
HAL Id: hal-04627796
https://hal.science/hal-04627796v1

Submitted on 27 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Public Domain

Leveraging Semantic Technologies for Collaborative
Inference of Threatening IoT Dependencies

Amal Guittoum, François Aïssaoui, Sébastien Bolle, Fabienne Boyer, Noel de
Palma

To cite this version:
Amal Guittoum, François Aïssaoui, Sébastien Bolle, Fabienne Boyer, Noel de Palma. Leveraging
Semantic Technologies for Collaborative Inference of Threatening IoT Dependencies. ACM SIGAPP
applied computing review : a publication of the Special Interest Group on Applied Computing, 2023,
23 (3), pp.32-48. �10.1145/3626307.3626310�. �hal-04627796�

https://hal.science/hal-04627796v1
https://hal.archives-ouvertes.fr

Leveraging Semantic Technologies for Collaborative
Inference of Threatening IoT Dependencies

Amal Guittoum
Orange Innovation

Meylan, France
amal.guittoum@

orange.com

François Aïssaoui
Orange Innovation

Meylan, France
francois.aissaoui

@orange.com

Sébastien Bolle
Orange Innovation

Meylan, France
sebastien.bolle
@orange.com

Fabienne Boyer
Univ. of Grenoble alpes - LIG

Grenoble, France
fabienne.boyer@univ-

grenoble-alpes.fr

Noel De Palma
Univ. of Grenoble alpes - LIG

Grenoble, France
noel.depalma@univ-

grenoble-alpes.fr

ABSTRACT
IoT Device Management (DM) refers to registering, con-
figuring, monitoring, and updating IoT devices. DM faces
new challenges as dependencies between IoT devices gen-
erate various threats, such as update breaks and cascading
failures. Dependencies-related threats are exacerbated by
the fragmentation of the DM market, where multiple ac-
tors, e.g., operators and device manufacturers, are uncoor-
dinated ensuring DM on interdependent devices, each using
its DM solution. Identifying the topology of threatening de-
pendencies is key in developing dependency-aware DM ca-
pabilities for legacy DM solutions to tackle dependencies-
related threats efficiently. In this work, we apply Seman-
tic Web and Digital Twin technologies to build a decision-
support framework that automatically infers the topology
of threatening dependencies in IoT systems. We integrate
the proposed framework into the in-use Digital Twin plat-
form Thing in the future and demonstrate its effectiveness
by inferring threatening dependencies in the two settings:
a simulated smart home scenario managed by ground-truth
DM solutions, such as Orange’s implementation of the USP
Controller and Samsung’s SmartThings Platform, and a re-
alistic smart home called DOMUS testbed.

CCS Concepts
•Information systems → Resource Description Framework
(RDF); Web Ontology Language (OWL); Decision support
systems; •Computing methodologies → Ontology engineer-
ing;

Keywords
IoT Device Management; Semantic Web; Digital Twin; On-
tology; Inference; SHACL; Thing Description; Entity Reso-
lution; Dependencies management; Collaboration.

Copyright is held by the author(s). This work is based on an earlier work:
SAC’23, Proceedings of the 2023 ACM Symposium on Applied Computing,
©ACM 978-1-4503-9517-5. http://dx.doi.org/10.1145/3555776.3578573

1. INTRODUCTION
The rapid growth of the Internet of Things (IoT) has an ever-
increasing impact on people’s lives, leading to promising
value-added services in various areas such as smart homes,
smart factories, and smart cities. IoT devices represent the
main element in creating IoT value by observing, interact-
ing, and implementing functions with minimal human inter-
vention [17]. Therefore, it is critical to ensure their well-
functioning through continuous administration. This is re-
ferred to as IoT Device Management (DM). In today’s IoT
systems, DM is provided by multiple actors, which may be
device manufacturers, operators, or service providers, each
offering their own DM solution [1, 13, 26].

However, these siloed DM solutions are exposed to new
threats due to interdependencies among IoT devices. One
such threat is cascading failures, where the failure of one
device triggers a cascade of undesired state changes in de-
vices that depend on it [32]. Root cause identification and
failure recovery in such a scenario are complex since devices
are managed by siloed DM solutions unaware of interdepen-
dencies between devices.

Failures during the execution of DM operations, e.g., firmware
update or reboot on interdependent devices, are another de-
pendency -related threat. Indeed, DM operations can cause
devices to be temporarily unable to provide their services,
leading to failures on dependent devices and breaking up-
dates [17, 34]. These failures are exacerbated by the unco-
ordinated execution of DM operations using multiple DM
solutions [13] and are usually hard to revert [34].

In addition, dependencies between devices can be exploited
to launch attacks that compromise the physical security of
customers [33]. These attacks rely on device dependen-
cies in trigger-action platforms such as SmartThings 1, and
IFTTT 2 to bring devices to undesired behaviors and are
hard to prevent by legacy DM solutions.

Dependency-related threats generate more customer calls to

1https://www.smartthings.com/
2https://ifttt.com/

https://www.smartthings.com/
https://ifttt.com/

customer care applications of DM actors, and their mitiga-
tion usually requires human intervention, which increases
the cost of DM. For example, the Orange company reports
a cost of 20=C for one customer call and 100=C for sending a
technician [4], where customers perform 100 calls per week
to request IoT device recovery.

The first step to efficient mitigation and prevention of de-
pendencies -related threats is for DM actors to identify the
topology of threatening dependencies. Building such a topol-
ogy is challenging because IoT dependencies are surpris-
ingly abundant, usually undocumented, rarely static, and
governed by different DM actors, i.e., the data describing
IoT dependencies are distributed across siloed and hetero-
geneous DM solutions managed by different DM actors.

To address this challenging task, we propose a framework
that allows DM actors to collaboratively infer the topology
of threatening dependencies in a managed IoT system. The
framework accesses heterogeneous dependencies data from
siloed DM solutions and aggregates them using Semantic
Web [3] and Digital Twins3 technologies. Semantic Web
technologies are used to enable interoperability across siloed
DM solutions. Digital twins allows to build a synchronized
view of dynamic IoT dependencies.

The proposed framework is designed to be integrated into
customer care applications of DM actors as a human-based
decision support tool to help efficient management of depen-
dencies -related threats. More specifically, it can be used
in various business scenarios, such as identifying the root
cause of a cascading failure, dependency-aware planning of
DM operations, e.g., update campaigns to prevent DM fail-
ures, and creating dependency-aware security policies to de-
fend against dependency-related attacks. To the best of our
knowledge, this is the first attempt to infer threatening de-
pendencies in IoT systems managed by multiple DM solu-
tions.

The contribution of this work includes (i) The IoT-D ontol-
ogy providing context-based modeling for threatening de-
pendencies in the form of a knowledge graph (KG); (ii) An
entity resolution approach using rules and functions from the
advanced features of Shapes Constraint Language (SHACL)
standard4 for aggregating extracted dependencies KGs from
siloed DM solutions; (iii) A set of SHACL rules to infer the
topology of threatening dependencies from the aggregated
KGs; (iv) A proof of concept for the proposed framework,
integrated into the Orange Digital Twin platform Thing in
the future (Thing’in)5 [20].

This paper is organized as follows: First, we present a moti-
vating and representative use case that illustrates dependen-
cies -related threats in a smart home scenario managed by
several DM actors. Then, we give our model for threaten-
ing dependencies and the proposed framework. After that,
we highlight a business use case and evaluation results. Fi-

3”A Digital Twin is a virtual representation of real-world
entities and processes”: https://www.digitaltwinconsort
ium.org/
4https://www.w3.org/TR/shacl-af/
5Thing’in is a multi-actor open Digital Twin research plat-
form proposed by Orange. It is engaged in building innova-
tive services based on contextual data.

Table 1: Namespaces and prefixes used in this paper

Prefix Namespace

IoTd
http://www.semanticweb.org/OrangeLab
/ontologies/2021/9/IoTD

td https://www.w3.org/2019/wot/td

hctl https://www.w3.org/2019/wot/hypermedia

eupont http://elite.polito.it/ontologies/eupont.owl

dk http://www.data-knowledge.org/dk/

sh http://www.w3.org/ns/shacl

rdf http://www.w3.org/1999/02/22-rdf-syntax-ns

nally, we discuss limitations and related work and provide
directions for further research.

2. MOTIVATING USE CASE
We consider a smart home managed by four DM actors. It
illustrates the dependencies-related threats that are difficult
to overcome with siloed DM solutions. Moreover, it is used
in the rest of the paper for explanation purposes.

2.1 Smart Home Architecture
The smart home scenario (see Figure 1) consists of three in-
telligent systems, namely light control system, temperature
control system, and security control system, deployed in a
home consisting of a living room and a kitchen:

• Light control system: Relies on a light sensor, pres-
ence detection sensors, light bulbs installed in the liv-
ing room and the kitchen, and a light control unit. The
latter controls light using the light measurement ser-
vice supplied by the light sensor, the presence detection
services of the presence sensors, and the light bulbs’
services.

• Temperature control system: Controls the home tem-
perature using a temperature sensor and an air condi-
tioner. It is mainly based on automation rules6 1 and
2 described in Table 2.

• Security control system: Launches an alarm when in-
truders or fires are detected. It consists of an alarm
that uses the presence detection services provided by
the presence sensors to detect intruders. The alarm
also uses temperature and smoke sensors’ services to
detect fires. This system is reinforced by automation
rules 3 and 4.

