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Abstract To implement machine learning applications in real-time safety-critical systems,
we previously introduced a predictable framework named ACETONE. This framework compiles
the detailed description of an off-line trained feed-forward deep neural network into an equivalent
C code. In this paper, we improve the performance of the generated C code by including
gemm-based convolutions in ACETONE. The code incorporating the gemm routines maintains
the ACETONE properties of semantics preservation and timing predictability. We compare the
proposed method with ACETONE’s initial version, Keras2c and uTVM on a realistic set of
machine learning benchmarks and show that the introduced convolution algorithms allow a
trade-off between performance and memory footprint.

Keywords: Safety-critical real-time systems, Artificial neural networks implementation,
Predictable code generation

1 Introduction

Aeronautics envisions the use of machine learning (ML) algorithms to help and improve such
tasks as navigation, predictive maintenance and air traffic control. However, their use in
real-life operational safety-critical products raises several issues regarding functional correctness,
compliance with normative requirements, formal verification, safety or implementation (Alves
et al, 2018; Bhattacharyya et al, 2015).

1.1 Context

In this paper, we focus on the safe real-time implementation of off-line trained feed-forward deep
neural networks (subsequently referred to as neural networks or DNN) on embedded platforms.
The off-line design and training are done using a learning framework such as Tensorflow
(Abadi et al, 2015) or PyTorch (Paszke et al, 2019) and produces the inference model that
is the final neural network with its structure (e.g. number of layers) and its parameters (e.g.
weights, biases, activation functions). The implementation – the part we focus on – consists in
coding the inference model in a low-level programming language, and then porting the code on
the target hardware.

In order to allow the use of ML-based systems in aeronautics, guidelines – namely the
AS6983 standard (EUROCAE WG-114/SAE joint group, 2021) – are currently being drafted.
They complete the DO 178-C (RTCA/EUROCAE, 2011) – the reference guidance for the
implementation process of software items. These two standards identify three main requirements,
listed below, to be addressed for the implementation of neural networks. Our purpose is to
provide an approach that enables the implementation of the inference model in compliance with
avionics requirements.
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1.2 General objectives and previous work

In former work (Silva et al, 2022), we have presented a first version of a framework developed
according to the following objectives.

Objective 1 (Semantics preservation) At the end of the design phase, the inference model
should be described with a formal, unambiguous, readable specification which must be implemented
on the target such that for any input, the output of the code running on the target should be
identical (given perfect real numbers representation) to the one observed in the training tool.
However, since we operate with floating-point representation that may vary per processor target
or per implementation, some differences are bound to appear, and they must be acknowledged
and dealt with.

This first objective seems a priori easy since operations performed by DNNs can be expressed
as linear algebra and their formal definition can be found in the literature. In reality, training
frameworks have been designed to ease their use and they propose operations with default
configurations that are poorly documented and framework-dependent. To circumvent this issue,
we have thus formally defined the semantics of a DNN as the composition of layers associated
functions (by extending and formalizing existing works from the literature). Once the semantics
is formally defined, we can translate it into C code and confirm that possible discrepancies
between training and deployment products are limited to floating-point arithmetic issues.

Objective 2 (Traceability) The software developer must ensure traceability between the requirements
and the source / binary code.

This second objective ensures that the inference model with its requirements is what is
really coded and ported on the target. One possible way to ensure traceability is to review
the produced code and the specification, relying then on an exhaustive proofreading. Another
recognized means of compliance (that also applies to Objective 1) consists in running intensive
testing to verify the compliance of the implementation to the requirements. To address Objective
2, we have developed ACETONE, a framework that generates C code from any inference model.
The generated code is extremely traceable since it is humanly possible to trace it back to the
original exported DNN model. The compilation of the C code to a binary must also use the flag
-O0 (no compiler optimization), which also favours traceability. Thus, manually achieving the
traceability objective is tightly related to the different design choices in the process of translating
the inference model into C code.

Objective 3 (Predictability) The software developer must compute the WCET (Worst-Case
Execution Time) for each software component.

Computing the WCET (Wilhelm et al, 2008) for the currently marketed machine learning
deployment frameworks (e.g. TensorRT (NVIDIA, 2021), ONNX Runtime (developers, 2021))
is not straightforward. Indeed, most of the implementations are done on GPUs or TPUs with
runtime engines, like Tensorflow, which interprets the inference model computation graph,
i.e., a directed graph describing the mathematical structure of the inference model. GPUs
and TPUs are not yet accepted in aeronautics, as these devices rely on particular execution
models and shared memory, which impair their timing predictability. Moreover, their closed
proprietary designs make it even more complicated to develop models and analysis techniques
(Perez-Cerrolaza et al, 2022). We instead focus on general purpose multi-core, commercial
off-the-shelf (COTS), hardware such as the Coolidge (Kalray, 2021) or the keystone (Texas
Instruments, 2013) (used in the experiments). ML interpreters use non predictable libraries and
run on top of complex, from the perspective of WCET analysis, runtime or OS. Thus, there
is still a large amount of work and proof to attain the capability of computing WCETs for
these software components. This is the reason why we target a more classic static approach
which consists in generating a C code equivalent to the inference model and executing it with
no interpretation, as proposed in Chichin et al (2020). We used in particular a static WCET
analyser from the literature, Otawa (Ballabriga et al, 2010), developed at the University of
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Toulouse, to compute the WCET of the generated code. No parallelization is targeted in this
paper, thus the C code is expected to run sequentially on a single core, all the memory allocations
are static and the schedule (here the sequence of operations) is also static.

1.3 Contributions

The purpose of this paper is to introduce optimizations to improve the execution times of
ACETONE generated programs. Although performance is not the main objective in the
avionics domain it deserves to be addressed as we are working in a resource-constrained environment.
Therefore, we explore several optimizations in our C code generation that preserve the semantics
of the inference model and that are predictable. The first optimization, described in Section 3.4,
concerns the memory layout of tensors in order to improve data locality and reduce execution
time. The second optimization, presented in Section 4, is the use of gemm-based convolutions.
It concerns the re-implementation of the gemm (General Matrix Multiplication) routine, which
is part of the classic blas (Basic Linear Algebra Subprograms) (Dongarra et al, 1990) libraries.
Those routines have existed for many years and are used in many domains. However, they do not
conform with aeronautics requirements. Indeed, they integrate many compilation optimizations
and often use dynamic memory allocation, which is particularly challenging respectively for
Objectives 2 and 3. As we did not find any C libraries that meet our needs, we have recoded
them in ACETONE to perform convolutions.

To assess the benefits of the optimizations proposed in ACETONE, we made a thorough
evaluation of our framework. We have selected a set of real-world use cases and compared our
results with Keras2c (Conlin et al, 2021) and uTVM with static C runtime (Stahl, 2021).
In particular, we have ported the binary to an arm Cortex-A15 of the keystone (Texas
Instruments, 2013) to evaluate the measured execution times. The optimizations introduced
do not modify the semantics of the code generated by ACETONE, thus the results presented
in Silva et al (2022) are still valid. As in the previous work, we used an arm-based target that is
supported by Otawa for the WCET analysis, regardless of the fact that it is not representative of
real-world application targets. Overall, in terms of performance, the new convolution strategies
proposed in this paper are on average 36% faster than the original implementation and the best
version shows a speed-up of respectively 1.9× and 5.5× over static uTVM and Keras2c.

