
HAL Id: hal-04627381
https://hal.science/hal-04627381

Submitted on 27 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards Generating Structurally Realistic Models by
Generative Adversarial Networks

Abbas Rahimi, Massimo Tisi, Shekoufeh Kolahdouz Rahimi, Luca Berardinelli

To cite this version:
Abbas Rahimi, Massimo Tisi, Shekoufeh Kolahdouz Rahimi, Luca Berardinelli. Towards Generating
Structurally Realistic Models by Generative Adversarial Networks. 2023 ACM/IEEE International
Conference on Model Driven Engineering Languages and Systems Companion (MODELS-C), Oct
2023, Västerås, France. pp.597-604, �10.1109/MODELS-C59198.2023.00098�. �hal-04627381�

https://hal.science/hal-04627381
https://hal.archives-ouvertes.fr

Towards Generating Structurally Realistic Models
by Generative Adversarial Networks

Abbas Rahimi∗†, Massimo Tisi‡, Shekoufeh Kolahdouz Rahimi§† and Luca Berardinelli∗
∗Institute of Business Informatics - Software Engineering, Johannes Kepler University, Linz, Austria

†MDSE Research Group, University of Isfahan, Isfahan, Iran
‡IMT Atlantique, LS2N (UMR CNRS 6004), Nantes, France

§School of Arts, University of Roehampton, London, United Kingdom
Email: abbas.rahimi@jku.at, massimo.tisi@imt-atlantique.fr, shekoufeh.rahimi@roehampton.ac.uk, luca.berardinelli@jku.at

Abstract—Context. Several activities in model-driven engineer-
ing (MDE), like model transformation testing, would require the
availability of big sets of realistic models. However, the commu-
nity has failed so far in producing large model repositories, and
the lack of freely available industrial models has been raised
as one of the most important problems in MDE. Consequently,
MDE researchers have developed various tools and methods
to generate models using different approaches, such as graph
grammar, partitioning, and random generation. However, these
tools rarely focus on producing new models, considering their
realism.
Contribution. In this work, we utilize generative deep learning, in
particular, Generative Adversarial Networks (GANs), to present
an approach for generating new structurally realistic models.
Built atop the Eclipse Modeling Framework, the proposed tool
can produce new artificial models from a metamodel and one
big instance model as inputs. Graph-based metrics have been
used to evaluate the approach. The preliminary statistical results
illustrate that using GANs can be promising for creating new
realistic models.

Index Terms—Model generation, MDE, Generative Adversar-
ial Networks, Tool Support

I. INTRODUCTION

Nowadays, it is a common practice to employ models
and modeling techniques to facilitate the comprehension of
complicated scientific challenges and the design of complex
systems in engineering areas. Using models, engineers from
various disciplines can gain a holistic perspective on intricate
and complex problems at a high level of abstraction. By elim-
inating unnecessary details, this abstract view gives engineers
a better understanding of the challenges in the first step and
then offers the possibility of discovering and providing suitable
solutions.

As a result, using proper modeling technologies to design
and develop software systems can positively impact the quality
of such systems. Model Driven Engineering (MDE) considers
models the primary artifacts [1]. Subsequently, novel tools
and methods have been specifically designed for MDE users,
which should be assessed from different standpoints, such as
quality, efficiency, and scalability. An outstanding example is
the verification and validation of model transformations. Find-
ing appropriate models for these kinds of activities is mostly
an intricate and challenging effort, given the diversity and

multiplicity of domains [2]. Accordingly, model generation is
introduced as a suitable solution to this concern.

The main goal of this work is to leverage Generative
Adversarial Networks (GANs) to generate structurally realistic
models to mitigate the lack of data in MDE. In particular,
a model is structurally realistic if it cannot be distinguished
from the real ones just by looking at the typed graph structure,
ignoring the attribute values [3].

We want to exploit the capability of GANs to learn from
a small input dataset and produce a large and diverse set of
realistic models.

We are especially interested in generating models for the
following purposes:

• Testing model transformations: One of the essential pillars
of MDE is model transformation. The usual way to per-
form a model transformation is to prepare a transformation
code or program using a specific transformation language
(like ATL1, QVT2, and ETL3). Programming and testing
the correctness and performance of such programs is a
tedious and time-consuming task because their programming
environment often lacks advanced features, like debugging
capabilities, required to facilitate their development [1].
Therefore, it is inevitable and necessary to ensure the
accuracy of the transformation’s execution through testing
and evaluation before publishing it. To this end, a data set
containing a large number of models is required, while the
number of models that can be used for testing is either small
or very hard to collect, depending on the respective domains.

