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ABSTRACT

Chagas disease is a life-threatening illness caused by the parasite Trypanosoma cruzi. The
diagnosis of the acute form of the disease is performed by trained microscopists who
detect parasites in blood smear samples. Since this method requires a dedicated high-
resolution camera system attached to the microscope, the diagnostic method is more
expensive and often prohibitive for low-income settings. Here, we present a machine
learning approach based on a random forest (RF) algorithm for the detection and
counting of T. cruzi trypomastigotes in mobile phone images. We analyzed micrographs
of blood smear samples that were acquired using a mobile device camera capable of
capturing images in a resolution of 12 megapixels. We extracted a set of features that
describe morphometric parameters (geometry and curvature), as well as color, and
texture measurements of 1,314 parasites. The features were divided into train and test
sets (4:1) and classified using the RF algorithm. The values of precision, sensitivity, and
area under the receiver operating characteristic (ROC) curve of the proposed method
were 87.6%, 90.5%, and 0.942, respectively. Automating image analysis acquired with
a mobile device is a viable alternative for reducing costs and gaining efficiency in the
use of the optical microscope.
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INTRODUCTION

Chagas disease is a life-threatening illness caused by infection with the protozoan Try-
panosoma cruzi (Chagas, 1909). Most of the cases occur when metacyclic trypomastigotes
eliminated in the feces or urine of the vector enter the human host. Infection may also
develop through oral ingestion of contaminated food, congenital transmission, blood
transfusion, transplants of organs, and laboratory accidents (Cancino-Faure et al., 2015;
Filigheddu, Gorgolas ¢ Ramos, 2017; Luquetti et al., 2015). After penetrating the host cells,
the metacyclic trypomastigotes differentiate into amastigote forms in the cytoplasm.
Subsequently, the amastigotes multiply themselves by binary fission and transform into
trypomastigotes that disrupt the host cell, releasing into the bloodstream. These circulating
trypomastigotes may invade other host cells or be ingested by vectors (Lana ¢ Machado,
2017).

The acute phase of Chagas disease is characterized by high parasitemia in the blood
(Dias et al., 2016; Luquetti ¢ Schmuiiis, 2017). This allows the visualization of bloodstream
forms in the blood of infected individuals using a parasitological fresh-blood test, as well as
smear and thick drop blood tests (Gomes, Lorena ¢ Luquetti, 2009). Laboratory diagnosis,
however, has a few key limitations. First, it should be performed by trained microscopists
who observe the parasites. Reliance on professionals with various skills makes the diagnosis
prone to errors and heterogeneous. Second, manual search and detection of parasites is a
laborious task. This often delays the laboratory result, which further delays the initiation of
treatment. Third, methods that improve the search for the parasite in microscopic images,
such as attaching a dedicated high-resolution camera system to the microscope, are usually
expensive and often prohibitive for low-income settings.

Machine learning (ML) algorithms can assist in the laboratory diagnosis of acute Chagas
disease. They can automate the search and detection of the parasites, improving the
reproducibility of image analysis. These algorithms have been applied to image detection
of T. cruzi as well as other parasites that circulate in the blood (Rajaraman et al., 2018;
Uc-Cetina, Brito-Loeza ¢ Ruiz-Pifia, 2015; Gérriz et al., 2018). Previous work relied on an
image acquisition system with a dedicated camera attached to the microscope for the
detection of T. cruzi. This system is important for proper ML training since, it produces
homogeneous images regarding the lightness, color, acquisition time, aperture, and
resolution. However, these dedicated cameras are often expensive, which makes such
system prohibitive to low-income settings. The use of mobile device cameras increases
image diversity, which can make ML models even more robust. Models trained in mobile
device imaging were developed for the detection of Plasmodium ssp. which causes malaria
(Rosado et al., 2016; Oliveira et al., 2017; Yang et al., 2020). To date, models for the detection
of T. cruzi in images acquired with mobile devices have not been developed.
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Here, we developed and evaluated a ML algorithm that detects the bloodstream forms
of T. cruzi based on features of segmented body from the parasites. The extracted features
consisted in descriptors of morphology (geometric), color and texture, as well as statistical
descriptors (Hu’s invariant moments). We tested our method using images acquired with
a mobile phone from the acute phase of infection in a murine model. Our model reached
89.5% accuracy in a set of images that were not previously presented in the training process.
The proposed method presented an acceptable performance to detect trypomastigotes using

mobile phone images of blood smear.