The outline of the paper is as follows. Section 2 recalls briefly the notion of neural networks
and part of the semantics we have defined. We particularly focus on the convolution and pooling
layers as they are the ones targetted by the optimizations. Section 3 presents ACETONE and its
software architecture, including the newly implemented memory layout. Section 4 describes the
optimizations concerning gemm-based convolutions. Section 5 details our testing methodology.
Section 6 gives the results of the experiments. Section 7 discusses related work and Section 8
provides concluding remarks.

2 Deep Neural Networks

We focus on the inference of off-line trained feed-forward Deep Neural Networks (DNN). More
precisely, we consider convolutional neural networks (CNN) and multi-perceptron (or fully-connected)
neural networks. This section is a brief excerpt from Silva et al (2022). There are multiple ways
to define DNNs but we chose to express them as mathematical functions. The input of these
functions can be seen as a multi-dimensional vector also called tensor. Their output is also a
tensor. We consider 1D-, 2D- and 3D-tensors but to save space, we only provide definitions for
3D subsequently. We only regard inference with one input (no batch).

Definition 1 (Tensor) A 3D-tensor T is represented by its size (nh, nw, nc) where nh is the
height, nw the width and nc the number of channels (or feature maps). We denote by Tx1,x2,x3
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the value of T for the indices x1, x2, x3. We denote by T [s11 : s21, ..., s1k : s2k] the slice of T of
all the values Ts11+x1,...,s1k+xk

with i ∈ [1, k] and xi ∈ [1, s2i − s1i].

Definition 2 (Feed-forward Deep Neural Network) A feed-forward neural network N =<
l1, . . . , ln > is a succession of layers li taking as input the output of the previous layer li−1. The
first layer takes the input tensor. A layer can be of type(l) ∈ {act, bias, padd, conv, pool, batch
norm, flat, dense} where act is an activation, padd is a padding, bias is a bias adding, conv is
a convolution, pool is a pooling, batch norm is normalization, flat is flattening and dense is a
perceptron. A layer comes with a set of parameters (e.g. weights or stride).

Definition 3 (Function associated to a DNN) The function fN computed by a DNN N =<
l1, . . . , ln > is the composition of the functions computed by each layer fN = fln ◦ . . . ◦ fl1.

The semantics of each function is given in the work of The Khronos NNEF Working Group
(2018) and also in Silva et al (2022) with mathematical equations. Let us just recall what a
convolution and a pooling layer are.

Definition 4 (2D-convolution associated function) Let K be a vector of 3D-tensors [K1,K2, . . .,
Knk ] representing the kernels of the convolution. Each kernel Ki is of size (fh, fw, fc). Let s =
(sh, sw) be the stride parameter with sh and sw two integers. The 2D-convolution1 CK,s applied
to a 3D-tensor I of size (nh, nw, nc) outputs a 3D-tensor O = CK,s(I) of size (oh, ow, oc) with

oh =
⌊
nh−fh

sh
+ 1

⌋
, ow =

⌊
nw−fw

sw
+ 1

⌋
and oc = nk. We have Ox,y,z =

∑fh
i=1

∑fw
j=1

∑fc
m=1K

z
i,j,m ·

Ish·(x−1)+i,sw·(y−1)+j,m for all x ≤ oh, y ≤ ow and z ≤ oc. Note that also we must have fc = nc
thus, convolutions are often applied on 3D-tensors on which padding has been applied first to fit
the sizes.

Definition 5 (Pooling layer associated function) Let s = (sh, sw) be the stride parameters,
let k = (kh, kw) be the height and width of the window and let f : Rkh.kw −→ R be a function (e.g.
max or average). The pooling applied on a 3D-tensor I of size (nh, nw, nc) outputs a 3D-tensor

O = Poolk,s,f (I) of size (oh, ow, oc) with oh =
⌊
nh−kh

sh
+ 1

⌋
, ow =

⌊
nw−kw

sw
+ 1

⌋
and oc = nc with

Ox,y,z = f(I[sh · (x− 1) + 1 : sh · (x− 1) + kh + 1][sw · (y − 1) + 1 : sw · (y − 1) + kw + 1][z]).

conv1

28x28x1
6

pool1

24x24x6
6

conv2

12x12x6
16

8x8x16

pool2

16
4x4x6 96

flat

120 84
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10

Figure 1: LeNet-5 CNN.

Example 1 (LeNet-5) The LeNet-5 (LeCun et al, 1989) model is the basic CNN developed
for handwritten digits images recognition. We used the pre-trained LeNet-5 from Keras which
is shown in Figure 1. Such a graphical representation highlights the layers and the number of
feature maps.

The size of the input / output tensors are shown in Figure 1. The first 2D-convolution conv1
takes inputs of size 28× 28× 1, is composed of 6 kernels Ki of size 5× 5× 1 and of a stride s =
(1, 1). The activation function tanh is applied to the outputs. The first pooling layer pool1 is an
average pooling with stride s = (2, 2) and window k = (2, 2). The second 2D-convolution conv2

1There may be an additional parameter, that is the dilation supported by the code generation and not detailed
here.
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is composed of 16 kernels Ki of size 5× 5× 6 and of a stride s = (1, 1). The activation function
hyperbolic tangent is applied to the outputs. The second pooling layer pool2 is an average pooling
with stride s = (2, 2) and window k = (2, 2). The 3D-tensor of size 6 × 6 × 4 is flattened in
a 1D-tensor of size 96. There are three dense layers with respectively (ni, no) = (96, 120),
(ni, no) = (120, 84) and (ni, no) = (84, 10). The two first dense layers apply the activation
function tanh and the last one a softmax. Thus the function associated to this LeNet-5 is:
N = Asoftmax◦fdense3◦Atanh◦fdense2◦Atanh◦fdense1◦fflat◦fpool2◦Atanh◦fconv2◦fpool1◦Atanh◦fconv1.

3 ACETONE C back-end

We have developed a Python prototype to generate C code. We describe here the back-end of
ACETONE and do not detail the front-end, which first imports the inference model description
file. We reuse the semantics of Definition 3 considering every layer as an independent programming
function for the code generation. The associated C inference code then consists in calling each
layer function in the correct order with the expected parameters and inputs.

3.1 Software architecture

The generated C code is composed of some generic initialization functions and some model-dependent
functions and files. Indeed, in the Python prototype, we have a hard-coded template library
with the definition of the layers’ functions, which is instantiated with the expected parameters
whenever their presence is identified in the model. In such manner, we have a completely
model-dependent C description of the inference function. Other model-dependent files refer to
the weights, biases and auxiliary parameters that are also written as C files.

We have formalized the software architecture of ACETONE in uml. The main class
NeuralNetwork contains two variables: layers that contains the list of Layers (another class
defined hereafter) and user option that captures the options chosen by the user for the generation,
such as applying semantics-preserving transformations or selecting the algorithm to be used in
the convolutional layer. That class defines three methods (in addition to the standard method
init): load model which imports the json DNN description; forward pass that concatenates the
layers to encode the DNN function as the composition of layers and generate inference code
which generates the C code.