• Feeding neural networks (NN) for MDE: Machine learning
techniques can be used to address various challenging prob-
lems that are difficult for humans but relatively straightfor-
ward for computers. This has become more influential due
to the advancements in hardware over the last few decades
and the growth in data storage capacity. Therefore, MDE
researchers strive to employ these techniques and address
the open challenges in their field in light of the significant
outcomes yielded by ML. Consequently, they must provide

1https://www.eclipse.org/atl
2https://projects.eclipse.org/projects/modeling.mmt.qvt-oml
3https://www.eclipse.org/epsilon/doc/etl

https://www.eclipse.org/atl
https://projects.eclipse.org/projects/modeling.mmt.qvt-oml
https://www.eclipse.org/epsilon/doc/etl

a proper model repository or dataset for feeding the neural
networks to proceed to their aims.
Among different MDE technologies [4], we chose the

Eclipse Modeling Framework (EMF)4 as the foundational
MDE technology for a proof-of-concept implementation of
the approach. Therefore, we aim to encode an input EMF
model into the corresponding graph first, then feed it to a
NN, which can learn the main patterns and link distribution
between the graph’s internal elements. Finally, the trained
network can be used to create new EMF models. It is worth
noting, however, that the proposed tool can be adapted to
deal with different MDE frameworks by replacing technology-
dependent components like model encoders/decoders.

The main contribution of the paper is an approach for model
generation based on GAN. The proof-of-concept implementa-
tion first changes the problem scope from the model level
to the graph level. It then learns the graph’s main structure,
generates new graphs based on that, and finally converts the
new graphs back to the model space.

As part of this tool, a specific model-to-graph encoder has
been developed to convert the model into the corresponding
graph by receiving an Ecore metamodel and an instance model
that conforms to it. This program goes through the instance
model based on the structural features of the metamodel and
creates an adjacency matrix representing the graph correspond-
ing to that model. This matrix then has been used as the
input of the neural network. A graph-to-model decoder has
been designed to convert the graph to the respective model.
The decoder can create an instance model representing the
given adjacency matrix by receiving the metamodel structural
information and the generated graph’s adjacency matrix.

The rest of the paper is organized as follows. Section II
discusses the basic concepts used in this research. In Section
III, we investigate the related works. Section IV introduces
our proposed approach, including the model-to-graph encoder,
the neural network that has been used, and the graph-to-
model decoder. We illustrate the evaluation results and the
initial findings of this research in Section V. In Section VI,
we explore the framework’s limitations and provide potential
solutions. Finally, Section VII concludes the paper by listing
potential improvements, new challenges, and future research
directions.

II. BACKGROUND

This section explains the main concepts utilized in this
research: model-driven engineering, generative deep learning,
and graphs.

A. Model-driven Engineering

Model-driven software engineering is a technique for apply-
ing modeling’s advantages to software engineering activities.
”Model” is considered an important artifact of software engi-
neering in MDE. MDE strongly emphasizes disregarding the

4https://eclipse.dev/modeling/emf/

detail and leads software engineers’ focus away from low-
level perspectives like programming code toward higher-level
views, such as the models. Due to this change in perspective,
challenges are easier to comprehend, and the engineer can
focus on discovering the potential solutions [1].

Model transformation is one of the most fruitful facilities
MDE offers software engineers [1]. This capability is crucial
because, using that, the executable code in various program-
ming languages and platforms can be generated automatically
from the models (if they have acceptable quality and are
enriched with constraints). MDE’s procedures will take longer
than common software engineering techniques, but overall,
software projects can be done more quickly, easily, and error-
free in the long term due to the reusability of created artifacts.

B. Generative Neural Networks

A generative neural network is a powerful method for
learning data distribution using unsupervised learning. It has
achieved tremendous success in just a few years. All generative
models aim to learn the real distribution of the training dataset
to generate new data points by sampling. In the following, we
will describe more about GANs.

Ian Goodfellow presented Generative Adversarial Network
in 2014 as an approach for generative networks by deep
learning techniques [5]. In the generative network, which is
a type of unsupervised deep learning (DL), patterns or rules
are automatically discovered and learned from input data. The
foundation of these networks is based on game theory and
Nash equilibrium.

GANs are a novel way to train a generative model that
consists of two separate neural networks (Figure 1). These two
networks are the generator, trained to generate new samples,
and the discriminator, which tries to classify the samples as
either real (i.e., come from the existing dataset) or fake (i.e.,
generated by the generator). Both networks work against each
other in a zero-sum game until the discriminator is deceived in
its predictions in half of the cases. In other words, it means the
generator has gained the ability to produce believable and very
similar samples of the original dataset [6]. After the training
phase of these two neural networks, the discriminator can be
used as a recognizer in the trained domain, and the generator
can be used to produce new realistic samples.

