

Poly-Si and SiC-based CVD coatings for high temperature structural applications

Axel Le Doze, Patxi Drieux, Sylvain Jacques, Guillaume Couégnat, Georges Chollon

▶ To cite this version:

Axel Le Doze, Patxi Drieux, Sylvain Jacques, Guillaume Couégnat, Georges Chollon. Poly-Si and SiCbased CVD coatings for high temperature structural applications. ICMCTF 2023 - 49th International Conference on Metallurgical Coatings and Thin Films, May 2023, San Diego, United States. hal-04627364

HAL Id: hal-04627364 https://hal.science/hal-04627364v1

Submitted on 27 Jun 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Laboratoire des Composites Thermostructuraux (LCTS)

https://www.lcts.cnrs.fr

Univ. Bordeaux, CNRS, Safran, CEA

université BORDEAUX

de la recherche à l'industrie

Fully dedicated to thermostructural ceramics and composites, especially CMCs & SiC/SiC

Poly-Si and SiC-based CVD Coatings for High Temperature Structural Applications

A. Le Doze, P. Drieux, S. Jacques, G. Couégnat, G. Chollon

Laboratoire des Composites Thermostructuraux (LCTS), CNRS, Pessac, France

georges.chollon@cnrs.fr

ICMCTF 2023, Symposium B2, May 22, 2023

Applications of CVD Coatings : energy...

e.g., nuclear fuel claddings for future reactors

Outer monolithic SiC layer SiC/SiC composite Inner monolithic SiC tube

"Triplex" patent: 2006 (US)

Drieux et al., Surf. Coat. Technol., 230 (2013) 137

High strength up to ~ 2000°C (accidental) Corrosion resistance Structural stability under neutrons Neutron transparency, low activation

Tolerance to damage

 \rightarrow Pure & crystalline SiC coatings

 \rightarrow Fiber composites

Applications of CVD Coatings : aeronautics...

e.g., SiC/SiC composite parts for civil aircraft engines

Substitute nickel superalloys for CMCs

 \rightarrow Increase operating temperature

 \rightarrow Improve efficiency, reduce NOx and kerosene consumption

Derrien, PhD 2022, Le Doze, PhD 2023

Objective: development of various HT structural CVD coatings

1- Monolithic CVD SiC tubes for nuclear fuel claddings

2- CVD poly-Si coating for an EBC bond coat

[#] D. G. Goodwin, in Procs EuroCVD14 Paris, 2004

1- Monolithic CVD SiC tubes for nuclear fuel claddings

1- Monolithic CVD SiC tubes for nuclear fuel claddings

"Triplex" concept

Requirements

Geometry :

- Tubular, ~8 mm outer \varnothing
- Thickness > 100 μ m
- Long lengths (~1m)

Properties :

- High density
- SiC stoichiometry
- High failure strain (little S & V flaws)

Approach

Specific CVD reactor for

- high deposition rates
- continuous deposition

Investigate the CVD mechanism

- Chemical analysis of the gas phase
- Deposition kinetics
- Chemical and structural analyses

Specific mechanical tests

- Suited to tubular geometry
- At room and HT

Choice of substrate

Coatings inside vitreous silica tube

\rightarrow Hot wall reactor

- + Very smooth surface
- + homogeneous coating
- Adhesion between SiC and SiO₂

Pyrocarbon coating to prevent SiC/SiO₂ interaction + CTE mismatch promotes delamination on cooling

1- Monolithic CVD SiC tubes for nuclear fuel claddings

CVD reactor design

Precursor/conditions : CH₃SiHCl₂ (DCMS)/H₂ at atmospheric pressure

 \rightarrow high vapor pressure (48 kPa at 20 °C) : driven by H₂/Ar bubbling

Reactor design:

 \rightarrow External walls: horizontal silica tube L =1000 mm, Ø = 50 mm

→ Heating: travelling RF induction coil, fixed graphite tube susceptor, T monitored by pyrometry

 \rightarrow Substrate : fixed SiO₂ tube inserted in the graphite susceptor

 \rightarrow Oulet: vent (APCVD) or rotary pump (vacuum testing, LPCVD of PyC)

1- Monolithic CVD SiC tubes for nuclear fuel claddings

Static configuration

Total flow rate Q (or residence time t_R)

Influence of CVD parameters

Strong increase of **R** with **Q** Limited increase of **R** with **T** \rightarrow mass transfer-limited regime

Composition varying from pure SiC to large Si excess

Si excess \nearrow when $\mathbf{Q} \nearrow$, $\mathbf{T} \supseteq$ and $\alpha \nearrow$

 \rightarrow Influence of the DCMS decomposition rate (T, t_r)?