Layers

+idx: int
+class name: string

+generate inference code()
+compute layer()

Dense

+weights: Numeric
+biases: Numeric
+input size : int,int
+output size: int,int

+generate inference
code()
+compute layer()

Conv2D

+nb kernels: int
+weights: Numeric
+biases: Numeric
+stride: int,int
+padding: int,int,int,int
+input size: int,int,int
+output size: int,int,int

+generate inference
code()
+compute layer()Pool

+stride: int,int
+window: int,int
+input size: int,int,int

+generate inference
code()
+compute layer()

MaxPool

+generate inference
code()
+compute layer()

AvgPool

+generate inference
code()
+compute layer()

Others

Figure 2: Class diagram of Layers.

Figure 2 shows the abstract Layers class, which is inherited by all layers types sub-classes. It
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defines the parameters common to every layer, such as its idx in the network, and also declares
two abstract methods. The first – generate inference code – implements the semantics of the
layer in the C language, and the second – compute layer – executes the function of the layer,
mainly for debugging and evaluation purposes.

For each type of layer, we then add its particular parameters (e.g. the weights and biases
for dense) and the methods (generate inference code and compute layer) are refined. We did
not detail all the layers (others grouping the missing ones). The prototype supports all the
layers listed in Definition 2 and the ReLu, Hyperbolic Tangent, Sigmoid and Linear activation
functions.

Layers

+idx : int
+class name: string

+generate inference code()
+compute layer()

Conv2D

+nb kernels : int
+kernels size : int,int,int
+weights : Numeric
+biases : Numeric
+stride : int,int
+padding : int,int,int,int
+input size: int,int,int
+output size: int,int,int

+generate inference
code()
+compute layer()

Conv2D-direct

+generate inference
code()

Conv2D-std-gemm

+patches: Numeric

+preprocess input()
+generate inference
code()

Conv2D-indirect-gemm

+pointer patches: Numeric

+preprocess input()
+generate inference
code()

Figure 3: Class diagram of Conv2D.

Figure 3 presents how the different encodings of the convolution operation are managed in
the software architecture. Three different classes inherit from Conv2D class and implement their
own method. Conv2D direct was the original coding of the framework while Conv2D std gemm
and Conv2D indirect gemm are the extensions proposed in this paper.

3.2 Model-dependent inference function

The inference function is obtained by inlining the programming functions of every layer -
and activation functions if any - of the model, i.e., directly writing their body to the C file.
Loops-bounds and any elementary parameter are also hard-coded, deriving an entirely model-dependent
inference function. The only parameters stored in a header C file are the constant tensors, e.g.,
weights or biases.

Listing 1 gives part of the inference function for the first convolutional layer of Example 1.

Listing 1: Convolutional layer inlined code of the Example 1 inference function.
for ( int f = 0 ; f < 6 ; ++f ){

for ( int i = 0 ; i < 24 ; ++i ){
for ( int j = 0 ; j < 24 ; ++j ){

sum = 0 ;
for ( int c = 0 ; c < 1 ; ++c ){

for ( int m = 0; m < 5 ; ++m){
for ( int n = 0 ; n < 5 ; ++n){

int i i = i *1 + m*1 − 0 ;
int j j = j *1 + n*1 − 0 ;

i f ( i i >= 0 && i i < 28 && j j >= 0 && j j < 28){
sum += output pre [ j j + 28*( i i + 28* c ) ] *

weights Conv2D 01 [ n + 5*(m + 5*( c + 1* f ) ) ] ;
}}}}

sum += biases Conv2D 01 [ f ] ;
output cur [ j +24*( i +24* f ) ] = ( exp (sum)−exp(−sum) ) / ( exp (sum)+exp(−sum ) ) ;

}}}
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Using inlined and hard-coded functions saves function calls and the model structure parsing
overheads. However, this also comes at the cost of using more instruction space, as we duplicate
code, producing larger source files, which can be prohibitive in an embedded environment.
Nonetheless, Otawa produces rather precise estimation for the WCET since we are able to
provide the correct context in which layers are executed with no risk of pessimism in the
determination of loop bounds.

3.3 Memory layout strategy

With ACETONE we proposed a solution for the deployment of the inference model in resource
constrained applications, thus we were also interested in designing the inference code regarding
its memory usage without however performing very fine optimizations. To that end, we studied
and determined the desired memory layout of the binary corresponding to the code generated
by ACETONE.

The memory space is segmented into discrete blocks with specific purposes. We mainly
focus on the stack, data, BSS and text segments. We pay special attention to the stack segment
because its use penalizes execution time and adds uncertainty in WCET estimation as the base
address of the stack may be unknown before run time, which increases the pessimism of the
WCET analysis. In our implementation the stack segment essentially contains the input and
output tensors to the inference function, together with its local variables. The data segment
contains the global and local statically initialized variables present in the setup functions and its
size does not change at run time. Uninitialized variable data such as the intermediate tensors
exchanged between layers are stored in the BSS segment, as well as the local variables used to
store intermediate results within the layers functions computations. In our work, we favoured
storing inference model constant parameters, in particular weight and bias tensors, as constants
to statically allocate all memory at compile time, using then the text segment. Storing model
parameters as read-only data also prevents mistaken access during run time.

3.4 Memory layout of tensors

Since our former work, we carried a precise study on the memory layout of data and memory
access patterns within the framework. We aimed to find ways to improve the memory efficiency
of ACETONE. The multidimensional tensors defined in Section 2 are directly represented as
one-dimensional arrays in the C code, which allows storing them in a linear memory address
space.

Definition 6 The order in which the tensors values are laid out in memory is called data layout
or data format.

The data layout of 3D tensors can follow six combinations, but only two are of interest for the
operations performed by neural networks: channels-first or channels-last. In the channels-first
convention, the elements along the width dimension are stored consecutively in memory, the
elements along the height have a stride of nw and the elements along the channels are stored
with a stride of (nh · nw). The opposite is done when the data layout follows the channels-last
convention: the corresponding elements of different channels are stored consecutively in memory
and, within a channel, the elements along the width have a stride of nc and the elements
along the height have a stride of (nw · nc). Figure 4a illustrates the data layout with the
channels-first format and Figure 4b shows the data layout with the channels-last format, both
for nc = nh = nw = 3.

The most suitable memory layout between channels-first and channels-last depends on the
layer and its parameters. For instance, the pooling operation (see Definition 5) is carried out
on elements within a window of one channel at a time, before going through the remaining
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(a) Channels-first data layout.
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Figure 4: Illustration of two different data layout of 3D tensors.

channels. Thus, it is intuitive to see that this operation takes advantage of the spatial locality of
the channels-first data layout. Table 1 presents the number of processor cycles taken to execute
a pooling layer on an arm Cortex-A15 processor with the channels-first convention and the
percentage of increase when using the channels-last format. The chosen pooling configurations
are only a fraction of all those that are possible, but are representative enough of the type
of tensors found in the literature. We observe that the channels-first layout outperforms its
counterpart in almost every input configuration tested, except for the configuration in third
column of Table 1, where I = (27× 27× 192). We explain this by the fact that in this case, the
tensor dimensions are rather small so the entire tensor fits in the cache. It follows that the data
layout convention does not influence the execution time.

