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Jacques Monod, Université Paris Cité, CNRS, 15, rue Hélène Brion, F-75013, Paris, France
∗Corresponding authors: kathrin.marheineke@ijm.fr, arach.goldar@cea.fr

FOR PUBLISHER ONLY Received on Date Month Year; revised on Date Month Year; accepted on Date Month Year

Abstract

Large vertebrate genomes duplicate by activating tens of thousands of DNA replication origins, irregularly spaced along
the genome. The spatial and temporal regulation of the replication process is not yet fully understood. To investigate
the DNA replication dynamics, we developed a methodology called RepliCorr, which uses the spatial correlation between
replication patterns observed on stretched single-molecule DNA obtained by either DNA combing or high-throughput
optical mapping. The analysis revealed two independent spatiotemporal processes that regulate the replication dynamics
in the Xenopus model system. These mechanisms are referred to as a fast and a slow replication mode, differing by their
opposite replication fork speed and rate of origin firing. We found that Polo-like kinase 1 (Plk1) depletion abolished the
spatial separation of these two replication modes. In contrast, neither replication checkpoint inhibition nor Rif1 depletion
affected the distribution of these replication patterns. These results suggest that Plk1 plays an essential role in the local
coordination of the spatial replication program and the initiation-elongation coupling along the chromosomes in Xenopus,
ensuring the timely completion of the S phase.
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Introduction

The faithful duplication of the genome is an essential and

challenging event for all cells because it must robustly ensure

efficient proliferation while maintaining genome stability.

DNA replication starts from sites called replication origins;

tens of thousands of origins are activated according to a

regulated spatial and temporal program in each vertebrate

cell to duplicate the chromosomes in a limited time window

during the cell cycle. To better understand this process,

the quantitative characterization of the highly heterogeneous

replication dynamics constitutes an important step. Single

DNA molecule data revealed that replication origins are

spatially organized into clusters of two to ten that fire

nearly synchronously at different times during the S phase

in mammalian cultured cells and in Xenopus [1, 2, 3, 4, 5].

The Xenopus in vitro system recapitulates many aspects

of cellular DNA replication. Replication-competent Xenopus

egg extracts contain abundant maternal proteins and mimic

the first rapid embryonic cell cycle when sperm nuclei are

used as DNA templates [6]. We and others have shown

that in this system replication initiates at 5 -15 kb intervals

[7, 3, 4] and that the number of activated origins per time

unit per length unit of unreplicated DNA, known as the

initiation rate, increases to reach a maximum during the

mid-late S phase before declining at the end of the S phase

[8]. This bell-shaped curve of the initiation rate was found

to be universal for the DNA replication kinetics from yeast

to humans despite differences in origin specification and S

phase length [9, 10]. The replication kinetics are considered

to emerge from stochastic initiation in all eukaryotes [11, 12].

In Xenopus, we recently showed by numerical simulations

that the genome could be segmented into regions of high and

low probabilities of origin firing [13], similar to early and

late replication timing domains in other model systems. This

and other common DNA replication models assume that the

replication fork speed is constant [9, 14]. However, single-

molecule methods revealed that the fork speed is heterogeneous
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in mammalian cells [1, 15], Xenopus [5] and S. cerevisiae

[16]. To ensure timely S phase completion, the fork speed

and initiation rate are coordinated to compensate for varying

replicon sizes or fork stalling. Several studies in mammalian

cells, Xenopus, and budding yeast have shown that artificial

fork slowing or stalling leads to the activation of dormant

origins [17, 18, 19]. On the other side, decreasing initiation can

lead to an increase in the fork speed [20, 21, 22, 23]. A similar

fork speed and initiation rate coupling has been reported in

early mouse embryos [24]. Fork speed and inter-origin distances

(IODs) are very low in 2-cell embryos but increase progressively

and coordinately during later developmental stages. However,

the mechanism(s) underlying this correlation remains unclear.

