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Control of the RMS Output Current in
Series Resonant Converters
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∗ LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
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Abstract: In this work the problem of regulation of the Root Mean Square (RMS) value of
the current for Series Resonant Converter (SRC) is addressed. The self-oscillating behavior is
ensured by an amplitude-modulation like control law and the RMS value is estimated with a
proposed hybrid system. The closed-loop regulation is done with a Proportional-Integral (PI)
controller with anti-windup scheme, and a set of Linear Matrix Inequalities (LMIs) is introduced
to tune the gains. The knowledge of a reference trajectory is not needed to implement the
controller, and it is shown to be effective in simulation considering uncertain parameters.

Keywords: Power and Energy Control, Control of Nonlinear Systems, Hybrid Systems,
Anti-windup, PI-controller, Resonant Converters.

1. INTRODUCTION

The resonant converter is a power converter topology that
takes advantages of the resonance phenomenon in order to
reduce losses and achieve high efficiency. It transforms a
DC input to a high-frequency AC output; a resonant DC-
DC converter can be built by rectifying the output of the
resonant tank. It is also characterized by a soft-switching
characteristics, reduced switching losses and high power
factor, if it operates near the resonant frequency. Those
features made it popular for applications in various fields,
such as battery chargers (Deng et al., 2014), inductive
heating (Lucia et al., 2009), electronic ballast (Yin et al.,
2003), and medical application (Cavalcante, 2006).

The resonant tank is composed of an L–C network; it is
driven by an H-Bridge, whose output voltage is controlled
in order to achieve a desired behavior. Resonant converters
are characterized by sinusoidal signals; since the range
of variation of these signals is usually large, small signal
approximation is not applied but rather first harmonic
approximation is used (Erickson and Maksimović, 2020).

This kind of converters are supposed to operate near the
resonant frequency in order to reduce the losses since
they are designed for a limited bandwidth. To ensure the
oscillations, different solutions can be adopted (Youssef
and Jain, 2004): frequency modulation, phase-shift mod-
ulation, pulse density modulation, zero voltage or current
switching, and resonant frequency tracking. Among them,
self-oscillating resonant converters are characterized by
the fact they are able to ensure the oscillation without
using an external oscillator or without knowing the reso-
nant frequency (Pinheiro et al., 1999). Several works have
been proposed to regulate the SRC, including techniques
based on optimal trajectory computation (Oruganti et al.,
1987), state plane criteria with reference on the limit-cycle
amplitude (Bonache-Samaniego et al., 2017), geometric

⋆ The authors have contributed in equal parts to the work.

criteria (Mohammadi and Ordonez, 2016), and adaptation
scheme (Sebastián et al., 2022), among many others.

In this work, a closed-loop control scheme is proposed to
achieve regulation of the RMS value of the current flowing
in the resistive load of an SRC, whose schematic is shown
in Fig. 1. In order to achieve that:

a) the self-oscillating behavior is ensured by an inner
control loop based on (Zaupa et al., 2023);

b) the RMS value is estimated with a proposed hybrid
dynamical system;

c) the output regulation is performed by an outer control
loop constituted by a PI controller with anti-windup.

The self-oscillating control law proposed in (Zaupa et al.,
2023) ensures that there exist a unique limit cycle, and
that the oscillating frequency is almost constant and near
the resonant one, for any given control parameter φ ∈
[0, π/2). The relation between φ and the output amplitude
is characterized more in details. The RMS value estimator
is a hybrid systems that does not need any tuning and
retrieve a piece-wise constant output at every half-cycle.
In Section 2, the converter and the RMS value estimator
are described, and then they are approximated as a first
order system. This approximation allows designing a linear
PI controller that includes an anti-windup scheme. The
design process is discussed in Section 3 and a LMI-based
formulation – which considers uncertain parameters – is
proposed in order to design the gains. In Section 4, the
proposed control scheme is validated by simulations, which
show the effectiveness and the robustness to uncertainties.

