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Learning Kernel-Modulated Neural Representation
for Efficient Light Field Compression

Jinglei Shi, Yihong Xu, Christine Guillemot Fellow, IEEE

Abstract—Light fields capture 3D scene information by record-
ing light rays emitted from a scene at various orientations. They
offer a more immersive perception, compared with classic 2D
images, but at the cost of huge data volumes. In this paper, we
design a compact neural network representation for the light field
compression task. In the same vein as the deep image prior, the
neural network takes randomly initialized noise as input and is
trained in a supervised manner in order to best reconstruct the
target light field Sub-Aperture Images (SAIs). The network is
composed of two types of complementary kernels: descriptive
kernels (descriptors) that store scene description information
learned during training, and modulatory kernels (modulators)
that control the rendering of different SAIs from the queried
perspectives. To further enhance compactness of the network
meanwhile retain high quality of the decoded light field, we pro-
pose modulator allocation and apply kernel tensor decomposition
techniques, followed by non-uniform quantization and lossless
entropy coding. Extensive experiments demonstrate that our
method outperforms other state-of-the-art (SOTA) methods by a
significant margin in the light field compression task. Moreover,
after adapting descriptors, the modulators learned from one light
field can be transferred to new light fields for rendering dense
views, showing the potential of the solution for view synthesis.

Index Terms—light field compression, compact neural repre-
sentation, modulation, kernel decomposition.

I. INTRODUCTION

L IGHT fields [1], [2] record both the intensity and di-
rection of light rays emitted by a scene in the 3D

space. The angular information allows view synthesis and 3D
scene reconstruction, which can provide users with a more
immersive experience when navigating within the captured
scene than classical 2D images. It also enables a number of
computer vision tasks such as depth estimation [3], [4], super-
resolution [5], [6], instance segmentation [7], salient object
detection [8]. Although the spatio-angular information of light
fields offers numerous benefits for various applications, it also
introduces a significant challenge in terms of data volume.
The inherent redundancy in light fields results in large storage
requirements, increased transmission bandwidth, and demand
on display hardware. Therefore, a crucial aspect in advancing

This work was supported by the National Natural Science Foundation
of China, Grant No.62302240, the Natural Science Foundation of Tianjin
Municipality, Grant No.22JCQNJC01560, the Fundamental Research Funds
for the Central Universities, Nankai Univ. Grant No.63241443 and the
DeepCIM project in the context of the French ANR program on Artificial
Intelligence.

Jinglei Shi (corresponding author) is with the VCIP & TMCC & DIS-
Sec, College of Computer Science, Nankai University, Tianjin, China (jin-
glei.shi@nankai.edu.cn). Yihong Xu is with the valeo.ai, Paris, France (yi-
hong.xu@valeo.com). Christine Guillemot is with the INRIA (Institut Na-
tional de Recherche en Informatique et en Automatique) Rennes Bretagne
Atlantique, Rennes, France (christine.guillemot@inria.fr).

light field imaging towards practical usage scenarios is the
development of effective compression solutions.

Early compression methods [9]–[11] primarily concentrated
on directly compressing the lenslet images obtained from
plenoptic cameras, e.g., using HEVC-intra coding. However,
these intra-coding-based approaches have shown limited ca-
pability in terms of exploiting inter-view correlation. The
use of video compression standards (in particular HEVC) to
compress the set of light field views (or SAIs) as a pesudo
video sequence [12]–[16] thus followed naturally to better
exploit the correlation between the different SAIs.

Methods specifically dedicated to light field compression
have then been proposed, based on either 4D transforms or
on light field view synthesis techniques used as inter-view
predictors. To cite only a few, a 4D-Transform mode named
Multidimensional Light field Encoder (MuLE) [17] has been
adopted in the JPEG Pleno coding standard, where the 4D
redundancy of light fields is exploited by applying a 4D-
DCT transform to 4D spatio-angular blocks. The authors
in [18] proposed a graph-transform-based light field com-
pression method tailored by the scene geometry. The authors
in [19] proposed a compression framework that relies on graph
learning and dictionary learning for structural redundancies
removal between SAIs. Other transforms such as mixture of
expert [20], homography-based low rank approximation [21]
or the shearlet transform [22] have shown their superiority for
narrow-baseline data, but suffer from performance degradation
when the light field baseline increases.

The methods based on view synthesis techniques [23]–[27]
compress a subset of SAIs as reference views, and the decoder
reconstructs the full light field from the received subset by
applying view synthesis methods. A synthesis-based prediction
residue is then transmitted for quality enhancement. This is the
case in the WaSP codec incorporated (as the 4D-prediction
mode) in the JPEG Pleno light field coding standard [27].
The view prediction or synthesis is performed using disparity-
compensated prediction or warping, an overview of earlier so-
lutions can be found in [28]. While early work was considering
traditional view prediction or synthesis methods, significant
advances in learning-based view synthesis [29]–[32] have also
triggered the development of more effective view synthesis-
based light field compression (see e.g. [25], [33]). Learning-
based video compression solutions [34]–[37] have also been
shown to be good candidates for light field compression.

The emergence of Implicit Neural Representations (INR)
such as Neural Radiance Field (NeRF) [38] has ushered in a
new era of employing neural networks to represent scenes for
diverse applications [39]–[42]. They rely on the network to
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establish mappings between pixel coordinates and their color
values in a 2D image, and between 5D coordinates (position
and orientation) of light rays, and color as well as density for
the volumetric rendering process of a light field. This concept
has also been investigated in [43] that maps timestamps to the
corresponding frames for video representation. Such INR have
brought about a fresh perspective of using network weights
to represent images [44], video [43] and light fields [45] for
compression tasks. The authors in [45] propose to train a NeRF
with low-rank constraint in an Alternating Direction Method
of Multipliers (ADMM) optimization framework, followed by
distillation and quantization operations, to finally obtain a
compact representation of light fields. Implicit neural networks
can also serve as a prior in the compression context, authors
in [46] propose a two-stage workflow that uses a Gated Recur-
rent Unit (GRU) to encode transient information between SAIs
into latent vectors, which are then processed by a generator to
retrieve blocks of light field views. Let us note that INR-based
methods have created a link between the problem of light field
compression and the one of network compression. Methods
like pruning [47]–[49], tensor rank optimization [50], [51],
quantization [52], [53] that address the compactness of deep
models are therefore applicable for light field compression.

