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Abstract

Efficient and distributed adaptive mesh construction and editing pose several challenges, including
selecting the appropriate distributed data structure, choosing strategies for distributing computational
load, and managing inter-processor communication. Distributed Combinatorial Maps permit the rep-
resentation and editing of distributed 3D meshes. This paper addresses computation load and expands
communication aspects through volume transfer operation and repartitioning strategies. This work is
the first one defining such transfer for cells of any topology. We demonstrate the benefits of our method
by presenting a parallel adaptive hexahedral subdivision operation, involving fully generic volumes,
in a process including a conversion to conformal mesh and surface fitting. Our experiments compare
different strategies using multithreading and MPI implementations to highlight the benefits of volume
transfer. Special attention has been paid to generic aspects and adaptability of the framework.

Keywords: Mesh geometry models, Volume mesh, Distributed algorithms, Cell balancing.

1 Introduction

Parallel programming and distributed 3D meshing
are of primary importance to tackling a large-
scale problem, particularly for numerical simu-
lation. Parallel algorithms based on distributed
mesh data structures will seek to optimize avail-
able resources by distributing the workload among
multiple processors (e.g., multicore processors).

In this field, the most common solution will use
an out-of-core partitioning of the mesh. Finding
the best global partition is a challenging task, and
many strategies have been elaborated to main-
tain a certain quality in the partition during the
mesh modification process. However, the quality
criteria are inherently related to the underly-
ing problem to solve, and this process is even
questionable [Hen00].

Based on an initial mesh partitioning, a dis-
tributed data structure will permit to maintain
the global mesh consistency on all the proces-
sors during topology modification operations. In
addition to supporting inter-processor commu-
nication, which may require managing copies
of inter-processor boundary elements (ghost ele-
ments) [HKB21], a distributed global structure
should allow efficient access to neighboring cell-
s/blocks (intra and inter-node) [LLM+12] or an
owner processor identifier.

Maintaining the distributed mesh information
consistency is often not sufficient. For instance,
for adaptive mesh refinement, the number of mesh
entities associated with a given processor can
rapidly grow and unbalance the workload among
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available processors. This results in increased com-
putation times as the running time is related to
the slowest processor [Hen00]. In this context,
dynamic load balancing and cell transfer strategies
allow the dynamic assignment of new/old mesh
entities to other processors [SS06]. This locally
distributes the cells of the global mesh to ensure
a better load balance. For block-based adaptive
mesh refinement data structure, building a locally
computable mapping scheme from blocks to pro-
cessors avoids performing explicit re-balancing (or
rarely) [LLM+12].

Most existing methods require hierarchical
data structures or ghost cells, both of which are
expensive to maintain and require specific com-
munication strategies. In contrast, we propose a
volume transfer operation that eliminates the need
for both hierarchical data structures and dupli-
cated ghost cells. Moreover, existing methods deal
with some specific type of cells with fixed topol-
ogy such as [CA15, MPR19], and also [ALSS06,
LCW+06] that presented local and global migra-
tion experiments similar to ours but restricted to
tetrahedral meshes.

In this paper, our contributions consist of the
following:

• we define a volume transfer operation with arbi-
trary element shape and topology, regardless
of whether it is conformal or not, capable of
transferring from and to any block without any
constraint.

• we introduce a dynamic migration procedure
based on fast multi-criteria oracles, easily tuned
to balance at best loads between computa-
tion cores regarding the specificities of each
application.

• we rely on a local handling of critical cells
(darts), with no ghost cells, avoiding dupli-
cated information and subsequent redundant
operations.

The rest of this paper is organized as follows.
Section 2 presents an overview of related work
on distributed mesh data structures, combinato-
rial maps, and their distributed version. Section 3
deals with the volume transfer operation and
associated distributed topological modifications.
Section 4 discusses strategies of cell balancing,
while Sect. 5 demonstrates the benefits of vol-
ume transfers in parallel adaptive mesh refinement
experiments.

2 Related Work

There are many parallel data structures for 3D
mesh construction and editing. We focus on dis-
tributed data structures and implementation that
allow for parallel adaptive generation, analysis or
editing (e.g., simplification, adaptive refinement).
Among the different characteristics of such data
structures, we can mention flexibility (available
volumetric element types, conformality, and man-
ifoldness), parallel scalability (when the scale of
the problem and the number of cores increase, a
scalable algorithm cost will not be dominated by
communication), and compactness (minimal data
structure - including ghost cells, ability to com-
press some data). Generally, a trade-off is a search
for scalability while maintaining as much com-
pactness as possible, which equates to a trade-off
between time and memory (parallel) complexities.

Adaptive Mesh Refinement (AMR) [BGG+08,
JLY10] is a technique that directs computa-
tional resources to areas where higher precision is
required by refining the mesh in those regions. To
locate neighboring blocks and preserve the mesh
structure’s invariance, conventional parallel AMR
implementations retain tree information on each
process [LLM+12]. However, the replication of the
global mesh structure on each processor can pre-
vent scalability. It is therefore recommended to
either store a coarsened overlap (low-res) version
on each processor (only ”locally owned” domain is
fully refined) [BBHK12] or not store any hierarchi-
cal global data structure [LLM+12, DGLZD18].

Block-structured AMR [LB10] involves the
union of regular grids, allowing the reuse of reg-
ular grid sequential codes. In contrast, unstruc-
tured AMR [FLS+97, LCW+06] provides greater
geometric flexibility at the expense of explicitly
storing all neighborhood relations between mesh
elements. The primary challenge in these mainly
tetrahedral-based methods is to maintain element
quality as the mesh is coarsened or refined.

Octree is a popular hierarchical representation
used for parallel generation or coarsening of hex-
ahedral meshes. However, accessing the neighbor-
hood of a cell is not direct and may be penalizing
to produce balanced meshes requiring at most one
level of refinement between adjacent cells. Produc-
ing conformal hexahedral meshes is also arduous,
and mixed elements meshes [JL22, LPC21] or
unstructured hybrid meshes [TCL+20] tend to
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offer better computational efficiency compared to
fully tetrahedral or hexahedral meshes. Addition-
ally, they generally enable better preservation of
the mesh surface by employing tetrahedra along
the surface border, compared to hexahedra.

Parallel Octrees [BGG+08, SB10] have shown
promising scalability and low computational over-
head. However, a single octree can encode only
a cube-shaped domain. To overcome this limi-
tation, the Forest-of-Octrees [BWG11, HBK+23]
approach supports the representation of gen-
eral geometries by assembling multiple octrees.
The macro-structure of the forest is shared
among all cores. The approach of space-filling
curves [JLY10], mostly using Morton, Gray code,
Hilbert or Moore ordering for tree traversal,
has significantly improved the scalability of par-
allel octree-based AMR simulations [CDF+03,
DHF+09, HS18].

Hierarchical structures can help coarsen the
global mesh where needed. The distributed mesh
data structure may try to improve cache local-
ity and thus, the performance when accessing
corresponding data [NDB17, HKB21]. The dis-
tributed mesh data structure can also maintain
invariants such that geometrically neighboring
cells may differ by only a single refinement level
[BBHK12, LLM+12, TCL+20]. That may facili-
tate the extraction of a conformal mesh but may
involve communication with processors that own
nearby parts of the mesh.

In a distributed mesh, a unique processor ID
is assigned to each mesh element to indicate its
current partition within the mesh. The process
of cell migration involves reassigning a new pro-
cessor ID to a selected group of mesh elements
and subsequently transferring the corresponding
cell data to the memory of the newly designated
processor. Cell migration usually achieves load
balancing for AMR [LLM+12] in situations where
computational requirements vary unpredictably
over time. In such cases, workloads can be dynam-
ically allocated to processors to optimize system
performance [KK93, HD00, DSS17]. Local heuris-
tics are effective in dealing with localized changes
in load balance, as in [LMA15] where splits are
performed to minimize interfaces. However, large
changes require a global method and a global load
balancing strategy.