Notation. R (R≥0) is the set of real (nonnegative) num-
bers. Sn denotes the set of square positive definite matrices
of dimension n × n. To compact the notation, given a
square matrix M , we denote He(M) := M + M⊤. The
stacking of vectors u ∈ Rn and v ∈ Rm is denoted in a

compact way as (u, v) :=
[
u⊤ v⊤

]⊤ ∈ Rn+m, where u⊤

denotes the transpose of u.



Fig. 1. Circuit of the series resonant converter.

2. MODELING

In this section we are going to discuss the dynamical model
of the resonant converter and the hybrid dynamical system
to estimate the RMS value.

2.1 Converter dynamics

The SRC schematic is given in Fig. 1. The H-Bridge, fed
by a DC input voltage Vg, generates the voltage vs = σVg

with σ ∈ {−1, 0, 1}, according to the position of the
switches of the H-Bridge. The inductor and the capacitor
form the resonant tank, which is driven by the voltage vs.
Inspired by (Zaupa et al., 2023), the system dynamics can
be described by the normalized state variables

x1 :=
vC
Vg

, x2 :=
1

Vg

√
L

C
is. (1)

This allows writing the dynamics of the converter as

ẋ = f(x, σ) :=

[
0 ω0

−ω0 −β

]
x+

[
0
ω0

]
σ, (2)

where x = (x1, x2), ω0 := (
√
LC)−1 is the resonant

frequency and β = R/L is the internal dissipation. The
quality factor is defined as Q := ω0/β and gives an
important information about the waveform of the signals
in the converter and the frequency response.

Our objective is to control the RMS value of the output
current is, which corresponds to control the RMS value
of the state x2 that is proportional to is. Therefore, a
reference on is can be directly cast as a reference on x2.

As anticipated in the introduction, to further analyze the
circuit we consider a first harmonic approximation. This
is possible under the following Hypothesis (Erickson and
Maksimović, 2020, Ch. 19).

Hypothesis 1. The converter has a high quality factor Q
and it works in continuous conduction mode.

Intuitively, this can be translated into the fact that the
signals are almost sinusoidal. Otherwise, having a small
quality factor implies that the signals are composed of
more harmonics since they are not filtered out. This hy-
pothesis is reasonable in most of the operating conditions.
For an SRC, this is no more valid as soon as the load
increases (i.e. Q decreases). Anyway, variations on the
value of Q will be considered in the design of the control
loop, so as to make it more robust with respect to the
non-modeled effects and perturbations. This will make the
converter work also with low Q.

2.2 Inner Oscillation controller

The inner controller takes care of ensuring the self-
oscillating behavior. In (Zaupa et al., 2023), an hybrid

Fig. 2. Representation of the four zones used by the inner
control (3) and of the parameter φ.

control law has been proposed to control the output of the
H-bridge in a three level fashion. It allows working near the
resonance frequency without the need of an external oscil-
lator, and the amplitude modulation behavior is ensured
thanks to a control law based on the phase-plane.

That control law can be formulated in an equivalent way in
the phase-plane (x1, x2). Basically, four zones are defined
in the phase-plane and, according to the current value of
the state, the input σ is retrieved obtained. The zones are
depicted in Fig. 2. There are two cones of aperture 2φ
in which σ = 0 (symmetric with respect to the axes); a
the upper cone with σ = 1; and a the lower cone where
σ = −1. Therefore, we can write the following control law

σ =

{
0, if x2

1 sin
2 φ− x2

2 cos
2 φ ≥ 0,

sign(x2), otherwise.
(3)

Since this control law is equivalent to the one in (Zaupa
et al., 2023), the following result is inherited. For a more
comprehensive understanding, we suggest to consult the
detailed exposition in (Zaupa et al., 2023).