Fig. 1. Generic architecture of Generative Adversarial Networks

C. Graphs

A graph is a visual representation of the relationships
(edges) between entities (nodes) in a certain domain. From the

https://eclipse.dev/modeling/emf/

perspective of the nodes’ and edges’ types, graphs are classi-
fied into two main clusters: homogeneous and heterogeneous.
• A homogeneous graph is one in which each node and each

edge serve the same intent, and all nodes and all edges in
these graphs are of the same type.

• A heterogeneous graph has two or more different types
of nodes and edges that present different functions and
applications [7].
Following this, an adjacency matrix is a matrix that contains

information about the number of edges between different
vertices of a graph. The content of this matrix in unweighted
graphs is zeros and ones; if there is a link between two
vertices, the respective entry is 1, otherwise 0. In weighted
graphs, this value is the edge’s weight.

III. RELATED WORK

In recent years, MDE has become one of the leading
development methods in many software fields. Consequently,
new tools and techniques have been explicitly designed and
developed for MDE, which need to be assessed in terms of
quality, efficiency, correctness, and scalability. To this end,
preparing test models is a challenging, difficult, and time-
consuming prerequisite as real instance models are sometimes
either inaccessible to the public or even unavailable when
it comes to very specific domains [2]. Therefore, in recent
decades, MDE researchers have tried to mitigate this challenge
by presenting model generation techniques and tools. These
studies mainly utilized three approaches: clustering, grammar
graph, and random.

The clustering approach usually classifies variable values
and relationships between components. Then, an instance
model is produced from each category as a representative of
that category [8]. To generate the model based on the graph
grammar, the graph rules are extracted from the metamodel,
and then models are generated according to these rules [9]. In
the random approach, random procedures are used to generate
new models [10].

Furthermore, in [11], the authors present a viable approach
for creating system test data using constraint-solving tech-
niques. It focuses on automating the process of creating ef-
fective test cases by formulating constraints based on program
behavior and input requirements. Most recently, in [12], the
authors have presented a DL-based framework for generating
structurally realistic models. They look at the model as a
bunch of edit operations and introduce a framework based on
deep autoregressive networks. The proposed approach lever-
ages the power of DL networks to model the dependencies
across multiple levels, allowing for the generation of highly
structured and realistic models. The experiments conducted
by the authors show that the deep autoregressive network
outperforms existing generative models in terms of capturing
complex dependencies and generating high-quality samples.

Moreover, there is an AI-based assessment approach [3]
recently done to check whether model generators are pro-
ducing realistic models or not. In that work, the authors
trained a Graph Neural Network (GNN) to capture real-world

graphs’ underlying structural patterns and characteristics. They
used these characteristics to compare the realism of synthetic
models generated by different model generators.

We also investigated well-known NN-based frameworks
that have been developed for generating realistic graphs. We
considered that the given framework should be able to perform
effectively and accurately even with a small set of input data
because otherwise, it would be a contradictory task. In other
words, we need to choose frameworks that are capable of
learning the main data patterns using available data since there
are not sufficient instance model repositories to feed neural
networks in the MDE context. Despite this, it is noteworthy
that a larger dataset can yield improved results.

Amongst existing generative networks, we found GAN-
based frameworks as a suitable solution to this. To the best
of our knowledge, GANs can proceed in the learning phase,
even with a small input dataset (e.g., [13]), producing desired
and reasonable outcomes. Some of the open-source projects
that have tried to address graph generation challenge using
GANs are GraphGAN [14], HeGAN [7], and NetGAN [15].
Compared to the others, the NetGAN framework fits our needs
better. Moreover, its source code needs less effort to be adopted
and is easy to reuse.

NetGAN introduces the graph generation challenge as learn-
ing the distribution of random walks over the given graph.
NetGAN is based on a stochastic neural network that is able
to generate discrete output samples [15]. In other words, it
trains the GANs to learn the random walk distribution of the
input graph, and then it can reproduce many parts of the given
graph’s main patterns without having them specified by engi-
neers. Furthermore, it has demonstrated good generalizability
that will help the variety of the forged outputs.

IV. PROPOSED APPROACH

In this section, we delve into the details of our proposed
solution by discussing our approach from the graph perspective
and outlining our framework’s architecture. We also provide
a detailed explanation of key concrete components of the
approach.