Light Bulbs and the airconditioner are controllable via the
vocal assistant and the smartphone. A gateway connects
devices in the living room to the Internet, while a Wi-Fi
repeater connects the kitchen devices. A broker installed in
the gateway exposes the sensors services in the form of topics

6Automation rules allow automated composition of IoT ser-
vices in a connected environment. They are in the form IF
triggers Then actions.

https://www.digitaltwinconsortium.org/
https://www.digitaltwinconsortium.org/
https://www.w3.org/TR/shacl-af/
https://tech2.thinginthefuture.com/

12

12 Vocal Assistant

1 Presence sensor

2 Window lock

3 Door lock

4 Air conditoner

5 Temperature sensor

6 Smoke sensor

7 Alarm

8 Light control Unit

9 Light bulb

10 Wi-Fi repeater

Operator

11 Gateway Service provider

Service provider

Device

manufacturer

DM actors

Service provider

Figure 1: The smart home architecture

such as temperature topic. The SmartThings platform7 [24]
enables automation rules 1-3 described in Table 2 and the
IoTMashup 8 platform implements the automation rule 4.

Table 2: The smart home automation rules

No. Type Automation Rule

1 Comfort
Update the air conditioner regarding
the temperature returned by the
temperature sensor.

2 Comfort
Open the two windows when the air
conditioner is deactivated.

3 Security
Open the door and both windows upon
detection of fire.

4 Security

Notifies the User, closes the windows,
closes the door, and sets bulbs color to
red when detecting an intruder while
the User is out of the home.

Devices in the smart home are managed by five DM actors,
each proposes its own DM solution: 1) An operator mon-
itoring connectivity devices, e.g., gateway, using USP con-
troller9 [7]. 2) A device manufacturer ensuring DM services
on IoT devices such as firmware update also using a USP
controller. 3) A service provider managing automation ser-
vices using the SmartThings platform. 4) A service provider
managing service exchange among devices in the broker via

7SmartThings is Samsung’s IoT platform that enables the
creation of automation rules.
8The IoTMashup is Orange’s IoT platform that allows au-
tomation across IoT devices.
9USP is a standard and a project of the Broadband Forum
(BBF) for device management. Orange’s USP controller,
implementing this standard, is used in the experimentation.

Apache Kafka solution. 5) A service provider managing also
automation services using the IoTMashup platform.

2.2 Illustration of Dependencies-Related
Threats

This section illustrates IoT threats stemming from depen-
dencies within the showcased smart home environment.

Example 1. (Cascading Failure) Cascading failure corresponds
to the case where a failure of a device triggers the failure of
some of its dependent devices. Let us take the scenario where
the light bulb in the living room fails. This failure propagates
to the bulb-dependent devices and services: 1) the light con-
trol unit becomes inoperable, 2) the vocal assistant cannot
respond to the prompt ”Turn off the lights”, and 3) the IoT-
Mashup platform can no longer turn the light bulb color to
red when it detects intruders (see Rule 4 in Table 2).

Example 2. (DM failures) DM failures correspond to the case
where processing a DM operation on a device triggers the
failure of its dependent’s devices. Let’s suppose the operator
reboots the gateway while the device manufacturer updates
the vocal assistant. Due to the connectivity dependency, the
gateway reboot interrupts the vocal assistant’s Internet con-
nection, which results in the firmware image not being down-
loaded correctly and the vocal assistant failing [17].

Example 3. (Attacks) Attacks related to device dependencies
correspond to the case where an attacker exploits device de-
pendencies to compromise IoT systems. For instance, an
attacker can exploit the state dependency between the air
conditioner and the windows (see Rule 2 in Table 2) to gain
access to the home by disabling the air conditioner to open
the windows [33].

https://www.smartthings.com/
https://usp.technology/specification/01-index-introduction.html

saref:Device

saref:State

Iotd:Trigger

eupont:Action

eupont:Trigger

Iotd:Action

Iotd:Application

Iotd:TriggerActionPlatform Iotd:Broker

IoTd:Processor

IoTd:ConnectivityDevice

IoTd:ConnectivityService

td:PropertyAffordance

hctl:Form

IoTd:IoTDevice

saref:Sensor
saref:measuresProperty

Iotd:relatedTo

Iotd:consumes

Io
td

:h
a

s
R

u
le

dk:flowsTo Iotd:hasApplicationAction

eupont:hasAction

eupont:hasTrigger

saref:controlsProperty

td:hasForm

s
a

r
e

f
:
h

a
s

P
r

o
p

e
r

t
y

saref:Actuator
saref:Service

saref:FeatureOfInterest

Inferred object property* denotes the type of dependency subClassOf

Device-Environment Interaction

Dependency Extraction

Device-Device Interaction

saref:Property

eupont:Rule

dk:DataFlow

Device-Application Interaction

saref:offers

Iotd:allowsAction

dk:flowsFrom

Iotd:has{*}DependencyTo

saref:hasState

td:hasPropertyAffordance

Figure 2: IoT-D ontology

3. CONTEXT-BASED MODELING FOR
THREATENING DEPENDENCIES

This section illustrates our interoperable approach for mod-
eling threatening dependencies. We explain how we evolved
from a characterization of IoT dependencies by analyzing
dependencies-related threats to the IoT-D ontology, which
provides a comprehensive representation of threatening de-
pendencies and their context.

3.1 Threatening Dependencies Characteriza-
tion

We conducted an analysis study of dependencies generating
the different threats illustrated in Section 2. The result of
this study is a taxonomy of threatening dependencies (See
Figure 3). We distinguish two types of threatening depen-
dencies: direct and indirect. Dependencies are direct when

IoT dependencies

Indirect dependenciesDirect dependencies

Service

dependencies

Connectivity

dependencies

Environment-based

dependencies
Application-based

dependencies

Implicit service

dependencies

State-based

dependencies

Figure 3: Threatening dependencies taxonomy

IoT devices use services of each other. We call this type of
dependencies Service dependencies. For example, the alarm

using the smoke sensor’s detection service has a service de-
pendency on the smoke sensor. A special kind of service de-
pendencies is Connectivity dependencies when IoT devices
use connectivity services of connectivity devices such as a
gateway.

Interactions between sensors and actuators through the phys-
ical environment create indirect dependencies between them
called Environment-based dependencies. For example, the
temperature sensor has an environment-based dependency
on the air conditioner because it measures the room temper-
ature modified by the air conditioner. Indirect dependencies
can also arise from applications running on top of IoT de-
vices, thus forming Application-based dependencies. Indeed,
an automation rule applies actions to a set of devices de-
pending on how the state of other devices changes, creating
State-based dependencies. For example, an automation rule
may open the two windows depending on the state of the
air conditioner whether it is active or not (see Rule 2 in
Table 2). In addition, IoT applications generate an implicit
exchange of services between IoT devices. For example, Rule
1 in Table 2 uses the temperature value returned by the tem-
perature sensor to adjust the air conditioner. Here the air
conditioner implicitly uses the temperature sensor service.
We call these dependencies Implicit service dependencies.

State-based dependencies, explicit and implicit service de-
pendencies exacerbate cascading failure propagation, as il-
lustrated in Example 1. Meanwhile, connectivity dependen-
cies generate failures during the execution of DM operations
when not respected, as demonstrated in Example 2. State-
based and environment-based dependencies are used to de-
velop attacks on user security, as shown in Example 3.

3.2 Threatening Dependencies Data Sources
Threatening dependencies described in Section 3.1 can be
derived from a set of information that we call context data.

Context data refer to, but are not limited to, connectivity
topology,10 exchange of services between devices, or applica-
tive automation rules. It is distributed across siloed DM
data sources governed by different DM actors and following
heterogeneous data models.

Example 4. (Dependency context data) Let us take the use
case as an example: devices services and their interactions
within the physical environment are represented in the device
manufacturer’s USP controller according to the data model
TR-181,11 which enables the representation of the IoT capa-
bilities12 of a given device. Interactions at the IoT applica-
tion level reside in SmartThings and IoTMashup platforms
in the form of automation rules represented using a dedicated
data model.13 The topology of connectivity is described in the
USP controller of the operator according to the data model
TR-181, which enables the representation of the connectivity
topology discovered using the standard IEEE 1905.1 [28].14

To obtain the global topology of threatening dependencies,
this heterogeneous context data must be represented accord-
ing to a unified data model. To build such a model, we rely
on an Ontology.

3.3 Threatening Dependencies Modeling
We propose an ontology called IoT-D (shown in Figure 2)
that allows an interoperable representation of threatening
dependencies context data in the form of KG, as well as the
modalities allowing to extract them. The context data KG
is used to infer the KG of threatening dependencies that
we will call in the following threatening dependencies topol-
ogy. This context-based representation allows for rich docu-
mentation of threatening dependencies to support decision-
making when addressing dependencies-related threats. For
instance, when a cascading failure occurs, in addition to the
topology of dependencies helping to identify the source of
the failure, this representation allows the identification of
the services that caused the failure and even similar devices
that could replace the failed device. Moreover, the use of
the KG-based model for IoT dependencies allows for effi-
cient analysis of large, heterogeneous, structured, and un-
structured dependency context data [9].

The IoT-D ontology is designed using the ontology engineer-
ing methodology NeOn [29] that considers Semantic Web
best practices, such as reusing existing ontologies and mod-
ularization. It reuses the standardized ontology Smart Ap-
plications REFerence (SAREF),15 Data Knowledge ontology
(DK),16 and End user Programming ontology (EuPont).17

10Connectivity topology of a connectivity device such as gate-
way or WI-FI repeater represents the list of devices con-
nected to it.