In this paper, we propose a novel implicit representation
of light fields taking into account specific light field data
characteristics which can be summarized as follows: on one
hand, all SAIs exhibit similar visual content of the scene, but
on the other hand, each SAI has its unique visual content that
is only observed from the corresponding perspective due to the
parallax and specularity. Our proposed novel network design
draws inspiration from the above visual characteristics of light
fields to address the problem of compression. The network
is therefore composed of shared descriptive kernels (descrip-
tors) and of individual modulatory kernels (modulators): the
descriptors are repeatedly employed when rendering different
SAIs, which mimic the fact that SAIs own similar visual
content. To ensure that each SAI has visual content specifically
observed from the corresponding perspective, the rendering
process is guided by so-called “modulators”, and each SAI is
reconstructed using an individual set of modulators. Though
belonging to the category of INR-based approach, our method
differs from existing methods [43]–[45] that learn mappings
between pixel or ray coordinates or frame index and color
values. Here the network can rather be seen as a learned
prior, in a similar vein as the deep image prior [54], which
is learned by fitting the network to the target set of SAIs,
taking uniformly initialized noise as input. At the end of each
training iteration, modulators of the current SAI are switched
when the ground-truth SAI changes. The light field to be
compressed is implicitly represented by both the descriptors
and the modulators, where the descriptors account for the
majority of the network parameters for storing the scene
information, and the modulators control the rendering of the
desired SAI.

The question which thus naturally arises is the delicate bal-
ance between model compactness (i.e. number of network pa-
rameters) and the decoding quality. To address this challenge,
we propose a modulator allocation technique and further use

kernel tensor decomposition. The modulator allocation mech-
anism effectively mitigates parameter explosion, especially
in scenarios where the target light field has a high angular
resolution. Additionally, the kernel tensor decomposition, as a
widely-used network compression technique, decomposes both
high-dimensional descriptors and modulators into the product
of low-dimensional components. This decomposition strategy
aims to reduce the overall parameter count while preserving
the reconstruction accuracy. In our efforts towards network
compactness, we also adopt a quantization-aware training
strategy [52] which reduces the number of bits required for
each weight and detains quantization errors.

We quantitatively and qualitatively evaluate our method and
compare it with several representative state-of-the-art (SOTA)
methods tailored for light field compression, including video
compression-based methods such as HEVC-Lozange [55],
[56], HLVC [35], RLVC [36] and VVC [57], 4D-Prediction
mode of the coding standard JPEG-Pleno [58], the combi-
nation of light field view synthesis methods [29] and rate-
distortion optimization framework [25], named BLLFC, as
well as the most recent INR-based schemes DDLF [46] and
QDLR-NeRF [45]. Experimental results show that our method
outperforms others by a large margin and yields better visual
reconstruction quality. Moreover, we carried out a comprehen-
sive comparison with other two INR-based methods (DDLF
and QDLR-NeRF) in terms of encoding and decoding com-
plexity, memory consumption and generalization to different
types of light fields, proving the superiority of our method
in the context of compression. Besides performance gains for
the task of compression, another advantage of our proposed
method is that the modulators learned from one light field can
be applied to new light fields for synthesizing dense views
after adapting descriptors. It not only verifies the functionality
of the two types of kernels, but it also shows the potential for
view synthesis through kernel transfer.

To summarize, the contributions of our work are as follows:

• We propose a novel implicit representation format for
light fields, which is composed of the complementary
descriptors & modulators to respectively store scene
information and control the rendering of different SAIs.

• Thanks to modulator allocation and kernel tensor decom-
position mechanisms, the network can effectively avoid
parameter explosion when light fields have high angular
resolution, and reach a better balance between the model
compactness and decoding quality.

• We carried out extensive experiments to show that our
method outperforms other SOTA methods both quanti-
tatively and qualitatively for the task of compression. It
shows better generalization on different types of data and
superior abilities in terms of complexity and resource
consumption than other INR-based methods.

• We further demonstrate that the learned modulators can
be transferred to new light fields, helping to generate
dense views of new light fields, hence showing the
potential of the method for view synthesis.
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Fig. 1. Network overview: the proposed network takes uniform noise ϵ as input and its training is supervised by randomly selected SAIs of the target light
field. It is composed of shared descriptors which store scene information, and switchable modulators which guide the rendering of views. To further compact
the network, the modulators are allocated along the horizontal (green) and vertical (orange) directions, and both descriptors and modulators are decomposed
into bases (yellow cylinder) and the corresponding weights (blue, green and orange cylinders). At the end of the training procedure, the light field is implicitly
represented by the shared bases {B}, descriptor weights {W di} and modulator weights and biases {Kmi

u ,K
mi
v , b

mi
u , b

mi
v }. A detailed illustration on how

the descriptors & modulators work is shown in Fig. 2 and the network architecture is detailed in Tab. I.

Fig. 2. Illustration on how the descriptors & modulators collaborate. The
input features are respectively convolved with switchable kernels Kmi

u ,K
mi
v

of vertical and horizontal modulators (with biases b
mi
u , b

mi
v ) and Kdi of

descriptors (without biases), then concatenated (CAT) and processed by the
upsampling (UP) and batch normalization (BN) operations to finally obtain
the output features. The ‘plug in’ and ‘plug out’ operations, represented by
gray arrows in the above figure, correspond to the switching of modulator
kernels in the bottom figure.

II. METHODOLOGY

A. Notations and network overview

We represent a light field with a 4D function L(x, y, u, v)
following the two-parallel-plane parameterization introduced
in [1], [2], where (x, y) ∈ J1;XK × J1;Y K and (u, v) ∈
J1;UK × J1;V K are respectively the spatial and angular coor-

dinates. The SAI located at angular position (u, v) is denoted
as Iu,v throughout the rest of the paper for simplicity.

The goal of our work is to design a compact neural
representation for light fields that contains a limited number
of parameters while still being able to retrieve high quality
views. In a previous study [59], a deep convolutional decoder
was proposed to fit images for tasks such as compression,
inpainting, or denoising. However, this approach was specif-
ically designed for single RGB images, and it is not directly
applicable to light fields. Although a straightforward solu-
tion would be to train the same number of deep decoders
as there are SAIs in the target light field, this would be
time-consuming and the resulting neural representation would
require a large number of parameters, hence would not be
suitable for light field compression. In [46], an advancement
was made by cascading a Gated Recurrent Unit (GRU) [60]
architecture and a deep decoder [59]. The GRU architecture
captures transient information between SAIs, while the deep
decoder captures static information within SAIs. This two-
stage compression pipeline exhibited competitive performance
compared to JPEG-Pleno for light fields captured using Lytro
cameras. However, the introduction of the GRU module leads
to issues such as an unstable training procedure, memory
overflow, and degraded performance when baseline increases.

Taking into account the limitations of network designs
in [46], [59], we propose an implicit convolutional network
for light field representations, as depicted in Fig. 1. In this
figure, the cuboids colored in blue, green, and orange represent
convolutional kernels that serve distinct functionalities in each
layer. Similar to [59], the network consists of sequentially
connected convolutional layers. During training, the network
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takes a stack of uniform noise maps ϵ as input, and the training
is supervised by a randomly selected SAI denoted as Iu,v .
In this approach, the image is implicitly represented by the
network’s parameters, as follows:

Θ∗ = argmin
Θ

E(HΘ(ϵ), Iu,v), ∀Iu,v ∈ L, (1)

where HΘ(·) represents the rendering and Θ = {Ki, bi} are
kernels weights and biases in each layer, i is the layer index.
We use Mean Square Error (MSE) as loss function E(·) to
supervise the training of the network.