More than fifty protein factors spatially and temporally

regulate the coordinated activation of replication origins. Two

S-phase-specific kinases, cyclin-dependent kinases (CDK) and

Dbf4-dependent kinases (DDK), are necessary at different steps

for licensing and activating replication origins [25]. They are

counteracted by two independent pathways to regulate the

spatiotemporal program negatively. The ATR/Chk1-dependent

replication checkpoint pathway inhibits the activation of late

replication origins in yeasts [26, 27, 28], Xenopus [5, 29, 30, 31],

and mammalian cells [32, 33], by targeting CDK and DDK

kinases. On the other hand, the replication timing regulator

Rap1-interacting factor (Rif1) has been shown to inhibit late

replication in yeast [34, 35], mice [36], and human cell culture

lines [37] at the level of large chromatin domains. In Xenopus,

the depletion of Rif1 accelerates the replication program by

accelerating origin cluster activation and increasing replication

foci number [38]. Rif1 opposes replicative helicase activation by

counteracting DDK-mediated MCM2-7 activation [39, 40, 41].

Finally, Polo-like kinase 1 (Plk1), mainly known to regulate

mitosis, checkpoint recovery, and adaptation [42], is also

a positive regulator of the replication program. During the

S phase, Plk1 increases DNA synthesis in mammalian cells

by promoting pre-replication complex loading or maintenance

[43, 44]. It also promotes origin activation in the Xenopus

in vitro system by inhibiting the replication checkpoint and

Rif1 [45, 46, 47]. However, the role of these three regulatory

pathways in the spatial organization of the replication process

is poorly understood.

To address this question, we developed a powerful and robust

analysis approach named RepliCorr, which facilitates the

quantitative characterization of replication patterns measured

on stretched DNA molecules during DNA combing and high-

throughput optical mapping experiments. RepliCorr revealed

two spatially and temporally separated replication processes

in the Xenopus in vitro system. The first process shows a

fast replication fork speed coupled with a low initiation rate,

whereas the second process shows a slow replication fork speed

associated with a high initiation rate. We used RepliCorr to

analyze experiments in which three regulatory pathways were

disrupted [31, 47, 38]. Chk1 inhibition or over-expression and

Rif1 depletion did not affect the organization of these two

processes. However, the depletion of Polo-like kinase 1 canceled

out this dynamic separation. These results strongly suggest that

Plk1 regulates the spatial replication program and the coupling

between initiation and elongation in early Xenopus embryos to

ensure the timely completion of the S phase.

Methods and Materials

DNA combing experiments in the Xenopus in vitro
system and data analysis
DNA combing data were chosen from experiments during a

control S phase and after Plk1 depletion [47], Rif1 depletion [38]

or after Chk1 inhibition by UCN-01 and Chk1 overexpression

[31]. Detailed experimental conditions and primary analysis are

described in the respective publications. Briefly, sperm nuclei

(2000 nuclei/µl) were replicated in egg extracts in the presence

of biotin-dUTP naturally synchronously; genomic DNA was

isolated at different times during the S phase and stretched

on silanized coverslips. After immunolabelling, images were

captured using a fluorescence microscope, and replication

eyes were defined as the incorporation tracks of biotin-dUTP

on DNA molecules. Each molecule was measured using Fiji

software [48] and compiled using macros in Microsoft Excel.

The replicated fraction f of each fiber was calculated as the sum

of eye lengths (red tracks, Streptavidin AlexaFluor594) divided

by the total DNA length (green track, anti-DNA antibody,

AlexaFluor488). The initiation rate was calculated as follows:

I(f) =
N

L(1 − f)∆t
(1)

where N represents the number of new initiations defined as

replication eyes smaller than 3 kb, L is the length of the fiber,

f is the replicated fraction of the DNA molecule, and ∆t = 180s

is the time interval in which a detectable initiation event can

occur, considering that the average replication fork speed in the

Xenopus in vitro system is ∼ 0.5kb/min [5]. After identifying

replicated and unreplicated tracks on each DNA molecule, we

constructed a binary signal where ”1” and ”0” were assigned

to replicated and un-replicated units, respectively. To obtain

the autocorrelation function of the fluorescence intensity profile

of each molecule, we used the unbiased estimate of the cross-

correlation (xcorr) function in Matlab (vR2013a):

C(r) =


1

n − |r|

N−r−1∑
n=0

xn+rxn, if r > 0,

C(−r), if r < 0.