11https://usp-data-models.broadband-forum.org/
12https://usp.technology/specification/14-index-iot
-data-model-theory-of-operation.html

13https://developer-preview.smartthings.com/docs/au
tomations/rules

14https://cwmp-data-models.broadband-forum.org/tr-1
81-2-11-0.html#D.Device:2.Device.IEEE1905.

15https://saref.etsi.org/core/v3.1.1/
16http://www.data-knowledge.org/dk/1.2/index-en.ht
ml

17https://elite.polito.it/ontologies/eupont.owl

It includes four modules:

1. Device-Device Interaction module: describes the capa-
bilities of IoT devices in terms of service provisioning
and usage to model the context of direct dependen-
cies. It is based on the enrichment of the SAREF on-
tology by describing the direct exchange of services
between devices through the relation IoTD:consumes
and specializing the saref:Service and saref:Device to
account for connectivity devices and services, allowing
the inference of service and connectivity dependencies
between devices.

2. Device-Environment interaction module: represents,
using the SAREF ontology, the interaction of devices
within the physical environment through sensing and
actuation, enabling the inference of environment-based
dependencies.

3. Device-Application interaction module: describes de-
vice interactions in IoT applications. Based on the Eu-
Pont ontology, an IoT application is represented using
rules and actions. A rule is in the form if IoTD:Trigger
then IoTD:Action. Triggers are related to device state
changes (saref:State). Actions are executed by IoT ser-
vices (saref:Service). This trigger-action-based model
allows representing state dependencies between devices,
i.e., when an IoT application acts on one device based
on the state of another. Also, it allows the represen-
tation of implicit service dependencies context in the
form of data flows e.g., temperature measurements be-
tween IoTD:Action, using the class dk:DataFlow of the
DK Ontology.

4. Dependency Extraction module: describes modalities
allowing the proposed framework to extract the de-
pendency information described in the other modules
from devices and applications. It leverages the Thing
Description standard (TD)18 with the class
td:PropertyAffordance to represent heterogeneous data
extraction endpoints in an interoperable manner.

Note that the IoT-D ontology conceptualization is repre-
sentative of IoT systems with no regard to the application
domain, which makes it reusable in a wide scope of do-
mains [25]. Moreover, this ontology can be easily extended
to consider other types of IoT dependencies thanks to its
modular design. We make available online the documenta-
tion of the IoT-D ontology. 19

4. PROPOSED FRAMEWORK
Relying on the IoT-D ontology, we propose a framework (see
Figure 4) that allows on-demand inference of threatening de-
pendencies owned by siloed DM solutions. The framework
relies on the digital twin platform Thing’in to expose the in-
ferred dependencies topology and to communicate with DM
actors. It involves three main steps that rely on Semantic
Web standards, namely Context extraction, Entity resolu-
tion, and Dependency inference. The first step extracts the

18https://www.w3.org/TR/wot-thing-description/
19https://iotdontology.github.io/

https://usp-data-models.broadband-forum.org/
https://usp.technology/specification/14-index-iot-data-model-theory-of-operation.html
https://usp.technology/specification/14-index-iot-data-model-theory-of-operation.html
https://developer-preview.smartthings.com/docs/automations/rules
https://developer-preview.smartthings.com/docs/automations/rules
https://cwmp-data-models.broadband-forum.org/tr-181-2-11-0.html#D.Device:2.Device.IEEE1905.
https://cwmp-data-models.broadband-forum.org/tr-181-2-11-0.html#D.Device:2.Device.IEEE1905.
https://saref.etsi.org/core/v3.1.1/
http://www.data-knowledge.org/dk/1.2/index-en.html
http://www.data-knowledge.org/dk/1.2/index-en.html
https://elite.polito.it/ontologies/eupont.owl
https://www.w3.org/TR/wot-thing-description/
https://iotdontology.github.io/

Device

manufucturer

Service

provider

Operator

Device

manufucturer

Service

provider

Operator

Threatening dependencies

data sources DM managers

(1) Context Extraction (2) Entity Resolution (3) Dependency Inference

Figure 4: Framework overview - On-demand inference and documentation of threatening dependencies.

context data from legacy DM solutions and transforms it
into KGs, the second aggregates the extracted context KGs,
and the last infers threatening dependencies topology from
the aggregated context KGs. These steps are detailed in the
following.

4.1 Step 1: Context Extraction
This step aims to extract the context data from the siloed
DM solutions and transform it into KGs according to the
IoT-D ontology. We rely on the TD to describe the ex-
traction modalities that allow context data extraction from
DM solutions. An extraction modality includes information
about the data to be extracted, such as the URL of the
extraction and the format e.g., json. It is provided to the
framework by DM actors and stored in Thing’in to be used
by the context extraction step. Note that: 1) using the TD
standard enables technology-agnostic data extraction, which
eases the integration of heterogeneous DM solutions, 2) the
extracted context data is operational data extracted from
reliable DM solutions so it does not contain outliers.

Example 5. (Context extraction) Let us consider the extrac-
tion of the connectivity topology from the gateway: the opera-
tor injects into Thing’in the extraction modality described in
Listing 1. The context extraction step uses this modality to
extract the connectivity topology from the gateway by access-
ing the operator’s USP controller, using the link presented
with the property hasTarget (lines 11-13). The extracted
data described in the TR-181 model (see Listing 2) is then
transformed into KG and stored in Thing’in.

Listing 1: Connectivity topology extraction modality.

1 /*Declaration of the extraction data source here is the gateway*/

2 :Gateway rdf:type

3 Iotd:ConnectivityDevice;

4 td:hasPropertyAffordance[

5 td:hasForm [

6 hctl:forContentType

7 "application/json" ;

8 hctl:hasOperationType

9 td:readProperty ;

10 /*The definition of the extraction link*/

11 hctl:hasTarget

12 "{$USPLink}/dataModel

13 =Device.IEEE1905.NetTopology."

14]].

Listing 2: The connectivity topology extracted from the gate-
way by accessing the USP controller of the Operator.

1 [{"requested_path":

2 "Device.IEEE1905.NetTopology.",

3 "resolved_path_results": [

4 { "resolved_path":

5 "Device.IEEE1905.NetTopology.",

6 "result_params": [

7 {

8 "param_name": "IEEE1905Device.1.FriendlyName",

9 "value": "TempSensor"

10 },

11 { "param_name": "IEEE1905Device.2.FriendlyName",

12 "value": "bulb1"

13 },

14 { "param_name": "IEEE1905Device.3.FriendlyName",

15 "value": "LightSensor"

16
17 } ...

4.2 Step 2: Entity Resolution

4.2.1 Problem Statement
As an IoT device may be managed by multiple DM so-
lutions [13], the extracted context KGs may contain du-
plicate entities, such as devices with different representa-
tions. For example, the temperature sensor may be named
tempSensorModelX in the device manufacturer’s USP con-
troller, while being registered as TempSensor in the op-
erator’s USP controller. These duplicated representations
must be identified and resolved to allow consistent reasoning
across the extracted KGs. This problem is referred to in the
literature as the Entity Resolution (ER) problem, which con-
sists of aggregating similar entities in data extracted from
different sources to increase data quality [23]. Entities to
resolve in our case are instances of IoTd:IoTDevice and
SAREF:Service, since they are shared entities among the
siloed DM solutions.

More formally, consider n DM solutions, a context KG ex-
tracted from the ith DM solution is a tuple:
KGi = (Ei,Ri,Ai,Li, Ti), where Ei is the set of entities, Ai

the set of data properties, Ri the set of object properties, Li

the set of literals and Ti is the set of triples. We distinguish
data triples TA and object triples TR, where TA : E ×A×L
are triples linking entities and literals, and TR : E × R × E
link entities. Our goal is to build the global context KG
i.e., KGg, by identifying and linking similar entities in the
extracted context KGs. The KGg consists on the union of

the extracted context KGs: KG1,KG2, ...KGn enriched by
similarity object triples TRS : E ×{owl : sameAs}×E that
links similar entities, and the object property owl : sameAs,
i.e.,

KGg = (
i=n⋃
i=1

Ei,
i=n⋃
i=1

Ri∪{owl:sameAs},
i=n⋃
i=1

Ai,
i=n⋃
i=1

Li,
i=n⋃
i=1

Ti∪

TRS)

4.2.2 Method
To determine the KGg, we rely on an inference rule-based
ER approach using the advanced features of the SHACL
standard : SHACL rule and SHACL function.

First, each entity to be resolved in the extracted context KGs
is automatically annotated by a set of resolution attributes.

Definition 1 (Resolution attribute) a resolution attribute RA
describes a DM metadata that allows entity identification
across the siloed DM solutions. For instance, device se-
rial number is a resolution attribute for IoT devices. These
resolution attributes are extracted from DM solutions dur-
ing the context extraction step and represented in the con-
text KGs as literals with associated data properties such as
Iotd:hasSerialNumber.

An annotated context KG is described by KG
′
i:

KG
′
i = (Ei,Ri,Ai ∪ { iotd:hasRAk},Li ∪ { RAk}, Ti ∪ TRA)

∀e ∈ Ei, e instance of Iotd:IoTDevice or e instance of
SAREF:Service, ∀RAka resolution attribute extracted form
the ith DM solution and TRA = (e, iotd:hasRAk, RAk),
represents data triples that link entities e with their resolu-
tion attributes RAk.