MATERIALS & METHODS

Samples analyzed

A total of 33 slides with thin blood smears of Swiss mice experimentally infected with

T. cruzi Y strain at acute phase of infection were prepared for image annotation and
analysis. Sample preparations were obtained from animals of the Laboratory of Chagas
disease, Federal University of Ouro Preto where the T. cruzi strain was maintained through
successive blood passages in mice. The Ethics Committee for the Use of Animals (CEUA)
at the Federal University of Ouro Preto, Laboratory of Chagas Disease, Minas Gerais, Brazil
provided approval for this research (CEUA No. 2015/50).

Object segmentation

We standardized the resolution of the images to 768 x 1,024 pixels? before segmenting the
parasites. We applied a graph-based segmentation method (Felzenszwalb ¢ Huttenlocher,
2004). In this process, a graph-based representation of the image is defined were pixels
corresponds to vertices and neighboring pixels are connected edges. The contours of
the regions of interest with the parasites are obtained by selecting the edges between
the different regions based on the differences in intensity between the regions, and the
difference in intensity between the pixels within each region. As a result, we observed the
whole parasite cell body segmented within each region.

Next, we cropped a 100 x 100 pixels? region around each parasite based on manual
position annotation. Only the regions of interest with the parasite were selected for
processing and feature extraction. This procedure resulted in 1,314 parasites. We selected
other segments from the images with features very similar to the parasite using nearest
neighbors technique. In other words, we selected objects that do not belong to parasites
and clustered under the label “Unknown”. In this way, we were able to obtain the same
number of objects (T. cruzi or unknown) for the object classification task.

Feature extraction

After the segmentation of the parasites, we performed the conversion from the RGB
color space to CIEL*a*b* color space for object’s feature extraction (see the Supplemental
Information file for details). These features are object descriptors and are classified as
geometric (perimeter, area, circularity, thickness ratio, centroid to contour distances,
major and minor axis, aspect ratio, etc.); curvature (entropy, bending energy, standard
deviation, and variance) (Costa ¢ Cesar Jr, 2009); texture (color co-occurrence matrices,
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entropy, inverse difference moment, angular second moment, contrast, correlation) color
(mean, median, mode, amplitude, and variance) (Gui et al., 2013; Palm, 2004) descriptors
and Hu’s invariant moments (Huang ¢ Leng , 2010).

Feature selection

To increase performance, reduce the noise, and avoid overfitting, we applied either Principal
Component Analysis (PCA). In this manner, we reduced the number of features used by
the algorithm during the training. The dimension reduction with PCA was performed by
keeping the 16 highest eigenvalues of the covariance matrix derived from the feature space
data. The proportion of variance of the 16 principal components correspond to 95% of
the original variance. Therefore, we obtained a new feature space data that consisted of
eigenvectors of the principal components. We obtained the final dataset by multiplying the
transposed matrix of eigenvectors by the input data matrix centered by the mean.

Object classification

We applied supervised learning classification with support vector machines (SVM), k-
Nearest Neighbours (KNN) and Random Forest (RF) as they presents good generalization
with a small dataset (Chen et al., 2020; Hsu, Chang & Lin, 2016; Ben-Hur ¢ Weston, 2010;
Cunningham ¢ Delany, 2007; Breiman, 2001).