Although both fully connected layers and convolutional
layers can realize implicit neural representation, we have opted
for convolutional layers as they are more flexible for different
input sizes. In the same vein as the approach proposed in [54],
we take uniform noise as network input, the network weights
are updated by backpropagation considering a loss term which
represents the data approximation or fidelity. In this manner,
the trained network can be seen as a parameterization of the
target light field. As the uniform noise can be generated using
a pseudo random seed in practice, both encoder and decoder
can pre-set the same seed value to avoid the transmission
of the input noise. Based on the choices of layer type and
network input, the proposed network consists of six cascaded
convolutional layers with kernel size 3× 3, except for the last
decoding layer, which converts the channel number into 3 and
has kernel size 1× 1. To gradually increase the resolution of
the feature maps, the first four layers are followed by bicubic
upsampling (UP) with a scale factor of 2. Batch Normalization
(BN) is added at the end of each layer to accelerate network
convergence, except for the last layer. To expand the receptive
field without increasing the number of network parameters, we
set the kernel dilation factor to 2 for all intermediate layers.
More details on the architecture of the network can be found
in Tab. I. And a summary of main notations and corresponding
definitions can be found in Tab. II.

TABLE I
PROPOSED NETWORK ARCHITECTURE. k, s, d AND in/out REPRESENT THE

KERNEL SIZE, THE STRIDE, THE KERNEL DILATION SIZE AND THE
NUMBER OF INPUT/OUTPUT CHANNELS, WHEREAS ‘up2’, ‘BN’, ‘GELU’
AND ‘Sigmoid’ REPRESENT BICUBIC UPSAMPLING BY SCALE 2, BATCH

NORMALIZATION, ACTIVATION FUNCTIONS GELU AND SIGMOID.
c = cd + cm IS THE CHANNEL NUMBER OF EACH LAYER, AND cd, cm ARE

RESPECTIVELY CHANNEL NUMBERS FOR DESCRIPTORS AND
MODULATORS.

Layers k s d in/out input
L1 3 1 1 c/c noise ϵ

{up2,BN,GELU} - - - c/c L1

L2 3 1 2 c/c {up2,BN,GELU}
{up2,BN,GELU} - - - c/c L2

L3 3 1 2 c/c {up2,BN,GELU}
{up2,BN,GELU} - - - c/c L3

L4 3 1 2 c/c {up2,BN,GELU}
{up2,BN,GELU} - - - c/c L4

L5 3 1 1 c/c {up2,BN,GELU}
{BN,GELU} - - - c/c L5

Decoder 3 1 1 c/3 {up2,BN,GELU}
Sigmoid - - - 3/3 Decoder

B. Complementary descriptor & modulator design

As previously introduced, the combination of GRU and deep
decoder in [46] enables a compact light field representation,
but the utilization of GRU for modelling angular priors also
suffer from limitations such as memory overflow and degraded
performance for wide-baseline data. We thus follow a different
design philosophy for light field representations.

SAIs of a given light field share similar scene content, while
possessing distinct visual elements at the same time, due to
occlusions or reflections which depend on the view direction.
Therefore, the network should store the scene information that
is common to all SAIs, while being controllable to render
the specific visual information of each SAI. To fulfill this
requirement, we define two types of kernels in the network:
Descriptors, which store the scene description information
and constitute the majority of the network’s parameters, are
repeatedly used when rendering every SAI. Modulators, the
auxiliary view-dependent kernels indexed by angular coordi-
nates (u, v), which modulate the rendering process and are
switched from one set to another one when rendering different
SAIs. As illustrated in Fig. 1, from the first to the second
last layer of the network, each layer {Ki, bi} is composed of
descriptors (colored in blue) Kdi and modulators (colored in
green and orange) {Kmi

u,v, b
mi
u,v}:

Ki = Kdi ⊕Kmi
u,v, bi = bmi

u,v, (2)

with ⊕ being the concatenation operation in the last dimen-
sion. Kdi and Kmi

u,v denote tensors of sizes k×k×Ci
in×Cdi

out

and k× k×Ci
in×Cmi,uv

out , respectively, where k is the kernel
size, and Cin and Cout are respectively the numbers of input
and output channels. Thanks to this complementary kernel
design, the network does not require extra modules for explicit
angular prior modelling, making the overall architecture con-
cise and effective. Another advantage of using complementary
kernel design is the computational resource reduction. The
switchable kernel design makes the network generate one SAI
in each forward pass, hence the memory consumption remains
at a low level.

The training of such a network involves the construction of a
random SAI sampling stream. Specifically, as depicted on the
right side of Fig. 1, at each iteration, a random SAI is selected
from U ×V light field views. The selected SAI along with its
corresponding angular coordinates, forms a triplet (u, v, Iu,v).
Modulators (Kmi

u,v, b
mi
u,v) indexed by (u, v) are then integrated

into the network to work in tandem with descriptors for render-
ing Îu,v . And Iu,v serves as the ground truth for minimizing
the reconstruction error. In the subsequent iteration, a new
SAI is fed into the network, and the current modulators are
replaced by the next set of modulators. It is noteworthy that the
scene description and rendering modulation capabilities of the
descriptors and modulators are automatically acquired during
the training procedure.

C. Allocation of modulator along angular directions

For INR-based methods, the compression efficiency is
largely decided by the number of parameters of the network.
Although our descriptors and modulators allow reducing the
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TABLE II
SUMMARY OF THE MAIN NOTATIONS AND THE CORRESPONDING

DEFINITIONS.

Notations Definitions
L the target light field

(x, y) the spatial coordinates
(u, v) the angular coordinates
(X,Y ) the spatial resolution
(U, V ) the angular resolution
Iu,v the SAI at angular position (u, v)
Θ the weights and biases of network
H the rendering process
E the MSE loss
K the weight of kernel
b the bias
i the layer index

up2 the bicubic 2× upsampling
BN the Batch Normalization operation

GELU the GELU activation function
Kmi the modulator kernel in i-th layer
bmi the modulator bias in i-th layer
Kdi the descriptor kernel in i-th layer
bdi the descriptor bias in i-th layer
Cin the number of input channel
Cout the number of output channel
k the kernel size
Î the rendered SAI
l the number of layer in the network
N the total number of parameter
B the Fourier-Bessel bases
W the coefficient volume
r the number of Fourier-Bessel bases
n the number of centroid for quantization
γi the cenroids for i-th layer

number of parameters, the network may still suffer from
parameter explosion. Assuming we employ an l-layer network
to represent a light field, its total number of parameters N can
be approximately estimated as follows:

N ≈ lk2Cin(UV Cm
out + Cd

out), (3)

where the number of parameters for the modulators is propor-
tional to UV if we allocate modulators to each SAI. In the
case where the target light field has high angular resolution,
the number of parameters for the modulators will significantly
increase and make the compression fail.