Models share a structural similarity with graphs. Given
the significance of graphs in various fields, such as social
network analysis, traffic networks, and protein molecule struc-
ture research, numerous studies have recently employed deep
learning techniques to generate new samples. We decided to
leverage this similarity and utilize existing solutions and tools
designed for graph generation to produce new models.

In the following, we detail the stages of our proposed
approach depicted in Figure 2.

1) Model to graph encoding: Models can be transformed
into graphs inspired by the model’s and the graph’s structural
similarity. To this end, for each element (object) in the input
model, a node in the graph is created, and an edge is added
for each relationship between every two elements.

With this idea, we used the PyEcore5 library and provided
a Python code to go through the model elements and create

5https://github.com/pyecore/pyecore

https://github.com/pyecore/pyecore

Fig. 2. Workflow of the proposed approach for model generation

the corresponding graph. As shown in Figure 3, the designed
encoder receives an Ecore metamodel and one valid instance
model as inputs, both serialized in XMI. Then, using the struc-
tural information extracted from the metamodel, it navigates
through the input instance model and creates an adjacency
matrix for it as output. The number of rows and columns in the
produced matrix represents the number of existing objects (i.e.,
instances of EClasses defined in the associated metamodel),
while the number of non-zero entries in it reflects the number
of relationships (i.e., instances of EReferences defined in the
associated metamodel) in the input instance model.

Fig. 3. Model to graph encoder

Input: The input is represented by EMF models, i.e., an
Ecore metamodel and a valid instance model. EMF models
are all encoded in XMI, i.e., structured text that cannot be
used directly as input for neural networks that work on graphs.

2) Adjusting the hyperparameters and running NetGAN:
The generator engine and beating heart of the approach pro-
posed in this research is the NetGAN network. The following
briefly states the details of the NetGAN framework and how
to adjust its hyperparameters.

The GAN framework employed in NetGAN works on
random walks, which only considers non-zero entries of the
adjacency matrix to work efficiently on the sparse matrix of
its input graphs. This capability makes it simple to utilize
NetGAN for learning big graphs (for example, a graph with
thousands of nodes) [15].

It is important to note that NetGAN has used a Long
Short-Term Memory (LSTM) neural network. This type of
neural network can effectively remember the main structure
and patterns of the input data (an instance model in our case).
In conclusion, leveraging the random walks technique and the
LSTM architecture by NetGAN makes it a suitable fit for our
overall approach.

Before running NetGAN, it is necessary to set and initialize
its hyperparameters. The most important parameters are:
• Random walk (RW) length: The most influential parameter

of NetGAN is the random walk length. This parameter
can vary based on the input graph’s depth and number of
edges. Based on this parameter, NetGAN performs random
walks on the input to derive a suitable dataset for training
the discriminator. In addition, the generator network also
produces fake random walks based on this parameter.

• Learning rate: According to the NN model weights update,
the learning rate determines how much the model adjusts in
response to the calculated error.

• Stopping criterion: This determines the permitted percent-
age of overlap between the generated graph and the original
graph.

• Number of walks synthesized by the generator after training:
After the training phase and before invoking the generation
function for creating a new adjacency matrix, the generator
requires creating some new random walks. This parameter
refers to the number of new random walks. These new
random walks are used to build the final output graphs.

• Approximation of the number of edges in new graphs: The
generator uses this parameter to concatenate new walks
and generate a new graph with this number of edges. The
number of edges is not exactly the same as this parameter
value because, due to the metamodel structure, it might not
be possible to add some relations as appear in the new graph.

It is also worth noting that since the quality of NN outputs
usually improves by feeding it more data, and since NetGAN
creates its dataset by creating a large number of random
walks, the larger the input instance model, the better.

3) Graph to model decoding: After training the NetGAN
network with the appropriate inputs, its generator NN can be
invoked to generate new random walks. These random walks
are concatenated to shape an adjacency matrix that represents
the new graph. Then, a converter is needed to transform the
generated graph into a new instance model to shape the final
output.

To do this, we developed a graph-to-model decoder in
Python. This code cooperates as a complement to the encoder.
The decoder receives the adjacency matrix of the newly
created graph from NetGAN and the structural details of
the metamodel from the encoder. As shown in Figure 4,
the decoder, using the PyEcore library, is able to create the
instance model file corresponding to the given graph in XMI
format. Moreover, at the end of this stage, each object’s
features can automatically be initialized via a random value
based on their types to make the output more readable.

