenfunction and apply
Corollary 1. We think that this condition is sufficient if moreover (ω, T ) satisfies GCC.

We note that, when X is a closed ball in IRn+1 (an idealized situation for an exactly round
planet), GCC is never satisfied unless ω contains an open neighborhood of the whole boundary of
X, which is certainly not relevant for applications from the physical point of view. In this case
where X is a round ball, it is more interesting to take a small observation subset ω, containing
a small open subset of ∂X. But, as soon as ω is a proper subset of a half-ball, GCC (and thus
(16)) obviously fails due to trapped rays, propagating along a diameter never meeting ω. In
this deteriorated context, we wonder, however, whether (16) is anyway satisfied if we restrict the
inequality to radial waves or to surface waves, which are the most physically meaningful waves to
be observed.

Metrics that are singular on larger codimension submanifolds. In this paper, we have
considered a class of singular metrics blowing up at the boundary of X, where the boundary can
be seen as a codimension-one submanifold of X.

In more general, let X be a smooth compact manifold and let Z be a submanifold of X of
codimension m ∈ IN∗, and consider the class of singular metrics g on X that are smooth on X \Z
and that, near Z, are written as

g = h+ gZ(x)r−β

in a neighborhood of Z assumed to be diffeomorphic to Z × Bm where Bm is the unit ball of
IRm
x (this holds if the normal bundle of Z is trivial) equipped with the Euclidean metric h and

the polar coordinates (r, σ), and gZ(x) is a metric on Z, parametrized by x ∈ Bm and depending
smoothly on x. The techniques developed in our paper can certainly be extended to compute the
Weyl asymptotics in such cases.
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A Appendix

A.1 Quasi-isometries

Let X be a smooth manifold of dimension n+ 1, with boundary. Two metrics g1 and g2, smooth
on X \ ∂X, are said to be ε-quasi-isometric if∣∣∣∣g1

g2
− 1

∣∣∣∣ 6 ε

uniformly on X \ ∂X. For i ∈ {1, 2}, let 4gi be the Friedrichs extension of the Laplace-Beltrami
operator on (X, gi) with core C∞0 (X \ ∂X).

If 4g1 has a discrete spectrum (λ1
j )j∈IN∗ then 4g2 has also a discrete spectrum (λ2

j )j∈IN∗ and,

for ε 6 1
2 (this condition is to get bounds on the inverse of gi), there exists C(n) > 0 such that,

for every j ∈ IN∗, ∣∣∣∣∣λ1
j

λ2
j

− 1

∣∣∣∣∣ 6 C(n)ε.

Indeed, this estimate follows from the minimax characterization of the eigenvalues and from the
comparison of the Rayleigh quotients, i.e., of the volumes and co-metrics.

A.2 Karamata tauberian theorem and converse

We recall the Karamata tauberian theorem (see [16, Chapter XIII, Theorem 2]).

Theorem 3. Let µ be a positive Radon measure on IR+. If there exists α > 0 such that∫ +∞

0

e−tλdµ(λ) ∼ At−α (resp., A| ln t|t−α)

as t→ 0+, then

µ([0, λ]) ∼ A

Γ(α+ 1)
λα

(
resp.,

A

Γ(α+ 1)
λα lnλ

)
as λ→ +∞.

We need a converse of Theorem 3. Let f : IR+ → IR+ be a nonincreasing function of class
C1, such that f and f ′ have a fast decay at infinity. Let (λj)j∈IN∗ be a nondecreasing sequence
of positive real numbers. We define the counting function N(λ) = #{j ∈ IN∗ | λj 6 λ}, for any
λ ∈ IR. The objective is to estimate the sum

S =

+∞∑
j=1

f(λj).

Proposition 7. Assume that there exist C > 0 and α > 0 such that N(λ) ∼ Cλα as λ → +∞.
For any ε > 0, there exists K(ε) > 0, depending on the counting function N but not on f , such
that ∣∣∣∣S − Cα ∫ +∞

λ1

f(λ)λα−1 dλ

∣∣∣∣ 6 K(ε)f(λ1) + ε

∫ +∞

λ1

f(λ)λα−1 dλ.

Proof. Given any ε > 0, let Λ0 > 0 such that, for every λ > Λ0,

(1− ε)Cλα 6 N(λ) 6 (1 + ε)Cλα. (17)
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Noting that dN(λ) =
∑+∞
j=1 δλj , using the Stieltjes integral, we have

S =
∑
λj<Λ0

f(λj) +

∫ +∞

Λ0

f(λ) dN(λ).

Now, since
∑
λj<Λ0

f(λj) 6 N(Λ0)f(λ1), we get by integration by parts, using the fast decay of f
at infinity, that

S 6 N(Λ0) (f(λ1)− f(Λ0))−
∫ +∞

Λ0

f ′(λ)N(λ)dλ.

We derive an upper bound for S. A lower bound is obtained similarly. Using (17), integrating
by parts and using that f(Λ0) 6 f(λ1), we obtain

−
∫ +∞

Λ0

f ′(λ)N(λ) dλ 6 −(1 + ε)C

∫ +∞

Λ0

f ′(λ)λα dλ

6 (1 + ε)C

(
f(λ1)Λα0 + α

∫ +∞

Λ0

f(λ)λα−1 dλ

)
.

Therefore,

S 6 f(λ1) (N(Λ0) + C(1 + ε)Λα0 ) + (1 + ε)Cα

∫ +∞

λ1

f(λ)λα−1 dλ

and the result follows with K(ε) = N(Λ0) + C(1 + ε)Λα0 .