Table 1: Comparison between channels-first and channels-last layouts in pooling layer for various
input tensors (nh × nw × nc).

Number of cycles

Data layout
(24× 24× 6)
kh = kw = 2
sh = sw = 2

(224× 224× 64)
kh = kw = 2
sh = sw = 2

(27× 27× 192)
kh = kw = 3
sh = sw = 2

(224× 224× 224)
kh = kw = 2
sh = sw = 1

channels-first 141 627 165 283 135 10 679 316 1 291 051 435
channels-last +3,49% +1,45% −0,09% +7,25%

In the case of convolutional layers, as detailed in Definition 4, each kernel requires a set of
elements from every channel of the input tensor. Hence, it is not straightforward to determine
which memory layout will outperform the other when applying a direct convolution algorithm
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like the one of Listing 1. However, our second optimization (see next section) consists in
mapping the 3D input tensor to a 2D tensor, unfolding the convolutional operation into a matrix
multiplication. In this case where height and width dimensions are combined, the channels-first
data layout is more appropriate (Li et al, 2016).

4 gemm-based convolution

We propose a second category of optimizations targeting the convolutional layers, while respecting
the three objectives (semantics preservation, traceability and predictability) listed in the introduction.
We observed in our previous work (Silva et al, 2022) that those layers were the most resource-consuming
and that our implementation was ineffective. Indeed, although the direct convolution algorithm
with its nested-loop approach presented in Listing 1 is simple, it has poor memory access pattern
due to the need of replicating the input tensor for the many convolution filters. The literature
shows that great effort has been made to improve the performance of convolutional layers in
terms of time and memory consumption, as we discuss in Section 7. In this work we decided to
explore gemm-based convolutions for the reason that we explain next.

4.1 Context

The gemm-based convolution algorithm first introduced by Chellapilla et al (2006) consists
in translating the convolution operation as a matrix-matrix multiplication. Such a translation
allows using Basic Linear Algebra Subprograms (blas) (Dongarra et al, 1990) libraries – low-level
routines to perform common linear algebra operations – which benefit from years of research in
linear algebra computation (Goto and Geijn, 2008), providing highly optimized routines.

The gemm routine as defined in blas is of the form C← αA ·B +βC. For our application,
we consider α = 1 and β = 0, initially setting C = 0, a zero matrix of the appropriate size. So
C is obtained by multiplying element-wise the entries of the rows of A and the columns of B.

In order to perform the gemm-based algorithm, convolution inputs need to be adapted.
First, the input tensor is transformed into a Toeplitz-like matrix, constructed by conveniently
storing in columns the set of elements, or patches, that will be multiplied by each convolution
kernel. This algorithm is named im2col in Chellapilla et al (2006), as in image-to-columns,
because in most of convolution applications the input tensor is an image (3D tensor). It is
illustrated in Figure 5. We observe that each column (patch) contains fh · fw elements from
each channel, totalizing fh · fw · fc entries. The spatial dimensions of the output tensor (see
Section 4) determine the numbers of columns in the patch matrix, i.e., oh · ow. The resulting
tensor of patches is then of shape fh · fw · fc × oh · ow and is stored in B. Then, the kernels
tensor is virtually represented as a 2D tensor (a matrix), with dimensions nk × fh · fw · fc. This
matrix of kernels is stored in A. In Figure 5 we observe that each line of A, illustrated with an
unique pattern filling, corresponds to a different kernel of convolution. As for the input tensor,
the different nuances of gray represent the multiple channels of the original tensor.

Property 1 The gemm-based convolution preserves the semantics of the direct convolution.

Indeed, we notice that gemm-based algorithm performs the exact same mathematical operations
as in the direct convolution defined in Definition 4, only the input tensors are now organized
differently in memory.

4.2 gemm routine implementation

There are many blas implementations in the literature. Examples of CPU-based open-source
initiatives include OpenBLAS (Xianyi et al, 2011), ATLAS (Karmani et al, 2011) and BLIS
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Figure 5: Example of input matrices for a gemm-based convolution algorithm, considering
a stride of one and no padding. Matrix A corresponds to the kernels tensor conventionally
flattened and matrix B corresponds to the matrix of patches, created by copying and arranging
elements of the original input tensor.

(Van Zee and van de Geijn, 2015). Others are proprietary, such as Intel Math Kernel Library
(MKL) and Arm Performance Libraries. These libraries essentially make use of matrix blocking
techniques and advanced versions also use hardware intrinsics and assembler code to improve
performance. However, these projects were not developed in a manner aware of the needs of
certification, hindering in particular the WCET analysis task. To overcome this limitation while
still using principles presented in the blas, we proceeded to develop our own gemm function
for ACETONE.

In fact there are other possibilities for restructuring the data before calling the matrix
multiplication routine. The original definition of the gemm routine allows any of the three
matrices to be transposed and we decided to follow the same approach to explore the different
memory access patterns. In this work we developed the following four variants of the gemm
algorithm:

� gemm nn: matrices A and B are both accessed non-transposed (A ·B);

� gemm nt: matrix A is non-transposed and matrix B is transposed (A ·Bᵀ);

� gemm tn: matrix A is transposed and matrix B is non-transposed (Aᵀ ·B);

� gemm tt: matrices A and B are both transposed (Aᵀ ·Bᵀ);

Afterwards we tested these variants with a certain number of convolution configurations to
analyse how they compare to each other and to the initial direct convolution algorithm. Figure
6 shows the measured execution times on an arm Cortex-A15 expressed in number of processor
cycles. Note that the results for gemm-based algorithms take into account the patch-building

10



algorithm. When considering matrix B transposed we actually call a different patch-building
algorithm, popularly known as im2row, whereas when matrix A is expected to be transposed, the
transposition is done in the ACETONE back-end, with no increase in execution time. We can
observe that the gemm-based convolutions (first four bars), which exploit a better memory access
pattern, always outperform the direct algorithm. However, convolution parameters, e.g, size of
input tensor, number of kernels or stride, which influence the structure of the matrices, impact
the performance of the different gemm-based algorithms. Inspecting Figure 6 we conclude that
no routine consistently achieves the best results across the whole network. Owing to page-space
limitations, we chose to explore variants gemm nn and gemm nt in the remainder of the paper.

I = 1× 28× 28
K = 6× 1× 5× 5

I = 6× 12× 12
K = 16× 6× 5× 5

I = 64× 27× 27
K = 192× 64× 2× 2
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Indirect gemm nn

Indirect gemm nt

Figure 6: Comparison between gemm-based and direct convolutions.