After the annotation process, a SHACL Rule is used to build
the KGg by performing the ER on the annotated context KG

i.e., KG
′
i. This rule automatically infers the owl:sameAs re-

lationship between similar entities. SHACL functions are
used to allow the ER SHACL rule to perform similarity
computations among entities in the extracted KGs using the
resolution attributes. The similarity between two entities is
a weighted sum of similarities between their resolution at-
tributes. The similarity between two resolution attributes is
calculated using similarity functions.

Definition 2 (Similarity function) a similarity function sim :
L2 → R+ is a string similarity function associated to a given
resolution attribute e.g., strict string similarity for device
serial number and Jaro similarity for device manufacturer
name.

Definition 3 (Resolution attribute weight) a resolution at-
tribute weight w ∈ R+ represents the impact of the resolu-
tion attribute in the resolution, such as 0.9 for device serial
number and 0.5 for device name. To optimize the number of
created sameAs object property, we perform the ER only be-
tween the KGs extracted from the device manufacturers and
the KGs extracted from other actors i.e., service providers
and operators, since device manufacturers acquire informa-
tion about all IoT devices and their services.20 The attribute
property orgIoT:source 21 is used to define from which actor

20This is a practical observation.
21Refers to the ontology Orange IoT used in Thing’in to man-

an entity is extracted. More formally, consider the entity
ei extracted from the operator or the service provider DM
solution. It is linked to the set of resolution attributes RAi

using a set of data properties Ai. Resolving this entity con-
sists of finding its most similar entity ep extracted from the
device manufacturer DM solution that satisfies:

max
∑

Ak∈Ai∩Ap

wk.sim
k(RAi

k, RAp
k), such as RAp is the set

of resolution attributes linked to ep using the data proper-
ties Ap, simk and wk are the similarity function, and the
weight associated with the resolution attribute RAk respec-
tively. We consider the intersection between the resolution
attribute data properties sets since DM solutions may con-
tain different resolution attribute types.

Listing 3: SHACL rule for Entity Resolution

1 Iotd:EntityResolution

2 rdf:type sh:NodeShape ;

3 sh:targetClass Iotd:IoTDevice ;

4 sh:rule [

5 rdf:type sh:SPARQLRule ;

6 sh:construct """

7 /*Construct the sameAs relationship between the similar device’s representations*/

8 CONSTRUCT {

9 $this owl:sameAs ?device .

10 }

11 /*Constraints to check before building the sameAs relationship*/

12 /*Constraints are similarity evaluation between device’s representations based on the res-
olution attributes*/

13 WHERE {

14 /*For each device representation ($this), find its most similar representation (?devices)
*/

15 {

16 SELECT $this ?device WHERE {

17 {

18 /*Calculate the similarity by calling SHACL functions*/

19 SELECT $this
20 (MAX(0.5*Iotd:similarityFunction(?n2, ?n1)+0.1*Iotd:similarityFunction(?mn2, ?mn1)

21 +0.9*Iotd:similarityFunction(?sn2, ?sn1)) AS ?val) WHERE

22 {

23 /*Select the resolution attributes used in the similarity calculation */

24 $this orgIoT:source ?s .

25 OPTIONAL {$this Iotd:hasDeviceName ?n2 .}

26 OPTIONAL {$this Iotd:hasManufacturerName ?mn2 .}

27 OPTIONAL {$this Iotd:hasSerialNumber ?sn2.}

28 ?device a Iotd:IoTDevice .

29 ?device orgIoT:source ?src .

30 OPTIONAL {?device Iotd:hasDeviceName ?n1.}

31 OPTIONAL {?device Iotd:hasManufacturerName ?mn1.}

32 OPTIONAL {?device Iotd:hasSerialNumber ?sn1.}

33 FILTER (?device!=$this && ?s="other" && ?src="DeviceManufacturer")

34 }

35 group by $this
36 }

37 OPTIONAL {$this Iotd:hasDeviceName ?n2 .}

38 $this orgIoT:source ?s .

39 OPTIONAL {$this Iotd:hasManufacturerName ?mn2 .}

40 OPTIONAL {$this Iotd:hasSerialNumber ?sn2.}

41 OPTIONAL {?device Iotd:hasDeviceName ?n1 .}

42 OPTIONAL {?device Iotd:hasManufacturerName ?mn1 .}

43 OPTIONAL {?device Iotd:hasSerialNumber ?sn1.}

44 ?device orgIoT:source ?src .

45 Filter(?device!=$this && ?s="other" && ?src="DeviceManufacturer" &&

46 (0.5*Iotd:similarityFunction(?n2, ?n1) +0.1*Iotd:similarityFunction(?mn2, ?mn1)

47 +0.9*Iotd:similarityFunction(?sn2, ?sn1))=?val)} } }

48 """;] ;

49 .

Concretely, consider the SHACL rule presented in Listing 3.
It performs ER between IoT device representations using the
resolution attributes: Device Name, Manufacturer Name,
and Serial number. Their weights are 0.5, 0.1, and 0.9,
respectively, representing their impact on the resolution.
The ER is performed as follows: for each IoT device in
the KG extracted from service providers and operators (de-
fined by orgIoT:source=”other”), its most similar represen-
tation in the KGs of device manufacturers (defined by or-
gIoT:source=”DeviceManufacturer”) is retrieved (line 16) and
the sameAs relationship is created among them (line 9).
Similarity functions (lines 20-21, 46-47) are implemented us-

age Digital Twins.

Thing in the future Explore Develop Provide Design Stats Learn Hello GUITTOUM

You are on the Qualif instance platform

Rule (1)

Objects: 110, links: 121

hasAction
hasTrigger
flowsFrom
flowsTo
allowsAction
consumes

sameAs
controlsProperty
hasProperty
hasState
measuesProperty
offers
hasForm
hasPropertyAffordance

relatedTo

DataFlow (1)
Action (4)
Application (2)
Broker (1)
ConnectivityDevice (2)
ConnectivityService (2)
IoTDevice (32)
Trigger (1)
Actuator (8)

Property (4)
FeatureOfInterest (4)

Sensor (5)
Service (23)
State (1)
Form (16)
PropertyAffordance(16)

show all links hide all links

Operator KG
Device manufacturer KG

Service provider (kafka) KG

Service provider (SmartThings) KG

Figure 5: Results of performing the ER on the extracted context KGs (framed graphs) from the use case (red links denotes
owl:sameAs relationships).

ing SHACL functions (see Listing 4), which are developed
using SPARQL extension via registered URI (line 19).22 To
the best of our knowledge, this is the first ER approach based
on the SHACL standard. Thing’in view after performing ER
on the extracted context KGs from the use case described
in Section 2 is shown in Figure 5.

Listing 4: String similarity function as SHACL function

1 Iotd:similarityFunction

2 a sh:SPARQLFunction ;

3 /*Define the operators of the function */

4 sh:parameter [

5 sh:path Iotd:op1 ;

6 sh:datatype xsd:string ;

7 sh:description "The first operand" ;

8] ;

9 sh:parameter [

10 sh:path Iotd:op2 ;

11 sh:datatype xsd:string ;

12 sh:description "The second operand" ;

13] ;

14 /*Define the output type*/

15 sh:returnType xsd:double ;

16 /*Define the function call */

17 sh:select """

18 SELECT

19 (<http://www.example.org/StrictStringFunction>($op1, $op2)
20 AS ?result) WHERE { } """ .

4.3 Step 3: Dependency Inference
This step infers the threatening dependencies topology from
the global context KG obtained after the ER is performed,
using the SHACL standard again: We design a SHACL rule
for each dependency type described in Section 3.1. These
SHACL rules infer dependency relationships between de-
vices by reasoning around contextual relationships in the
global context KG. The developed SHACL rules for depen-
dency inference will be presented in the following:

22https://www.w3.org/TR/rdf-sparql-query/#extensio
nFunctions

Service dependency inference

The rule presented in Listing 5 infers service dependency be-
tween two IoT devices by creating hasServiceDependencyTo
relationship (line 10) when a device consumes a service of-
fered by another device (lines 14-19).

Listing 5: SHACL rule for Service dependency inference

1 IoTd:ServiceDependency

2 rdf:type sh:NodeShape ;

3 sh:targetClass dp:IoTDevice ;

4
5 sh:rule [

6 rdf:type sh:SPARQLRule ;

7 sh:construct """

8 /*Construct the dependency relationship (here is the service dependency) */

9 CONSTRUCT {

10 $this Iotd:hasServiceDependencyTo ?device .

11 }

12 /*Constraints to check before constructing the dependency relationship */

13 /*Constraints are contextual relationships */

14 WHERE {

15 /*Contextual relationships required to infer the service dependency*/

16 ?device a IoTd:IoTDevice .

17 ?device core:offers ?service .

18 $this IoTd:consumes ?service .

19 }""" ;] ;.

Connectivity dependency inference

The rule presented in Listing 6 infers connectivity depen-
dency between IoT devices and connectivity devices by cre-
ating hasConnectivityDependencyTo relationship (line 10)
when an IoT device consumes a connectivity service offered
by a connectivity device (lines 14-21).