When considering parallel memory efficiency,
there are two key factors to prioritize. Firstly,

limiting the amount of data shared between pro-
cessors is crucial (shared global structure, ghost
elements), as this can hinder the scalability of
the data structure. Secondly, compressing some
shared data and messages [FANF12] can also
improve parallel efficiency. These strategies can
help to mitigate the impact of communication
overhead and improve the overall compactness of
parallel computing.

In the majority of the distributed AMR meth-
ods, it is worth noticing that the load balancing
is performed through cell transfer. Few of them
have integrated a dynamic process to exchange
cells between computing nodes [ALSS06, SS06,
LLM+12], while others are keeping a global rep-
resentation of the mesh and interface, and where
the cells are locally attributed to the correspond-
ing computing node after a global repartitioning
step [BGG+08, BGG+10, BBHK12, LCW+06,
LMA15, TCL+20].

We summarize the limitations of previous work
as follows:

• The use of a global structure: Storing a global
structure on each processor can hinder scalabil-
ity. Accessing the neighborhood of a cell may
require additional memory and can be penaliz-
ing to produce balanced meshes that require at
most one level of refinement between adjacent
cells.

• Restricted element type: Maintaining element
quality in pure tetrahedra methods as the mesh
is coarsened or refined is complex. Pure hexa-
hedra methods offer better computational effi-
ciency, but producing conformality is arduous
[LPC21], and hexahedra do not allow satisfac-
tory surface preservation [PCS+22].

• Ghost elements: The use of ghost elements can
impact the performance and complicate the load
balancing.

In this paper, we solve these limitations: (1)
we avoid the use of a global structure; (2) we do
not limit the element type; (3) we do not use ghost
element while offering load balancing.

2.1 Combinatorial Maps

A 3D combinatorial map [Lie94, DL14], called 3-
map, is a combinatorial data structure that allows
representing a 3D mesh decomposed into cells: ver-
tices, edges, faces, and volumes; plus adjacency

3



B

D

C
A

(a) (b)

Fig. 1: Example of: (a) a 3D object; (b) the
corresponding 3-map.

and incidence relation between all the cells. Each
edge of the mesh is decomposed into basic unit ele-
ments: the darts. For each edge, there is one dart
per face and per volume incident to the edge. The
connectivity between the cells is encoded through
mappings between darts. For each dart d, β1(d)
gives the next dart following d in the same face
and the same volume; β2(d) gives the other dart of
the same edge, the same volume but the adjacent
face and β3(d) gives the other dart of the same
edge, the same face but the adjacent volume. β0 is
the reverse relation of β1, allowing to turn around
darts of a face in the reverse direction. Note that
β2 and β3 are involutions, i.e. one to one map-
pings equal to their inverse. All the cells and all
the adjacency and incidence relations in a 3-map
can be retrieved using the darts and their links.

A 3-map can be seen as a generalization in 3D
of the well known half-edge data structure [Wei85].
Half-edges correspond to darts, next to β1, previ-
ous to β0 and opposite to β2. β3 can be seen as
a second opposite relation but between volumes
instead of faces.

Let us have a look at the 3D mesh shown in
Fig. 1a. This 3D mesh is composed of 4 volumes: 2
tetrahedra (labeled C and D), one pyramid (labeled
B) and one hexahedron-like element (labeled A),
which is not really a hexahedron because one of
its faces is split in two triangles. 3-map are natu-
rally able to represent any kind of polyhedra. And,
for example, A is adjacent to B, C, and D; and C

is adjacent to A and D (note that adjacency is a
symmetric relation).

This mesh is described by the 3-map shown in
Fig. 1b, where darts are drawn by oriented seg-
ments. A is represented by 26 darts, B by 16 darts,
and C and D by 12 darts each.

β3 β1β0
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1
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9

β3

β2

(b)

Fig. 2: Zoom on: (a) the face between volumes A
and B of Fig. 1b; (b) edge incident to volumes A,
B, and D of Fig. 1b.

Let us zoom in on the face between volumes A
and B (Fig. 2a) to observe more precisely the darts
and their links. This face has 8 darts, numbered
from 1 to 8. And for example, β0(5) = 6, β1(5) = 8
and β3(5) = 4. If we zoom in on the edge between
volumes A, B, and D (Fig. 2b), we can observe that
it is represented by 6 darts. We have for example
β2(3) = 9 and β3(3) = 8.

A 3-map can represent objects with or without
boundaries. In Fig. 1, some faces belong to the
border of the mesh: they are incident to only one
volume. Darts representing these faces are said 3-
free (for example, dart 12 in Fig. 2b). Non-3-free
darts are said 3-sewn, and we say that dart d is
i-sewn with dart d′ when βi(d) = d′.

One main interest of 3-maps is to fully describe
the mesh topology while allowing for mixing of
different face and volume types (which are not
restricted to some specific topology like triangles,
quads, tetrahedra, or hexahedra). Another main
interest is that there are many operations to build
and modify a 3-map. These operations are often
defined locally and thus have good computational
time complexity.

Note that the definition of combinatorial maps
is more generic since they are defined in any
dimension, and they allow borders for each dimen-
sion. Interested readers can refer to [DL14] for
more explanations and definitions.

2.2 Distributed Combinatorial Maps

In [DGLZD18], a distributed version of 3-maps is
defined. Its main principle is to split a combina-
torial map into several independent parts (called
blocks), such that all darts that belong to the same
volume (cell) must belong to the same block. Ids
are associated with darts and faces that belong
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to the boundary of a block to retrieve the corre-
sponding darts and faces in the other block. These
blocks define a partition of the global 3D mesh.

More precisely, if a dart d belongs to a different
block than the one of d′ = β3(d), d and d′ are
called critical darts. Ids are associated with these
critical darts (denoted cid(d)), such that each pair
of darts d and d′ = β3(d) have the same label.
Reciprocally, if two critical darts d and d′ share
the same id, then we must have d′ = β3(d). In
addition, a face is called critical if its darts are
critical. Ids are also associated with critical faces
(denoted also cid(f)). For two critical darts such
that d′ = β3(d), then the ids of the two opposite
critical faces containing them are the same.

Each block stores its own set of critical darts
and critical faces. These two sets allow: (1) given a
critical cell id, to retrieve one of its darts (denoted
dart(id)), for example to serve as starting point for
an operation; (2) given a critical cell id, to retrieve
the other block containing this cell too, denoted
other block(id), for example to send it a message.

It is crucial to keep in mind that any label
can be assigned to critical cells, but two critical
cells must share the same label if and only if they
correspond to the same cell in the two blocks.

Let us illustrate the notions around distributed
3-maps thanks to the example of Fig. 3, which
shows one distributed version of the 3-map of the
previous example (in Fig. 1). This example has
3 blocks called B0, B1, and B2, drawn in dif-
ferent colors. 3 faces are critical, labeled [a], [b],
and [c], and 18 darts are critical. For example, [a]
between blocks B0 and B1, has 3 critical darts in
each block, labeled 1, 2, and 3. In examples and
figures, we use [id] to denote critical face ids in
order to distinguish them from critical darts ids. In
block B0, we have for example other block([a]) =
other block(1) = B1 (and reciprocaly in block B1,
other block([a]) = other block(1) = B0).

In [DGLZD18], a distributed 3-map is used
to propose a parallel adaptive hexahedral mesh
refinement algorithm. Each block subdivides its
part independently, and messages are exchanged
when critical darts and critical faces are sub-
divided to ensure the global consistency of the
distributed 3-map. One potential limitation of
this work is that the number of volumes in each
block may vary depending on the mesh, leading to
significant load imbalances among processes.