In the SVM method, each sample is represented by a point in an n-dimensional space,
where 7 is the number of object features and its values are the coordinates of the point,
including its class. The classifier searches for the optimal hyperplane that will be used to
split the points belonging to distinct classes. In the KNN method, a sample is classified to
the data label which has the most representatives within the k nearest neighbors features
of the sample. In the RF method, the classification of each object happens through a
combination of decision trees. The classification performance of each tree in the ensemble
is improved by bootstrapping sampling and aggregation from the training set. The final
classification is made by averaging each decision tree probabilistic prediction. In addition,
we also performed classification task using an ensemble of these methods based on “soft”
voting classifier. The voting classifier combines the results of the different predictors and
use the average of predicted probabilities to assign the class labels to each sample.

We used Python’s scikit-learn library to train and validate the models (Pedregosa et al.,
2011). We performed object feature data standardization before classification since data
presented different orders of magnitude. We assessed the classification performance of the
methods by comparing the samples in the feature space for a given class with all other
samples. After finding the highest accuracy value for each model, we assessed the models
in the validation set.

Statistical analysis

The performance of the constructed models was assessed by Receiver Operating
Characteristic (ROC) curve analysis, where the average of the area under the curve (AUC)
was calculated for the quantification in both training set and validation sets. We also
evaluated the model performance based on sensitivity, specificity, precision, and F1-score.

Morais et al. (2022), PeerdJ, DOI 10.7717/peerj.13470 4/19


https://peerj.com
http://dx.doi.org/10.7717/peerj.13470

Peer/

A. Sample preparation
/\
(3 =
N7

D. Feature extraction

and selection

Geometric

Color

Texture

Curvature
Invariant moments

B. Image acquisition C. Parasite labeling and
Image processing

E. Machine learning model F. Parasite detection
training and validation

ROC curve - testing

08
0.2 —— KNeighborsClassifier AUC: 0.76
— RandomForestClassifier AUC: 0.94

—— SVCAUC: 0.78
0.0 — VotingClassifier AUC: 0.88

°
>

°
=

True Positive Rate

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Figure 1 T. cruzi detection image analysis pipeline. (A) Blood smear samples were prepared from mice experimentally infected with T. cruzi par-
asites at the acute infection stage. (B) Images of thin blood smear slides were acquired with a mobile phone camera attached to a microscope ocu-
lar lens. (C) Parasite (trypomatigote forms of T. cruzi) was segmented by a graph-based algorithm. (D) Images were converted to CIEL*a*b* color
space and parasite features were extracted and selected (PCA). (E) Objects feature data were split into training and test sets. Four machine learning
models were trained and assessed. (F) Parasites were detected in mobile phone camera images.

Full-size Gal DOI: 10.7717/peerj.13470/fig-1

RESULTS

Image analysis pipeline for detecting T. cruzi

We developed and tested an image analysis pipeline which was based on a ML model
to detect T. cruzi in the blood during acute infection (Fig. 1). Initially, the images were
prepared from blood samples collected from female Swiss mice acutely infected with the
Y strain of Trypanosoma cruzi. The collected blood sample smears were stained by the
Giemsa method (Vallada, 1999). This technique allows the observation of parasites with
oil immersion objectives. Regions of nucleic acid-rich in adenine-thymine bond tend to
get darker. On the other hand, regions rich in cytosine-guanine bonds are less prone to
embody the Giemsa stain and tend to present clearer stains.