Listing 6: SHACL rule for connectivity dependency inference

1 IoTd:ConnectivtyDependency

2 rdf:type sh:NodeShape ;

3 sh:targetClass dp:IoTDevice ;

4
5 sh:rule [

6 rdf:type sh:SPARQLRule ;

7 sh:construct """

https://www.w3.org/TR/rdf-sparql-query/#extensionFunctions
https://www.w3.org/TR/rdf-sparql-query/#extensionFunctions

Entity Resolution
Dependency topology

Temperature sensor

Service

dependency

Alarm

P: Processor

S: Sensor

A: Actuator

C: Connectivity deviceObjects:17, links:44

ConnectivityDevice (2)
IoTDevice (15)
Processor (4)

Actuator (6)
Sensor (5)

hasApplicationDataDependency

hasEnvironmentDependency

hasServiceDependencyTo
hasStateDependencyTo

hasConnectivityDependency

show all links

Thing in the future
Explore Develop Provide Design Stats Learn Hello GUITTOUM

You are on the Qualif instance platform

hide all links

Figure 6: The inferred dependencies topology from the simulated Smart Home Scenario.

8 /*Construct the dependency relationship (here is the connectivity dependency) */

9 CONSTRUCT {

10 $this IoTd:hasConnectivityDependencyTo ?device .

11 }

12 /*Constraints to check before constructing the dependency relationship */

13 /*Constraints are contextual relationships */

14 WHERE {

15 /*Contextual relationships required to infer the connectivity dependency*/

16 ?device a IoTd:ConnectivityDevice .

17 ?device core:offers ?service .

18 $this IoTd:consumes ?service .

19
20 }

21 """ ;] ;.

Environment-based dependency inference

The rule illustrated in Listing 7 deduces environment-based
dependencies. It accomplishes this by establishing a hasEn-
vironmentDependencyTo relationship between two IoT de-
vices (line 11). This linkage is established when the initial
IoT device observes a property of the physical environment,
such as the Living Room temperature, which is altered by
the actions of the other IoT device (lines 15-20).

Listing 7: SHACL rule for environment dependency inference

1 IoTd:EnvDependency

2 rdf:type sh:NodeShape ;

3 sh:targetClass dp:IoTDevice ;

4
5 sh:rule [

6 rdf:type sh:SPARQLRule ;

7
8 sh:construct """

9 /*Construct the dependency relationship (here is the environment dependency) */

10 CONSTRUCT {

11 $this IoTd:hasEnvironmentDependencyTo ?device .

12 }

13 /*Constraints to check before constructing the dependency relationship */

14 /*Constraints are contextual relationships */

15 WHERE {

16 /*Contextual relationships required to infer the environment dependency*/

17 ?device a IoTd:IoTDevice .

18 ?device IoTd:changesProperty ?property.

19 $this core:measures ?property .

20 }""" ;] ;.

State-based dependency inference

The rule showcased in Listing 8 infers state-based depen-
dencies. It accomplishes this by establishing a hasStateDe-
pendencyTo relationship between two devices (line 9). This
relationship is established when the rule detects an automa-
tion rule that acts on one device based on the state of an-
other (lines 13-25).

Listing 8: SHACL rule for State-based dependencies inference

1 Iotd:StateBasedDependency

2 rdf:type sh:NodeShape;

3 sh:targetClass Iotd:IoTDevice;

4 sh:rule [

5 rdf:type sh:SPARQLRule ;

6 sh:construct ’’ ’’ ’’

7 /*Construct the dependency relationship (here is the state-based dependency) */

8 CONSTRUCT {

9 $this Iotd:hasStateDependencyTo ?device .

10 }

11 /*Constraints to check before constructing the dependency relationship */

12 /*Constraints are contextual relationships */

13 WHERE {

14 /*Contextual relationships required to infer the state-based dependency*/

15 ?device a Iotd:IoTDevice ;

16 saref:hasState ?state .

17 ?trigger a Iotd:Trigger

18 Iotd:relatedTo ?state .

19 $this core:offers ?service .

20 ?service a saref:Service ;

21 Iotd:allowsAction ?action .

22 ?rule a eupont:Rule ;

23 eupont:hasAction ?action ;

24 eupont:hasTrigger ?trigger .

25 } ’’ ’’ ’’ ;] ;.

Implicit service dependency inference

The rule depicted in Listing 9 deduces implicit service de-
pendencies by establishing a hasImplicitServiceDependen-
cyTo relationship between two IoT devices (line 11). This
relationship is established when, within a specific IoT ap-
plication, the first IoT device receives data flows from other
IoT devices through IoT application actions (lines 15-25).

Listing 9: SHACL rule for implicit service dependency infer-
ence

1 IoTd:ImplicitServiceDependency

2 rdf:type sh:NodeShape ;

3 sh:targetClass dp:IoTDevice ;

4
5 sh:rule [

6 rdf:type sh:SPARQLRule ;

7
8 sh:construct """

9 /*Construct the dependency relationship (here is the implicit service dependency) */

10 CONSTRUCT {

11 $this hasImplicitServiceDependencyTo ?device .

12 }

13 /*Constraints to check before constructing the dependency relationship */

14 /*Constraints are contextual relationships */

15 WHERE {

16 /*Contextual relationships required to infer the implicit service dependency*/

17 ?device a IoTd:IoTDevice .

18 ?device core:offers ?service1 .

19 $this core:offers ?service2 .

20 ?service1 IoTd:allowsAction ?action1.

21 ?service2 IoTd:allowsAction ?action2 .

22 ?dataFlow dk:flowsFrom ?action1.

23 ?dataFlow dk:flowsTo ?action2 .

24
25 }""" ;] ;.

Once the global context KG is enriched by the inferred topol-
ogy of threatening dependencies, it is exposed as a Digi-
tal Twins feature. That representation can be easily ana-
lyzed and queried by multiple DM actors thanks to Thing’in
APIs 23. The inferred dependency topology from the use
case is shown in Figure 6.

5. BUSINESS USE CASE
The inferred threatening dependency topology and its as-
sociated context KG can be leveraged in several business
use cases regarding the management of dependencies-related
threats. This section shows how a cascading failure sce-
nario is efficiently managed and recovery plans are safely
performed using our framework.

Example. 6 (Cascading failure management) Let us take the
use case as an example, the user notices that the alarm is
not responding for intruders detection. He calls the cus-
tomer care service of the device manufacturer to enquire
about the alarm recovery. After remote diagnostics using
DM, the device manufacturer reports a crash failure on the
alarm that can be mitigated with the DM operation reboot.
After rebooting the alarm, the device manufacturer finds out
that it is still reporting a crash failure. He assumes that
the alarm is impacted by a cascading failure and decides to
use our framework to foster diagnostics. After analyzing the
dependency topology using Thing’in Query API, the device
manufacturer notices that the alarm uses the services of the
temperature sensor and the smoke sensor, and its state de-
pends on the state of the presence sensors. After remote
diagnostics of these devices, the device manufacturer discov-
ers a crash failure on the temperature sensor that can be
mitigated with a reboot DM operation. Before rebooting the
temperature sensor, he analyzes its context to ensure it can
be safely rebooted. He notices that it is used in the Smart-
Things automation rule by the airconditioner (see Rule 1 in
Table 2). The device manufacturer notifies the user to dis-
able this rule temporarily. Then, he reboots the temperature
sensor and the alarm successively, and the system returns to
the correct state without requiring to send a technician for a
physical diagnosis on the devices.

23https://wiki.thinginthefuture.com/

6. EVALUATION
We comprehensively evaluated our framework, encompass-
ing both qualitative and quantitative aspects. In the quali-
tative evaluation, we: i) Inferred the threatening IoT depen-
dency topology within a simulated smart home environment.
ii) Extended our analysis to a real-world smart home envi-
ronment, specifically the DOMUS testbed. iii) Thoroughly
assessed the proposed IoT-D ontology, focusing on its qual-
itative attributes such as completeness. Additionally, in the
quantitative evaluation, we: i) Assessed the performance of
our framework, providing insights into its efficiency and ef-
fectiveness. ii) Conducted a quantitative evaluation of the
IoT-D ontology, showing valuable quantitative metrics to
measure its semantic richness.

6.1 Qualitative Evaluation

6.1.1 Simulated Smart Home Scenario
We evaluated the proposed framework on the simulated smart
home scenario in Section 2. IoT devices were simulated us-
ing the Open Source USP agents24. Regarding the involved
DM solutions, We deployed the Orange implementation of
the USP controller and the IoTMashup platform locally, and
leveraged the cloud developer API of the Smarthings plat-
form to create and query the automation rules. Using the
proposed framework, we were able to identify 44 threatening
dependency relationships among the simulated Smart Home
IoT devices (see Figure 6).

6.1.2 Realistic Smart Home: DOMUS Testbed
We evaluated the proposed framework on DOMUS25 (see
Figure 8), which represents a connected apartment of 62m2

including more than 90 IoT devices installed in five rooms: a
living room, a bedroom, a kitchen, a bathroom, and a central
control room. The latter includes software and hardware
allowing the monitoring of the whole apartment. IoT devices
of the DOMUS testbed are connected to each other through
the OpenHab Platform,26 which enables a set of automation
rules and allows the devices to access the Internet thanks to
brigdes devices 27.

Listing 10: DOMUS data extraction modalities.

1 demo:openHab rdf:type dp:Application;

2 td:hasPropertyAffordance demo:propappOpenHab1 , demo:propappOpenHab2 .

3
4 demo:propappOpenHab1 rdf:type td:PropertyAffordance ;

5 td:hasForm demo:capabilitiesOpenHab1.

6 demo:capabilitiesOpenHab1 rdf:type hctl:Form ;

7 hctl:forContentType "application/json" ;

8 hctl:hasOperationType td:readProperty ;

9 hctl:hasTarget "http://openhab:8080/api/v1/rules/" .

10 demo:propappOpenHab2 rdf:type td:PropertyAffordance ;

11 td:hasForm demo:capabilitiesOpenHab2.