In this paper, we solve this limitation by
proposing two improvements: (1) we define a
new operation allowing the transfer of a volume
between two different blocks; (2) we use this trans-
fer operation to balance the loads among the
different cores while performing parallel opera-
tions for 3D mixed elements mesh editing. Note
that, to our knowledge, this is the first method
allowing the transfer of cells with any topol-
ogy. To demonstrate its potential, we illustrate
the cell transfer in an adaptive hexahedral mesh
refinement algorithm, including converting non-
conformal cells into transitional patterns of mixed
elements (potentially composed by tetrahedra,
hexahedra, prisms, and pyramids) and finally pro-
jecting external points on the surface.

3 Volume Cell Transfer

Let us consider a distributed 3-map having n
different blocks B0, . . . , Bn−1. The goal of the
volume transfer operation is to send one volume
v from block Bi to block Bj (with i ̸= j) while
preserving the partition property. We define this
operation to be generic, without any constraint on
block Bj ’s location, the topology of the volume,
or its adjacent volumes and critical faces.

In the following, we suppose that each block
is associated to a unique process, and that the
only possible communication will be by sending
messages. This framework is a little bit too restric-
tive for multi-threading architectures, which allow
shared memory, but this enables us to develop the
same software for both multi-thread and multi-
processes architectures, changing only the commu-
nication part, as we will see in the experiments
section.

Given a volume v in block Bi, each face of v
belongs exactly to one of the sets that we denote
by:

• ∂v the non-critical faces of v that are 3-free
(these faces belong to the boundary of the
mesh);

• Fv the non-critical faces of v that are not 3-free
(these faces are internal to block Bi);

• Fvj the critical faces of v between blocks Bi and
Bj ;

• FvO the critical faces of v between blocks Bi

and Bk, k ̸= i and k ̸= j (O stands for others).
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Fig. 3: Example of a distributed 3-map represent-
ing the 3-map shown in Fig. 1b.
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Fig. 4: Result of the transfer of volume A from
block B0 from the distributed 3-map of Fig. 3 into
block B1.

Migrating volume v from block Bi to block Bj

requires the following modifications, detailed in
the following:

1. move the volume: remove v from Bi (geom-
etry and topology), and add it into Bj ;

2. attach the volume: 3-sew all critical faces of
Fvj with their corresponding critical face in Bj ;
remove the critical status of these faces (which
become internal to block Bj);

3. create new critical faces: mark all internal
faces of Fv as critical in blocks Bi and Bj , using
new critical ids;

4. update remaining critical faces: update the
critical faces with other blocks in FvO: for all
concerned blocks Bk, update the opposite block
of these faces, which becomes Bj ; and remove
these critical faces from the local list in Bi and
add them in Bj (keeping existing ids).

Let us detail this process on an example, con-
sidering volume A in Fig. 3 that belongs to block
B0 and that we want to transfer into block B1.
This volume has 7 faces, 4 of which are 3-free and
thus belong to ∂A. The face (square) between A
and B is internal to block B0 and thus belongs
to FA. The critical face [a] is between blocks B0

and B1 and thus belongs to FA1, while the crit-
ical face [b] between blocks B0 and B2 belongs
to FAO. Figure 4 shows the result of the transfer.
We can observe that: (1) the face [a] ∈ FA1 is no
more critical. A and C are now 3-sewn along this
face; (2) [b] ∈ FAO, its other block is changed in
B2 : other block([b]) ← B1 (it was B0 before the

transfer); (3) a new critical face [0.0] is created
(associated with the face in FA) between blocks
B0 and B1.

Note that [0.0] is a new label generated by the
transfer, while [a], [b], and [c] are existing labels
(from the combinatorial map in input) that can be
reused as is by our method. By construction, those
two families of labels are distinct (see Sect. 3.1).

So, in each block, we have the following critical
faces before transferring volume A.

• in block B0: {[a], [b]};
• in block B1: {[a], [c]};
• in block B2: {[b], [c]}.

and after transfer of A to Block B1:

• in block B0: {[0.0]};
• in block B1: {[0.0], [b], [c]};
• in block B2: {[b], [c]}.

In Fig. 5, you can see how blocks communicate
during this operation. There are two types of mes-
sages. Bi sends a long message to Bj , of type
TR (for ”TRansfer”), containing 4 parts: (1) the
geometry and the topology of the cell; (2) the cur-
rent list of critical faces between blocks Bi and Bj

that will serve to attach the volume with its neigh-
bors after the transfer; (3) the list of new critical
faces between Bi and Bj ; (4) the current list of
other critical darts and faces, and the id of their
other block.

A second type of message (type UP for ”UPdate
other block”) is sent from Bi to other blocks Bk,
k ̸= i and k ̸= j, that share one critical face with
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Fig. 5: Summary of the different messages
exchanged for the volume transfer operation.
There are two types of messages: TR for ”TRans-
fer” and UP for ”UPdate other block”.

v. This short message contains only the critical
id of the face and the id of the block where v is
transferred (j).

We can observe that messages of type UP will
always remain short. However, the message of type
TR can be quite large due to the inclusion of geom-
etry, topology, and potentially several critical ids.
For example, if one of the initial faces in a cell has
been highly subdivided, but not in its opposite
cell, this is leading to many critical darts and faces.
That is the price to pay for dealing with cells of
any topology, as there is no means to retrieve this
information from an unstructured representation.
But in most cases, this message remains of rea-
sonable size, especially for 1-balanced conformal
meshes that tend to lower this problem.

In the following sections, we detail the differ-
ent operations achieved by the distinctive blocks:
source Bi, destination Bj , and relatives Bk if any,
with k ̸= i and k ̸= j . Finally, the whole process
is illustrated on an example in Sect. 3.4.

3.1 Operations in source Block Bi

The main principle of the transfer operation for
block Bi is the following: (1) start to build a
message containing all the information required
to re-create v in Bj ; (2) update its critical cells;
(3) remove v from this block mesh. This process
is summarized in Algorithm 3.1. The TR message
built by Bi contains 4 different parts detailed
in the 4 following subsections. The UP message
appears in the last of these 4.

Algorithm 3.1: Transfer operations in
block Bi.

Result: Updating Block Bi;
Send messages TR to Block j and
UP to Blocks k.

// message TR part 1

1 Encode geometry and topology of v in TR;
// message TR part 2

2 foreach critical face f in Fvj do
3 Encode cid(f) and the local index of one

of its dart in TR;
4 Unset critical face f and all its critical

darts;

// message TR part 3

5 foreach internal face f in Fv do
6 cid(f)← [i.#new] ;
7 other block(f)← Bj ;
8 Encode [i.#new] and the local index of

one starting dart of f in TR ;
9 Label all darts of f with i.#new.q,

starting from q = 0, in direct order
(using β1);

10 ++ #new ;

// message TR part 4, and message UP

11 foreach critical face f in FvO do
12 Encode cid(f) and j in UP;
13 Send UP message to Block

other block(f) ;
14 Encode cid(f), other block(f) and the

local index of one starting dart n in TR ;
15 Encode the critical id of all darts of f ,

starting from n, in direct order in TR ;
16 Unset critical face f and all its critical

darts ;

17 Send TR message to Block Bj ;
18 Remove v from Bi ;

3.1.1 Geometry and topology, TR part 1

The geometry and the topology of v come first.
The encoding is local and independent of the rest
of the mesh and is generic enough to be able to
describe any geometry and topology.

First, all the vertices of v are numbered locally
to the element (starting from 0). Next, each face
of v can be described by the ordered list of its ver-
tices (using their indices). Note that the order of
vertices, the order of faces, and the starting vertex
for each face can be chosen arbitrarily.
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This encoding of v gives an implicit numbering
of the darts. Taking the first face, the dart associ-
ated with the first pair of vertices is numbered 0,
the dart associated with the second pair of vertices
is numbered 1, and so on.

The topology of the faces is explicitly stored in
this encoding through the ordered list of vertices,
while the topology of the volume is implicitly rep-
resented: two faces are adjacent when they share
the same pair of indices in reverse order.