Proposition 2. Under the condition Q > 0.5 (the resonant
tank is underdamped), for every φ ∈ [0, π/2), the closed-
loop (2), (3) has a unique stable and almost globally
attractive periodic orbit with basin of attraction R2\(0, 0).
Remark 3. The limit case φ = π/2 corresponds to have
σ = 0 for all the time, therefore the trajectories will
converge toward the origin while oscillating due to the
underdamped behavior.

The parameter φ induces the desired amplitude modula-
tion behavior since it acts on the harmonics of σ. From
(Pitel, 1986), σ can be expressed by the Fourier expansion

σ =
4

π

∞∑
n=1,3,···

cosφ
sin nπ

2

n
sin(nωt), (4)

where we can remark that the amplitude of the first
harmonic corresponds to 4

π cosφ, and ω is a generic oscil-
lating frequency. Moreover, assuming that the oscillating
frequency is almost constant and near ω0, we know that
the static gain between the first harmonic of σ and the am-
plitude of x2 corresponds to the quality factor Q. This let
us to conclude, using (4), that an approximated expression
between φ and the amplitude of x2 is

x2peak ≃ 4

π
Q cosφ. (5)



2.3 RMS value estimation

As a reminder, the RMS value of a periodic signal δ(t) is
given by

δRMS :=

√
1

T2 − T1

∫ T2

T1

δ2(t)dt,

with T2 − T1 > 0 the period of the signal. In particular,
it is well-known that the RMS value of a sinusoidal signal

δ̄(t) = ∆ sin(ωt) is δ̄RMS = |∆|√
2
.

Since calculating the RMS value involves an integral over
the period of the signal, it is challenging to have a con-
tinuous measure of it. Additionally, the period should
be known. To overcome this, a dynamical system is in-
troduced to estimate the RMS value. To this end, the
following hypothesis – realistic in our case – is done.

Hypothesis 4. The signal at the steady state is periodic
with zero dc component and different from zero.

It allows simplifying the analysis since we are sure that
the signal will pass through zero (i.e. there will be a
zero crossing) and that the integral over a half-period
is half the integral over one period. Therefore, without
loss of generality, we can compute the RMS value by
considering the half period. The idea is to introduce
a hybrid dynamical system, based on the formalism of
(Goebel et al., 2012), that is able to estimate the RMS
value of a signal. It consists in an integrator of the squared
input signal between two zero crossing, and a timer that
measures the elapsed time. These two information let
us reconstruct the RMS value as a piece-wise constant
function, which is enough for our case.

Simple RMS value estimator The simple and intuitive
hybrid dynamical system that we can write is

(ξ̇, η̇, Ξ̇, Ṫ ) = (δ2, 1, 0, 0), if δ ̸= 0,

(ξ+, η+,Ξ+, T+) = (0, 0, ξ, η), if δ = 0.
(6)

Over a half-period, ξ ∈ R≥0 keeps track of the integral
of the square of the signal δ(t) and η ∈ R≥0 counts the
elapsed time. At the zero-crossings, the states ξ and η are
reset and their previous values are stored in Ξ and T , which
are used to calculate the RMS value of δ as

√
Ξ/T . The

behavior of the hybrid systems is shown in Fig. 3. We can
see that the output is constant and matches the theoretical
RMS value once the signal reaches the steady state, the
estimation is delayed approximately of half-period.

Robust RMS value estimator Nevertheless, system (6) is
not robust with respect to perturbations that are usually
present in physical or sampled systems; this implies that
a zero-crossing can be missed. To amount for this, since
we want to estimate the RMS value of x2, we can take
advantage of the knowledge of the dynamics (2). Inspired
by (Goebel et al., 2012, Example 4.18), we introduce
the memory variable p, which keeps track of where the
zero-crossing happens in the phase-plane (x1, x2). We can
rewrite (6) as
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Fig. 3. Behavior of the proposed hybrid systems (6). The
input δ(t) is a sine wave modulated by a ramp.
The dashed-dotted line is a reference RMS value
(amplitude of the sinus over