12 demo:capabilitiesOpenHab2 rdf:type hctl:Form ;

13 hctl:forContentType "application/json" ;

14 hctl:hasOperationType td:readProperty ;

15 hctl:hasTarget "http://openhab:8080/api/v1/connectivityFile/" .

24https://github.com/BroadbandForum/obuspa
25https://www.liglab.fr/fr/recherche/plateformes/d
omus

26https://www.openhab.org/
27https://www.openhab.org/docs/concepts/things.htm
l#bridges

https://wiki.thinginthefuture.com/
https://github.com/BroadbandForum/obuspa
https://www.liglab.fr/fr/recherche/plateformes/domus
https://www.liglab.fr/fr/recherche/plateformes/domus
https://www.openhab.org/
https://www.openhab.org/docs/concepts/things.html#bridges
https://www.openhab.org/docs/concepts/things.html#bridges

DOMUS Dependency topology

C: Connectivity device

I: IoT device

Objects:90, links:106

ConnectivityDevice (6)
IoTDevice (84)

hasApplicatioDependency

hasConnectivityDependency

show all links

Thing in the future
Explore Develop Provide Design Stats Learn Hello GUITTOUM

You are on the Qualif instance platform

hide all links

Figure 7: The inferred dependencies topology from DOMUS Testbed.

To infer the DOMUS’ dependency topology, we followed
a four-step process: First, we identified the context data
source that describes IoT dependencies, represented by the
automation rules and connectivity links between the open-
Hab bridges and the IoT devices. This information is de-
scribed in the configuration files of the openHab platform.
Second, we defined REST endpoints that allow the extrac-
tion of these context data. We formalized the extraction
modalities related to these REST endpoints using the TD
standards to be used by the proposed framework for on-
demand context data extraction (see Listing 10). Third,
we defined a mapping that allows the transformation of the
extracted context data to KG according to the IoT-D on-
tology. Last, we ran our framework to infer the threatening
dependency topology. The result is depicted in Figure 7
representing the inferred dependency topology. We have
automatically identified 106 threatening dependency rela-
tionships among DOMUS IoT devices.

6.1.3 IoT-D ontology Qualitative Evaluation
The evaluation of a semantic ontology can be conducted
through qualitative methods, utilizing a set of Competency
Questions (CQ) and executing SPARQL queries against the
instances of the ontology to determine if the defined ontol-
ogy can effectively address these CQs [11]. In this study,
we identified a total of 22 CQs that were categorized into
three classes: Topology Recognition (TR), Dependency In-
formation (DI), and Dependency Information Access (DIA).
A sample of these CQs can be found in Table 3.

Listing 11: The SPARQL query of the CQ22.

1 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

2 PREFIX iotd: <http://www.semanticweb.org/OrangeLab/ontologies/2021/9/IoTD#>

3 PREFIX core: <https://saref.etsi.org/core/>

4 PREFIX eupont: <http://elite.polito.it/ontologies/eupont.owl#>

5 PREFIX td: <https://www.w3.org/2019/wot/td#> .

6 PREFIX hctl: <https://www.w3.org/2019/wot/hypermedia#> .

7 SELECT ?uri ?contentType

8 WHERE {

9 ?propertyAffordance a td:PropertyAfforance.

10 ?connectivityDevice a iotd:ConnectivityDevice;

11 td:hasPropertyAffordance ?propertyAffordance.

12 ?form a hctl:Form.

13 ?propertyAffordance hctl:hasForm ?form.

14 ?form hctl:hasTarget ?uri.

15 ?form hctl:forContentType ?contentType.

16 /* The URI of the connectivity device is provided as input */

17 FILTER(?connectivityDevice=<URI>)

18 }

Subsequently, we formulated a series of SPARQL queries for
each individual CQ. These queries were designed to assess
the capability of the ontology to provide relevant answers.
The Listing 11 presents an example of a SPARQL query al-
lowing to answer the competency question CQ22. We make
available online all the competency questions with their as-
sociated SPARQL queries.28

Finally, we executed the specified SPARQL queries using the
Protégé SPARQL endpoint on two distinct datasets: one de-
rived from the simulated smart home scenario and another
from the DOMUS testbed. Notably, we found that the con-
text KG built upon the IoT-D ontology successfully provided
answers to all the CQs. This result proves the IoT-D ontol-
ogy’s completeness and its ability to encompass diverse IoT
scenarios effectively.

6.2 Quantitative Evaluation

6.2.1 Performance Evaluation
We carried out a set of performance evaluations by i) mea-
suring the completion time of the ER and dependency infer-
ence steps29 on smart home scenarios with different scales;
ii) comparing SHACL to SWRL,30 another formalism for
inference rules used by competing approaches for direct de-

28https://github.com/Orange-OpenSource/ISWC-IoT-D-o
ntology-Documentation/blob/master/CQs/Compentency
Quentions.md

29We do not provide an evaluation for the context extraction
step, since it depends on DM solutions performance and
network characteristics.

30https://www.w3.org/Submission/SWRL/

https://github.com/Orange-OpenSource/ISWC-IoT-D-ontology-Documentation/blob/master/CQs/CompentencyQuentions.md
https://github.com/Orange-OpenSource/ISWC-IoT-D-ontology-Documentation/blob/master/CQs/CompentencyQuentions.md
https://github.com/Orange-OpenSource/ISWC-IoT-D-ontology-Documentation/blob/master/CQs/CompentencyQuentions.md
https://www.w3.org/Submission/SWRL/

Figure 8: DOMUS Testbed

Table 3: Part of the identified CQs

No. Competency Question Class

CQ1
What are IoT devices
present in the managed IoT system?

TR

CQ2
What are IoT applications present
in the managed IoT system?

TR

CQ3
What are the services
consumed by a given device?

DI

CQ4
What are device actions
associated with a given automation rule?

DI

CQ5
How to access the connectivity
topology of a given connectivity device?

DIA

..

CQ22
How to access the connectivity
topology of a given connectivity
device?

DIA

pendencies inference [19] and entity resolution [2]. The com-
parison was performed according to step 3, dependency in-
ference. The test data sets are smart home scenarios with
different scales generated by duplicating the semantic de-
scription of the smart home scenario described in Section 2.
We executed tests on an Ubuntu 20.04 with 32Go RAM and
Intel Corei7 2.5 GHz processors. SHACL inference is imple-
mented using TopBraid SHACL API (version 1.0.1),31 and
SWRL inference is performed using Openllet reasoner with
OWL API (version 2.6.5)32 used by competing approaches.
We note that the comparison results are limited by these

31https://github.com/TopQuadrant/shacl
32https://github.com/Galigator/openllet

868 1736 2604 4340
Number of triples

0

1000

2000

3000

4000

5000

6000

7000

8000

C
o
m
p
le
ti
o
n
 T
im

e
 (
m
s)

Entity Resolution

Figure 9: Completion time of the ER step

technological choices. We found that the completion time of
the dependency inference step is almost negligible (on aver-
age, 32.5 ms for 868 triples and 63 ms for 4340 triples). The
ER completion time (see Figure 9) is more time-consuming
due to: 1) the graph pattern complexity of the ER rules
and 2) the calculations performed by the ER rules in addi-
tion to the inference task. Overall, the framework’s perfor-
mance appears sufficient for a human-based decision-support
tool. However, this time should be discussed more from the
perspective of integrating the proposed framework in auto-
mated DM processes e.g., automatic failure recovery.

Comparing SHACL with SWRL (see Figure 10) according
to the dependency inference time shows that SHACL per-
forms the best, especially for a large number of dependen-
cies. This can be justified from two perspectives: 1) from
the technological perspective, SHACL has the same format
as the validated data, which simplifies the technology stack
required to implement it, unlike SWRL [8]; 2) from the the-

https://github.com/TopQuadrant/shacl
https://github.com/Galigator/openllet

200 1000 2000 5000
Number of Dependencies

0

1000

2000

3000

4000

5000

In
fe
re
n
ce
 T
im

e
 (
m
s)

SHACL

SWRL

Figure 10: SHACL VS SWRL for dependency inference

oretical complexity perspective, SWRL complexity is expo-
nential [16]. Meanwhile, SHACL complexity depends on the
complexity of SPARQL query language, 33 which is polyno-
mial if the graph pattern uses only AND and FILTER op-
erators [21], which is the case for the dependency inference
rules. We make available online the quantitative evaluation
source code with the generated smart home data sets.34

6.2.2 IoT-D ontology Quantitative Evaluation
We assessed the quality of the IoT-D ontology using the On-
toQA methodology [31], which evaluates the ontology using
a set of metrics such as schema metrics. To evaluate the rich-
ness of the IoT-D ontology, we have selected the following
metrics inspired by the work [11]:

• Relationship richness (RR) measures the diversity of
relations within the ontology. Formally, it is defined by

RR =
|P |

|P |+ |SC| (1)

P is the number of relationships in the ontology, and
SC is the number of subclass relationships.

• Attribute richness (AR) shows the richness of concept
description through attributes (a.k.a data properties)
of the ontology. Formally, AR is defined by

AR =
|AT |
|C| (2)

AT is the number of attributes for all classes, and C is
the number of classes.