3.1.2 Critical faces between blocks Bi

and Bj, TR part 2

The critical faces in Fvj will be no more critical
after the transfer of v, they become internal to Bj

according to the process exposed below.
The new volume v in block Bj must be

attached to its neighbors in Bj . Before the trans-
fer, v was virtually attached to these neighbors
through its critical faces between blocks Bi and
Bj that belong to Fvj . The goal here is, for each
face in Fvj , to find one dart of v in this face and
the corresponding dart of another volume of Bj

that must be 3-sewn.
This is achieved thanks to the id associated

with critical darts. One pair (cid, n) is added at
the end of the message for each critical face in Fvj ,
with cid being the critical id of one dart of the face
and n being the local index of this dart computed
in the previous step.

3.1.3 New critical faces between blocks
Bi and Bj, TR part 3

After the transfer of v from Bi to Bj , the faces
of v in Bi that were internal to this block (i.e.,
3-sewn with another volume of Bi) will become
critical between blocks Bi and Bj . New critical
faces must be created while ensuring consistent
labeling in both blocks. This consistency is crucial
to ensure the global validity of the mesh through
its different blocks.

These new critical faces belong to Fv. For these
faces, we need to create new ids and ensure their
uniqueness. To do so, each block stores #new, its
proper number of new ids already defined and used
during previous steps of volume transfers. A new
critical face is labeled [i.#new], i being the block
number. With this labeling, each new critical id is
globally unique, since #new is incremented after
each creation of a new critical face. Moreover,

the process of creating a new id is local to each
block without the need for any global communi-
cation between blocks, which is a key point in our
method.

These critical ids are created in block Bi and
added at the end of the message (using like for the
previous case one pair (cid, n) for each new critical
face, with cid the new critical id, and n the local
index of one dart of the face).

Bi labels its new critical faces using these ids.
Critical darts of these faces must also be labeled
consistently in both blocks. To do so, Bi labels
each new critical dart by i.#new.q, with [i.#new]
the id of the face and q being the position of the
dart in this face starting from the dart used in
the pair (cid, n), and using β1 to traverse all the
darts of the face. This labeling avoids to add the
labels of these critical darts in the message since
they can be retrieved directly using the label of
the critical face.

3.1.4 Critical faces between blocks Bi

and Bk, TR part 4 and UP

The last required modification is that of the old
critical faces between v and other blocks (different
from Bi and Bj). For each face in FvO, we:

1. send a message to block Bk containing the crit-
ical face id and j, the id of the block where v
will be transferred;

2. remove these critical faces and their critical
darts from Bi, which are no longer critical in
this block;

3. add at the end of the message to block Bj

the critical ids of these faces and the critical
ids of their darts, with their other block, and
the local index of their darts. Unlike the case
of new critical faces (explained in the previous
section), we do not have to create new ids, we
can reuse the existing ids since they already
exist in blocks Bk. Also, note that we need
to send all the critical ids here, as we cannot
assume any specific property on the critical ids
of darts or faces.

3.1.5 Update of Bi

Once the message TR is built, it is sent to Bj .
The critical faces of v and their critical darts are
removed from the associative arrays in Bi since
they will be no more critical after the transfer of
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v. Then, Bi removes v from its mesh using the
removal operation for combinatorial maps [DL14].
This operation removes all the darts of v and
updates the β3 relations of darts that were linked
with v.

3.2 Operations in destination Block
Bj

When Bj receives the message from Bi, it can
recreate v from its encoding and add it to its mesh
partition. During the reconstruction, the ids of
each new dart are stored (according to the order of
faces and their list of vertices, as explained above).
For now, v is isolated, namely disconnected from
the other parts of the mesh in block Bj . Infor-
mation contained in the message will be used to
attach v with its neighbors and to create new
critical elements (Algorithm 3.2).

Firstly, for each critical face in Fvj , we retrieve
two darts: (1) d1, the new dart of v using n and the
local index of darts of v; (2) d2, the corresponding
dart in Bj , directly using the id of the critical dart
and the associative array in Bj that gives for each
critical id one of its darts. It is then enough to
call the 3-sew operation starting from these two
darts, which will correctly link two by two all the
darts of their faces ([DL14] for more details on this
operation).

After considering all critical faces in Fvj , v
is now correctly attached to all of its neighbors.
These critical faces are no longer critical since v
now belongs to the same block Bj as these neigh-
bors. Consequently, all critical ids of these faces
and their darts are removed from the associative
arrays.

Secondly, for each new critical face in Fv, Bj

labels the face using the pair (cid, n) that gives
the id of the face and one dart. Critical darts are
labeled using n as starting dart and cid as prefix.
Starting from the dart n, all the darts of the face
are labeled by cid.q, with q the position of the dart
in this face, but using here the reverse relation β0

to ensure that two corresponding darts in Bi and
Bj have the same label.

Thirdly, new critical darts and critical faces
are created for each critical face in FvO. Here, we
use the critical id of the element, the local index
of one of its darts, and the id of their other blocks
that are directly read in the message.

Algorithm 3.2: Transfer operations in
block Bj .

Result: On reception of a TR message from
Block Bi, updating Block Bj .

1 Create volume v using topology and
geometry information (TR part 1);
// 3-sew v to its adjacent faces

2 foreach critical dart cid of local index n in
TR part 2 do

3 m← getDartIndexForLabel(cid) ;
4 3-sew(n, m);
5 Unset critical face containing dart m

and all its critical darts;

// Label new critical faces and

darts

6 foreach critical face [cid] with local index
n of starting dart in TR part 3 do

7 Set face containg dart n as critical ;
8 other block([cid])← Bi ;
9 Label all darts of [cid] with cid.q,

starting from dart n, q = 0, in reverse
order (using β0);

// Update other critical faces and

darts

10 foreach critical face [cid] with local index
n of starting dart in TR part 4 do

11 other block([cid])← Bk (and the same
for all the darts of the face);

3.3 Operations in relatives Blocks
Bk with k ̸= i and k ̸= j

The only modification required for all the blocks
Bk is to change the other block id from Bi to Bj

for the critical faces received in the message, and
for all of its critical darts (Algorithm 3.3).

Algorithm 3.3: Transfer operations in
block Bk.

Result: On reception of a UP message from
Block Bi, updating Block Bk.

// Update critical faces and darts

1 other block([cid])← Bj (and the same for
all the darts of the face) ;
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Fig. 6: Possible local encoding of points and darts
for Volume A of Fig. 3.

3.4 Example

Let us reconsider the example given in Fig. 3
(before transfer) and Fig. 4 (after transfer). One
possible encoding of the volume A, which has 8
vertices and 7 faces, is the following (Fig. 6), and
this constitutes part 1 of the TR message:

8 7 # Number of vertices / faces
# Coordinates of each vertex Pi

0 0 0 1 0 0 1 1 0 0 1 0
0 0 1 1 0 1 1 1 1 0 1 1
# Number of vertices and indices of each face
4 0 1 2 3 4 1 0 4 5 3 2 1 5 3 2 5 6
4 3 2 6 7 4 0 3 7 4 4 7 6 5 4

In this encoding, critical dart 1 of Fig. 3 is,
for example, locally numbered 9 for his element
(because it is associated with the second edge of
the third face, see Fig. 6 and Sect. 3.1).

Only one critical face belongs to FA1: [a]. The
3 critical darts with ids 1, 2, and 3 correspond
to local indexes 9, 10, and 8 of the third face,
respectively. It is sufficient to add one of these
darts at the end of the message: for example, the
critical dart with id 1 and local index 9: part 2

of the message is thus (1 9) . When B1 receives

the message, and after having recreated A in its
block, it can retrieve the two face-opposite darts
corresponding to the critical id 1 and 3-sew the
two corresponding faces.