√
2) and the solid line

is the estimated RMS value estimated by the hybrid
systems.
ẋ

ξ̇
η̇

Ξ̇

Ṫ
ṗ

 =


f(x, σ)
x2

2

1
0
0
0

 , if (x, ξ, η,Ξ, T, p) ∈ C, (7a)


x+

ξ+

η+

Ξ+

T+

p+

 =


x
0
0
ξ
η

−sign(x1)

 , if (x, ξ, η,Ξ, T, p) ∈ D, (7b)

where σ is defined in (3), and the flow set C and jump set
D are defined as

C := {(ξ, η,Ξ, T, p) ∈ R4
≥0 × {−1, 1} : px2 ≥ 0}, (7c)

D := {(ξ, η,Ξ, T, p) ∈ R4
≥0 × {−1, 1} : px2 ≤ 0, px1 ≥ 0}.

(7d)

Let us notice that the dynamics of x is not affected by the
overhead of the RMS value estimator, and that the state x
is necessary also for the inner control (3), hence, no extra
measurement is required. Then, the RMS value of x2 can
be expressed as

y := x2RMS =

√
Ξ

T
. (7e)

What changes with respect to (6) is that the zero-crossing
is detected over a surface. Once the jump set is reached,
the solution cannot flow anymore and it is forced to jump,
which corresponds to a zero-crossing detection.

2.4 First order approximation of the open loop

To analyze the closed-loop system and design the con-
troller in a tractable way, we aim at approximating the
expression between y and yin in Fig. 4.

First of all, let us notice that an approximated expression
for the relation between φ and the RMS value of x2, when
the signals are almost sinusoidal, is

x2RMS ≃
x2peak√

2
≃ 4Q

π
√
2
cosφ =: γ cosφ, (8)

where γ represents the gain between σ and the RMS value
of x2 for φ = 0. We can use the inverse of this expression



Fig. 4. Control scheme. The controller is on the left (PI and Anti-windup) while the plant, which is approximated to a
first-order systems, is on the right.

to find the value of φ in order to obtain the desired RMS
value yin

φ = arccos

(
yin
γ

)
. (9)

This amounts for the static relation. Essentially, once a
reference RMS value yin is given: it is transformed into φ
by (9); oscillations are ensured at the proper amplitude by
the inner control (3); and the RMS value y is estimated
by the hybrid systems (7). For the dynamic part, a first
order dynamics is considered between the input yin and
the output y with unitary static gain

ẏ =
1

τ
(−y + yin). (10)

Since the dominant dynamics is the one of the resonant
tank, the time constant τ can be defined as τ := 2

β . To

explain this, let us consider a step input on yin, which
is equivalent to a step change in the amplitude of the
first harmonic of σ since the relation is algebraic. This
step in the amplitude is applied to the dynamics (2). To
simplify the expressions, we consider that the converter
is oscillating at the resonant frequency ω0. Considering
the analysis of second order linear systems with sinusoidal
input, if we apply the input σ = a0 sin(ω0t) to (2), we have
the following response

x2(t) = Qa0 sin(ω0t)︸ ︷︷ ︸
steady-state

+ a1e
− β

2 t sin (a2t)︸ ︷︷ ︸
transient

,

where a1 and a2 are two constants depending on the
parameter of the system. Therefore, the output is a sum of
two terms: a sinusoidal signal with the same frequency and
a gain corresponding to Q as expressed in (5), counting for
the steady-state part (frequency analysis results apply);
and a transient component composed by a sinus modulated
by an exponential function with decay constant 2/β. This
decay rate represents the dominant dynamics for the
transient behavior of the overall chain. To validate this
results, Fig. 5 illustrates the step response of y computed
with (7) and y from (10), when a step affect yin. The first
order behavior and link between the two system can be
clearly observed.

3. OUTPUT REGULATION

The control objective is the regulation of the RMS value
of x2. Since the open-loop is approximated as a first order
dynamics, a simple and effective controller that can be
implemented is a PI with a feed-forward component. This
allows also compensating for inaccuracies in the model and
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Fig. 5. Step of yin response of y computed with (7) and y
from (10).

limited nonlinearities, e.g. the signals are not sinusoidal
and the parameters of the converter are not exactly known.