To avoid parameter explosion for high angular resolution
light fields while preserving a good representation capability,
instead of allocating modulators {Kmi

u,v, b
mi
u,v} to each angular

position of coordinates (u, v), we propose to allocate modu-
lators along two angular directions u and v by splitting them
into two subsets {Kmi

u , bmi
u } and {Kmi

v , bmi
v } as follows:

Kmi
u,v = Kmi

u ⊕Kmi
v (4)

bmi
u,v = bmi

u + bmi
v , (5)

where the number of channels of Kmi
u and Kmi

v is half
of that of Kmi

u,v . Two subsets {Kmi
u , bmi

u } and {Kmi
v , bmi

v }
are respectively represented by cuboids colored in green and
orange in Fig. 1. Such allocation along orthogonal directions
is based on the observation that views in the same row exhibit
similar variations in the horizontal direction, while those in the
same column exhibit similar variations in the vertical direction.

Based on this allocation, the total number of parameters will
be:

N ≈ lk2Cin[
1

2
(U + V )Cm

out + Cd
out], (6)

which means that the number of parameters for the modulators
will be proportional to 1

2 (U + V ) instead of UV , implying a
significant reduction of the number of parameters, particularly
when dealing with high angular resolution light fields. Further
discussion on the effectiveness of this allocation is given in
Sec. V-B.

D. Decomposition of network kernel tensor

As mentioned earlier, the INR-based method establishes
a connection between light field compression and network
compression. We can also leverage network compression
techniques to further enhance the network’s compactness.
Recall that the kernel weights {Kdi ,Kmi

u ,Kmi
v } are all four-

dimension tensors, and employing suitable network com-
pression techniques can help reducing the total number of
parameters. In a related work [45], the authors applied model
compression techniques to light field compression by in-
troducing a rank-constrained NeRF [38] followed by net-
work distillation. However, these techniques result in a com-
plex training schedule and are primarily designed for fully-
connected layers, hence not directly applicable to the proposed
architecture. Inspired by the method in [51], where the au-
thors decompose convolutional kernel tensors into a product
of Fourier-Bessel (FB) bases [61], with the corresponding
weights. We decompose the descriptors and modulators into
the product of shared bases, denoted B (yellow cylinder) in
Fig. 1, with the corresponding weights, i.e. the coefficient
volumes {W di ,Wmi

u ,Wmi
v } (blue, green and orange cylinders

in Fig. 1). Let us take descriptors Kdi as an example:

Kdi = B ⊗W di , (7)

where Kdi is of size k×k×Ci
in×Cdi

out, B is of size k×k×r,
and W di is the coefficient volume of size r × Ci

in × Cdi
out.

The symbol ⊗ denotes the matrix multiplication and r is
the number of bases in B. The authors of [51] have shown
that the Fourier-Bessel (FB) bases [61] are effective bases for
compressing a network for image classification and denoising.
We therefore initialize B with FB bases for faster convergence,
with the number of bases r = 6. we then update the bases
during training to make them more specific to the scene
being learned. Please note that a higher compression ratio
can be achieved by using a smaller value of r. Using the
proposed network design with complementary kernels, and
by employing the techniques described above for modulator
allocation and kernel tensor decomposition, a light field can
be compactly represented with a set of network parameters:

Θ∗ = {B,W di ,Wmi
u ,Wmi

v , bmi
u , bmi

v }. (8)

E. Quantization-aware training

Besides the number of parameters required for representing
a light field, the number of bits assigned to each parameter is
also an important factor which impacts compression efficiency.
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Although half precision (16 bits) has commonly been used in
training deep learning frameworks, such a fixed-point scalar
quantization with uniformly distributed centroids is still sub-
optimal for the compression task. Here, we apply non-uniform
quantization to each layer of the network for further network
size reduction. More precisely, given a pre-defined number
of centroids n for each layer (except for the last decoding
layer), when working on a certain layer li, we perform k-means
clustering of the parameters {W di ,Wmi

u ,Wmi
v , bmi

u , bmi
v } to

obtain n centroids γi, and these centroids are then updated to
minimize the reconstruction error as follows:

γ∗
i = argmin

γi

E(HΘ(ϵ), Iu,v), Θi ∈ γi,∀Iu,v ∈ L (9)

As the quantization error accumulates throughout the network
if all layers are simultaneously quantized, we adopted a
strategy similar to the one in [45], [46], [53], which quantizes
the network parameters layer by layer. More precisely, after
quantizing the current layer, we fix the parameters of this layer
with the learned codewords γ∗

i , and continue to finetune all
consecutive layers. We perform 16-bit uniform quantization of
the last decoding layer, as we found that non-uniformly quan-
tizing the last layer with a small value of n brings significant
quality degradation. The bases B are likewise quantized using
uniform 16-bit quantization for better precision. In addition to
uniform quantization with learned centroids, we also perform
lossless entropy coding (Huffman coding) for further model
compression. The quantized parameters of the network are
transmitted from the encoder to the decoder, along with the
corresponding codewords at a cost of n × 32 bits, with each
codeword being encoded using 32 bits.

III. EXPERIMENTAL SETTINGS

A. Training details

The global learning schedule consists of two phases: the
training phase and the quantization phase. Both phases utilize
a learning rate of 0.01. The training phase involves 12 epochs,
with each epoch defined as all SAIs being used 500 times. At
each iteration, 5 SAIs are fed into the network to calculate
the averaged loss. Let us note that even if a smaller learning
rate and number of epochs for training might be enough for
certain scenes, here we adopt a relatively large learning rate
and number of epoch to ensure the convergence of the network
for all scenes. In the quantization stage, we define 1 epoch as
all SAIs being involved 200 times. As the quantization errors
can quickly be compensated by the finetuning process, we
thus perform finetuning of all consecutive layers for just 1
epoch after quantizing each layer. The whole framework is
implemented in Pytorch deep learning framework and trained
on a single GPU of type Nvidia Titan RTX having 24GB
memory. Both encoding and decoding time will be analyzed
in Sec. IV-A3.

B. Test datasets

We take four synthetic scenes ‘boxes’, ‘sideboard’, ‘cotton’,
‘dino’ from the HCI dataset [62] and four real-world scenes
‘Bikes’, ‘Danger’, ‘FountainVincent2’, ‘StonePillarsOutside’

from the EPFL light field dataset [63] as our basic test data.
And we also tested our method with three additional challeng-
ing scenes ‘Vinyl’ from [62], and ‘Dinosaur’, ‘Origami’ from
INRIA synthetic LF dataset [3]. These scenes are widely used
by the light field research community and have distinct but
representative characteristics.