One new critical face is in FA and created (the
square between volumes A and B). This face is
labeled [0.0] in blocks B0 and B1, following the
naming convention [i.#new] with #new = 0, the
first critical face to be created in block i = 0 . One
dart of this face is chosen and labeled 0.0.0 in B0,
and the next darts of the face are labeled respec-
tively 0.0.1, 0.0.2, and 0.0.3. In the message, only
the number of the starting dart and the critical
id of the face are sent, other information will be
retrieved. The labeling of new critical darts in B1

is done starting from the initial dart and using β0.

Part 3 of the message is thus ([0.0] 22) .

It remains one critical face to treat, which
belongs to FAO, and labeled [b] in the example:
(1) in B2, other block([b]) ← B1, and the same
for all of its critical darts 4, 5, 6 (it was B0 before
the transfer). This is achieved by sending the UP

message from B0 to B2: ([b] 1) ; (2) these criti-

cal faces and darts are removed from B0; (3) these
critical darts and faces are created in B1 with
the same ids and the same other blocks (present
in the message, here 2). These critical elements
are associated with new darts in B1, identified by
their critical id (here 4, 5, 6), starting with local
dart of index 11. Part 4 of the message is thus

([b] 2 11 4 5 6) , and that ends the TR message.

3.5 Discussion about concurrent
accesses

The different blocks are fully independent, they
can be traversed in parallel with no concurrent
access issues. For volume transfer, it is possible to:

• simultaneously transfer one volume from Bi to
Bj and one volume from Bk to Bl if the 4 blocks
are different (i.e., i ̸= k, i ̸= l, j ̸= k, and
j ̸= l) and if the two transferred volumes do not
share a common critical face (i.e. they are not
adjacent in the virtual entire mesh);

• simultaneously transfer one volume from Bi to
Bj and one volume from Bi to Bl if j ̸= l and
if the two volumes are not adjacent in Bi;

• simultaneously transfer one volume from Bi to
Bj and one volume from Bk to Bj if i ̸= k and
if the two volumes will not become adjacent in
Bj ;

• simultaneously transfer one volume from Bi to
Bj and one volume from Bi and Bj if the two
volumes are not adjacent in Bi and will not
become adjacent in Bj .

It is not yet possible to transfer simultaneously
two adjacent volumes from or into the same block
since in this case the critical faces may be updated
incorrectly.
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4 Cell Balancing in
Distributed Mesh

The volume transfer we just described can serve
as an elementary operation in various mesh repar-
titioning applications. For example, it is possible
to distribute cells among the different blocks in
order to balance the workload among all the pro-
cesses according to some criteria. To this end, we
define a generic method for cell balancing, sum-
marized in Algo. 4.1. This algorithm is generic, it
takes as input an oracle that tells, for each cell, if
it must be balanced. For instance, this oracle can
always return true if all mesh cells need balanc-
ing, or return true or false according to a specific
criterion, like whether the cell intersect the sur-
face or lies in a Region of Interest (see next section
for detailed examples). Note that the oracle must
depend only on the given volume (and not on any
other ones, like neighbors) in order to guarantee
a correct incremental updating of the number of
volumes to balance.

Algorithm 4.1: Balance cells in block Bi.

Data: An oracle O.
Result: Block Bi contains the mean of cells

satisfying O.

// Ask all blocks their number of

volume cells satisfying O
1 nbV olumesToBalance←
getNbVolumesInAllBlocks(O);

2 meanNbCells← mean of
nbVolumesToBalance;

3 for k ← 0 to number of blocks-1 do
4 if k = i then
5 while nbV olumeToBalance[i] >

meanNbCells do
6 n← id of one block in deficit of

volumes;
7 v ← oneVolumeSatisfying(O);
8 transferOneVolume(v, n);
9 −− nbV olumeToBalance[i];

10 ++ nbV olumeToBalance[n];

11 Barrier();

The first step of this algorithm consists in com-
puting the number of cells that need balancing in
each block. For this purpose, each block computes

its own number, and these numbers are shared
among the different blocks through message pass-
ing. After this step, block Bi knows if it has too
many cells by comparing its number of cells with
the mean of the numbers of all blocks. When this
occurs, Bi transfers some of its volumes to other
blocks that are in deficit. As our volume transfer
works for any configuration, there is no need to
transfer a volume to an adjacent block, and thus
this transfer can be done directly into any block in
deficit. After the transfer, the number of volumes
to balance in the two blocks involved in the trans-
fer are updated locally, and the process restarts
until block Bi no longer has a volume excess.

To prevent the problem of concurrent access
(explained in Sect. 3.5), the transfer is done suc-
cessively by each block. It avoids the case where
two blocks want to transfer two volumes to the
same block, while the case where two volumes of
the same block are to be transferred at the same
time is not possible since there is only one process
associated with each block. This is done thanks
to the first loop of Algo. 4.1. One block at a time
performs the balancing, the other ones waiting at
the barrier.

When all blocks have finished this process, the
number of volumes satisfying the criteria in each
block is balanced (plus or minus one). One main
advantage of Algo. 4.1 is to be fully local for each
block (except at first step that collects all the num-
ber of cells, but this is fast since only few numbers
are exchanged). Contrarily, it is more tedious to
guarantee specific conditions on mesh topology in
each block, as it will be seen in our experiments.

Numerous criteria or oracles on volumes can
be employed according to the requirements of
each application. Balancing all volumes is one
possibility, while another may involve balancing
volumes intersected by a surface, particularly in
scenarios where a hexahedral mesh is generated to
approximate a specified surface. Utilizing such cri-
teria optimizes the workload distribution among
different processes, primarily attributed to the
subdivision of volumes intersecting the surface.
We can also balance the cell volume of the meshes
in the different blocks. In this case, the collected
numbers are the volumes of the elements and not
their numbers, and the criteria to transfer a vol-
ume must take into account the size of the volume
to transfer.
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Various strategies can be defined for trans-
ferring volumes, including considerations about
geometry (shape or distance) or topology (con-
nected components or holes in final partition). In
this paper, we will use the two strategies that
follow.

Baseline:

The baseline implementation transfers volumes in
excess to the first other block experiencing a vol-
ume deficit without any specific criterion or order
(called strategy S1).

Minimizing the number of Critical Cells:

In this version, a priority queue is utilized based
on the number of critical faces shared within the
same block (referred to as strategy S2). Specifi-
cally, the prioritization involves transferring vol-
umes to neighboring blocks experiencing a volume
deficit, with priority given to those that share
the most critical faces. Following this, the remain-
ing volumes sharing possible critical faces with
any other block facing a volume deficit are subse-
quently transferred. The priority queue is updated
after each transfer to account for modifications in
neighborhood relations.

This method prioritizes the transfer of volumes
that share critical faces, thereby preventing an
increase in the number of holes or connected com-
ponents within each block. When a volume v in
Bi is transferred in a block Bj sharing at least one
critical face, v will be attached at least through
this face in its new block, thus avoiding the cre-
ation of a new connected component. Additionally,
a volume is only transferred if it has one critical
face in Bi, which is 3-free in Bi (meaning this face
has no volume adjacent to it in Bi). Consequently,
removing v from Bi will not create an hole, but
will only modify the boundary surface.

To ensure a balanced partition upon comple-
tion of the process, an optional final step could
be set to enable transfer between any block with-
out considering existing adjacency, utilizing the
baseline implementation.

5 Experimental Results

In this section, we describe our data set and illus-
trate the interest of the cell transfer operation and

of the volume cell balancing method in an applica-
tion that generates a conformal 3D volume mesh
from a surface. It is important to advise that this
serves only as an illustration. In this paper, our
goal is neither to introduce a new generation algo-
rithm nor to define the best method for doing so.
Our experiments have been developed to evaluate
the impact of the cell balancing on computation
times and number of cells in the final mesh, not
to study the quality of the produced meshes.