Fig. 4. Graph to model decoder

V. PRELIMINARY EVALUATION

By examining the values of an instance model’s features,
a modeler can quickly distinguish between an automatically
generated model and a model created by a human. However,
determining a model’s authenticity becomes considerably chal-
lenging by increasing the level of abstraction by concentrating
only on graph structures and removing features’ values [3].
However, it is worth noting that applying such an abstraction
step comes at the cost of assuming that the feature values are
insignificant.

After applying such an abstraction step, the proposed tool is
evaluated by analyzing the structural statistics of the generated
models. To this end, the graph metrics introduced in [16]
are employed. We first calculate these metrics for the real
model dataset and the dataset produced by our approach.
Subsequently, we compare and evaluate the metrics to assess
the level of realism exhibited by the synthetic models.

A. Quantitative metrics used for evaluation

Six evaluation criteria were used, taken from [16], includ-
ing Node Degree Mean (DM), Node Activity (NA), Node
Reference Activity (NRA), Edge Reference Activity (ERA),
Multiplex Participation Coefficient (MPC), and Pairwise Mul-
tiplexity (PM). Additionally, two more comparative metrics
were defined and applied in this study. They are:
• Absolute distance (AD): It is calculated separately for each

metric. It is equal to the absolute value of the difference
between two graphs in that metric [17]. In the following
formula, M and N refer to two given graphs/models, s refers
to a metric id, and ms refers to the value of that metric.

AD(M,N,ms) = |ms(M)−ms(N)|

• Combinational distance (CD): It is introduced for an in-
all comparison of two graphs [17]; This measure combines
all the aforementioned metrics and is calculated using the
following formula. k refers to the number of metrics we
have (it’s 6 in our case). We defined a weight called ws for
each metric to normalize the value of the metrics. The value
of ws is equal to 1 for metrics whose value is in the range
of 0 and 1; otherwise, it is obtained by dividing one by the
largest value that has been recorded for that metric.

Distancecomb =
∑

1≤s≤k

Ws.ADs

(
ms(M),ms(N)

)
B. Datasets

As an example showing the proposed approach in action, we
used a simplified Car Wash Management metamodel, which
is shown in Figure 5. We explain the process of producing,
step by step, a new conforming car instance model using the
proposed approach. The metamodel consists of 5 metaclasses,
CarWash, Person, Car, Service, and Bill. CarWash
is the top-level model container.

A person owns one or more cars and is responsible for one
or more bills. It includes attributes id, name, and age. A car
wash station can offer different services at a given cost to cars
of a specific color. The total cost of the services is calculated
on a bill whose payment is performed by cash or credit.

Fig. 5. Car wash management system metamodel.

To gain a dataset crafted by humans, the Car wash meta-
model was presented to three modelers, so they created 20 real
instance models. Next, the NetGAN was trained five times, uti-
lizing four models among the real models as inputs to generate
a dataset of new synthetic ones. After each training iteration,
the trained neural network was tasked with generating new
models of diverse sizes. Consequently, this process yielded a
dataset of 92 generated instance models. It is worth noting that
the generator can not generate outputs with more nodes than
it sees during the training phase, while it can predict more
edges (relationships) than the edges that exist in real models.
Figure 6 shows the minimum, maximum, and average number
of nodes and edges within the real dataset, training dataset
(the four instance models opted from the real dataset), and
generated dataset.

Finally, we computed the evaluation metrics for each model
and its closest counterpart (i.e., the model with the lowest
combinational distance) in terms of similarity in both datasets.
These results were subsequently compared to quantitatively
assess the similarity between the generated models and their
nearest model in the real dataset according to the calculated
metrics. The code and dataset can be found at: https://github.
com/AbbasRahimi/netgan/tree/Ecore model generator.

https://github.com/AbbasRahimi/netgan/tree/Ecore_model_generator
https://github.com/AbbasRahimi/netgan/tree/Ecore_model_generator

Fig. 6. Instance model’s sizes (nodes and edges) in the datasets.

C. Preliminary evaluation results

Upon gathering the required data, we proceeded to com-
pute the CD between each generated model and its nearest
counterpart within the real model dataset. This CD is then
compared against a threshold limit. To calculate the threshold,
first, for each model of the real dataset, we must find the
closest model in the same dataset based on the CD [17].
Then, we consider the largest value of the CD difference as
the threshold limit. The threshold’s value completely depends
on the quality, quantity, and proximity of the instance models
in the real dataset, so it might differ for different input
datasets, even when employing an identical metamodel. Given
this circumstance, if the difference is found to be below the
threshold, it signifies that the Combinational distance between
the generated model and its closest real model is smaller than
the distance between the two nearest real models in the dataset.
In other words, we can claim that the generated instance model
can be considered realistic. On the other hand, if the difference
is greater than the threshold, it indicates that the created model
has no realistic qualities.