A total of 33 slides with thin blood smears from different animals were stained with
Giemsa. About 20 fields of view that correspond to each of the analyzed images were
captured from each slide. We manually acquired 674 images from the slides under 100x
objective (CFI E Plan Achromat 100x Oil, 1.25 NA/0.23 W.D.) in an optical microscope
(Nikon Eclipse E200) with a cell phone camera (Morola Moto G4) attached to the eyepiece
(CFI E 10x, F.N. 20 mm) (Fig. 2). The camera was configured with the macro focus and
other configurations were set to automatic for acquisition. With these settings, the images
were acquired with a resolution of 3,456 x 4,608 pixelsz, a field of view with a diameter
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Figure 2 Mobile phone attached to optical microscope objective lens and image acquisitio. (A) The
mobile phone was attached to the microscope ocular lens (eyepiece) with a plastic support device (left).
The camera was configured with the macro focus for acquisition. Other configurations were set to auto-
matic. (B) Image of field-of-view from blood smear slide of mice infected with Trypanosoma cruzi. The red
squares indicate regions with the presence of a parasite. (C) Crop of a field of view with the T. cruzi para-
site at the center. K, kinetoplast; N, nucleus; Scale bar, 10 pum.

Full-size B8 DOI: 10.7717/peerj.13470/fig-2

of 0.2 mm resulted in a pixel lateral size of approximately 0.06 pm. A few images were
acquired at 2,448 x 3,264 pixels2 due to change in camera configuration. This was useful
for classifier test at different input image resolutions. Images were stored in JPEG format,
at 100% quality, and file names standardized according to unique identifiers.

Parasites were microscopically identified by two specialist researchers in T. cruzi. A total
of 1,314 parasites were observed. We then marked the position of each nucleus or cell
body of the T. cruzi found in the images. The position of the objects of interest (parasite)
in the image was obtained by a point-and-click event using an “in-house software”. The
image identifier, the pointed object, and the coordinates in X and Y axis information were
extracted and stored in a database (Data S1).

To detect the objects of interest, we applied a graph-based approach (Felzenszwalb &
Huttenlocher, 2004). Segmented regions with more than 3,000 pixels were considered not to
contain the objects of interest. After image segmentation, objects were cropped in a 100 x
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A Original B Segmented C Segmented parasites

Figure 3 Object segmentation. (A) Original image acquired with a mobile phone attached to the microscope. (B) Segmented image with regions
highlighted with different colors. Yellow squares indicate the location of the parasite. (C) Segmented parasites in a 100 x 100 pixels®. Top row: T.
cruzi trypomastigotes from orignal image. Middle row: segmented regions with parasites. Bottom row: segmented parasites within the segmented
region of interest highlighted. Only the regions segmented with the parasites were selected for feature extraction.

Full-size G4l DOI: 10.7717/peer;j.13470/fig-3

100 pixel? sub-region around its X and Y coordinates and labeled into two classes: parasite
and unknown (Fig. 3). The segmented regions containing the the T. cruzi trypomastigote
form were labeled as “parasite” (Fig. 4A). The segmented regions that do not contain a
parasite or that are over-segmented were labeled as “unknown” (Fig. 4B).

We selected a set of regions labeled as “unknown” to train and validate the classifier
method. The regions were selected based on the features values closest to the regions
labeled as “parasite” using the nearest neighbors method. In this way we achieved a total of
1,314 segments marked as parasite and the same number of segments marked as unknown
(Table 1).

To identify the parasite in the image sub-region, we first extracted features from these
regions. These features represent a description of the object’s morphology (geometry and
curvature), as well as color and texture. We also calculated Hu’s invariant moments to
capture information regarding shape and intensity regardless of the object’s position and
size (Table 2). In total, we extracted 49 features from the segmented objects of each class
(Data S2).

We then split the region’s feature data into two sets based on the number of acquired
images. This resulted in a proportion of about 80% of regions for the training set (n =2181)
and 20% for test (n =447). We also applied principal component analysis (PCA) to reduce
the number of features and test whether it may improve the classification performance.
The proportion of variance of the 16 principal components corresponds to 95% of the
original variance of the data (Fig. S1). Therefore, we used 16 features of the transformed
values matrix to train the model.
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Figure 4 Parasite’s segmentation and region labeling. (A) Example of segmented regions that contain the parasite. The segmented regions
containing the T. cruzi trypomastigote form were labeled as “parasite”. (B) The segmented regions that do not contain a parasite or that are
over-segmented were labeled as “unknown”.