5.1 Data set and Algorithms

We implemented a 3D conformal mesh generation
that approximates a given surface, using a dis-
tributed 3-map based on the Cgal implementa-
tion of combinatorial maps [Dam11]. Our software
has been developed in C++, with two differ-
ent versions: multi-threaded and multi-processing
based on MPI (Message Passing Interface). The
two versions share the same code except for the
communication part.

Our experiment includes the 3 following suc-
cessive steps:

1. create an adaptive hexahedral mesh
(using [DGLZD18]);

2. turn the mesh into a conformal mesh by
locally subdividing each volume which is not
a pure hexahedron, ie. with subdivided faces
(using [DN22]);

3. project on the surface all the outside points.
Remove degenerated or inverted volumes cre-
ated by the projection.

Details of the different algorithms are given below.
The result of the 3 steps of the 3D mesh gener-
ation is a 3D conformal mesh, mixing hexahedra
and possibly tetrahedra, prisms, and pyramids,
that approximates the volume defined by the input
surface. So, we can use our volume cell transfer
operation presented in Algorithm 4.1 to balance
cells between blocks during the subdivision loop
of the hexahedra. Note that in the experiment,
the cell balancing is activated only for the first
step of the mesh generation method (generation
of the adaptive hexahedral mesh). This step cre-
ates many new cells and consequently will greatly
benefit from the cell balancing effects. The other
steps (making the mesh conformal and projection
of external points on the surface) will not create
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(a) Armadillo (b) Camel (c) Happy (d) Octopus

Fig. 7: Data set models. For meshes (a-d), the number of triangles are, respectively, 52,000, 19,536,
1,087,716, and 33,104; and their number of vertices are 26,002, 9,770, 543,652, and 16,554.

(a) steps 1+2 (b) step 3

Fig. 8: The Armadillo surface mesh after (a) step
1 and 2; (b) step 3 (with one random color asso-
ciated with each volume). Note that the meshes
after step 1 and step 2 share the same external
view, but with different interior volumes (Fig. 9
for a cross-section view).

many cells and not change enough the cell balanc-
ing between the different blocks to require another
balance step. See Sect. 6 for a complementary
discussion on this point.

We applied the 3 steps on the 4 meshes
shown in Fig. 7, namely Armadillo, Camel, Happy
and Octopus. Fig. 8 shows one example of the
Armadillo surface mesh after the different steps,
with a zoom on the interior of the 3D mesh
in Fig. 9 at all stages of the process.

5.1.1 Step 1: Generation of an
Adaptive Hexahedral Mesh

In our experiment, the first step involves generat-
ing an adaptive hexahedral mesh. We achieve this
using the algorithm outlined in Algo. 5.1. A sketch
of this algorithm is presented here, but interested
readers will refer to [DGLZD18] for all the details

(a) (b) (c)

Fig. 9: Zoom on the results obtained for
armadillo surface mesh, showing the interior of the
mesh after (a) step 1, we can see hexahedra with
different levels of subdivisions, leading to some T-
junctions; (b) step 2, we can check that the mesh
is conformal; (c) step 3, only the boundary is mod-
ified.

about message passing and how consistency of
critical cells is guaranteed between the different
blocks.

The main principle behind generating an adap-
tive hexahedral distributed mesh is to start with
an initial grid of hexahedra, distribute them in the
different blocks, and then run Algo. 5.1 in parallel
on each block. However, if the number of initial
hexahedra is smaller than the number of blocks,
some blocks may be initially empty, causing their
processes to be stalled until the subsequent bal-
ancing step. Given a maximal subdivision level
lmax and an Oracle that determines whether a
given volume should be subdivided, the algorithm
iterates through all volumes, subdivides those that
satisfy the oracle, and removes any hexahedron
lying outside the given surface. In this experiment,
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Algorithm 5.1: Generation of an adaptive
hexahedral mesh in block Bi.

Data: Bi: a block containing initial
hexahedra;
lmax: the maximal subdivision level;
Oracle: that returns if a hexahedra
should be subdivided.

Result: Generates an adaptive hexahedral
mesh in block Bi.

1 for curlevel← 0 to lmax do
2 foreach volume v from Bi do
3 if Oracle(v) then
4 Subdivide(v);

5 Barrier();
6 removeOutsideVolumes(curLevel+1);
7 Barrier();

8
Balance cells that satisfy the
Oracle (Algo. 4.1);

we use an intersection test between the input sur-
face mesh and the hexahedra, but any criterion
can be used instead depending on the application,
like a Region Of Interest or intersection with a
function.

Thus, the only –but substantial– modification
of the original algorithm of [DGLZD18] is the
insertion of line 8 that authorizes the balancing of
the cells satisfying the oracle using the algorithm
introduced in the previous section. We use the cell
balancing at the end of each subdivision level in
order to balance the computation time of the next
subdivision level between all the blocks. Note that
at this step, the transferred volumes are geomet-
rically hexahedral-looking elements, but they can
be topologically complex depending of the level
of subdivision of each face. The non-intersecting
cells are ignored at the balancing step since they
are not concerned by the subdivision. They only
induce a local memory cost but no additional com-
putation time. Note also that this cell balancing is
an option that can be enabled or disabled at any
step.

5.1.2 Step 2: Making the Mesh
Conformal

The second step starts from the adaptive hexahe-
dral mesh generated from step 1 and turns it into

a conformal mesh, as summarized in Algo. 5.2. All
non-hexahedral volumes (in a topological sense,
i.e., those with at least one subdivided face) are
replaced by a special configuration of conformal
hexahedra, tetrahedra, prisms, and pyramids. The
full set of 325 existing configuration patterns and
their replacement targets are given in [JL22] and
implemented as a query/replace 3D operation,
similarly to [DN22]. This algorithm is run in
parallel for each block.

Algorithm 5.2: Modification of the mesh in
block Bi to become conformal.

Data: Bi: a block containing an adaptive
hexahedral mesh.

Result: Modifies the mesh to become
conformal.

1 foreach volume v of Bi do
2 if v is not a hexahedron then
3 transform v into its compatible

pattern;

5.1.3 Step 3: Projection of External
Points on the Surface

The last step of our mesh generation process,
presented in Algo. 5.3, starts with the mesh gen-
erated in step 2 and projects all exterior points of
the mesh onto the input surface mesh. However,
this projection may lead to some degenerated or
inverted volumes. Such volumes are identified and
removed from the mesh afterward. Once again,
this algorithm is run in parallel for each block.

5.2 Overview of Experiments

We conducted five experiments to demonstrate the
benefits of the cell transfer operation. Most of our
experiments are based on multi-threaded (MT)
mesh generation, while one is based on distributed
mesh generation (MPI).

• The MT experiment in Sect. 5.3 addresses
the performance improvement in the generation
times for meshes with a similar number of final
elements.
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Algorithm 5.3: Projection of the external
points of the mesh in block Bi on the surface.

Data: Bi: a block containing an adaptive
hexahedral mesh;
S: a surface.

Result: Project the external points of the
mesh on the surface.

1 foreach point p of Bi do
2 if p is outside the surface then
3 project p on S;

4 foreach volume v of Bi do
5 if v is degenerated or inverted then
6 remove v;

• The MT experiment in Sect. 5.4 explores the
impact of the cell transfer strategy on the num-
ber of critical darts and the number of messages
exchanged during the mesh generation process.

• The MT experiment in Sect. 5.5 illustrates the
benefits of cell transfer to equilibrate compu-
tation load when the subdivision is localized
within a region of interest (ROI).

• The MPI experiments in Sect. 5.6 focus on the
better use of memory to reach more refined
distributed meshes.

• The single core experiment in Sect. 5.7 shows
that our method is competitive compared to a
recent state-of-the-art octree method.

5.3 Impact of the Cell Balancing on
Computation Times

All experiments in this section where run on an
Intel® i9-10900K CPU @3.70GHz with 20 cores
and 64 GB RAM.