In the following, seven plot-box diagrams, shown in Fig-
ures 7 and 8, are used to illustrate the distribution of calculated
metric values between the real model dataset (which contains
20 models) and the created model dataset using the proposed
tool (which contains 92 models). It is worth noting that all
criteria have been normalized to fall within the range of 0
to 1.

Table I presents the comprehensive findings derived from
the conducted preliminary evaluation. The first column indi-
cates the name of the sample that is selected as the input, while
the second column provides the number of nodes or objects,
and the third column is the number of edges or references in
that instance model. The fourth column shows the RW length
chosen after several trials for the input models. Following
the training phase, the network was asked to generate a
certain number of new models each time, as indicated in the
fifth column. The last column represents the proportion of
realistically generated models within each respective instance
model set.

It is important to note that the information presented in
rows 1 and 2 corresponds to the same input model but with

different RW lengths. It means the NN is trained twice using
the same instance model. The first training employed an RW
length of 6, while the second training utilized an 8-step RW.
Despite the fact that a more extensive evaluation is required,
the obtained results suggest that an appropriate value for the
RW length parameter should be proportional to the number of
relationships and the depth of the graph associated with the
input model in order to generate suitable outputs.

Notably, by manipulating the value of this parameter alone,
a significant alteration in the realistic nature of the produced
models was observed.

TABLE I
STATISTICAL RESULT OF THE PRESENTED APPROACH

Input #Nodes #Edges RW #Gen Realistic
name length models nature

Real432 53 432 6 16 31%
Real432 53 432 8 22 73%
Real352 60 352 6 22 68%
Real262 41 262 6 16 75%
Real156 33 156 6 16 75%

Figure 7 illustrates the performance of the tool’s NN across
various metrics, namely NA, NRA, ERA, Degree Mean, PM,
and MPC. The approach demonstrates commendable perfor-
mance in metrics NRA, ERA, and Degree Mean, indicating
its proficiency in capturing the main patterns of the model.
However, it exhibits less proficiency in accurately learning
the activity distribution of nodes (NA), particularly when
the given model possesses significantly fewer relationships.
Furthermore, the comparison of two datasets using Pairwise
multiplexity, also depicted in Figure 7, suggests that the
tool does not adequately prioritize the generation of binary
references. This finding implies that the synthetic models
generated by the tool exhibit more diversity than the real
dataset.

According to Figure 8, it can be concluded that the current
approach, taken as a whole, takes into account graph-based
criteria for model generation, leading to the creation of diverse
models with a satisfactory level of realism. This conclusion
can be reached by comparing the distribution range of the CD
criterion between the two categories of models.

VI. DISCUSSION

The model generation challenge is still an open research
problem in the MDE context. The presented approach and tool
can mitigate this need by leveraging generative deep learning
techniques. In the following, we listed the approach highlights
and limitations and potential solutions to them.
• The presented approach is a pioneering solution as it

employs generative adversarial neural networks for model
generation. The primary reason for this choice is that GANs
may train with a minimal input dataset and provide desired
and plausible results. To put it differently, GANs can prove
advantageous for synthesizing novel instance models within
stringent scenarios of the lack of input data, a challenge we
encounter within the context of MDE.

Real Generated

0.2

0.4

0.6

0.8

1.0

Degree mean

Real Generated

0.5

0.6

0.7

0.8

0.9

1.0

Node Activity

Real Generated

0.2

0.4

0.6

0.8

1.0

Node Reference Activity

Real Generated

0.2

0.4

0.6

0.8

1.0

Edge Reference Activity

Real Generated

0.2

0.3

0.4

0.5

0.6

0.7

Multiplex participation coefficient

Real Generated
0.02

0.04

0.06

0.08

0.10

0.12

Pairwise multiplexity

Fig. 7. Plot-box graphs of the evaluation results.

Real Generated

0.2

0.4

0.6

0.8

1.0

1.2

1.4
Combinational distance

Fig. 8. Combinational distance comparison.

• The provided M2G encoder possesses the capability to
facilitate the mapping of instance models from the modeling
scope to the graph scope. As a result, MDE researchers can
leverage this encoder to explore and utilize a wide range of
existing facilities and tools that are specifically designed for
graphs. This enables them to benefit from the extensive set
of resources available for graph analysis and manipulation
in their research endeavors.

In the following, we discuss the limitations of our frame-
work and the threats to validity.