(2)

where xn corresponds to the binarized signal at the position

n. DNA molecules > 80kb were selected and ordered by

the replicated fraction and grouped in bins of different sizes

depending on the sample. Bins were f1 = 0 − 0.11, f2 =

0.11−0.21, f3 = 0.21−0.32, f4 = 0.32−0.42 , f5 = 0.42−0.54,

f6 = 0.54 − 0.64, f7 = 0.64 − 0.75. The averaged initiation

rate and correlation function were calculated and plotted as a

function of the averaged replicated fraction for the molecules in

the bins.

HOMARD data analysis
Images of replicating DNA molecules from sperm nuclei in egg

extracts were obtained by HOMARD (High-throughput Optical

Mapping of Replicating DNA) using the nanochannel array

Irys® system (BionanoGenomics) as described [49] using the

same fluorescent labeling strategy as in OMAR [50]. In total,

100 580 fibers from nuclei stopped in the early S phase (35 min),

and 47 915 fibers from nuclei stopped in the late S phase (120

min). The fibers were visualized in blue for total DNA (Yoyo-

1) and red for replicating tracks after directly incorporating

AlexaFluor 647 aha-dUTP. Images were corrected for chromatic

focal aberration to superimpose the blue and red channels
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exactly. The replicating signal detected along each stained

DNA molecule was binarized using a standard thresholding

method. The replication fraction f of each fiber was defined

as the average of its binary signal. The correlation between

fiber profiles was performed on the binary signal.

Monte Carlo simulation of DNA replication process
A Monte Carlo method was used to simulate the DNA

replication, as previously defined in [8]. In the simulation 100

DNA molecules were reproduced as a one-dimensional array

of 150 blocks with a value 1 for replicated DNA and 0 for

unreplicated DNA. Each block was considered as 1kb. At each

step, the origins to activate were selected depending on the

probability of initiation P (t). Initiation was allowed only in the

unreplicated fraction of the simulated fibers. At each step, to

reproduce DNA elongation, forks move by one block. For each

simulation, a constant speed was fixed as v = Nkb/min. Then,

the interval between two consecutive steps of the simulation was

defined by the time necessary to replicate one block by a single

fork and was set equal to 1/v. As in the KJMA models, the

critical nucleus size (above which nuclei grow but below which

they dissolve) is considered infinitesimal, the activation of an

origin at a given position does not induce the conversion of the

block value from 0 to 1. The initiation will be visible only at

the following step due to the elongation.

Model of the autocorrelation function of fluorescence
profiles of replicated DNA molecules
We considered that the dynamics of DNA replication along the

genome are analogous to the one-dimensional nucleation and

growth process, as previously described [51, 52, 53]. The rate

of origin firing per time unit and length of unreplicated DNA is

temporally scale-free [53]. We then assumed this explicit form

for the initiation frequency as a function of time: I(t) = I0t
α,

with I0 ≥ 0 and α ≥ 0. This expression is a good approximation

for the increasing region of the initiation frequency, to which

we restricted the analysis. By considering the work of Sekimoto

[54], the replicated fraction of a molecule as a function of time

t was expressed as:

f(t) =1 − exp

(
− 2vI0

∫ t

0

dt
′
(t

′
)
α
(t − t

′
)

)

=1 − exp

(
−

2vI0t
α+2

(α + 1)(α + 2)

) (3)

The autocorrelation function of two points separated by a

distance r at a certain time t was expressed as:

C(r, t) =1 − 2ϕ(t) + ϕ(t)
2
exp

(
I0

∫ t−r/2v

0

dt
′
(t

′
)
α
[2v(t − t

′
) − r]

)

=1 − 2ϕ(t) + ϕ(t)
2
exp

(
2vI0t

α+2

(α + 1)(α + 2)

(
1 −

r

2vt

)α+2)
(4)

where v is replication fork speed and ϕ(t) = 1 − f(t) is the

unreplicated fraction of a fiber. Eq. (4) is valid for r < lmax =

2vt, where lmax represents the maximum replication eye length

present at time t. Calculations are detailed in Supplementary

Methods.