In our first result, we compared the time
required to complete each step of the mesh gen-
eration process, as well as the overall execution
time, without and with cell balancing. For this, we
implemented the two strategies S1 and S2 detailed
in Sect. 4.

The computation times for the 4 input surface
meshes are summarized in the different tables. For
each step of the generation (Sect. 5.1) using 8 sub-
division levels at maximum, we detail the compu-
tation times (in seconds), (W)ithout and with cell
balancing using first excess block strategy S1 and
the minimization of critical cells strategy S2. For

cell balancing versions, we also give the speedup
compared to (W)ithout cell balancing. For step 1
in Table 1, we can observe that the speedup when
enabling cell balancing is on average 1.27 for S1,
and 1.3 using S2.

W (s) S1 (s, .) S2 (s, .)
Armadillo 28.51 24.17 1.18 23.90 1.19
Camel 29.88 22.69 1.32 22.53 1.33
Happy 42.57 33.28 1.28 32.47 1.31
Octopus 36.03 27.29 1.32 26.66 1.35
Mean 34.25 26.86 1.27 26.39 1.30

Table 1: Step 1: computation times and speedup.

W (s) S1 (s, .) S2 (s, .)
Armadillo 71.50 50.04 1.43 50.04 1.43
Camel 74.84 48.38 1.55 48.06 1.56
Happy 101.01 59.26 1.70 59.29 1.70
Octopus 79.13 50.22 1.58 49.76 1.59
Mean 81.62 51.98 1.56 51.79 1.57

Table 2: Step 2: computation times and speedup.

W (s) S1 (s, .) S2 (s, .)
Armadillo 6.34 6.25 1.01 6.00 1.06
Camel 8.01 5.42 1.48 6.28 1.28
Happy 9.97 8.92 1.12 9.22 1.08
Octopus 8.08 7.65 1.06 7.90 1.02
Mean 8.10 7.06 1.17 7.35 1.11

Table 3: Step 3: computation times and speedup.

Better speedups are reached for step 2, as
we can see in Table 2: about 1.56 for the first
balancing method, and 1.57 for the second one.
Pattern substitution is more demanding computa-
tionally, and we observe an even better impact of
balancing.

For step 3, 1.17 and 1.11 speedup are respec-
tively reached for each strategy (Table 3), being
less significative as this step is the fastest of the
three.

If we sum up the computation times of all the
steps, we can observe in Table 4 that, in aver-
age, a 1.44 speedup is achieved when enabling
cell balancing, for both balancing strategies. This
demonstrates the interest of this option which
allows to greatly reduces the global computation
time of the parallel mesh generation method (from
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W (s) S1 (s, .) S2 (s, .)
Armadillo 105.46 79.55 1.33 79.89 1.32
Camel 109.90 76.49 1.44 76.73 1.43
Happy 153.56 100.34 1.53 99.75 1.54
Octopus 123.24 83.47 1.48 82.28 1.50
Mean 123.04 84.96 1.44 84.66 1.45

Table 4: Global process (all the steps): computa-
tion times and speedup.

123s to 85s in average for our examples). The
overhead implied by the message exchange for
the cell transfer is fully compensated by the gain
obtained by the cells transfer and balance of the
computations between the different blocks.

5.4 Impact of the Cell Balancing on
Critical Cells

In this section, we use the same experience and
computer setup as in the previous section, but we
study a different aspect.

Both versions (baseline and minimizing the
number of critical cells) give similar final meshes
and similar computational times. But, on average,
as we can see in Table 5, the resulting number of
critical darts is divided by two using strategy S2,
using the same experiments as in Section 5.3.

S1 S2
Armadillo 2,689,962 1,366,102
Camel 2,608,704 1,257,068
Happy 3,730,332 1,835,318
Octopus 2,475,830 1,363,330
Mean 2,876,207 1,455,455

Table 5: Number of critical darts for the two cell
balancing strategies: baseline (S1) and minimizing
critical cells (S2).

With fewer critical cells, the amount of data
to be stored in the associative arrays is reduced,
resulting in less resident memory. In addition, this
reduction of critical cells also decreases the num-
ber of exchanged messages between the different
blocks. Indeed, when a critical cell is involved
in an operation, a message must be sent to the
other block that contains this cell to maintain the
global consistency of the mesh. This is highlighted
in Table 6, showing the total number of messages
exchanged between all the blocks for the two dif-
ferent strategies. Again, on average, the number

of messages sent is halved when using strategy S2
compared to strategy S1.

S1 S2
Armadillo 1,501,062 755,694
Camel 1,480,613 714,668
Happy 2,077,958 995,862
Octopus 1,404,801 772,406
Mean 1,616,109 809,658

Table 6: Number of messages exchanged during
the whole process of mesh creation (step 1, 2 and
3) for the two cell balancing strategies: baseline
(S1) and minimizing critical cells (S2).

As mentioned previously, our method is very
versatile and any balancing strategy could be
used. The only thing one has to keep in mind when
integrating a new strategy, being local or global,
is that simple criteria may induce many criti-
cal cells, at the detriment of compactness. In our
experiments, transfer and waiting time were not
significant compared to mesh editing operations,
but this could not always be the case, especially
when network is slow.

To better understand the impact of each strat-
egy on compactness, the Armadillo was subdi-
vided into 4 blocks. It was found that Strategy
S2 produced more compact regions (as shown
in Fig. 10) compared to the baseline strategy S1.
With S1, small isolated volumes started appearing
at level 5 and this increased significantly by level
7 (Fig. 11). However, it is important to note that
the same issue could also arise with S2 due to the
second part of the strategy, which transfers a vol-
ume to any other block in deficit if no neighboring
block accepts new volumes. While this constraint
can be released to preserve compactness, it would
lead to less optimal balancing.

5.5 Impact of the Cell Balancing
when using ROI

In this section, we used another configuration with
more cores and another architecture: an AMD®
Ryzen threadripper 2990wx @3GHz CPU, 32x2
logical cores and 128 GB RAM.

In our second experiment, we consider a cube
and we refine it in a single corner (during step 1),
causing subdivision to always occurs in the same
block when balancing is inactive. This extreme
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(a) Level 1, (S2) #0/46

(b) Level 3, (S2) #11/893

(c) Level 5, (S2) #41/20,037

(d) Level 7, (S2) #207/391,213

Fig. 10: Cell transfer strategy S2. Level and
corresponding number of transferred cells / total
number of cells.

(a) Level 5, (S1) #96/20,037

(b) Level 7, (S1) #272/391,213

Fig. 11: Cell transfer strategy S1. Level and
corresponding number of transferred cells / total
number of cells.

case illustrates the benefits of cell transfer to equi-
librate computation loads. Such situation could
arise in cases of localized contact between objects.

As expected, using 4 blocks (one per thread),
the cells lying in the Region of Interest (RoI) are
evenly distributed across the 4 blocks. This can be
seen on Figure 12b, where the color of each cell
indicates its originating block.

The same kind of experiment is performed
setting a RoI on the head of the Camel model
(Fig. 14a for a complete view). The evolution of
the subdivision at different levels and how the

(a) level 12, 1 Block (b) level 12, 4 Blocks

Fig. 12: Illustration of the volume cell transfer,
balancing cells in the RoI.

(a) Level 1, #0/11

(b) Level 3, #9/276

(c) Level 5, #48/5,275

(d) Level 7, #111/89,082

(e) Level 9, #325/1,459,169

Fig. 13: Illustration of the cell transfer, balanc-
ing all the cells between blocks (S2). Level and
corresponding number of transferred cells / total
number of cells.

cells, all originated from Block B0 (in pink), are
distributed to other cells is shown Figure 13. Note
that the transferred volume cells against the total
number of volume cells ratio is decreasing. This is
normal, as transferred cells still remain in the RoI
and will be refined also in their destination block.
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To be complete, we also performed a Strong
Scalability test on the same experiment, subdivid-
ing the Camel in the RoI until Level 10, leading
to highly unbalanced loads as mesh refinement
only occurs in this area. Increasing the number of
blocks (ie. threads), a speedup of ≈ 12 is quickly
reached (Fig. 14b) for a relatively small number
of threads.