A.3 Weyl circle-point limit criterion

We consider the Schrödinger operator P = −∂2
x + q(x) on C∞0 ((0,+∞)), where q is a smooth

function on (0,+∞). According to the Weyl circle-point limit criterion (see [31, Theorem X.7]),
P is essentially self-adjoint if and only if there exists at least one solution of Pu = 0 that is not
square integrable at 0 and at least one solution of Pu = 0 that is not square integrable at +∞.

When q(x) = Cx−2 + ωxβ for some C > 0, β > 0 and ω > 0, there is only one solution of
Pu = 0 that is square integrable at +∞. Near 0, the solutions of Pu = 0 are equivalent to linear
combinations of xγ+ and xγ− where γ+ and γ− are the two solutions of −γ(γ − 1) + C = 0. It
follows that P is essentially self-adjoint if and only if γ− 6 − 1

2 , that is, if and only if C > 3/4.

A.4 Local nature of the small-time asymptotics of heat kernels

Let (U, g) be a smooth Riemannian manifold and let 4 be the Laplace-Beltrami operator. For our
needs (see Section 3.3), U = X \ ∂X with the metric g .

Let e1 and e2 be two solutions of (∂t + 4x)ei(t, x, y) = 0 for t > 0, satisfying ei(t, x, y) =
ei(t, y, x) for all t > 0 and (x, y) ∈ U × U and

lim
t→0+

∫
U

ei(t, x, y)f(y) dvg(y) = f(x) ∀x ∈ U ∀f ∈ C∞0 (U),

for i ∈ {1, 2}.

Lemma 3. We have e1(t, ·, ·)− e2(t, ·, ·) = O(t∞) as t→ 0+ in C∞ topology on U ×U . Moreover,
denoting by D the diagonal of U × U , for i ∈ {1, 2}, we have ei(t, ·, ·) = O(t∞) as t→ 0+ in C∞

topology on U × U \D.
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This result reflects Kac’s principle of “not feeling the boundary”, showing that the small-time
asymptotic behavior of heat kernels is purely local. A detailed proof can be found in [10, Section
3.2.1]. The idea comes from the paper [21]. The proof uses the fact that the Hörmander operator
P = 2∂t +4x +4y is hypoelliptic. Extending the kernels ei by 0 for t < 0, we have Pei = 0 on
IR × U × U \ D and P (e1 − e2) = 0 on IR × U × U , in the distributional sense. The result then
follows by hypoellipticity.

A.5 4g as a nonsmooth Hörmander operator

Based on the mathematical model provided in Section 2.1, near any point of the boundary of
X we have X ' [0, 1) × IRn with a local system of coordinates (x, y), with x ∈ [0, 1) and y =
(y1, . . . , yn) ∈ IRn, and we can write (locally)

4g = −
n∑
i=0

X∗i Xi + V (18)

where V (x, y) = C(x,y)
x2 is a potential and the Xi’s are vector fields given by

X0 = a0(x, y) ∂x, Xi = xβ/2ai(x, y) ∂yi , i ∈ {1, . . . , n}.

The functions C and ai, i ∈ {0, . . . , n} are smooth on IR × IRn and C(0, ·) = Cβ and ai(0, ·) = 1
(they can be expressed in terms of the coefficients of the smooth Riemannian metric g1(x) on M
defined by (1)). The separable case corresponds to a0 = 1 and ai not depending on x.

Expressed as (18), the operator 4g is then a Hörmander operator, however nonsmooth unless
β ∈ 2IN∗. Because of this lack of smoothness, many classical results cannot be applied here.

When β ∈ 2IN∗, the above vector fields are smooth and define an almost-Riemannian geometry,
in which the Weyl asymptotics of the almost-Riemannian Laplacian 4aR = −

∑n
i=0X

∗
i Xi (i.e.,

(18) with V = 0), of Grushin type, has been established in [11].
With these preliminary remarks in mind, we then mention a few interesting facts hereafter.

Homogeneity. In the above local coordinates, given any ε > 0, we define the dilation

δε(x, y) = (εx, ε1+β/2y) ∀(x, y) ∈ [0, 1)× IRn.

In the separable case where a0 = 1 and ai does not depend on x, for any i ∈ {1, . . . , n}, we define

X̂i = limε→0 εδ
∗
εXi = xβ/2ai(0) ∂yi , and we have

εδ∗εX0 = X0 and εδ∗εX̂i = X̂i ∀i ∈ {1, . . . , n}.

In sR geometry, X̂i is the nilpotentization of the vector field Xi at the point identified with
(0, 0). Extrapolating results of sub-Riemannian geometry that one can find in [10] to the case
of β > 0, denoting by dg the g-distance on X, one can show that dg((0, 0), (x, y)) divided by
|x|+

∑n
i=1 |yi|1/(1+β/2) is bounded above and below by some positive constants in a neighborhood

of (0, 0). Noting that 1/(1 + β/2) = 1 − α/2, we thus recover [13, Proposition 13] and thus the
result of Proposition 1 and the fact that Hausdorff and Minkowski dimensions coincide. In the
non-separable case, we obtain the result by using quasi-isometries.

Weyl law when β ∈ 2IN∗. When β ∈ 2IN∗, we always have β > βc, and β = βc if and only if
n = 1. Since the potential 1/x2 is homogeneous, combining results of [10, 11], we recover the Weyl
law established in Theorem 1.
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Weyl law when β /∈ 2IN∗. To establish the Weyl law in general sub-Riemannian cases, the
approach developed in [11] consists of estimating singular integrals involving the heat kernel, by
performing the so-called (J + K)-decomposition. Applying this approach to the nonsmooth op-
erator in (18) cannot be done directly because we miss a general hypoellipticity theory, valid for
nonsmooth vector fields as above, and a generalization of Lemma 3 (see Appendix A.4) to that
context.
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