Parameters optimization
The replication parameters v, I0 and α of the model were

estimated given the experimental frequency of initiation I(f)

Table 1. Lower and upper bounds of the fit variables.

Variable Lower bound Upper bound

v 1e-10 10

I0 1e-15 1

α 0 5

as a function of the replicated fraction f and the correlation

function C(r, f) for different replicated fractions f as a function

of r. The time was obtained from the analytical inversion of the

Eq. (3) as t = f−1(v, I0, α). We used the genetic optimization

algorithm on the Matlab platform (vR2012a) for parameter

optimization. The fitness function was defined as the reduced

χ2. In the genetic algorithm, we used ten subpopulations of

10 individuals with a migration fraction of 0.1 and a migration

interval of fifty steps. Each individual defined a set of variables

for the fit, and the subpopulation variables were chosen within

the bounds reported in Table 1. At each generation, one elite

child was selected for the next generation. The rest of the

population comprised 60% of children obtained after a scattered

crossover between two individuals chosen by roulette wheel

selection and 40% of children obtained by uniform mutation.

The genetic algorithm was stopped after 3000 generations or if

the fitness function attained a value of 0.5.

Principal component analysis and agglomerative
hierarchical clustering
DNA molecules > 80kb in length were ordered by the replicated

fraction and grouped in bins of different sizes depending on the

sample. A matrix was obtained for each replicated fraction bin:

each row represented the correlation function of one molecule in

the bin; each column represented the value of all the correlation

functions for a specific distance r. We considered r in the

interval 0 to 25 kb. To reduce the dimensionality of the dataset,

we performed principal component analysis on the matrix

of the correlation functions with the princomp function in

Matlab. We then used agglomerative hierarchical clustering to

group the correlation functions according to different numbers

of clusters and the silhouette values as clustering evaluation

criteria. More precisely, the pairwise distance between pairs

of correlation functions in a given bin was calculated as

one minus the correlation coefficient between the two curves

(pdist function with correlation distance matrix) to obtain a

’distance vector’. An agglomerative hierarchical cluster tree

was created using a weighted average distance (WPGMA)

linkage method (linkage function). Finally, we used the cluster

function to cut the hierarchical tree into two to five clusters.

For each configuration, the clustering solution was evaluated

by calculating the average silhouette values of each data point.

The silhouette value for each point was obtained as follows:

Si =
(bi − ai)

max(ai, bi)
(5)

where ai is the average distance from the i-th point to the

other points in the same cluster, and bi is the minimum average

distance from the i-th point to points in a different cluster,

minimized over clusters. The distance was calculated as one

minus the correlation coefficient between points. The silhouette

value for a point in a cluster measures how it is similar to other

points in its cluster compared to points in different clusters and

ranges from -1 to +1.
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Results

Application of the auto-correlation function to
replication patterns of single DNA molecules
To investigate the replication dynamics at the single molecule