In this extreme case, the speedup is leveled by
the structural handling of the critical cells when
the number of blocks goes greater. According to
Amdahl’s Law that can be formulated as [Amd67]:

speedup = 1/(s+ p/N)

where s and p = 1 − s are the respective pro-
portion of execution time spent on the serial and
parallelized parts, and N is the number of proces-
sors; s ≈ 0, 07 meaning that more than 93% of our
program still runs in parallel for 64 threads. This
demonstrates the good scalability of our volume
transfer operation.

5.6 Impact of the Cell Balancing on
the Memory Usage

For this experiment, our program was run on
a High-Performance Computing (HPC) platform
designed for parallel computing using MPI. The
platform comprises 16 servers interconnected
through InfiniBand, each equipped with 32 cores
and 128 GB of RAM. The model of each server
is an Intel® Xeon® CPU E5-2698 v3 @2.30GHz
(2 sockets with 16 cores per socket). However, to
allow resource sharing with other users, our exper-
iment was restricted to utilizing only 8 servers.

W (#) S2 (#)

Armadillo 60,814,077 123,165,351
Camel 112,591,944 248,917,966
Happy 46,834,266 165,174,016
Octopus 129,062,620 203,624,153

Mean 87,325,727 185,220,372

Table 7: Number of volume elements for the MPI
experiment (W)ithout balancing and with cell bal-
ancing strategy S2.

We carried out an experience of generating
hexahedral meshes with the most volume elements
using available resources (256 cores), one without

cell balancing (W), and the other with cell bal-
ancing strategy S2. We set the lmax parameter
to 10 for W and S2 to make sure the W runs
terminate. We also set a max-memory parameter
to 475,000 KB to prevent each core from exceed-
ing its allocated RAM as each core has its own
RAM budget on the HPC platform. The sub-
division stops in a process when it has reached
this limit. Table 7 shows that the load balancing
affords to reach more refined meshes. Indeed, by
repartitioning and thus balancing volumes among
the different processors, each processor can maxi-
mize its number of volumes to subdivide according
to its available RAM, while, without repartition-
ing, some cores are under exploited, explaining
thus the smaller number of hexahedra at the end.

W (s) S2 (s, .)
Armadillo 254.32 116.21 2.19
Camel 273.76 198.81 1.38
Happy 236.70 137.28 1.72
Octopus 252.21 203.71 1.24
Mean 254.25 164.00 1.63

Table 8: Global process (all the steps): com-
putation times, in seconds, (W)ithout and with
cell balancing strategy S2, including speedup com-
pared with no cell balancing.

On average, the cell balancing resulted in a
speedup of about 1.63, as shown in Table 8.

5.7 Comparison with
state-of-the-art methods

As presented in Section 2, many works have been
proposed for mesh generation and editing, dis-
tributed or not. Unfortunately, few are Open
Source1. In the context of our work, reliable
comparison with distributed approaches is not
straightforward. They are most of the time too
specialized, relying on a single type of element
(either tetrahedron or hexahedron) or optimized
for a specific application, making them difficult to
evolve for handling the generic meshes considered
here.

For comparison purposes, we selected a mixed-
element mesh generation and refinement approach

1Our software is publicly available https://hal.science/
hal-04650145v1.
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Fig. 14: Strong scalability, increasing the number of threads, on Camel subdivision Level 10 in RoI,
resulting in #14,235,373 cells (step 1, strategy S2). (b) Speedup (Total time With No transfer/With
transfer); (c) Number of Transferred Cells and (d) Number of Critical Darts.

very similar to our proposal [JL22], although not
distributed. We present informative comparisons
using the Camel model in Figure 15 on a log-log
scale. To ensure fairness, we started with a single
cell to avoid any initial grid variations, using a
single block on a single processor.

Both methods are overall slightly similar
(Fig. 15) but at a higher Resident Memory cost for
our method. Going into the details, we can notice
that Step 1 is faster, probably due to the fact that
the Combinatorial Map behaves better during the
balance process than the haddock structure used
in [JL22] to circumvent the poor neighborhood
handling offered by octree-like structures. How-
ever, Step 2 is relatively demanding, involving
costly topological operations of query and replace
(un-sewing and sewing cells). These operations are
implemented in a generic way, and can be spe-
cialized and optimized. Step 3 is less demanding
than the two other steps, and comparison between
our simple point projection against a more com-
plete process of surface pattern handling is made
difficult.

Overall, our proposal demonstrates that a
topological framework can be competitive with
a popular octree-like structure. Furthermore, the
parallel, multi-threaded, or MPI versions of our
method provide a significant advantage over the
method described in [JL22].

6 Conclusion

In this paper, we introduced a novel volume trans-
fer operation based on a distributed combinatorial
map. For the first time, this operation is defined
for cells with any topology. It can be used to
dynamically balance the computation loads dur-
ing the generation or editing of large meshes. We

developed this solution within a framework for
generating mixed-element meshes using volume
subdivision patterns and surface fitting. During
the generation process, we can also constrain one
level of subdivision between neighboring cells,
facilitating the generation of a conformal mesh at
the end. In general terms, this is a challenging
problem (for example, retrieving neighbors after
subdivision is not trivial in octree-like meshes),
and we proposed a generic solution for handling
critical cells and tracking of neighboring blocks.

Our multi-threaded and MPI implementations
demonstrate the effectiveness of this transfer oper-
ation in reducing total subdivision time and
achieving finer mesh resolution.

Besides its proven efficiency, one crucial point
of our approach is its complete genericity, being
able to handle and transfer any type of volume
cell topology. In the search for an optimal trade-
off between the cost of the cell transfer and the
gain in computation time or memory, the user can
freely choose to activate the transfer volume at
any step and modify the transfer decision criteria
as needed. This is in contrast to most other state-
of-the-art methods, which are typically optimized
for a specific goal and designed for use with a
single type of element (usually tetrahedra or hex-
ahedra). Our method’s genericity allows us to deal
with mixed-element meshes with no restriction
on the topology, as demonstrated in the different
steps of the experiments. So, our proposal could
benefit any application to dynamically balance the
cells of a mesh when necessary.

Dynamic repartitioning is a powerful tool for
optimizing execution speed, as it can significantly
improve performance for any operation that must
be performed on meshes. This can be easily
achieved by transferring volumes between blocks.
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Fig. 15: Comparison with [JL22]. For the Camel model, the different plots show Total and Partial
Times or Resident Memory according to the final number of Cells, at a log-log scale.

Then, diverse strategies can be set and tuned
according to criteria depending on the applica-
tion, such as improving speed, compactness, or
minimizing interfaces, etc. A positive side effect of
volume transfer is that the results are more resis-
tant to the initial grid configuration. With fewer
initial filled blocks than available threads, and
with no transfer, an empty block at the beginning
will remain so until the end. By contrast, start-
ing with a single volume and transferring new cells
into empty blocks on the very next turn can result
in a more even distribution of cells.

As a future work, we propose the simulta-
neous transfer of several volumes between two
blocks. This extension would be useful for moving
an interface between blocks, for example after a
repartitioning phase. We expect fewer, but poten-
tially longer TR messages, which may be com-
pressed to reduce the overall transmission. We also
plan to develop other operations for distributed
3-maps, such as local refinement or de-refinement
of cells, merging cells in a given area, or topolog-
ical cutting of a part of the mesh by a plane. All
these future work are made possible thanks to the
use of distributed 3-maps, and will be simplified
and optimized by the use of our generic volume
transfer operation.
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