The four real-world light fields are captured with a plenoptic
Lytro Illum [64] camera with a narrow baseline, they have
spatial resolution 432 × 624 and angular resolution 13 × 13.
Due to the vignetting effect, we take the central 9 × 9 SAIs
in our test. The introduction of micro-lens array reduces the
luminance arriving at the sensor, light fields captured by Lytro
Illum are generally noisy, which can be used to validate the
robustness against noise for the compared methods. Both the
four basic synthetic scenes and three challenging scenes are
rendered using the 3D graphics software blender [65], they
have spatial resolution 512×512 and angular resolution 9×9.
The synthetic data mainly simulates the light fields captured
by a camera array, hence they have a lower noise level and
a wider baseline than those captured using a Lytro camera.
Moreover, the additional scene ‘Vinyl’ contains many reflective
metal surfaces, and the scene ‘Origami’ has 2× disparity
range compared with the four basic synthetic scenes, and
the ‘Dinosaur’ has 3× the disparity range. These various
scenes can comprehensively demonstrate the effectiveness of
our proposed method.

C. Method configurations

We evaluate the performance of our proposed method for
compression, and compare it with SOTA methods that rep-
resent recent trends in this domain, including classic video
coding standard HEVC-Lozenge [55], [56] and the latest video
compression standard VVC [57], learning-based video com-
pression schemes HLVC [35] and RLVC [36], the combination
of view synthesis method [29] and rate-distortion optimization
framework [25], dubbed BLLFC, solutions dedicated to light
field compression task such as JPEG-Pleno [58], and the
most recent INR-based methods DDLF [46] and QDLR-NeRF
[45]. We use official codes for all compared methods in our
experiments, and each one is configured as follows:

• We use HEVC in version HM-16.10 in our test. Concern-
ing the configuration of GOP and base QPs, we adopt a
GOP of 4 as in [45], [46]. We use the software of VVC
in the latest version 23.1 with its default random access
slower configuration, which gives the best rate-distortion
performance. We adapt QP values to make the bitrate be
within the range 0-0.45 for both HEVC and VVC.

• The method BLLFC is composed of the view syn-
thesis method FPFR [29] and rate-distortion optimiza-
tion framework [25], FPFR is further finetuned on the
datasets [3], [62] and [63] for better reconstruction qual-
ity.

• For two learning-based video compression schemes
HLVC and RLVC, both of them have an optional hyper-
parameter λ = {256, 512, 1024, 2048} to control the
trade-off between bitrate and distortion. The method
HLVC adopts a default GOP of 10 to realize frame
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TABLE III
BD-PSNR GAINS WITH RESPECT TO HEVC BASELINE. THE BEST RESULTS ARE IN BOLD, AND THE SECOND BEST RESULTS ARE UNDERLINED. *ALL

INVOLVED METHODS COVER A BPP RANGE 0-0.45, EXCEPT FOR THE METHOD QDLR-NERF, WHICH COVERS A BPP RANGE 0-0.2.

Methods boxes sideboard cotton dino Bikes Danger SPO FV2 Vinyl Origami Dinosaur Average
JPEG-Pleno [58] 0.46 1.77 0.99 2.74 0.20 1.38 0.58 0.30 -0.36 -2.70 -3.54 0.17

HLVC [35] -0.78 -1.37 -3.29 -1.06 0.01 0.01 -0.15 -0.07 -5.50 -2.12 -2.57 -1.54
RLVC [36] -0.47 -0.02 -2.71 -0.15 0.35 0.29 0.20 0.32 -4.68 -1.59 -2.01 -0.95
VVC [57] 1.85 2.24 1.36 1.61 1.18 1.41 1.27 1.06 2.42 0.68 2.07 1.56

BLLFC [25], [29] 0.42 0.72 0.64 0.73 0.62 1.10 0.80 0.64 0.65 -0.32 1.05 0.64
DDLF [46] -1.00 -1.75 -3.14 -0.31 0.69 0.93 -0.01 0.90 -3.10 0.95 -2.20 -0.73

Q-NeRF* [45] 2.00 2.72 -0.11 2.58 0.36 1.53 0.11 0.38 0.01 2.77 1.80 1.29
Ours 2.74 4.84 0.21 4.34 1.88 3.20 1.93 2.50 2.50 4.56 1.99 2.79

prediction via three hierarchical quality layers, while for
RLVC, 6 P-frames are bidirectionally encoded with a
GOP of 13.

• The software version of JPEG Pleno we use is the Verifi-
cation Model 2.0 in the WaSP mode, and we use disparity
maps predicted by [3] in the compression process.

• For the method QDLR-NeRF, as both the tensor rank
r and the number of centroids n for quantization can
control the model size, we use four different ranks r =
{40, 70, 90, 150} with a fixed number of centroids n =
256 to have medium bitrate, then we reduce the number of
centroids to n = {128, 64, 32} with a fixed rank r = 40
for low bitrates.

• The method DDLF is used with parameters (za, zs) =
{(15, 30), (20, 40), (25, 50), (30, 60)} and 256 centroids,
where (za, zs) denote respectively the number of channels
of the input spatial and angular code vectors. Both hand-
crafted and neural-based upsamplings (i.e. pixel shuffle)
are involved for having a wide range of bitrates.

• Finally, for our method, we vary the number
of channels cm and cd in each layer for the
modulators and the descriptors to achieve different
bitrates. More precisely, we use (cm, cd) =
{(2, 48), (2, 63), (2, 78), (2, 93), (2, 123), (2, 153), (2, 183)}
in our network. Although a small rank r and number
n of centroids can decrease the bitrate, small values of
these parameters can severely degrade the compression
quality, hence we used r = 6 and n = 256 in our test.

IV. EXPERIMENTAL RESULTS

A. Compression performance analysis

1) Rate-distortion: We illustrate in Fig. 3 the rate-distortion
curves, in terms of decoding quality (PSNR) and bitrate
(bpp), for all compared methods. We also calculate the BD-
PSNR gains using the Bjontegaard metric [66] in Tab. III
to assess each method, taking the results of HEVC-Lozenge
as its baseline. We can observe that the proposed method
outperforms other methods on most of the scenes by a large
margin, including these challenging ones.

Although DDLF [46], QDLR-NeRF [45], and our proposed
method all belong to INR-based methods, they exhibit different
performances due to their distinct design philosophies. Specifi-
cally: DDLF adopts a design where the transient information is
modeled using a GRU module, while the static information is
modeled using a deep decoder. However, the GRU architecture

performs well only when the light fields have small disparity,
as large parallax makes the variations between SAIs hard to
capture by GRU. This explains the performance degradation
of DDLF on wide-baseline synthetic light fields. QDLR-NeRF
initially uses an MLP to store the scene information and then
employs low-rank optimization, distillation, and quantization
to reduce the model size, ultimately achieving the goal of
compression. The quality of the learned scene information
directly affects the compression performance. Noise and ar-
tifacts that interfere with the learning of scene information
can lead to lower compression performance. This is verified
by QDLR-NeRF’s relatively worse performance on light fields
captured using a Lytro camera. In comparison, our method
stands out due to the cooperation of descriptors and switchable
modulators. This feature enables the learning of each SAI to
be conducted individually, and limits the impact of factors
such as baseline, noise and artifacts. As a result, our method
exhibits more stable and higher performance on various light
fields.