level, we used DNA combing data for the unperturbed S phase

in the Xenopus in vitro system (Figure 1A) [47]. Next, the

characteristics of observed replication patterns were obtained

by filtering each DNA molecule using an auto-correlation

function (Figure 1B), as described in the Methods. Auto-

correlation filtering quantifies the spatial regularity of the

observed pattern and extracts a characteristic length over which

a particular signal feature holds. This widely used filtering

has been successfully applied, for example, to analyze the

nucleosome positioning patterns [55]. Here, we developed a

new method to analyze the fluorescent signals from combed

DNA molecules based on the KJMA model, which is detailed

in the Methods and Supplementary Methods. We obtained an

analytical expression for the autocorrelation (Eq. 4). Applying

this method to analyze the replication pattern of a single

DNA molecule allowed us to extract the regularity of the

replicated tracks and the average correlation distance d over

which the replication signal holds. First, to check the general

feasibility of this approach, we applied the autocorrelation

function to a simulated data set of replicated DNA molecules,

as detailed in Methods. In this data set, we used constant values

for initiation rate and fork speed and sorted the simulated

replicated DNA fibers with respect to their replication fraction

into seven non-overlapping bins. We then calculated each

molecule’s auto-correlation profile C(r, f) as a function of the

lag distances r and their average replication fraction, f (Figure

1C, blue). A good fit of the simulated data was obtained

with the analytical expression of Eq. 4 (red), giving correct

parameters (Supplementary Table S1). As expected by the

formula, we found that at 0% replication, the C(r, f) was 0,

whereas C(r, f) tended towards 1 as replication approached

100%. The maximal correlation value of each bin corresponds

to the average replicated fraction of each bin. The slope

for small lag distances r is given by the exponential decay

constant 1/2vt in the expression of the correlation function

(Eq. 4). With increasing time or replicated fractions, the slope

becomes shallower. Indeed, as the replication progresses, the

average replicated track size increases. Hence, at short lag

distances (r ≤ 2vt), C(r, f) highlights processes regulating

DNA elongation. At long lag distances (r ≥ 2vt), C(r, f)

reflects the distribution of activated replication origins on each

DNA molecule.

We then applied this method to experimental data

from three independent DNA combing experiments from the

unperturbed S phase. We sorted the experimental replicated

DNA molecules with respect to their replicated fraction into

seven non-overlapping bins (see Methods for values). We

then calculated for each DNA molecule the auto-correlation

profile C(r, f) as a function of the lag distances r and their

average replication fraction, f , (Figure 1D) and compared the

experimental C(r, f) profiles to the simulated C(r, f) profiles

(Figure 1C). As expected, as the replication degree of each bin

increased, the slope of the averaged auto-correlation function

C(r, f) became shallower for r ≤ 2vt. However, after the

replication reached 40%, the slope of C(r, f) became sharper

in the experimental profiles, whereas the slope in the simulated

profiles became flatter. In addition, the fit of the experimental

data with the correlation expression (red) did not reproduce the

experimental profiles (blue), as it did in Figure 1C. To better

visualize the slope change, we calculated a correlation distance

d for the experimental data, showing a decrease at around

40% replication (Figure 1E). We interpret this transition as

a change in the process regulating replication during the S

phase. Altogether, these results suggest that a single process

may not regulate the replication process but that two or

more independent processes may be necessary to explain the

experimental profiles.

The replication process results from a combination of
two spatially separated fast and slow processes
To investigate this transition further, it is necessary to

understand how to link the auto-correlation profiles of each

fiber to the replication process that generates the observed

replication patterns. To this aim, we assumed that our set of

replicated molecules contains all the patterns the replication

process can produce at a given replication fraction. Next, we

calculated the correlation coefficient matrices between auto-

correlation profiles for each replication bin to investigate the

distribution of single-molecule auto-correlation profiles along

the normal S phase (Figure 2A). Each row and column

represents the similarity s = 1−pair-wise correlation coefficient

between the auto-correlation profile of one molecule and other

molecules in the bin. These matrices of s confirm that the

replication patterns are heterogeneous as scores vary [47].

Further, a closer inspection of the similarity matrices shows

that their texture is granular, and lines of colors correspond

to subgroups of DNA molecules with high s scores. This

observation suggests that molecules can be clustered into

subgroups of similar auto-correlation profiles. To determine

how molecules should be grouped, we reduced the dimension

of the s matrix using a Principal Component Analysis (PCA).

PCA revealed that only two independent linear combinations

between scores were enough to describe more than 85% of

the observed variability in measured s scores (Figure 2B,

Supplementary Figure S1). As the replication pattern of a

molecule is produced by a stochastic process [11], using

Kosambi-Karhunen-Loève theorem [56], we concluded that only

two independent stochastic processes are enough to describe

the diversity of observed auto-correlation profiles. Next, we

compared the averaged C(r, f) of the two independent clusters

at different replicated fractions, f. Interestingly, while for 0 ≤
f ≤ 0.5, molecules with long correlation distances predominate