4.3 Optimization on the patch matrix construction

There are many axes of improvement in the presented gemm-based convolution implementation.
The first addresses the required pre-processing, i.e. the patch-building algorithm. Indeed,
reshaping and duplicating elements of the input tensor before each convolutional layer is a
costly job that incurs a non-trivial time penalty during inference. To address this, we developed
a variant that performs the patch-building algorithm off-line. This strategy shares the same
principle as the idea presented in Dukhan (2019). Essentially, the code generated by ACETONE
contains a matrix of pointers to the elements of the input tensor that compose the patches,
instead of explicitly creating the matrix of patches. Figure 7 illustrates how the matrix of
pointers works. We name this algorithm indirect gemm-based convolution, in opposition to
the standard gemm-based convolution explained before. Still in Figure 6 we examine how two
algorithms using this indirect version, indirect gemm nn and indirect gemm nt, compare to
their equivalent in standard version and to the direct convolution in terms of execution time.
We observe a reduction in the number of cycles measured, whose intensity depends on the
convolution configuration, and is explained by the fact that the patch-building algorithm is
done before run time.

Besides that, translating the 3D input tensor into a matrix of patches requires extra memory
compared to the direct convolution, since every element of the input is replicated up to fh ·
fw times. Considering this, Anderson et al (2017) proposed a design space of patch-building
algorithms to translate convolution to gemm, focusing on the memory consumption problem.
We plan on studying it in future work.
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Figure 7: Indirect gemm-based convolution. A matrix of pointers only containing the addresses
of input elements is created before runtime and is used instead of the matrix of patches.

5 Comparison methodology

In order to test the practical advantages and limitations of our optimizations, as well as their
behaviour compared to the other frameworks in the literature, we have defined the following
methodology. We have selected a set of representative benchmarks (Section 5.1) from the state
of the art of the machine learning domain and coherent with our restrictions (i.e. feed-forward
DNN with restricted types of layers). The idea was to carry out a large test campaign by varying
several parameters (e.g. number and type of layers, data type of parameters, type of activation
function). In our test campaign we considered the memory limitations of the target used for
experiments (arm Cortex-A15), but ACETONE has no limitations on the size of models for
which it can generate a semantically equivalent and predictable C code. We then introduce the
two code generation frameworks selected for comparison (see Section 5.2). Finally, we define
four criteria to assess the quality of implementation in accordance to the requirements listed in
the introduction (see Section 5.3). In particular, not all criteria require the same level of testing:
computing the WCET needs to be done once whereas the measurements need to be repeated
several times.

5.1 Benchmark description

LeNet-5 The LeNet-5 model (LeCun et al, 1989) refers to the feed-forward convolutional
neural network introduced in Example 1. It is one of the earliest models of this type, known
for promoting the development of deep learning with the introduction of the back-propagation
algorithm. While simple, this model contains the main basic layers: convolution, pooling and
dense layers. All the layers have the same hyperbolic tangent activation function, except for the
last one, where a softmax is performed. Overall, it has 44,426 trainable parameters to stock and
an inference pass executes 572,504 floating-point operations (FLOPs).

CifarNet CifarNet was first introduced in Krizhevsky (2009) and was for a long time
the state-of-the-art model used to solve the object classification problem on the Cifar-10 dataset,
which consists of 32 x 32 RGB images of 10 classes. CifarNet is composed of three convolutional
layers, interleaved with pooling layers, followed by two dense layers (see Figure 8). The ReLu
activation function is applied to all the layers. The main difference with LeNet-5 is that it
has a three-dimensional input and the convolutional layers have additional parameters such as
padding and stride different from 1, which adds some complexity in terms of computation. With
this configuration the number of trainable parameters increases to 122,570 alongside with 9,18
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million FLOPs for inference.
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Figure 8: CifarNet CNN

AudioNet To diversify our set of test benchmarks, we built a basic audio recognition
model based on an online Tensorflow tutorial (TensorFlow, 2022). Our model was trained on
a speech commands dataset (Warden, 2018), which contains short audio clips with eight simple
commands, such as yes or stop. In order to do so, we converted the dataset that is originally
represented in the time domain to spectrograms (2D tensors). The AudioNet architecture
has two convolutional layers, one pooling layer and two dense layers, with a ReLu activation
function applied to every layers except for the last one (see Figure 9). The model has 1,6 million
trainable parameters and performs 32,7 million FLOPs for one inference. Although real-world
speech recognition systems are more complex than this architecture, it gives an insight on some
other applications of DNNs.
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Figure 9: AudioNet CNN

Time series prediction model Time series prediction is another example where machine
learning algorithms succeed. For this benchmark, we implemented the 2D-CNNpred model
presented in Hoseinzade and Haratizadeh (2019). It strives to solve a binary classification
problem applied to financial time series for stock market prediction. This model uses multiple
technical market indicators with different time steps, i.e. a 2D tensor, to predict the direction of
a given market (or time series). The model contains three convolutional layers with a ReLu
activation function, two max-pooling layers and one dense layer with the sigmoid function
(see Figure 10). Another particularity of this architecture is that the spatial dimensions of
convolution kernels and pooling windows are not of the same size, being instead adapted to the
characteristics of financial data.
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Figure 10: Time series CNN
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5.2 Other C back-end frameworks

We chose two open-source frameworks from the TinyML (Ray, 2022) domain that were developed
with nearly the same objectives as ACETONE.

Keras2C It is a framework to generate C code from Keras ML models. As explained
in Conlin et al (2021), the Keras2c back-end was developed to address real-time applications
and not to optimize the code for speed. In the generated C code the programming functions
describing the layers are generic and all the mutable data are passed in and out of each function
during the inference execution. Thus, in terms of timing analysis, Keras2c presents a downside
that is an overestimated WCET due to the inability of passing the context in which a function is
called when there are multiple occurrences of it. Also, because it has a strategy of declaring all
the parameters of layers as local variables initialized in the core of the function, using the stack,
Keras2c uses dynamic memory allocation when working with large neural networks. This
induces additional certification challenges in terms of verification and WCET analysis. Finally,
the current available version of Keras2c implements the convolution operation using the direct
algorithm, without any gemm-based optimization.

uTVM with static C runtime The work of Stahl (2021) consists of a patch to TVM
(Chen et al, 2018a), or more precisely uTVM, that relies on a static scheduling and static
memory allocation. Its goal is to replace the original graph executor logic that is not convenient
for resource-constrained devices. uTVM with static C runtime, or static uTVM subsequently,
uses the relay module produced by TVM and generates a dedicated C source code that calls the
generated operator implementations directly and which is able to execute the model statically.
By doing minor changes to static uTVM, we were able to proceed with a timing analysis of
the inference model and we could observe that the generated code when analysed with Otawa
is very similar to ACETONE code. The kernel sources generated by uTVM for bare-metal
targets do not apply blas libraries automatically, but some other optimizations are done mainly
at graph-level, such as layout optimizations, operators fusion and constant folding. When calling
TVM with external (blas) libraries static uTVM is unable to generate an entirely static code,
particularly in the functions of convolution layers.

5.3 Criteria of comparison

We have identified four comparison criteria to assess our results against the requirements presented
in Section 1 and the performance.