2) Visual comparison: Fig. 4 shows averaged error maps
across all SAIs for each method at a similar bitrate. In the
visualization, red indicates a large error value, while blue
represents a small error. It is evident that our proposed
method outperforms other methods in terms of decoding error,
particularly when dealing with highly textured scenes. Further-
more, Fig. 5 shows decoded SAIs of the scene ‘sideboard’,
generated by three INR-based methods: DDLF, QDLR-NeRF,
and our method. We can notice that our method successfully
reconstructs clear floor texture (as seen in the zoomed regions)
even at low bitrate (approximately 0.06 bpp). These error
maps and decoded SAIs provide compelling evidence for the
effectiveness of our method.

3) Memory consumption and encoding-decoding time:
When evaluating a compression algorithm, both memory con-
sumption and complexity play crucial roles. Lower memory
consumption ensures broader hardware support, while de-
coding time directly impacts the delay in displaying light
fields. In Fig. 6, we present the memory usage and decoding
time for each learning-based method working on the GPU
platform. Among these methods, DDLF [46] employs a GRU
to recurrently process SAIs and decodes a block of views at
once, resulting in shorter decoding time but higher memory
consumption than ours. The QDLR-NeRF method [45] adopts
a pixel-wise rendering mechanism, leading to a slower de-
coding procedure. Additionally, due to the complexity of their
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Fig. 3. Rate-distortion curves of ‘Bikes’, ‘Danger’, ‘FountainVincent2’, ‘boxes’, ‘sideboard’, ‘dino’, ‘Vinyl’ and ‘Dinosaur’ for HEVC-Lozenge [55], [56],
JPEG-Pleno [58], HLVC [35], RLVC [36], DDLF [46], QDLR-NeRF [45], BLLFC [25], [29], VVC [57] and ours.
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GT view (I5,5) HEVC [55], [56] BLLFC [25], [29] VVC [57] DDLF [46] QDLR-NeRF [45] Ours

boxes 36.51dB-0.14bpp 36.10dB-0.12bpp 37.86dB-0.11bpp 35.48dB-0.13bpp 38.13dB-0.11bpp 38.84dB-0.12bpp

sideboard 31.88dB-0.26bpp 31.56dB-0.23bpp 33.21dB-0.19bpp 29.44dB-0.21bpp 35.29dB-0.18bpp 36.67dB-0.20bpp

dino 38.54dB-0.11bpp 38.09dB-0.09bpp 40.20dB-0.11bpp 38.78dB-0.13bpp 42.83dB-0.13bpp 42.89dB-0.12bpp

Bikes 31.95dB-0.24bpp 31.91dB-0.21bpp 32.57dB-0.22bpp 32.36dB-0.21bpp 32.02dB-0.18bpp 34.74dB-0.19bpp

Danger 31.39dB-0.11bpp 32.30dB-0.11bpp 32.88dB-0.11bpp 32.62dB-0.13bpp 33.20-0.13bpp 34.77dB-0.12bpp

FountainVincent2 31.21dB-0.25bpp 31.22dB-0.21bpp 31.85dB-0.23bpp 31.93dB-0.21bpp 31.98dB-0.20bpp 33.76dB-0.19bpp

Vinyl 41.98dB-0.11bpp 41.39dB-0.10bpp 44.91dB-0.11bpp 38.17dB-0.10bpp 42.53dB-0.10bpp 44.83dB-0.12bpp

Origami 37.55dB-0.11bpp 35.93dB-0.13bpp 38.04dB-0.11bpp 38.74dB-0.10bpp 40.70dB-0.13bpp 42.16dB-0.12bpp

Dinosaur 34.99dB-0.10bpp 35.97dB-0.11bpp 37.56dB-0.11bpp 32.92dB-0.10bpp 37.25dB-0.10bpp 37.61dB-0.12bpp

Fig. 4. Averaged error maps of decompressed light fields using different methods, along with the PSNR and bitrate values.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 10

(a) DDLF [46] (b) QDLR-NeRF [45]

(c) Ours (d) GT View

Fig. 5. A visualization example of a decoded view using (a). DDLF [46]
(26.51dB, bpp=0.065), (b). QDLR-NeRF [45] (30.25dB, bpp=0.062), (c).
Our method (31.60dB, bpp=0.059), (d). Ground-truth view. A local region
is zoomed for comparison.

pipelines, both the HLVC [35] and RLVC [36] methods require
more memory and time for decoding each SAI. In contrary,
thanks to the switchable modulator design, our network can
decode SAI one by one with lower memory consumption,
and the fully convolutional network also ensures a quick
forward pass with less inference time. Though slightly slower
than DDLF, our method presents the best trade-off between
memory consumption and decoding time.

When considering encoding time, learning-based compres-
sion methods have inherent limitations compared to classical
compression standards like HEVC and JPEG-Pleno: though
methods HLVC [35] and RLVC [36] exhibit competitive
encoding times to HEVC and JPEG-Pleno, they require a large
training set, and their compression capacity heavily depends on
the scale and quality of the training set used. While for INR-
based methods, the encoding time mainly consists of fitting
the network to the target light field. As a result, their encoding
time is generally longer than that of other methods. However,
in certain applications, encoding time is not as critical as
decoding time, as the encoding process can be performed in
parallel and offline.

To gain a better understanding of the training efficiency of
our method, we provide Fig. 7 that illustrates the quality of
the decoded light field in relation to the training time, and
compare the encoding efficiency with other two INR-based
methods. We only account for the time spent on the network
initialization and exclude the time for low-rank optimization
and distillation for the method QDLR-NeRF. We can see in
Fig. 7 that, even without taking low-rank optimization and
distillation into account, the method QDLR-NeRF needs a long

training schedule. When QDLR-NeRF is optimized using the
SSIM [67] or LPIP [68] metrics that require to calculate all
pixels in a local image region (several forward-passes), there
is a longer training schedule and more memory consumption.
While both DDLF and our method can quickly reach a high
performance after an encoding of 1-2 hours, our method has
much higher performance than DDLF.

Fig. 6. GPU memory usage and time for decoding per SAI of each learning-
based method, measured on Nvidia Titan RTX and the scene ‘sideboard’
(512× 512× 9× 9).

Fig. 7. Performance in terms of encoding time for each network-based
method. The experiment is carried out on the scene ‘sideboard’ (512×512×
9× 9).