Full-size Gl DOI: 10.7717/peerj.13470/fig-4

Table 1 The number of objects by classes used in the training and test sets.

Class Training Test
Parasites 1103 211
Unknown 1078 236
Total 2181 447

Object classification task presented acceptable performance
We developed a classifier algorithm based on the object features. We observed better
performance in the classification task without the feature selection. The models trained on
features data selected by PCA were not able to generalize well on the test set, indicating
overfitting (Table S1). Without the feature selection, the random forest classifier model
presented acceptable performance with an accuracy of 99.7% and area under the ROC
curve of of 1.0 in the training set, all the while presenting accuracy of 89.5% and AUC of
0.942 in the test set (Table 3). The voting classifier presented accuracy of 93.3% and AUC
0f 0.978 in the training set, and accuracy of 79.4% and AUC of 0.884 in the test set (Fig. 5).
The voting classifier confusion matrix presented sensitivity and specificity values
of 76.8% and 81.8%, respectively (Table 4). The lower performance presented by the
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Table 2 Object feature metrics.

Feature

Description References

Geometric

Perimeter (P)

Area (A)

Area and perimeter ratio
Circularity

Thickness ratio
Centroid

Centroid to contour maximum distance
Centroid to contour minimal distance

Centroid to contour average distance

Major axis

Minor axis

Aspect ratio

Perimeter and Major axis ratio

Bilateral symmetry

Hu’s invariant moments®
&
(o
o3
on
o5

25
¢;

Costa & Cesar (2009)
Parametric representation of the contour and its points identified by the coor-

dinates x(t) and y(t)

Integral of the contour
A

P
A

4 Pz

PZ

A

Given the center of mass M of a contour of complex signal u(n), the centroid

coordinates (z;, z,) were obtained by the average of all the points in u(n).
The distance between the centroid and the furthest point on the contour.
The distance between the centroid and the nearest point on the contour.

The average of the distances between the centroid and all points in the con-
tour.

Pair of more distant points belonging to the object.

Pair of closest points belonging to the object.

Majoraxis
Minoraxis
P
Majoraxis

Bilateral symmetry is given by the proportion of the number of pixels between
the intersection of an object and it’s reflecting shape with respect to the major
axis, and the union between those two objects.

Hu (1962); Huang ¢ Leng (2010)
120 + o2
(20 — n02)* + 4013,
(130 —3n12)* 4 (31121 — o3)*
(30 = 112)* 4 (21 =+ f403)’

(30 = 3112)(M30 + M) [(M30 + M12) — 3(m21 + 103)*1 + Bmar — Mo3) (a1 +
103)[3(130 +112)* — (1121 + 103)*]

(120 — n02)[(M30 +112)* — (21 +103) 21+ 4011 (730 + 712) (121 — 703)

(3121 — 103) (30 + M2)[(M30 + Mm2)* — 3(M21 — M03)*] — (30 — 3012) (21 +
103)[3 (30 +112)> — (721 +103)*]

(continued on next page)
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Table 2 (continued)

Feature Description References

Color Burger ¢ Burge (2016)
Mean ﬁ Z?L jN=1PiJ'

Median P12

Mode Pixel value that occurs with greatest frequency

Amplitude max(p) - min(p)

Variance Zf\il ;111171’;' (o — p)?

Curvature’ Costa & Cesar (2009)
Bending energy B= 4 [k(r)*dt

Variance Var(t) = Zfzop,- (i —p)?

Entropy H(t) =—Zgzop(k(t))-log(p(k(t)))

Color texture* Gui et al. (2013)
Entropy (E) E=—3 > p(i.j)log(p(i.j)

Angular second moment (ASM)

ASM =31 Y0 (p(ij))?

rIead

61/01

Contrast (CON) CON =3 Zk* (i (i)
L L pij
Inverse difference moment (IDM) IDM = Z’:‘%ﬁw
LS ()
Correlation (COR) COR = E=ZRtt) ity

Notes.
*Refer to Huang & Leng (2010) for JLand n equations.