• The NetGAN framework is specifically designed to oper-
ate on homogeneous graphs. Consequently, our proposed
approach is limited to generating models that adhere to a
metamodel that respects certain specifications. In particular,

the input metamodel is allowed to have only one type of
relationship between each pair of EClasses. This constraint
has to be considered before applying the current approach,
as it may not be suitable for generating models with complex
or diverse relationship structures. In future work, we aim to
mitigate this limitation by either changing the generator NN
or improving the encoder and decoder.

• The adjustment of network hyperparameters, such as the
learning rate and the number of hidden layers for the
generator and the discriminator, can substantially impact
both the duration time of the training phase and the quality
of the generated outputs. Consequently, one of the major
challenges lies in determining the optimal values for these
parameters. Finding the right balance is crucial, as selecting
inappropriate hyperparameter values may lead to prolonged
training times or suboptimal output quality. Therefore, ex-
tensive experimentation and fine-tuning are typically re-
quired to identify the most suitable hyperparameter values
for achieving the desired output quality.

• To trigger the training phase, it is necessary for the size
of the input model to exceed a specified minimum value,
such as 100 relations. As a result, the presented solution is
well-suited for generating instance models that encompass
numerous objects and relationships. Therefore, the solution
may not be suitable for smaller instance models that do not
meet the minimum size requirement, and the framework’s
effectiveness and applicability are primarily optimized for
larger-scale instance models that exhibit a significant num-
ber of entities and relationships.

• During the encoding process of an instance model into a

corresponding graph representation, certain model elements,
such as attributes (e.g., EAttributes in EMF) and their cor-
responding values, may be disregarded and excluded from
the NN training phase. It is important to recognize that this
overlooked information could potentially hold significant
relevance and importance in certain domains.

• The example and the CarWash metamodel are appropriate
for an initial experiment and feasibility check of our ap-
proach, considering the limitations of the proposed tool.
However, further extensive investigation is needed to assess
our approach’s applicability and reliability.

VII. CONCLUSION

This research endeavor was conducted to tackle the chal-
lenge of model generation within the MDE research field
by leveraging recent advancements in generative deep learn-
ing. We investigated and assessed the most known varieties
of open-source generative neural networks and selected the
NetGAN network. Then, a Python code for transforming the
EMF models into a graph has been presented, inspired by
the significant similarities between the models and graphs
in a way that can be fed to the neural networks as input.
Consequently, the model-to-graph encoder was developed,
which takes an Ecore metamodel and a valid instance model
as inputs and generates the adjacency matrix for the respective
instance model. Then, the matrix obtained in the previous
step is fed into the NetGAN after the network’s hyperpa-
rameters have been adjusted. It allows NetGAN to produce
new graphs following the training phase. Finally, the generated
graphs must be transformed back into EMF instance models;
therefore, a graph-to-model decoder has been developed that
takes an input matrix, converts it to a model, and outputs the
result as an EMF model. To assess the quality and degree
of realism of the generated models, graph-based criteria were
applied to both the real and synthetic datasets. The evaluation
results demonstrated that employing generative adversarial
networks for model generation yielded the creation of realistic
models. These models hold potential value for utilization in
different MDE activities and offer opportunities for exploring
deep learning-based solutions and approaches for other open
challenges within the MDE domain.

In future work, we plan to address the spotted limitations
of the approach. We want to assess and exploit the realism
of the generated model set by using it as input for concrete
MDE tasks, like mutation testing of model transformations.
This would allow us to quantitatively compare the gener-
ated models’ realism and our solution’s performance (e.g.,
by measuring training times) with other existing generators.
Finally, we plan to offer our approach as a research solution for
industrial use cases proposed by partners in ongoing European
and national projects that can benefit from combining MDE
and AI techniques.

ACKNOWLEDGMENT

This work was partly funded by the AIDOaRt project, an
ECSEL Joint Undertaking (JU) under grant agreement number

101007350, and the Federal Ministry of Education, Science
and Research of Austria under the TransIT project under the
reference number BMBWF-11.102/0033-IV/8/2019.

REFERENCES

[1] M. Brambilla, J. Cabot, and M. Wimmer, Model-Driven Software
Engineering in Practice. Synthesis Lectures on Software Engineering,
Cham: Springer International Publishing, 2017.

[2] P. Pietsch, H. S. Yazdi, and U. Kelter, “Generating realistic test models
for model processing tools,” in 2011 26th IEEE/ACM International
Conference on Automated Software Engineering (ASE 2011), pp. 620–
623, Nov. 2011. ISSN: 1938-4300.