DCMS

(CH₃SiHCl₂)

SiHCl₃

800

700

900

Temperature (°C)

1000

SiCl₄

1100

CH₄

HC

1200 1300

Influence of CVD parameters

Influence of CVD parameters: discussion

Plausible homogeneous mechanism

- DCMS dissociates into CH₃• + HSiCl₂•
- Cleavage of Si-H bonds (DCMS, $HSiCl_2^{\bullet}$) \rightarrow SiCl₂ (main Si silicon precursor)
- CH₃ recombines into CH₄ (stable)
- Formation of unsaturated hydrocarbons (e.g. C_2H_2) when T and $t_r \nearrow$

Consistent with changes of the coating composition

- ${\rm SiCl}_2$ early formed and more reactive than ${\rm CH}_4$
 - → Si excess when $T \lor$ and $Q_{tot} \nearrow (t_r \lor)$
- Reactive hydrocarbons appear when T > 1100 °C and $t_r \nearrow$

→ Increase of C content

- Increase of H₂ concentration ($\alpha \nearrow$) \rightarrow reduction of SiCl₂, stabilization of CH₄
 - \rightarrow Promotes the deposition of Si and prevents deposition of C

From static to continuous CVD: static

From static to continuous CVD: continuous

Longitudinal gradient in static \rightarrow radial gradient in continuous

 $\alpha = 3$, T = 1200 °C, $Q_{tot} = 500$ sccm, v = 0.25 cm/min

From static to continuous CVD: continuous

Improvement of the CVD process and the Si/C ratio

Mechanical properties at ambient

Mechanical properties at high temperature

Thermomechanical analysis (TMA)

Strong decrease beyond 800 °C Residual drop of *E* after cooling at RT

> Decrease of *E* + creep at HT Irreversible behavior Too high CTE + C opening

Thermal expansion

Abnormal a value: 40.10⁻⁶K⁻¹!!! Irreversible behavior for T>800 °C Residual displacement at RT

- \rightarrow viscous flow of free Si
- \rightarrow stress relaxation of free Si
- → bilayer structure ?

No creep below 1100°C **Gradual opening when T⊅!!!** Creep starts at 1100°C Collapse for T≥1200°C

Mechanical properties at high temperature: discussion

Existence of residual stresses related to HT deposition and bilayer structural effect

2- CVD poly-Si coating for an EBC bond coat

Issue, solution and objective

Environmental Barrier Coating (EBC) ^{[Spitsberg2005][Zhu2018][Xu2017]} \rightarrow Limit diffusion of oxidizing species (O₂ and H₂O) and SiC volatilization (Si(OH)₄)

Si bond coat (currently deposited by plasma spraying) ensures **chemical** and **thermomechanical compatibility** with EBC/CMC

Degradation of EBC/CMC system :

- Foreign objects [Bhatt2008]
- Volatilization [Richards2016]
- Reaction with CMAS [Poerschke2018]
- Formation of thermally grown oxide (TGO)

→ residual stresses, cracks, delamination [Richards2015a, b] [Richards2016]

Lifetime of the EBC system determined by thermomechanical properties of its constituents

Need to **better modulate properties** of the Si BC \rightarrow accurate control of **microstructure** (\rightarrow CVD)

 $P = 5 \text{ kPa}, Q_{tot} = 400 \text{ sccm}$

TEM: GB, microtwins, dislocations

Specimen preparation and microstructure analysis

500 nm

- **EBSD**: **Texture** analysis
 - Grain surface area
 - **GB type** (Special (Σ 3n)/Random); density)

Microstructure (EBSD)

Influence of CVD conditions on grain size

Supersaturation 7

Supersaturation $\nearrow \rightarrow$ nucleation density $\nearrow \rightarrow$ grain size \checkmark

Microstructure (EBSD)

Evolutionary selection growth mechanism [Van der Drift 1967]

M2 (T=1100°C, α =20): no effect of HT

M4 (T=1000°C, α =5): Grain growth, texture change, removal of twins & dislocations

Supersaturation $\nearrow \rightarrow$ dislocation & twin density $\nearrow \rightarrow$ driving forces of recrystallization \nearrow [Schins 1967]

Microstructure (EBSD & TEM)

Supersaturation $\nearrow \rightarrow$ dislocation & twin density $\nearrow \rightarrow$ driving forces of recrystallization \nearrow [Schins 1967]

10

0

M3 and **M4** : Removal of initial boundaries and twins (especially Σ 3n) during recrystallization

Thermomechanical analysis

Creep tests at increasing loads

Assuming: - homogeneous material (elastic strain)

- similar creep strain in compression & tension
- no redistribution of radial stresses (stress exponent ~1)

Thermomechanical analysis

Thermomechanical analysis

Thermomechanical analysis

Average grain surface area **S_G** (μm²)

800, **900**, **1000°C**: clear correlation between ε_{plast} and S_G → Dislocation formation, sliding and blocking (at GB or interaction inside grain) [Alexander & Haasen1969]

1100°C: no correlation between ε_{plast} and $S_G \rightarrow$ Diffusion activated inside grain and at GB

Thermomechanical analysis

CONCLUSIONS

Reactor design (adaptation to substrate, heat and gas flow management...)

Multiple experimental approach (R, gas and solid analyses) for better understanding of the process \rightarrow missing real in situ investigations (hot gases, heterogeneous reactions) ?

Multiple numerical approach (heat/mass transfer, thermodynamic, thermokinetic, ...) complementary

 \rightarrow often far from equilibrium...

→ lack of thermodynamic/kinetic data (precursor decomposition, P dependance...)

CVD SiC: control of homogeneous phase crucial for *R* and Si/C ratio. Heterogeneous reactions hard to identify. The link with the (micro)structure still to be established. Excess silicon enhances creep strain & thermal stresses $\rightarrow C_3H_6$ addition + preheating.

CVD poly-Si : nucleation critical (thickness uniformity, surface defects), supersaturation determine dislocation/twin density, grain size and recrystallization at HT (in use or after HT). Creep controlled by grain size & boundaries \rightarrow Compromise to be found for use as a BC...

TMA : no ideal geometry (depends on *T* uniformity, substrate, thickness, texture, strain/stress field...)