• Inheritance richness (IR) characterizes the dispersion
of information among various levels of the inheritance
tree within the ontology. It reflects how knowledge
is organized and categorized into distinct classes and
subclasses in the ontology. Formally, IR is defined by

IR =
|SC|
|C| (3)

33https://book.validatingrdf.com/bookHtml013.html
34https://github.com/Orange-OpenSource/ISWC-Reasoni
ngCode

We compared the OntoQA results of the IoT-D ontology
with the IoTB ontology results. The latter is the only found
ontology representing dependencies among IoT devices [19].
The result (see Table 4) shows that the IoT-D ontology out-
performs the IoTB ontology for all the OntoQA metrics.
This signifies that our ontology has more diversity in rela-
tionships, and represents a wider range of knowledge and
more knowledge per instance compared to IoTB ontology,
which is useful for knowledge-based decision support. More-
over, the IoT-D ontology has a lower number of concepts,
which means that it is able to represent the same domain of
knowledge in a more concise manner, which increases per-
formance and reduces reasoning time.

Table 4: OntoQA Evaluation results

Ontology C SC AT P RR AR IR

IoTB 30 11 0 21 0,66 0 0,37

IoT-D 22 09 15 22 0,71 0,68 0,41

7. LIMITATIONS AND OPEN
CHALLENGES

One of the main limitations of our work is that DM actors
should manually publish and maintain extraction modalities
within our framework. Despite being inspired by the ITU-T
Recommendation Y.4459 [12] for information exchange be-
tween isolated organizations in the form of digital entities,
manual data sharing may impact the coherence of the gener-
ated context KGs and the fidelity of the constructed digital
twins. An alternative solution is to make use of a multi-
agent system [27] where an agent is to be associated with
each DM actor. This agent should have proactive capabili-
ties for maintaining the extraction modalities.

Another limitation is the use of dedicated scripts to gen-
erate RDF triples of the context KG, which adds barriers
to integrating DM data sources using new technologies and
data models. Alternatives to address this problem could ex-
plore the use of RDF Mapping Language (RML) rules [6].
They are based on a fully declarative approach for the KG
generation process, which is adaptable to additional data
sources [22]. This reduces integration costs.

The proposed ER approach performs the ER on the context
KGs in two passes: the first pass finds the maximum sim-
ilarity, and the second identifies the entity associated with
the maximum similarity. This process can be optimized by
building a machine learning (ML) model to decide the simi-
larity in one pass. Namely, it should decide for two entities
whether they are similar. The model can be embedded in a
SHACL function to be used in the ER SHACL rule. How-
ever, the lack of learning data can be problematic when con-
sidering such a model. Another limitation of the proposed
ER approach is that it does not guarantee false positives
handling, which may affect the overall reliability of the pro-
posed framework. Moreover, the weights of the resolution
attribute are currently fixed using the following strategy:
0.9 for device identifiers such as device serial number, 0.5
for device properties such as device name, and 0.1 for device

https://book.validatingrdf.com/bookHtml013.html
https://github.com/Orange-OpenSource/ISWC-ReasoningCode
https://github.com/Orange-OpenSource/ISWC-ReasoningCode

group properties such as device manufacturer name. To en-
sure more accurate entity resolution results, these weights
should be studied more even by expert study or using ML
models such as artificial neural networks (ANN) for param-
eters optimization [30].

8. RELATED WORK
As far as we know, this is the first attempt to infer threaten-
ing dependencies in IoT systems managed by multiple DM
solutions. Nonetheless, our work learns from related indus-
try and academia research on multiple axes.

IoT dependencies modeling and extraction are only partly
treated in the literature. The works [18], [10], [19] pro-
pose static models for IoT dependencies through Satisfia-
bility Modulo Theories (SMT), Markov chain, and seman-
tic ontologies, respectively, to assess IoT risks. However,
they do not consider the dynamic nature of IoT depen-
dencies, where dependencies information is extracted and
maintained by human intervention. The work [14] comes
up with a theoretical proposal for a dynamic graph-based
model where explicit dependencies are extracted by analyz-
ing network traffic. However, indirect dependencies, espe-
cially application-based ones, are not addressed. Moreover,
existing solutions do not consider the practical reality: IoT
is managed by multiple actors, although dependency infor-
mation is governed by different DM actors.

The industrial community conducted a few efforts consid-
ering the multi-actor aspect of DM. The operator KDDI
argues that DM is performed in a horizontal specialization
business model, where devices are managed by multiple ac-
tors. In their work [26], they propose a federative approach
for calculating the cumulative failure rate of a device man-
aged by multiple actors. Orange claims the necessity to fed-
erate DM solutions in their presentation [4] for the European
Telecommunications Standards Institute (ETSI). Next, they
propose in [1] a semantic model for the DM domain to enable
the unified management of IoT devices managed by multiple
actors. Recently, Jia Yan et al. propose in [13] the frame-
work CGuard to address the phenomenon of chaotic device
Management that describes the non-alignment of security
policies on an IoT device managed by siloed DM solutions,
which may lead to serious security threats. However, depen-
dencies - related threats remain not addressed.

Several ontologies were proposed to model multiple aspects
of IoT systems. Many activities were conducted to model the
sensing capabilities of sensor networks. The standardized
ontology SSN35 is considered the more valuable effort in this
area. Other ontologies have extended this ontology to model
other aspects of IoT systems, such as actuation capabilities
in SOSA ontology, IoT resources in IoT-Lite ontology,36 and
IoT system evolution with power constraints in IoT-O ontol-
ogy. The SAREF ontology is another widely-acknowledged
ontology enabling semantic interoperability for smart appli-
ances. However, these efforts do not consider modeling inter-
actions and dependencies within IoT systems. The work [19]
proposed a network of ontologies to assess security risks in

35https://www.w3.org/TR/vocab-ssn/
36https://www.w3.org/Submission/2015/SUBM-iot-lit
e-20151126/

IoT systems. Among them, the IoTB ontology describes de-
pendencies between IoT devices. Despite the IoTB ontology
covering a set of IoT dependencies, it doesn’t consider ser-
vice and application-based dependencies. Thus, the IoT-D
ontology is the first ontology to fill these gaps.

The ER problem has been widely studied for over 70 years
in different domains such as knowledge fusion and social
network reconciliation [23, 15]. It is also treated in the
KG domain for KG completion, where several heuristics are
mainly based on ML. However, for cases where training data
is unavailable, which is our case, non-learning approaches
are suitable [5]. The authors propose in [2] a non-learning
ER approach based on SWRL rules that leverages a set of
functional keys to identify similar entities. However, this
approach does not consider complex similarity computation
between the functional keys. This work has inspired us to
propose a novel non-learning ER approach based on the ad-
vanced features of the SHACL standard, which allow em-
bedding complex similarity computations in ER inference
rules.

9. CONCLUSION AND FUTURE WORK
In this work, we shed light on our practical framework that
infers threatening dependencies to help legacy DM solutions
efficiently address dependencies-related threats. We have
identified several business use cases of the proposed frame-
work, such as remote cascading failure management, allow-
ing for reduced DM costs and enhancing customers’ qual-
ity of experience. Other creative use cases may be devel-
oped by exploiting the dependency topology and its context
KG. The proposed framework leverages established Seman-
tic Web standards of W3C and ETSI, such as TD, SHACL,
and SAREF, to enable interoperability across siloed DM so-
lutions. It adopts a KG-based model for efficiently ana-
lyzing heterogeneous, large, and unstructured dependencies
data. It uses the Digital Twin technology to address the dy-
namic aspect of IoT dependencies. It is based on a three-step
process involving extracting dependencies data from siloed
DM solutions, resolving this data, and finally inferring and
reasoning around threatening dependencies. We validated
the proposed solution by inferring threatening dependencies
topology in a smart home scenario managed by multiple DM
actors. However, our approach is generic enough to be ap-
plied to IoT applications other than smart homes thanks
to the IoT-D ontology, which proposes application-agnostic
modeling for IoT dependencies. Moreover, our approach can
be taken up in other domains where there is a need to con-
nect siloed and dynamic data to unlock innovative use cases.

In future work, we intend to leverage the proposed frame-
work to go one step further in managing dependencies-related
threats. Especially considering cascading failure, we intend
to enable collaborative and autonomous cascading failure re-
covery across legacy DM solutions using a cooperative multi-
agent system.

10. ACKNOWLEDGMENTS
The authors would like to thank the Maison de la Création et
de l’Innovation (MACI) as well as the LIG Lab, responsible

https://www.w3.org/TR/vocab-ssn/
https://www.w3.org/Submission/2015/SUBM-iot-lite-20151126/
https://www.w3.org/Submission/2015/SUBM-iot-lite-20151126/

for the DOMUS platform.

11. REFERENCES
[1] F. Aı̈ssaoui, S. Berlemont, M. Douet, and

E. Mezghani. A semantic model toward smart iot
device management. In L. Barolli, F. Amato,
F. Moscato, T. Enokido, and M. Takizawa, editors,
Web, Artificial Intelligence and Network Applications,
pages 640–650, Cham, 2020. Springer International
Publishing.

[2] S. Benbernou, X. Huang, and M. Ouziri.
Semantic-based and entity-resolution fusion to
enhance quality of big rdf data. IEEE Transactions on
Big Data, 7(2):436–450, 2021.

[3] T. Berners-Lee, J. Hendler, and O. Lassila. The
semantic web. Scientific American, 284(5):34–43, May
2001.

[4] S. Bolle, M. Douet, S. Berlemont, E. Mezghani, and
F. Aı̈ssaoui. Towards a unified iot device management
federative platform - presentation at etsi iot week
2019. https://www.researchgate.net/publication
/337160142_Towards_a_Unified_IoT_Device_Manage

ment_Federative_Platform_-_Presentation_at_ET

SI_IoT_Week_2019, 10 2019.