3.1 Closed-loop description

The first order dynamics (10) has a limit in the input
values yin that it can take due to the arccosine function.
This fact is modeled as a saturation

satγ(u) =

{
γ, if u ≥ γ,
u, if 0 ≤ u ≤ γ,
0, if u ≤ 0,

so that the input of the arccosine function is limited
in the range [0, 1], which corresponds to φ being in the
correct range [0, π/2]. Having the saturation element to
ensure that the control is bounded in the allowed interval,
the implementation of an anti-windup scheme follows
naturally (Tarbouriech et al., 2011). The aim of the anti-
windup is to improve the behavior of the closed-loop when
the saturation is active.

The complete scheme of the closed-loop system is given in
Fig. 4 and the dynamical equations governing it are ẏ = τ−1(−y + u− dzγ(u)),

ẋc = yref − y + kaw dzγ(u),
u = kP ε+ kIxc + yref ,

(11)

where dzγ(u) := u − satγ(u) is the deadzone function.
Thereafter, we rewrite the dynamics in error coordinates
considering ε := yref − y, and uFB := u − yref . Notice
that dzγ(u) = dz(uFB), where dz(uFB) is defined by the
saturation function

sat(uFB) =

{
γ − yref , if uFB ≥ γ − yref ,
uFB, if − yref ≤ uFB ≤ γ − yref ,
−yref , if uFB ≤ −yref .

With this change of coordinates, dynamics (11) can be
written as



Table 1. System parameters.

Components parameters Corresponding system characteristics

Vg = 24 V Q ∈ [1, 10]
R ∈ [0.316, 3.16] Ω ω0 = 3.16× 105 rad/s

L = 10 µH β ∈ [3.16× 104, 3.16× 105]
C = 1 µF τ ∈ [6.32, 63.25] µs ε̇ = τ−1(−ε− uFB + dz(uFB))

ẋc = ε+ kaw dzγ(uFB)
uFB = kP ε+ kIxc

(12)

To simplify notations, let us define q := dz(uFB) and

ζ := [ε xc]
⊤
, so that dynamics (12) can be expressed in

the compact form

ζ̇ =

[
−1/τ 0
1 0

]
︸ ︷︷ ︸

A

ζ−
[
1/τ
0

]
︸ ︷︷ ︸

B

[kP kI ]︸ ︷︷ ︸
K

ζ+

[
1/τ
0

]
︸ ︷︷ ︸
Bq

q+

[
0
1

]
︸︷︷︸
Baw

kawq. (13)

3.2 LMI-based design

Now, we want to build an LMI formulation that can
consider all the constraints in order to design the gains
(kI , kP , kaw) of the controller. The main objective is to
ensure the stability of the closed-loop dynamics (13) with
a given decay rate α > 0. To this end, let us consider the
nonnegative quadratic Lyapunov function V (ζ) = ζ⊤Pζ,
with P = P⊤ ≻ 0. Then, the stability and the decay rate
are ensured if

V̇ (ζ) = 2ζ⊤P ζ̇ < −2αV (ζ). (14)

Since q is the deadzone nonlinearities, the scalar sector
condition qw(uFB − q) ≥ 0 holds for every w > 0. There-
fore, following the procedure in (Zaccarian and Teel, 2011,
Sec 3.4.3), in order to guarantee the previous conditions,
it is enough to check

2ζ⊤P ζ̇ + 2qw(uFB − q) + 2αV (ζ) < 0,

where uFB = Kζ. This expression can be developed in an
equivalent matrix form

2

[
z
q

]⊤ [
P (A−BK + αI) P (Bq +Bawkaw)

wK −w

]
︸ ︷︷ ︸

M

[
z
q

]
< 0,

(15)
which is equivalent to the bilinear matrix inequality
He(M) ≺ 0 in the unknowns P ∈ S2, K ∈ R1×2, kaw > 0,
and w > 0. Then, by multiplying it left and right by[

S 0
0 v

]
=

[
P−1 0
0 w−1

]
,

and applying a change of variable, we obtain

He

([
(A+ αI)S −BY Bqv +Bawr

Y −v

])
≺ 0, (16)

which is an LMI in the unknowns S ∈ Sn, Y := KS ∈
R1×2, v > 0, and r := vkaw > 0. Therefore, if LMI (16) is
feasible the linearized closed-loop system is stable.