in the population, an inversion occurred for 0.5 ≤ f ≤ 0.6 when

molecules with short correlation distances became predominant

(Figure 2C, Supplementary Figure S2). We conclude that the

replication dynamics can be represented as the superposition

of two independent stochastic processes. While these processes

act concomitantly during the S phase, their individual effects

on the replication pattern switch: we found that at low f ,

the process producing long correlation distances predominates

over the process producing short correlation distances. This

tendency is reversed at higher replicated fractions. Next,

following the KJMA framework [52], we constructed a tractable

mathematical model where the replication of a locus is induced

by the simultaneous action of two independent processes (for

more details, see Supplementary Methods). Each process is

characterized by two parameters: the replication fork speed

v (kb min−1) and the rate of replication origin activation

I(t) = I0t
α (kb−1 min−1) per unit time per length of

unreplicated DNA. Therefore, each process is characterized by

three parameters v, I0, α. Next, using this model, we expressed

the auto-correlation profile C(r, f) of a molecule with a degree
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Figure 1. Filtering of replication patterns of single DNA molecules from DNA combing experiments during unperturbed S phase by

an auto-correlation function C(r, f). (A) Workflow of DNA combing experiments in the Xenopus in vitro system. Sperm nuclei were incubated in egg

extract in the presence of biotin-dUTP; replication reactions were stopped at different times during the unperturbed, naturally synchronous S phase;

DNA was purified and stretched onto coverslips. Replicated tracks on single DNA fibers were revealed by fluorescence microscopy after immunolabelling

(replication eyes (red), DNA molecule (green)). (B) Auto-correlation function C(r) measures the spatial regularity of replication patterns of a DNA

molecule and its shifted copies as a function of the lag distance r. (C) C(r, f) profile for a simulated data set (mean with error, blue) for constant I(f)

(0.03 kb−1 min−1) and constant v (1 kb/min) and fit (red) with one process at different bins of replicated fractions f. (D) Mean C(r, f) profiles (blue,

with standard deviation) for three independent control DNA combing experiment at different bins of replicated fractions f and fit with one process using

the KJMA model (red). (E) Variation of the correlation distance, d, with replication fraction. Calling Cb(f), the baseline of C(r, f), d for each f is

defined as C(d, f) = 1/2(C(0, f) − Cb(f)). The open circles are experimental data, and the black curve is a 4th-order polynomial smoothing of data

used to guide eyes.

of replication f as C(r, f) = Θ(f)C1(r, f)+(1−Θ(f))∗C2(r, f),

where Θ(f) is the mixing parameter between process 1 and

2 (0 ≤ Θ(f) ≤ 1). If they act alone, processes one and two

create correlation profiles C1(r, f) and C2(r, f), respectively.

After sorting fibers according to f and distributing them into

seven bins, we modeled the averaged auto-correlation profile of

each bin using the calculated C(r, f) (Figure 3A). For replicated

fractions ≤ 0.4, the experimental correlation profiles were well

reproduced by process 1 (green curve). In contrast, the average

C(r, f) was predicted by process 2 (black curve) at higher

replicated fractions. Fork velocity (v) and the initiation rate

changed in opposite ways (Supplementary Table S2): process 1,

named the ”fast” process, had a fast v and a low initiation

rate, and conversely, process 2, called ”slow”, had a slow

v and high initiation rate. More precisely, the slow process

presents a nearly 6-fold lower fork speed but an 8-fold higher
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Figure 2. Hierarchical classification of DNA molecule’s

replication patterns. (A) Similarity matrix between molecule’s C(r)

for different replication fractions f. The similarity is measured as the s =

1 − pair-wise correlation coefficient. The color map represents the values

of s for two perfectly similar C(r), s=0 (black), and for two completely

different C(r), (dark red). (B) Pareto chart of the percent variability

explained by each principal component. Each chart corresponds to a

different interval of replicated fractions from 0 to 75%; the average

replicated fraction is reported on top. In each chart, the bars represent

the percentage of variance described by the relative principal component

in descending order. The blue line represents the cumulative total.

(C) Mean C(r, f) profiles (with standard deviation) for molecules are

hierarchically classified into two similarity classes. The C(r, f) of the

category containing the smaller number of molecules is in red, and the

C(r, f) of the category containing the larger number of molecules is in

blue. Slow decaying C(r, f) corresponds to the category with a larger

correlation distance. Error bars are standard deviations.

initiation strength I0 than the fast process. To quantitatively

model C(r, f), we introduced the mixing parameter Θ(f) (inset

in Figure 3A) that acts as an external clock regulating the

transition between the fast and slow process during the S phase.