[5] V. Christophides, V. Efthymiou, T. Palpanas,
G. Papadakis, and K. Stefanidis. End-to-end entity
resolution for big data: A survey. ArXiv,
abs/1905.06397, 2019.

[6] A. Dimou, M. Vander Sande, P. Colpaert,
R. Verborgh, E. Mannens, and R. Van de Walle. RML:
a generic language for integrated RDF mappings of
heterogeneous data. In C. Bizer, T. Heath, S. Auer,
and T. Berners-Lee, editors, Proceedings of the 7th
Workshop on Linked Data on the Web, volume 1184 of
CEUR Workshop Proceedings, Apr. 2014.

[7] B. forum. User service protocol tr-369a2, .

[8] M. T. Frank. Knowledge-Driven Harmonization of
Sensor Observations: Exploiting Linked Open Data for
IoT Data Streams. PhD thesis, Karlsruher Institut für
Technologie (KIT), 2021.

[9] A. Hogan, E. Blomqvist, M. Cochez, C. d’Amato,
G. de Melo, C. Gutiérrez, S. Kirrane, J. E.
Labra Gayo, R. Navigli, S. Neumaier, A.-C.
Ngonga Ngomo, A. Polleres, S. M. Rashid, A. Rula,
L. Schmelzeisen, J. F. Sequeda, S. Staab, and
A. Zimmermann. Knowledge Graphs. Number 22 in
Synthesis Lectures on Data, Semantics, and
Knowledge. Morgan & Claypool, 2021.

[10] J. Huang, G. Chen, and B. Cheng. A stochastic
approach of dependency evaluation for iot devices.
Chinese Journal of Electronics, 25:209–214, 2016.

[11] A. Z. Ihsan, S. Fathalla, and S. Sandfeld. Diso: A
domain ontology for modeling dislocations in
crystalline materials. In Proceedings of the 38th
ACM/SIGAPP Symposium on Applied Computing,
pages 1746–1753, 2023.

[12] ITU-T. Recommendation y.4459: Digital entity
architecture framework for internet of things
interoperability, 2020.

[13] Y. Jia, B. Yuan, L. Xing, D. Zhao, Y. Zhang,
X. Wang, Y. Liu, K. Zheng, P. Crnjak, Y. Zhang,
D. Zou, and H. Jin. Who’s in control? on security
risks of disjointed iot device management channels. In
Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’21,
page 1289–1305, New York, NY, USA, 2021.
Association for Computing Machinery.

[14] M. Laštovička and P. Čeleda. Situational Awareness:
Detecting Critical Dependencies and Devices in a
Network. In D. Tuncer, R. Koch, R. Badonnel, and
B. Stiller, editors, 11th IFIP International Conference
on Autonomous Infrastructure, Management and
Security (AIMS), volume LNCS-10356 of Security of
Networks and Services in an All-Connected World,
pages 173–178, Zurich, Switzerland, July 2017.
Springer International Publishing. Part 6: Ph.D.
Track: Methods for the Protection of Infrastructure
and Services.

[15] B. Li, Y. Liu, A. Zhang, W. Wang, and S. Wan. A
survey on blocking technology of entity resolution.
Journal of Computer Science and Technology, 35:769 –
793, 2020.

[16] J. Mei and H. Boley. Interpreting swrl rules in rdf
graphs. Electronic Notes in Theoretical Computer
Science, 151(2):53–69, 2006. Proceedings of the
International Workshop on Web Languages and
Formal Methods (WLFM 2005).

[17] E. Mezghani, S. Berlemont, and M. Douet. Autonomic
coordination of iot device management platforms. In
2020 IEEE 29th International Conference on Enabling
Technologies: Infrastructure for Collaborative
Enterprises (WETICE), pages 30–35, 2020.

[18] M. Mohsin, Z. Anwar, G. Husari, E. Al-Shaer, and
M. A. Rahman. Iotsat: A formal framework for
security analysis of the internet of things (iot). In 2016
IEEE Conference on Communications and Network
Security (CNS), pages 180–188, 2016.

[19] M. Mohsin, Z. Anwar, F. Zaman, and E. Al-Shaer.
Iotchecker: A data-driven framework for security
analytics of internet of things configurations.
Computers Security, 70:199–223, 2017.

[20] Orange. Thing’in platform, .

[21] J. Pérez, M. Arenas, and C. Gutierrez. Semantics and
complexity of sparql. In I. Cruz, S. Decker,
D. Allemang, C. Preist, D. Schwabe, P. Mika,
M. Uschold, and L. M. Aroyo, editors, The Semantic
Web - ISWC 2006, pages 30–43, Berlin, Heidelberg,
2006. Springer Berlin Heidelberg.

[22] J. A. Rojas, M. Aguado, P. Vasilopoulou,
I. Velitchkov, D. Van Assche, P. Colpaert, and
R. Verborgh. Leveraging semantic technologies
for digital interoperability in the european railway
domain. In A. Hotho, E. Blomqvist, S. Dietze,
A. Fokoue, Y. Ding, P. Barnaghi, A. Haller,
M. Dragoni, and H. Alani, editors, The Semantic Web
– ISWC 2021, pages 648–664, Cham, 2021. Springer
International Publishing.

[23] A. Saeedi, E. Peukert, and E. Rahm. Incremental
multi-source entity resolution for knowledge graph
completion. In A. Harth, S. Kirrane, A.-C.

 https://www.researchgate.net/publication/337160142_Towards_a_Unified_IoT_Device_Management_Federative_Platform_-_Presentation_at_ETSI_IoT_Week_2019
 https://www.researchgate.net/publication/337160142_Towards_a_Unified_IoT_Device_Management_Federative_Platform_-_Presentation_at_ETSI_IoT_Week_2019
 https://www.researchgate.net/publication/337160142_Towards_a_Unified_IoT_Device_Management_Federative_Platform_-_Presentation_at_ETSI_IoT_Week_2019
 https://www.researchgate.net/publication/337160142_Towards_a_Unified_IoT_Device_Management_Federative_Platform_-_Presentation_at_ETSI_IoT_Week_2019

Ngonga Ngomo, H. Paulheim, A. Rula, A. L. Gentile,
P. Haase, and M. Cochez, editors, The Semantic Web,
pages 393–408, Cham, 2020. Springer International
Publishing.

[24] Samsung. Smartthings, .

[25] N. Seydoux, K. Drira, N. Hernandez, and T. Monteil.
Iot-o, a core-domain iot ontology to represent
connected devices networks. In 20th International
Conference on Knowledge Engineering and Knowledge
Management - Volume 10024, EKAW 2016, page
561–576, Berlin, Heidelberg, 2016. Springer-Verlag.

[26] M. Shibuya, T. Hasegawa, and H. Yamaguchi. A study
on device management for iot services with
uncoordinated device operating history. 2016.

[27] Y. Shoham and K. Leyton-Brown. Multiagent
Systems: Algorithmic, Game-Theoretic, and Logical
Foundations. Cambridge University Press, 2008.

[28] I. standard. Ieee standard for a convergent digital
home network for heterogeneous technologies
amendment 1: Support of new mac/phys and
enhancements. IEEE Std 1905.1a-2014 (Amendment
to IEEE Std 1905.1-2013), 2013.

[29] M. C. Suárez-Figueroa, A. Gómez-Pérez, and
M. Fernández-López. The NeOn Methodology for
Ontology Engineering, pages 9–34. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2012.

[30] L. B. Tan and N. D. P. Nhat. Prediction and
optimization of process parameters for composite
thermoforming using a machine learning approach.
Polymers, 14(14), 2022.

[31] S. Tartir, I. Arpinar, M. Moore, A. Sheth, and
B. Aleman-Meza. Ontoqa: Metric-based ontology
quality analysis. 11 2005.

[32] L. Xing. Cascading failures in internet of things:
Review and perspectives on reliability and resilience.
IEEE Internet of Things Journal, 8(1):44–64, 2021.

[33] T. Yu, V. Sekar, S. Seshan, Y. Agarwal, and C. Xu.
Handling a trillion (unfixable) flaws on a billion
devices: Rethinking network security for the
internet-of-things. In Proceedings of the 14th ACM
Workshop on Hot Topics in Networks, HotNets-XIV,
New York, NY, USA, 2015. Association for
Computing Machinery.

[34] P. Zdankin, M. Schaffeld, M. Waltereit, O. Carl, and
T. Weis. An algorithm for dependency-preserving
smart home updates. In 2021 IEEE International
Conference on Pervasive Computing and
Communications Workshops and other Affiliated
Events (PerCom Workshops), pages 527–532, 2021.

	Introduction
	Motivating Use Case
	Smart Home Architecture
	Illustration of Dependencies-Related Threats

	Context-Based Modeling for Threatening Dependencies
	Threatening Dependencies Characterization
	Threatening Dependencies Data Sources
	Threatening Dependencies Modeling

	Proposed Framework
	 Step 1: Context Extraction
	Step 2: Entity Resolution
	Problem Statement
	Method

	Step 3: Dependency Inference

	Business Use case
	Evaluation
	Qualitative Evaluation
	Simulated Smart Home Scenario
	Realistic Smart Home: DOMUS Testbed
	IoT-D ontology Qualitative Evaluation

	Quantitative Evaluation
	Performance Evaluation
	IoT-D ontology Quantitative Evaluation

	Limitations and Open Challenges
	Related Work
	Conclusion and Future Work
	Acknowledgments
	References