Criterion 1 (Semantics preservation evaluation) Let T = (T1, T2, ..., Tn) be the output
tensor provided by the training framework for a given input tensor I and T̃ = (T̃1, T̃2, ..., T̃n) be
the output tensor of the C code execution for the same input. We define the absolute error as

‖T̃ − T‖∞ = max0≤i≤n‖(T̃ − T )i‖
The first criterion concerns the semantics preservation of Objective 1, that is the ability

to reproduce on the target the result of the inference pass observed in the training tool. As
mentioned, we formally defined the semantics of DNNs in Section 2, we coded them in C
language, through ACETONE, and now we want to verify that training and deployment outputs
are close enough, i.e., verify that we correctly understood and implemented the DNN semantics
used in machine learning frameworks.

When comparing outputs of Python (training framework) and C (deployment framework)
programs, we expect differences related to floating-point arithmetic operations, including rounding,
truncation and accumulation errors added to the fact that computations are potentially done
in different orders in the two implementations. The gap observed when comparing both results
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should however lay in a sufficiently narrow range, which depends on the type of application the
inference model is used for. In this paper we do not provide numerical values for the accepted
range, as it is responsibility of the certification authorities. The norm of the criterion asserts a
maximum bound on the error observed when comparing both implementations for a given input
tensor and it is requested to be minimal, considering that the numerical floating-point precision
in decimal digits according to the IEEE-754 standard (IEEE, 2019) is ≈ 10−7 in single-precision
and ≈ 10−16 in double-precision.

Criterion 2 (Performance estimation) For a C code corresponding to one inference run,
we define the performance as the average observed time of 50 executions on the target, being
here an arm Cortex-A15 of the keystone (Texas Instruments, 2013).

Our optimizations were introduced to reduce as much as possible the measured execution
time. We take the average of only 50 iterations as the inference function is a deterministic
algorithm being executed on a bare-metal target, i.e., variations in execution times are very
limited. The minimum, maximum and standard deviation statistics presented in Table 3 support
our claim.

Criterion 3 (Worst-case execution time estimation) For a C code corresponding to one
inference run, the WCET estimation consists in providing a guaranteed upper bound of the
execution time of the program on a given target trough a static analysis.

In order to determine the WCET as required by Objective 3, we compile each C code for a
lpc2138 arm-based target, and compute its WCET with Otawa (Ballabriga et al, 2010).

We chose to use static WCET analysis as measurement-based methods may not guarantee
that the actual worst-case execution time of the studied software is found. To that end, we
selected the Otawa tool because it features an ample set of techniques in terms of analysis.
Otawa supports the arm instruction set but does not contain the micro-architecture model of
the arm Cortex-A15. Our experiments with Otawa do not deliver a WCET bound for this
target, hence we do not link WCET and performance (measured execution time) results. Such
a comparison would not allow us to determine how much of the discrepancy between WCET
bounds and measured execution time results comes from the code itself or from the accuracy of
the analyser.

Our goal here is not to measure the accuracy of the bounds provided by Otawa or to compare
them with those obtained by a commercial analyser, but to ensure that the code generated by
ACETONE is statically analysable and to compare the different variants of the generated code
with the code produced by state-of-the-art frameworks, by means of a single analysis tool that
provides a common basis for comparison.

Criterion 4 (Memory layout estimation) For a C code corresponding to one inference run,
the criterion requires detailing the organization of the executable’s contents in the different
memory segments.

Our objective here is to reduce the size of the compiled code in general with a particular
focus on stack usage.

6 Experiments

This section summarizes the results obtained following the evaluation and comparison methodology
presented in Section 5.

Semantics preservation. We use Criterion 1 to compute the maximal observed error over
1000 test inputs when the generated codes were executed on a x86 target. We experimented with
a consequent number of inputs to understand how the observed errors were related to the input
tensors numerical values. For ACETONE and for Keras2c, the reference training framework
was Keras and for static uTVM it was Tensorflow Lite.
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Table 2 illustrates the bounds of errors in semantics preservation both for single and double-precision
floating-point arithmetic. All the frameworks produce very similar results with maximum errors
of the order of 10−6 for all the benchmarks tested in single-precision floating-point. We were also
able to test ACETONE with double-precision, for which the semantics preservation assessment
indicated errors of the order of 10−15. As explained in Section 5.3, we now do not have a
numerical value for the maximum error tolerated to assure the semantics preservation but we
observe that only one significant digit is lost in both cases given the numerical floating-point
precision stated in the IEEE-754 standard (IEEE, 2019). The observed errors can be considered
acceptable seeing the number of calculations performed in the inference function and we conclude
that the semantics preservation is met by all methods.

Table 2: Results for the semantics preservation both in FP32 and FP64 precision.

Maximum error

Output tensor
range

FP32
(all)

FP64
(ACETONE only)

]− 1, 1[ ' 10−6 ' 10−15

Performance estimation. Addressing Criterion 2, we measured the inference time on an
arm Cortex-A15 (implementing the ARMv7 architecture) of the keystone. For all experiments,
caches were activated and we put data (.data and .BSS) and code (.text) sections in the DDR.
Another alternative would be to place all or some of those segments in the SRAM, which is
faster but has limited space (6MB against 2GB). We chose to place all the sections in DDR in
order to evaluate the performance of the generated inference code itself, avoiding the complexity
associated with the transfer of data between DDR and SRAM. We used the flag mfloat-abi=hard
in order to use the neon floating point unit of the processor. C codes were compiled without any
optimization level (-O0). Table 3 shows the results for the average (i.e., performance estimation),
minimum, maximum and standard deviation values for the measured execution times (MET)
for each benchmark.

We can observe a great improvement in the MET when applying a gemm-based convolution
algorithm in ACETONE. Furthermore, convolution with indirect gemm nt strategy is the
one that performs best, as besides eliminating the patch-building overhead it has an optimal
memory access pattern since input and weight tensors are accessed in the order they are laid
out in memory. Also, the optimizations on operators performed by static uTVM have a
greater influence on smaller models, like LeNet-5 and TimeSeries but they are outperformed
by gemm-based convolution on bigger models. Finally, Keras2c has the worst MET of all
benchmarks: we attribute that to the strategy of allocating weight tensors on the stack which
adds a memcpy overhead for each layer (copy the weights from text to stack segments).

The additional statistics on the measured execution times presented in Table 3 show that
there is little variation between successive tests, with small standard deviation values, meaning
that the measured execution times are close to the average of the 50 measures. Since we use
the same input for consecutive measurements, the exact same operations are performed every
time and small differences in execution times may be related to the initial state of the target
processor.

Worst-Case Execution Time estimation. To estimate WCET, according to Criterion
3, Otawa requires flow-fact information, that is information about the control flow: loop
bounds and addresses of targets for indirect function calls (function pointers). Obtaining this
information for our generated code was easy (and making this process automatic is part of future
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Table 3: Average, minimum, maximum, and standard deviation values for measured execution
times (50 executions) on an arm Cortex-A15 with -O0 flag.