B. Transfer of modulators

We defined two types of kernels in our network design:
descriptors, which store scene information, and modulators,
which control the rendering of SAIs with respect to the desired
perspectives. The experiment in this section demonstrates that
the modulators can be non-scene-specific if the descriptors are
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SAI Array 5-SAI Pattern 9-SAI Pattern 13-SAI Pattern 25-SAI Pattern

GT I(2,3)-I(5,5) 27.01dB-31.52dB 28.67dB-31.77dB 31.28dB-31.79dB 31.68dB-31.92dB

GT I(2,3)-I(5,5) 32.25dB-39.65dB 33.89dB-40.00dB 38.60dB-40.09dB 39.19dB-40.20dB

GT I(2,3)-I(5,5) 25.26dB-39.25dB 29.80dB-40.07dB 36.84dB-40.10dB 38.47dB-40.51dB

GT I(2,3)-I(5,5) 19.38dB-36.99dB 20.05dB-34.94dB 25.61dB-34.12dB 28.33dB-34.00dB

Fig. 8. Several patterns for retraining and corresponding rendered views. The 1st row shows 4 patterns with an increasing number of SAIs for retraining. We
also illustrate the rendered views Î(5,5) and Î(2,3) that use the involved/uninvolved modulators in the (3rd, 5th, 7th and 9th)/(2nd, 4th, 6th and 8th) rows.
The rows 2-3 show rendered views for ‘bikes’, the rows 4-5 show results for ‘dino’ using modulators from ‘boxes’, the rows 6-7 show images for ‘dino’
using modulators from ‘Dinosaur’, and the rows 8-9 illustrate synthesized views for ‘Dinosaur’ using modulators of ‘dino’.
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appropriately adapted, i.e. the modulators learned on one light
field can be transferred to the new light fields. More precisely,
we take two light fields L1 and L2 each with 9 × 9 SAIs as
an example, and carry out the following steps:

1. Pretraining on L1: we first train the network using all
SAIs of L1, during which both descriptors {Kd

L1
} and

9+9 sets of modulators {Km
u,L1

,Km
v,L1

, bmu,L1
, bmv,L1

} are
learned.

2. Retraining descriptors on L2: we then fix the learned
modulators {Km

u,L1
,Km

v,L1
, bmu,L1

, bmv,L1
} and retrain de-

scriptors using a subset of SAIs (e.g. a sparse 3×3 views)
of L2 for one epoch to obtain {Kd

L2
}.

3. Rendering all SAIs of L2: we render all SAIs of
L2 with the updated descriptors {Kd

L2
} and modulators

{Km
u,L1

,Km
v,L1

, bmu,L1
, bmv,L1

}.
In our experiment, we specifically utilize a subset of SAIs

from L2 to retrain the descriptors for step 2, indicating that
only a part of modulators is involved in this procedure. There
are two main reasons for adopting sparse sampling instead of
all views: (a). The SAIs inside the subset provide information
about the new scene. Retraining on these views helps adapt
the descriptors for storing new scene information. (b). It is
important to note that the modulators for the views outside
the subset are entirely excluded from the retraining process. If
these modulators can successfully work with the descriptors
to synthesize SAIs, it suggests that the modulators are non-
scene-specific and their modulation function is transferrable.
Conversely, if the excluded modulators fail to generate SAIs
while those involved in the retraining procedure perform
well for rendering, it would imply that the functions of the
modulators and descriptors are scene-specific and are endowed
only by training on the current scene. We test four cases with
several patterns for selecting subsets of views:
(a). Pretraining the network on the scene ‘danger’ and re-

training descriptors on ‘bikes’.
(b). Pretraining the network on the scene ‘boxes’ then retrain-

ing descriptors on the scene ‘dino’.
(c). Pretraining the network on the scene ‘Dinosaur’ then

retraining descriptors on the scene ‘dino’.
(d). Pretraining the network on the scene ‘dino’ then retrain-

ing descriptors on the scene ‘Dinosaur’.
As both ‘danger’ and ‘bikes’ are captured using the same Lytro
camera, while ‘boxes’ and ‘dino’ are synthesized using differ-
ent camera array configurations, the first two cases respectively
represent the transfer of modulators between cameras with the
same and distinct configurations. The scene ‘Dinosaur’ has
about 3× the disparity range than the scene ‘dino’ and the
same image size 512× 512, the cases (c) and (d) respectively
represent the transfer from a sparse light field to a dense
one, and the inverse. Fig. 8 showcases the patterns of the
subsets of views and the rendered SAIs. The first row depicts
the patterns with an increasing number of SAIs used for
retraining (retraining patterns), where the views inside the
subset are colored in green, and other excluded views are
noted with green slashes. The squares framed with red and
blue boxes indicate the positions of the SAIs shown from
the second to the ninth rows, they respectively represent SAIs

rendered using modulators involved and not involved (noted
as ‘involved modulator’ and ‘uninvolved modulator’) in the
retraining procedure. Rows 2-3 show generated SAIs of ‘bikes’
transferred from ‘danger’, rows 4-5 show rendered SAIs of the
scene ‘dino’ transferred from ‘boxes’, rows 6-7 illustrate views
of the scene ‘dino’ transferred from ‘Dinosaur’ and row 8-9
demonstrate views of the scene ‘Dinosaur’ using modulators
of the scene ‘dino’.

We observe that both the involved and uninvolved modula-
tors can work with the descriptors to generate SAIs of the new
light fields, even if this transfer occurs between cameras with
different configurations like shown in case (b). The transfers
between light fields having different disparity ranges in both
cases (c) and (d) are also achievable, but they exhibit varying
levels of difficulty: as sparse light fields have more complex
occlusions and missing information, if we compare the results
in the 4th (case (b)), the 6th (case (c)) and the 8th (case
(d)) rows in Fig. 8, 5-SAI pattern can already generate high
quality views for transfer between light fields having similar
disparity range in case (b), but it necessitates 9-SAI pattern
to produce good views for transfers from sparse light fields to
dense ones in case (c), while at least 13-SAI pattern is required
for synthesizing views of decent quality when transferring
kernels from dense light fields to sparse ones in case (d). If
we compare the results in the 8th and the 9th rows in case
(d), adding SAIs in the retraining patterns leads to increasing
quality of rendered views Î2,3 as more scene information is
provided to descriptors, but decreasing quality of views Î5,5,
this is because modulators from dense light fields are naturally
less suitable for sparse ones, more modulators in the retraining
process will degrade the adaptation of descriptors. Globally,
more SAIs in the subset improves the quality of views ren-
dered with uninvolved modulators. And SAIs generated using
involved modulators show better quality than those generated
using uninvolved modulators, as modulators involved in the
retraining step always better match descriptors than those
uninvolved ones. Let us note that such a modulator transfer
operation also implies a new solution for view synthesis task,
one can generate novel dense views by transferring the learned
modulators to the target light field.

V. ABLATION STUDY

A. Proportion of modulator parameters

When adopting our network architecture for light field
compression, the proportion of modulator parameters plays
a key role in the compression performance. To explore the
optimal proportion of modulators for network design, we con-
ducted experiments by varying the proportions of modulator
parameters under a fixed total parameter constraint. Tab. IV
gives the average PSNR and quality variance across 9×9 views
for 8 different scenes, where cm and cd respectively denote
the numbers of channels for the modulators and descriptors.
Fig. 9 shows the averaged PSNR on 8 scenes for different
viewpoints.