®The curvature k(t) of a parametric curve c(t) = (x(t), y(t)) was defined as k(¢) = %, where x'(¢), y'(t) and x”(t),y" (t) are the first and second derivative of the contour signal x(t) and y(t),
respectively.

“Texture features were extracted based on the color co-occurrence matrix (CCM).
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Table 3 Prediction performance of models on the training and testing sets.

Set Feature Model Metrics (%)
selection
Sensitivity Specificity Precision Accuracy F;-score AUC

Train None SVM 67.4 80.2 77.7 73.8 72.2 0.797
KNN 75.6 84.2 83.1 79.9 79.2 0.878
RF 99.8 99.5 99.5 99.7 99.7 1.0
Ensemble 88.6 92.0 91.9 90.3 90.2 0.978

Test None SVM 69.7 75.4 71.7 72.7 70.7 0.78
KNN 69.7 75.4 71.7 72.7 70.7 0.759
RF 90.5 88.6 87.6 89.5 89.0 0.942
Ensemble 76.8 81.8 79.0 79.4 77.9 0.884

Notes.

AUC, Area under the curve; SVM, Support vector machines; KNN, k-nearest neighbors; RF, random forest.
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Figure 5 Model classification performance. (A) Receiver operating characteristic (ROC) curve in the
training set. (B) ROC curve in the testing set. AUC, area under the curve.
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voting classifier is because the ensemble’s prediction is based on the average of the

prediction probabilities of each classifier. Since the SVM and KNN classifiers presented

lower performance individually (both presented sensitivity of 69.7% and specificity of
75.4%, Table 3) the prediction of the ensemble was lower. On the other hand, the RF
classifier had a sensitivity of 90.5% and a specificity of 88.6% (Table 5).

The objects found in the images were then marked by the algorithm as parasite. We

found two problems in the parasite recognition task. The first is related to the high rate of

false positives (Fig. 6A). The regions of the images with leukocytes or high density of red

cells showed over-stained areas. These areas were difficult to classify by the algorithm. The

second problem was the false negative rate (Fig. 6B). Parasites in regions of the image that

presented low contrast or low sharpness (“out of focus”), most commonly found at the
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Table 4 Confusion matrix of the voting classifier (ensemble’s prediction) in the test set.

True label
Parasite Unknown
Predicted Parasite 162 43
label Unknown 49 193

Table 5 Confusion matrix of the Random Forest classification model in the test set.

True label
Parasite Unknown
Predicted Parasite 191 27
label Unknown 20 207

edges of the field of view, were not recognized by the algorithm. This second problem is
much more significant, since undiagnosed Chagas disease can put a person’s life at risk.

DISCUSSION AND CONCLUSIONS

In this work, we present an algorithm for automatic detection of the T. cruzi parasite in
images acquired with a mobile phone device. Our approach involved image segmentation
with a graph-based method, extraction of parasite features, selection of the most important
features, and classification of these features with an Random Forest model for the detection
of the parasite in the image.

The detection of T. cruzi in images was previously done using several classification
models, such as gaussian discriminant, k-nearest neighbors, AdaBoost + SVM, and
convolutional neural networks (CNN) (Soberanis-Mukul et al., 2013; Uc-Cetina, Brito-
Loeza ¢ Ruiz-Pinia, 2013; Uc-Cetina, Brito-Loeza ¢ Ruiz-Pifia, 2015; Pereira et al., 2020).
Despite these works reported a good performance (sensitivity and specificity >85%),
all of them made use of images acquired with a dedicated camera system. Our method
obtained a sensitivity of 90.5% and a specificity of 88.6% even though we used images
with lower resolution (less than 1 megapixel). Machine learning approaches applied to
images obtained from mobile device cameras showed similar performance (sensitivity of
80.5% and specificity of 93.8%) in detecting the malaria agent Plasmodium spp. (Oliveira
et al., 2017; Rosado et al., 2016). Therefore, our method was the first to combine machine
learning algorithms and low-resolution images to automatically detect T. cruzi parasite
(Table 6).