MET [cycles]

Framework
Architecture

LeNet-5 CifarNet AudioNet TimeSeries

ACETONE
direct convolution

avg
min
max

std dev

12 703 056
12 702 928
12 704 161

182

242 876 559
242 875 774
242 877 227

199

594 530 189
594 033 534
595 796 878

144 771

1 904 968
1 904 564
1 918 758

1 386

ACETONE
standard gemm nn

avg
min
max

std dev

10 413 463
10 413 175
10 413 595

61

107 685 957
107 673 640
107 948 273

26 621

373 666 343
373 431 005
374 130 784

80 670

2 359 273
2 358 751
2 380 949

2 203

ACETONE
standard gemm nt

avg
min
max

std dev

7 846 088
7 845 879
7 847 155

213

86 432 662
86 429 874
86 623 575

19 188

293 342 053
293 028 691
293 806 837

62 906

1 623 689
1 623 437
1 636 555

1 298

ACETONE
indirect gemm nn

avg
min
max

std dev

10 170 036
10 169 742
10 189 748

2 027

101 310 891
101 302 717
101 622 125

31 354

339 604 963
339 429 572
340 121 039

84 270

1 883 804
1 883 416
1 888 056

654

ACETONE
indirect gemm nt

avg
min
max

std dev

7 693 964
7 693 575
7 694 248

73

77 525 969
77 524 834
77 530 350

663

268 068 119
267 927 035
268 654 573

95 841

1 153 821
1 153 807
1 154 085

34

static uTVM

avg
min
max

std dev

10 178 445
10 178 413
10 179 534

135

193 599 362
193 563 415
193 833 073

42 230

744 591 139
741 476 588
748 143 911

2 671 191

1 267 106
1 266 867
1 267 926

177

Keras2c

avg
min
max

std dev

25 767 758
25 767 366
25 768 707

216

642 390 830
642 345 451
643 387 595

144 170

1 542 805 783
1 525 852 550
1 545 161 133

1 925 150

5 360 812
5 360 386
5 378 789

1 823

work). For Keras2c and static uTVM, we had to first modify the generated code to analyse
only the inference code (as we did for our code), and to leave the initialization functions out of
the WCET.

Looking at Table 4, we observe that the design choices applied in the C code have a significant
impact on the WCET bound. This is not simply a matter of performance optimizations, but
also of the ability to provide precise flow-fact information to the analyser. We can observe that
the C code generated by Keras2c is highly penalized by the Otawa analysis. Indeed, since
it employs function pointers we are unable to provide contextual information about the layers
function calls. Otawa thus assumes that each call to a layer function is a call to the most
expensive layer of this type. Hence, the numerical results of this WCET analysis are excessively
pessimistic and inaccurate.

In ACETONE, the layers are implemented as a sequence of independent loops, and in static
uTVM as a sequence of separated instructions calling the layer functions. Consequently, Otawa
is able to benefit from the detailed flow-fact information for these versions.

The optimizations presented in this paper aimed to improve the performance (MET) of
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Table 4: WCET given by Otawa for the different frameworks.

WCET [cycles]

Framework
Architecture

LeNet-5 CifarNet AudioNet TimeSeries

ACETONE direct convolution 121 832 112 617 483 465 2 138 965 680 8 170 861
ACETONE standard gemm nn 110 725 811 403 192 446 1 403 775 479 6 703 008
ACETONE standard gemm nt 109 745 297 299 646 957 1 023 605 044 5 693 944
ACETONE indirect gemm nn 108 054 355 393 630 348 1 377 599 430 5 404 820
ACETONE indirect gemm nt 104 701 978 289 307 084 1 007 460 909 4 381 980

static uTVM 113 449 651 997 882 377 2 178 743 225 4 299 639
Keras2c 1 160 385 934 33 913 150 451 3 260 034 878 46 645 295 230

ACETONE generated programs in priority, essentially by making better use of the cache. We
can however note in Table 4 that the WCET bounds produced by Otawa were also reduced
with gemm-based convolutions compared to the direct convolution. This behaviour is consistent
as the MET indeed decreased and leads us to believe that Otawa was able to recognize in its
analysis the improved cache usage.

Memory layout of executable. Following Criterion 4 we analysed the memory layout
of the generated codes when compiled to arm Cortex-A15. For the sake of simplicity, we only
present the results obtained for the LeNet-5 model as the same trend is observed in all models.

Table 5: Memory layout of the executable generated for LeNet-5.

Size of memory segments [bytes]

Framework
Segment

stack .data .bss .text total

ACETONE direct convolution 3 424 2 792 27 960 494 732 528 908
ACETONE standard gemm 3 480 2 792 115 512 495 524 617 308
ACETONE indirect gemm 3 400 98 792 27 960 494 116 624 268

Keras2c 374 248 2 816 312 811 712 1 189 088
static uTVM 5 112 2 784 24 732 501 308 533 936

Table 5 shows how different the memory usage of the different frameworks is. We also note
the increase of memory usage when using gemm-based convolution. In the case of standard
gemm the extra space needed for the patches is allocated in the BSS segment since it is only
initialized during run time by the patch-building algorithm, contrarily, for indirect gemm the
buffer of pointer to patches is present in the initialized data segment.

Following the discussion of Section 3.3, we note that because Keras2c allocates all the
weight tensors inside the inference function code, its binary stack size is higher than for the
other frameworks. Moreover, weights shall also be present in the text segment, together with
its static C library. static uTVM also stores the model parameters as constants, which results
in a memory distribution very similar to ACETONE. The former however writes parameters
as byte arrays, which is not favourable for traceability requirements and uses the same memory
size as arrays of reals. Our stack usage measurement performed on the target is coherent with
the stack usage estimation given by gcc.

Keras2c aside, we conclude that ACETONE’s implementation of the direct convolution
algorithm has the best memory footprint but the poorest MET and WCET. Indeed, the different
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convolution strategies implemented in ACETONE allow a trade-off between optimizing for
either performance or code size.

7 Related Work

There are plenty of frameworks and techniques aiming to enable the deployment of neural
networks in resource-constrained embedded systems. However, most of them rely on an inference
engine that dynamically explores a computation graph. In this section we focus on works that
were built for or that can be adapted to the avionics domain.

7.1 Frameworks generating code or executable for DNN

Generic C code generator frameworks. The first work in this line (Chichin et al, 2020)
is guided by avionics constraints as well and, in order to provide an efficient implementation
of DNN inference models, the authors developed an automatic code generator that allows
preserving the semantics of the trained machine learning model. However, their work scope
was limited to fully-connected neural networks, with a particular focus on the definition of
efficient execution models on the target and only partially discusses the feasibility of WCET
analysis of feed-forward inference models.

The second is Keras2c (Conlin et al, 2021). This method consists in a library to convert
Keras models into real-time compatible C code, supporting a wide range of layers and relying
only on C standard library functions. Differently from this approach we aim to be agnostic of the
training framework in the accepted input for the code generation tool. In Section 5 we discussed
how Keras2c behaves from an avionics requirements perspective and in Section 6 we have
extensively compared our results with those of Keras2c. The study of Pearce et al (2020) also
investigates a predictable implementation of neural networks for safety-critical cyber-physical
systems. They embed the Keras2c code on Patmos, a time-predictable processor, which is part
of the larger T-CREST (Schoeberl et al, 2015) project. The software tool-chain of the latter
includes a LLVM-based compiler and the Platin tool for WCET analysis. We wish, however, to
rely on commercial off-the-shelf processors.

uTVM (ApacheTVM, 2021) is an extension of TVM, an optimizing compiler for machine
learning models, which provides an implementation of TVM for bare metal devices. The
objective of uTVM is to remove OS dependencies and abstractions, it does, however, still
depend on a graph parsing within a C runtime. The adaptation of uTVM with a static C
runtime (Stahl, 2021) has been extensively compared with our results in Section 6.