From both Fig. 9 and Tab. IV, we can observe that the
proportion of modulator parameters directly affects the net-
work’s performance. For a similar total number of parameters,
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a higher proportion of modulator parameters implies a lower
proportion for the descriptors. This results in a relatively
lower averaged PSNR and smaller quality variance among
views. This occurs because the network has a limited num-
ber of parameters for storing scene information, but enough
parameters to modulate the rendering of SAIs. Instead, re-
ducing the proportion of modulator parameters will spare
more parameters for descriptors, which improves the quality
of the decoded views, but weakens the network’s modulation
capability and leads to a larger quality variance. The above
observation can serve as a guideline for network design for
different compression demands: when aiming for a high-
quality representation of the entire light field, it is preferable
to use a lower proportion of modulator parameters. However,
if maintaining consistency between SAIs is a priority, a higher
proportion is recommended.

Fig. 9. Averaged PSNR for the different viewpoints, with the index of the
top left corner view being labeled as ‘0’ and the index of the bottom right
corner view as ‘80’.

TABLE IV
AVERAGED PSNR AND VARIANCE IN TERMS OF DIFFERENT PROPORTIONS

OF MODULATOR PARAMETERS, CALCULATED OVER 81 VIEWS OF 8
SCENES UNDER A FIXED TOTAL PARAMETER NUMBER CONSTRAINT.

(cm, cd) Proportion PSNR(dB) Variance
(28,8) 97% 31.67 0.085
(24,16) 93% 32.54 0.102
(20,25) 88% 33.77 0.147
(16,36) 80% 34.80 0.186
(12,48) 70% 35.51 0.228
(8,62) 55% 36.18 0.275
(4,78) 33% 36.62 0.312
(2,87) 19% 36.81 0.345

B. Effectiveness of kernel design

To validate the modulator allocation and kernel tensor
decomposition, under the constraint of similar total number
of network parameters, we tested three network variants:
(a). The network without both modulator allocation and ker-

nel tensor decomposition designs, which means that the

TABLE V
PERFORMANCE COMPARISON BETWEEN DIFFERENT NETWORK VARIANTS
FOR LOW, MODERATE AND HIGH NUMBERS OF PARAMETERS. THE BEST

PERFORMANCES ARE IN BOLD.

#Param 103K 325K 809K

Net† (cm, cd) (2,11) (2,34) (2,72)
PSNR (dB) 27.43 33.21 37.16

Net* (cm, cd) (2,16) (2,47) (2,97)
PSNR (dB) 28.78 34.16 37.92

Net (cm, cd) (2,48) (2,93) (2,153)
PSNR (dB) 33.95 37.47 39.98

network is composed of normal convolutional kernels,
and we allocate angular kernels to each SAI per network
layer, which is denoted as Net†.

(b). The network without modulator allocation but with kernel
tensor decomposition, which is denoted as Net*.

(c). The network that adopts both modulator allocation and
kernel tensor decomposition designs, this variant is de-
noted as Net.

We measure the averaged PSNR of the networks having
small, moderate, and large parameter numbers, corresponding
to low, intermediate, and high bitrates in the context of com-
pression. Tab. V summarizes the performance of each network
variant for different numbers of parameters. The application of
modulator allocation results in significant parameter savings
that can be allocated to the descriptors for performance en-
hancement. And the adoption of tensor decomposition enables
the reduction of the number of parameters in kernels, thereby
accommodating more kernels in the network. The combination
of both modulator allocation and kernel tensor decomposition
results in a notable improvement of the network’s perfor-
mance.

C. Contributions of each network design option
To highlight the contribution of each network design step,

we evaluated the performance evolution after implementing
each design step (including modulator allocation, kernel tensor
decomposition, and quantization). Tab. VI, gives the average
PSNR results for eight tested scenes and the corresponding
network size when applying each design step. For comparison,
we consider the original network configuration without modu-
lator allocation, tensor decomposition, and quantization as the
baseline, It has the numbers of channels (cm, cd) = (2, 48).
Due to the high angular resolution (U, V ) = (9, 9), without
adopting modulator allocation, even if cm = 2 is much smaller
than cd = 48, the network still has a large proportion of param-
eters allocated to modulators. Therefore we can observe about
20% size reduction when applying the modulator allocation
technique with only 0.15dB performance degradation. Around
0.6dB loss is caused by the tensor decomposition technique,
please note that tensor decomposition is a typical network
compression method, other advanced decomposition method
is likewise applicable to our method. Finally, the quantization
operation brings 0.8dB degradation after compacting the net-
work size from 20.93% to 9.86%. These techniques globally
realize more than 10× compression with about 1.6dB quality
degradation.
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TABLE VI
PSNR AVERAGED ON THE 8 TEST LIGHT FIELDS AT THE DIFFERENT STEPS

OF THE PROPOSED WORKFLOW: ORIGINAL NETWORK (NET-ORG),
NETWORK AFTER USING MODULATOR ALLOCATION (NET-MA), AFTER

USING TENSOR DECOMPOSITION (NET-TD), AFTER 8-BIT QUANTIZATION
(NET-8BIT)), AND AFTER APPLYING HUFFMAN CODING (NET-HUFF)

.

Metrics Net-org Net-ma Net-td Net-8bit Net-Huff
PSNR 34.77dB 34.62dB 33.95dB 33.13dB 33.13dB

Parameters 246K 153K 103K 103K 103K
Bits/parameter 32 16 16 8 7.4

Size 100% 31.10% 20.93% 10.67% 9.86%

VI. LIMITATIONS AND DISCUSSION

While the proposed light field compression method shows
its superiority compared to representative methods in terms
of rate-distortion performance, there are a few limitations that
could be addressed in the future:
1). Our method demonstrates promising performance on

various light fields, including those captured with Lytro
cameras and camera arrays, and these light fields contain
complex textures, even in the case of reflective surfaces
and different disparity ranges. However, the performance
of the proposed method is below the one of state of the
art video compression methods for very sparse light field,
due to the fact that our method is based on the assumption
that all SAIs share similar visual content, which is less
verified for sparse light fields.

2). The transfer of modulators between light fields having
similar disparity works well. When the source and target
light fields have different disparity ranges, the method
will require more SAIs in the retraining subset for
good synthesis quality, especially the transfer from dense
source light fields to sparse target ones, as the latter have
large occlusions.

VII. CONCLUSION

In this paper, we address the challenge of light field com-
pression by proposing a novel compact neural representation.
Our method utilizes two types of complementary kernels:
descriptors and modulators. Descriptors capture scene infor-
mation, while modulators are used to modulate the rendering
of different SAIs. To enhance the network’s compactness,
we propose allocating modulators across two angular di-
mensions and we further decompose the kernel tensor into
low-dimensional components. Through extensive experiments,
we demonstrate that our network-based representation out-
performs other compression methods while consuming less
computational resources. Furthermore, we highlight that the
modulators exhibit a non-scene-specific nature and can be
transferred to new light field data for rendering dense views.
This finding suggests a new approach to view synthesis
methods, introducing a distinct philosophy in this field.
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