We can enhance the classification task by testing other models. Currently, one of the
techniques most used in pattern recognition are deep learning approaches (Acevedo et al.,
2019; Moen et al., 2019; Schmidhuber, 2015). Deep learning approaches presented better
performance in detecting Plasmodium ssp.(sensitivity of 94.5% and specificity of 96.9%)
(Rajaraman et al., 2018). However, to build an effective model using these techniques to
detect T. cruzi, huge data sets are required where the performance of the model increases
in logarithmic proportion to the volume of images (Sun et al., 2017). Another challenge
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Figure 6 Sample images of false-positive and false-negative Chagas parasite detection algorithm. (A)
The regions of the images with leukocytes (left) or high density of red cells (right) showed overstained ar-
eas that made it difficult to properly classify by the algorithm. (B) Parasites in regions of the image that
presented low contrast (left) or low sharpness (right) were not recognized by the algorithm.

Full-size Gl DOI: 10.7717/peer;j.13470/fig-6

in this kind of study is image acquisition and ground truth annotation. To obtain and
annotate this large number of images is particularly difficult, and it is more difficult to
apply these techniques in a neglected disease context.

The mobile phone camera mainly affects the outline of objects in the image and the
sharpness. The algorithm we present also has its results affected by such characteristics.
A higher false-positive rate was observed in regions of the image with leukocytes or high
red cell density. A higher false-negative rate was observed in regions of low contrast
and sharpness. Therefore, smear quality directly affects classifier performance. It is
extremely important to reduce the false-negative rate, since undiagnosed patients can
be left without proper treatment and in a life-threatening situation. We recommend
evaluating the algorithm on images acquired from samples with different staining time and
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Table 6 Comparison of the results of our algorithm with other published studies.

Reference Parasite Image capture device ML Model Sensitivity Specifity

(%) (%)
The present work T. cruzi Mobile phone camera RF 90.5 88.6
Uc-Cetina, Brito-Loeza & Ruiz-Pifia (2013) T. cruzi Dedicated camera Gaussian discriminant 98.3 84.4
Uc-Cetina, Brito-Loeza ¢ Ruiz-Pifia (2015) T. cruzi Dedicated camera AdaBoost + SVM 100 93.2
Pereira et al. (2020) T. cruzi Dedicated camera Convolutional Neural Network 97.6 95.2
Soberanis-Mukul et al. (2013) T. cruzi Dedicated camera KNN 98 85
Savkare & Narote (2012) Plasmodium spp. Dedicated camera SVM 96.3 99.1
Yang et al. (2020) Plasmodium spp. Mobile phone camera Convolutional Neural Network 92.6 94.3
Rajaraman et al. (2018) Plasmodium spp. Mobile phone camera Convolutional Neural Network 94.5 96.9
Rosado et al. (2016) Plasmodium spp. Mobile phone camera SVM 80.5 93.8
Oliveira et al. (2017) Plasmodium spp. Mobile phone camera Adaboost 59 95

Notes.

RF, random forest; SVM, support vector machine; KNN, k-nearest neighbours.
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dye concentration. Such an assessment can further validate the robustness of the algorithm
and identify optimal sample preparation.

In summary, our results demonstrate that the proposed algorithm can detect
trypomastigote forms of T. cruzi in images acquired with a mobile device attached to a
microscope. Automating image analysis acquired with a mobile device is a viable alternative
for reducing costs and gaining efficiency in the use of the optical microscope. We hope
that this algorithm can serve as a tool for early diagnosis of Chagas disease.
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