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ABSTRACT

In previous work, we have studied a very general formalism
of two-player games relevant for applications such as model
checking. We assume games in which strategies by the players
lead to outcomes taken from a finite set, and each player
strives for an outcome that is optimal according to his/her
preferences. We have shown using the proof assistants Isabelle
and Coq that if the game has a certain structure, then a
Nash equilibrium exists; more precisely, any game can be
abstracted by disregarding the preferences and simply saying
that some outcomes are mapped to “win for player 1”, all
the others to “win for player 2”. The particular structure we
consider are those games for which every such abstraction
leads to a game which has a determined winner.

Here, we contribute several continuations of the work and
their Isabelle formalisations.
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INTRODUCTION

Game theory is an interdisciplinary research topic (mathe-
matics, economics . . . ) with many applications. When game
theory is applied to critical multi-agent systems, one may
use proof assistants to prove correctness [1, 5, 7, 8, 10, 11,
13, 14, 16] .

In previous work [15], we have formalised a game-theoretic
result, essentially [9, Lemma 2.4], both in Coq and Isabelle.
The result is as follows: starting from a two-player game with
finitely many outcomes, one may derive a game by rewriting
each of these outcomes with either of two basic outcomes,
namely that Player 1 wins or that Player 2 wins. If all ways
of deriving such a win/lose game lead to a game where one
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player has a winning strategy, the original game has a Nash
equilibrium (NE).

Here, we present three extensions and applications of this
work using Isabelle:

(1) Proving formally the existence of secure equilibria.
(2) The result of [15] is weaker than [9, Lemma 2.4] in that

we consider preferences that are strict partial orders
instead of just acyclic binary relations. However, the
result easily also applies to (merely) acyclic preferences.

(3) Since the main theorem of [15] transforms determinacy
into existence of NE, we apply it to the positional
determinacy of parity games, which has been formalized
in Isabelle [4].

Game forms are the central concept of this work. They can
be instantiated into games by providing preferences for the
players. Then, the NEs are defined for games. The win/lose
games and their winning strategies are a special case.

Definition 1. A game form is a tuple ⟨𝑆1, 𝑆2, 𝑂, 𝑣⟩ where
∙ 𝑆1 and 𝑆2 are the strategies of Players 1 and 2, resp.,
∙ 𝑂 is a nonempty set (of possible outcomes),
∙ 𝑣 : 𝑆1 × 𝑆2 → 𝑂 is the outcome function that values
the strategy profiles.

A game form endowed with two binary relations ≺1,≺2 over
𝑂 for each player (modeling her preference) is called a game.

A win/lose game is a game where 𝑂 = {True,False} and
the preferences are False ≺1 True and True ≺2 False.

A win/lose game such that one player has a winning strat-
egy is said to be determined.

For 𝑖 ∈ {1, 2}, if Player 𝑖 is the winning player and the
winning strategy is in some 𝑅𝑖 ⊆ 𝑆𝑖, the game is said to be
determined via 𝑅𝑖.

Definition 2. Let ⟨𝑆1, 𝑆2, 𝑂, 𝑣,≺1,≺2⟩ be a game. A strat-
egy profile (𝑠1, 𝑠2) in 𝑆1 × 𝑆2 is a Nash equilibrium (NE) if
it makes both players stable:

(∀𝑠′1 ∈ 𝑆1, 𝑣(𝑠1, 𝑠2) ̸≺1 𝑣(𝑠′1, 𝑠2))∧
(∀𝑠′2 ∈ 𝑆2, 𝑣(𝑠1, 𝑠2) ̸≺2 𝑣(𝑠1, 𝑠

′
2))

Given a game form and a set 𝑊 ⊆ 𝑂, one can derive a
win/lose game in a straightforward way: player 1 wins iff the
outcome is in 𝑊 . If a game form is such that for every 𝑊 ,
the derived win/lose game is determined, we call the game
form itself determined.

In [15], we have formalised in Isabelle and Coq a theorem
[9] stating that a game 𝑔 whose game form is determined



has an NE (note that this does not mean that 𝑔 itself is
determined, in general it is not even a win/lose game). Here
is the main theorem in Isabelle code:

theorem equilibrium_transfer_finite :

assumes finiteO : "finite (range (form g))"

and trans1 : "trans (pref1 g)"

and irref1 : "irrefl (pref1 g)"

and trans2 : "trans (pref2 g)"

and irref2 : "irrefl (pref2 g)"

and det : "determinedForm (form g) R1 R2"

shows "∃ s1∈R1. ∃ s2∈R2. isNash g s1 s2"

1 EXISTENCE AND COMPUTATION
OF SECURE EQUILIBRIA

The secure equilibria [2, 3] of a game are the NEs of another
game obtained by changing the usual preference of each
player into a malevolent preference: instead of just trying to
maximize her own payoff, she tries primarily to do so and, in
case of ties, to minimize the opponent’s payoff. In Isabelle
code:

definition
mal_pref :: "(’a * ’a) set ⇒ (’a * ’a) set ⇒ (’a *

’a) set"

where "mal_pref pr1 pr2 = pr1 ∪ (pr2−1 - pr1−1)"

Given a game, we can replace the preferences for each
player by their respective malevolent extensions. We have a
result corresponding to our main theorem above for this case.
This extension is relatively straightforward and corresponds
to approximately 250 lines of Isabelle proof script.