N2D2 (Sentieys et al, 2021) is an end-to-end framework from the creation of neural network
models downs to their implementation, and including the training. On the code generation side,
the authors explore how approximation techniques can improve the performance and energy
efficiency of hardware accelerators in machine learning applications. This framework supports
the import of ONNX models and can generate deployable solutions for different targets, including
plain C code and OpenCL optimized code for DSP and GPU. We will evaluate these tools as
future work to understand if the generated C code can be applied in our work scope.

LLVM front-end frameworks. TVM (Chen et al, 2018a) is a tool capable of compiling
machine learning models from different popular frameworks and generating specific low-level
optimized code for a diverse set of hardware back-ends. The workflow of TVM consists in
first translating the inference model imported from ML frameworks in a high-level intermediate
representation called Relay, performing a set of high-level and low-level optimizations and finally
generating code for different compiler back-ends, including LLVM. However TVM still relies on
a dynamic interpreter for the scheduling, which cannot be statically time-analysed.
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MLIR (Multi-Level Intermediate Representation Overview) (Lattner et al, 2021) is a LLVM
intermediate representation which was developed with the idea to use the same IR for all compiler
optimizations (hence the “Multi-Level”). It contains particular features that target machine
learning applications, in particular it is possible to represent computation graphs in MLIR.
MLIR can be instantiated into dialects that allow putting the focus on particular aspects of the
code, to specify constraints or apply specific optimizations. An example of MLIR dialect that is
particularly relevant to critical embedded applications, such as the ones we target, is described
in Pompougnac et al (2020): it enables the semantics of synchronous reactive applications
inside an MLIR description. Nonetheless, we chose to adhere to the industrial workflow and
thus generate C code for reasons of readability and traceability of the code.

7.2 Optimizations for convolutional layers

Optimizations exploiting algebraic structure of convolutions. The Fast Fourier
Transform (FFT)-based convolution proposed by Mathieu et al (2014), then implemented by
Chetlur et al (2014) and also used in Lin et al (2018) was proven to accelerate convolutions,
however it has a large memory overhead when weight tensors are much smaller than the input
tensor, because both tensors have to be mapped to the same size. Likewise, Cong and Xiao
(2014) proposed using the Strassen algorithm for fast matrix multiplication in order to reduce
the computational workload in convolutional layers. Indeed, the Strassen algorithm for matrix
multiplication performs seven multiplications instead of eight, but many extra additions are
required and extra memory to store the intermediate matrices is also needed. In the work of
Lavin and Gray (2016) as well as in Park et al (2016), the authors propose speeding CNNs using
Winograd’s minimal filtering algorithms, which performs well for small convolutional kernels
and in particular on GPU. In this work we preferred leveraging gemm-based convolutions as we
wanted first to improve convolution performance relying on a rather generic algorithm, that is
not tightly dependent on convolution parameters or on the deployment hardware.

Graph-level optimizations. Graph-level optimizations aim at optimizing the computation
graph of neural networks and in particular the nodes, or operators, seen as the smallest components
of the computational graph. It contrasts with operation-level optimization, where the implementation
of the mathematical functions themselves are targeted. Chen et al (2018a) proposes a joint
operation- and graph-level optimization process to optimize end-to-end the inference model
and that aims to be framework-agnostic. Their work consists of an initial high-level dataflow
rewriting to generate an optimized graph and then a ML- based model finds operator-level code
optimizations for a given hardware target. Common optimizations at graph level include data
layout transformations and operator fusions. Liu et al (2018) extends Chen et al (2018a) with
new operation-level optimizations on ARM CPUs for convolutions. Jia et al (2019) introduces
a method to automatically generate equivalent graph substitutions and formally verifies their
compatibility with the original graph. Furthermore, graph and data layout transformations are
treated as a joint optimization problem, exposing more optimization possibilities. Graph-level
optimizations alone don’t impact the semantics preservation and can be performed ahead of
ACETONE code generation, being complementary to our approach.

Target-dependent optimizations. Additionally, Zhang et al (2018), Amiri and Shahbahrami
(2017), Pujol et al (2022) have proposed methods for improving both direct and gemm-based
convolutions using vector extensions and thus requiring processor-specific layouts. The authors
of Chen et al (2018b) and also Zheng et al (2020) go further and present a method for improving
the performance of convolution layers based on autotuning. It relies on a search-based approach
that looks for loop transformations in a hierarchical search space constructed for a given computational
graph. Recently, Tollenaere et al (2022) showed that it was possible to reduce the complexity
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of these works by using only a random sampling of candidates, it prunes the search space while
increasing the density of efficient implementations. We plan on studying the aforementioned
hardware-dependent strategies as future work.

Optimizations through model compression. Other strategies propose reducing the
complexity of DNNs through quantization, such as in Gong et al (2014), approximation or
pruning within convolutional layers, like in Han et al (2016). These approaches don’t preserve
the semantics of the model, if only performed during inference (post-training), and are thus
considered out of the scope of our work. We highlight, however, that the methodology presented
in this paper can be easily adapted to support compressed inference models: once the semantics
of compressed models is defined, we can generate a compliant C code and perform the same
experiments described in Section 5 with adapted use cases. It is indeed part of future work
objectives. In particular, for quantized models, both inference with integer-only quantization
and inference with simulated quantization can be considered (Gholami et al, 2021). In the first
case, minimal changes would be required in the framework to support operations in low-precision
arithmetic while in the latter case additional steps would be required to dequantize model
parameters, perform computations in floating-point arithmetic then requantize results. Neither
severely alter the presented workflow.

8 Conclusions

Machine learning applications are widely used in many domains, however, most of them are
not built with focus on avionics constraints or more generally on resource-constrained devices
operating under real-time constraints. In previous work we introduced ACETONE, a framework
capable of automatically generating functionally equivalent and time-predictable C code from
feed-forward neural networks. In this work, we presented an extension of ACETONE to
implement a new memory layout and include gemm-based convolution algorithms, targeting
performance improvement. We evaluated these new optimizations and compared them to the
previous version of ACETONE and with the state of the art of C code generators for machine
learning models. We proved them to be superior to Keras2c and comparable to static uTVM
for the evaluated criteria. The different implementations for the convolution operator allow
trading memory footprint versus performance objectives.

As future work, we plan on improving inference code from ACETONE even more. In
particular, we intent to enable the use of loop tiling strategies to optimize matrix-vector and
matrix-matrix multiplications. Indeed, loop tiling allows working with tailored smaller tensors
which can make a better use of the cache memory and also exposes different parallelization
combinations (Goto and Geijn, 2008). To that end, we will explore different existing methods
for determining optimal blocking sizes, such as autotuning (Whaley et al, 2001) and analytical
approaches (Low et al, 2016). Additionally, we aim to study the use of vector extensions to
further exploit hardware capabilities when performing the different layer’s functions, as was
done in Zhang et al (2018) and also in Pujol et al (2022).
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