[3] J. A. H. López and J. S. Cuadrado, “Towards the Characterization of
Realistic Model Generators using Graph Neural Networks,” in 2021
ACM/IEEE 24th International Conference on Model Driven Engineering
Languages and Systems (MODELS), pp. 58–69, Oct. 2021.

[4] A. Iung, J. Carbonell, L. Marchezan, E. Rodrigues, M. Bernardino, F. P.
Basso, and B. Medeiros, “Systematic mapping study on domain-specific
language development tools,” Empirical Software Engineering, vol. 25,
pp. 4205–4249, 2020.

[5] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-
Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative Adversarial
Networks,” arXiv:1406.2661 [cs, stat], June 2014. arXiv: 1406.2661.

[6] L. Burgueno, J. Cabot, and S. Gerard, “An LSTM-Based Neural Network
Architecture for Model Transformations,” in 2019 ACM/IEEE 22nd
International Conference on Model Driven Engineering Languages and
Systems (MODELS), (Munich, Germany), pp. 294–299, IEEE, Sept.
2019.

[7] B. Hu, Y. Fang, and C. Shi, “Adversarial Learning on Heterogeneous
Information Networks,” in Proceedings of the 25th ACM SIGKDD In-
ternational Conference on Knowledge Discovery & Data Mining, KDD
’19, (New York, NY, USA), pp. 120–129, Association for Computing
Machinery, July 2019.

[8] C. A. G. Pérez and J. Cabot, “Test Data Generation for Model Transfor-
mations Combining Partition and Constraint Analysis,” vol. 8568, p. 25,
July 2014.

[9] S. Sen and B. Baudry, “Mutation-based Model Synthesis in Model
Driven Engineering,” 2006.

[10] A. Mougenot, A. Darrasse, X. Blanc, and M. Soria, “Uniform Random
Generation of Huge Metamodel Instances,” in Model Driven Archi-
tecture - Foundations and Applications (R. F. Paige, A. Hartman,
and A. Rensink, eds.), Lecture Notes in Computer Science, (Berlin,
Heidelberg), pp. 130–145, Springer, 2009.

[11] G. Soltana, M. Sabetzadeh, and L. C. Briand, “Practical Constraint Solv-
ing for Generating System Test Data,” ACM Transactions on Software
Engineering and Methodology, vol. 29, pp. 11:1–11:48, Apr. 2020.

[12] J. A. H. López and J. S. Cuadrado, “Generating structurally real-
istic models with deep autoregressive networks,” IEEE Transactions
on Software Engineering, pp. 1–16, 2022. Conference Name: IEEE
Transactions on Software Engineering.

[13] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and
X. Chen, “Improved techniques for training GANs,” in Proceedings of
the 30th International Conference on Neural Information Processing
Systems, NIPS’16, (Red Hook, NY, USA), pp. 2234–2242, Curran
Associates Inc., Dec. 2016.

[14] H. Wang, J. Wang, J. Wang, M. Zhao, W. Zhang, F. Zhang, X. Xie,
and M. Guo, “GraphGAN: Graph Representation Learning with Gen-
erative Adversarial Nets,” IEEE Transactions on Knowledge and Data
Engineering, vol. PP, Nov. 2017.

[15] A. Bojchevski, O. Shchur, D. Z ugner, and S. G unnemann, “NetGAN:
Generating Graphs via Random Walks,” arXiv:1803.00816 [cs, stat],
June 2018. arXiv: 1803.00816.

[16] G. Szárnyas, Z. Kovári, A. Salánki, and D. Varró, “Towards the char-
acterization of realistic models: evaluation of multidisciplinary graph
metrics,” in Proceedings of the ACM/IEEE 19th International Confer-
ence on Model Driven Engineering Languages and Systems, MODELS
’16, (New York, NY, USA), pp. 87–94, Association for Computing
Machinery, Oct. 2016.

[17] O. Semeráth, A. A. Babikian, B. Chen, C. Li, K. Marussy, G. Szárnyas,
and D. Varró, “Automated generation of consistent, diverse and struc-
turally realistic graph models,” Software and Systems Modeling, vol. 20,
pp. 1713–1734, Oct. 2021.

	Introduction
	Background
	Model-driven Engineering
	Generative Neural Networks
	Graphs

	Related Work
	Proposed Approach
	Model to graph encoding
	Adjusting the hyperparameters and running NetGAN
	Graph to model decoding

	Preliminary Evaluation
	Quantitative metrics used for evaluation
	Datasets
	Preliminary evaluation results

	Discussion
	Conclusion
	References