To make our design robust, we consider that the parameter
Q, related to the load R, can vary in a range [Qmin, Qmax].
The uncertainty extends to the time constant of the
identified first-order system (10) since τ = 2Q

ω0
. This can

be easily taken into account by imposing LMI (16) twice,
with the matrices A, B, and Bq evaluated at τmin and
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Fig. 6. Simulation without (left) and with (right) anti-
windup. Top: state x2 (dotted-blue), reference yref
(dashed-black), and RMS value y (orange). Bottom:
computed φ (dashed-orange) and saturated φ (blue).
Perturbations on the load are at 1ms and 1.8ms.

τmax. Then, the gains can be found by solving the following
optimization problem with an LMI solver for a fixed decay
rate α:

min
S,Y,v,r

v, subject to:

S ≻ 0, v > 0,

He

([
(Ai + αI)S −BiY Bqiv +Bawr

Y −v

])
≺ 0,

for all i = 1, 2,
(17)

where Ai, Bi and Bqi are the matrices on the vertices of
the polytope defined by the uncertainty. Controller gains
are then derived by

K = Y S−1 and kaw = r/v. (18)

4. SIMULATION

To validate the proposed control scheme, simulations are
performed in MATLAB/Simulink, with a PLECS module
for the circuit, and a simulation step of 5 ns. Circuit
parameters and corresponding system characteristics are
given in Table 1.

Optimization problem (17) is solved using MATLAB and
the SDP solver MOSEK 10.1, the parameters are α =
15500 and Q ∈ [1, 10]. The resulting controller gains are:

kP = 1.13, kI = 3.30× 104, kaw = −22.69.

To analyze the performances of the controller, the RMS
value reference yref and the load R change during the sim-
ulation. Simulation starts with yref = 1.4. The reference is
changed to 0.4 at t = 1.3 ms. Similarly, simulation starts

with R = 2Ω, which is equivalent to Q = 1
R

√
L
C = 1.58;

then the load is affected by a step perturbation at t = 1 ms
becoming R = 0.5Ω, which is equivalent to Q = 6.32;
finally, the load is set back to R = 2Ω at t = 1.8 ms.

Fig. 6 shows simulation results with and without the anti-
windup loop to highlight its contribution to the system
behavior. In both cases, the estimated RMS output y
converges to the reference after a short transient time.



Fig. 7. Phase portrait of the system with anti-windup.

After the change of reference, φ saturates at π
2 ; during

this phase, the anti-windup loop allows to limit the satu-
ration time and the induced output overshoot. Even with
the lowest Q value, the output stabilizes to the desired
reference, showing the efficiency of the proposed control
scheme and associated gains tuning process.

Fig. 7 pictured the phase plane of the closed-loop system,
with different colors to distinguish changes of parameters
during the simulation. When perturbations appear, the
system stabilizes to a new limit cycle while keeping the
same desired RMS value; as expected, the shape of the
limit cycle is different and it depends on Q. Notice that
the limit cycle is not always close to a circle shape, meaning
that the outer controller is able to compensate when
signals are not completely sinusoidal.

5. FINAL DISCUSSION

This work proposed a simple controller scheme for the
RMS value regulation thanks to a first-harmonic analysis.
A hybrid dynamical system is used to estimate the RMS
value of the output current. Futures works may aim at
exploring this kind of scheme for constant power control,
also an experimental implementation could be foreseen.
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