2 ACYCLIC PREFERENCES

Our main theorem assumes that the preferences are strict
partial orders, i.e., transitive and irreflexive, and in this
respect, it is weaker than [9, Lemma 2.4] where preferences
are merely assumed to be acyclic. Recall that a relation 𝑟 is
acyclic if for all 𝑎, the pair (𝑎, 𝑎) is not in 𝑟+, the transitive
closure of 𝑟.

Here we strengthen our main theorem by weakening the
assumptions. Given a game with certain preferences, we can
define the game obtained by replacing each player’s preference
by the respective transitive closure. By the main theorem,
the transformed game has an NE, and we can show that this
NE is also an NE of the original game by mere preference
inclusion.

This extension is quite straightforward and corresponds
to less than 100 lines of Isabelle proof script.

3 POSITIONAL DETERMINACY OF
PARITY GAMES

The games above are simultaneous games. When we talk
about “positional” and “parity games”, we talk about se-
quential games: there is a graph partitioned so that each
vertex is owned by one of the two players, and a play is
a path through this graph. The path starts in some initial

vertex, and in each vertex, the player owning it decides where
to go next according to some strategy.

Definition 3. An arena is a tuple (𝑉1, 𝑉2, 𝑣0, 𝐸) where
𝑉1 ∩ 𝑉2 = ∅, and 𝑣0 ∈ 𝑉 := 𝑉1 ∪ 𝑉2, and 𝐸 ⊆ 𝑉 2 is such
that for all 𝑣 ∈ 𝑉 , the set 𝑣𝐸 := {𝑢 ∈ 𝑉 | (𝑣, 𝑢) ∈ 𝐸} is
non-empty.

A positional strategy of Player 1 in an arena (𝑉1, 𝑉2, 𝑣0, 𝐸)
is a function 𝑠 : 𝑉1 → 𝑉 such that (𝑣, 𝑠(𝑣)) ∈ 𝐸 for all 𝑣 ∈ 𝑉1.

The term “positional” refers to the fact that the strategy
ignores the history of the path.

In a straightforward way, a strategy pair induces a unique
infinite path (run, sequence of vertices) which we denote by
⟨𝑠1, 𝑠2⟩.

Definition 4 (Priority game form). A priority game form
is an arena (𝑉1, 𝑉2, 𝑣0, 𝐸) together with a priority function
𝜋 : 𝑉 → N.

For an infinite path, the least priority occurring infinitely
often as a label of a visited vertex is called induced priority.

Definition 5. A win/lose priority game consists of a prior-
ity game form and a subset 𝑊 ⊆ N. A run 𝜌 is winning for
Player 1 iff the induced priority of 𝜌 is in 𝑊 .

If 𝑊 := 2N, the win/lose priority game is called a parity
game.

Definition 6. Given a priority game (𝑉1, 𝑉2, 𝑣0, 𝐸, 𝜋,𝑊 ),
a Player 1 winning strategy is a Player 1 strategy 𝑠1 such that
for all Player 2 strategy 𝑠2, the induced priority of ⟨𝑠1, 𝑠2⟩ is
in 𝑊 .

Dittmann [4] has shown in Isabelle that parity games are
positionally determined (determinacy being defined similarly
as for simultaneous games). The pen-and-paper proof was
independently found by [5] and [12]. Based on a transforma-
tion from priority games to parity games, we can extend the
statement to the priority games:

Lemma 7. Win/lose priority games with bounded 𝜋 (i.e.
involving finitely many priorities) are positionally determined.

Note that Lemma 7, most likely a folklore result, could be
proved by applying [6][Thm 2,Cor 7], but the proof that we
formalize is more direct when assuming positional determi-
nacy of parity games.

The Isabelle formalisation of this lemma with all the pre-
liminaries comprises approximately 1300 lines of proof script,
about as much as our entire Isabelle development of [15]. The
difficulty is that infinite paths are defined coinductively, and
thus statements relating different priority and parity games
must be proven by coinduction.

So far we have considered parity games vs. the more general
priority games. We can also link the sequential games of this
section to the simultaneous games by putting a black box
around the process of constructing an infinite sequence using
strategies and then extracting a number from that infinite
sequence. The black box is a game form in the simultaneous
setting: it takes two strategies and returns a number.



At the same time, we can define preference-priority games,
which are sequential games where rather than having a win-
ning set 𝑊 , we have preferences of the players on the out-
comes in N. By linking preference-priority games to the si-
multaneous setting, we can apply the main theorem above
to show that preference-priority games also have an NE. We
have done this on paper but the formal Isabelle development
is work in progress.

In the future, we plan to present further extensions of [15],
including also work concerning the proof assistant Coq.
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