This suggests that an unknown replication-independent switch

triggers the change of the replication dynamics in the cell. To

further control for the necessity of two independent processes

with different parameters, we also fitted the auto-correlation

profiles and I(f) from the experimental data by considering

two processes with either two different fork speeds and the

same initiation rate or the same fork speed and two different

initiation rates (Supplementary Figure S3 A, B). In the first

case, we could not fit very well the initiation rate and the

time to replicate was too long to be compatible with the S

phase length in this experimental system; in the second case, we

could fit the initiation rate, but the time needed to replicate the

fibers was again too high (Supplementary Table S2). Next, to

investigate the distribution of DNA molecules between the two

processes, we calculated the correlation coefficient, ρ, between

the auto-correlation profile of each molecule C1(r, f) and

C2(r, f) at a given replicated fraction. We defined the similarity

distance as s = 1−ρ. To visualize this distribution, we reported

the similarity distance values for each fiber to the slow and fast

process on a two-dimensional graph where the x-axis represents

the distance from the fast process, and the y-axis represents the

distance from the slow process (Figure 3B). Since small s values

indicate similarity to each process, points closer to the y-axis

represent fibers from the fast process, and points closer to the

x-axis represent points from the slow process. Interestingly, the

data points are distributed vertically or horizontally, with few

points around the diagonal. This suggests that the replication

pattern of the majority of molecules is described exclusively

either by the fast or the slow process alone. As the correlation

distance is proportional to the fork velocity (see Supplementary

methods), the fast process produces longer replicated tracks

than the slow process for the same S phase length (Figure

3C). Thus, this single-molecule analysis method, which we call

RepliCorr, unveils the spatial heterogeneity of fork speed and

initiation rate along the genome.

To verify whether the low-throughput of the DNA combing

experiments (about 1000 fibers per condition and experiment)

was sufficient for RepliCorr analysis, we analyzed unpublished

high-throughput data (150 000 fibers), obtained by optical

mapping of replicating Xenopus sperm DNA (HOMARD) in

the Xenopus in vitro system [50] (Figure 4A, B). As for combed

molecules, we modeled the auto-correlation profile of each

molecule using C(r, f) = Θ(f)C1(r, f) + (1 − Θ(f)) ∗ C2(r, f).

We calculated the distance between the experimentally defined

auto-correlation profile of the fiber and the slow and fast

process (Figure 4C). Due to the high-throughput of the optical

mapping experiment, we could apply RepliCorr analysis to the

early (35 min) and the late (120 min) time points separately.

As observed with the DNA combing, the data points were

distributed vertically or horizontally, with few points around

the diagonal direction for the early time point (blue points).

However, late S phase patterns are distributed only along the

axis of the slow process. This suggests that while both slow and

fast processes coexisted in distinct genome regions in the early S

phase, the slow process was nearly exclusive in the late S phase.

Therefore, the low-throughput in DNA combing experiments

neither influenced the outcome of the RepliCorr analysis nor the

distribution of similarity distances along the graph representing

the slow and fast processes. In addition, the high-throughput

of the HOMARD analysis allowed us to visualize the temporal

separation of these processes along the S phase. We conclude

that DNA combing and HOMARD experiments show a clear

spatial separation between the fast and the slow processes, as

fibers are not distributed on the diagonal.
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Figure 3. Categorization of DNA molecule’s replication patterns into two dynamical processes by RepliCorr. (A) Fit (red curve) of

mean C(r, f) profile (blue curve, with standard deviation from three independent experiments) for each replication fraction bin calculated as C(r, f) =

Θ(f)C1(r, f)+ (1−Θ(f)) ∗C2(r, f). The green curve is the correlation profile produced by the fast fork process (C1(r,f), model 1), and the black curve

is the correlation profile produced by the slow fork process (C2(r, f), model 2). The error bars are standard deviations. The inset is the Θ(f) profile. (B)

Normalized correlation coefficients (ρ1, ρ2) between the molecule’s C(r, f) and C1(r, f) and C2(r, f) were calculated. The similarity distance between

the molecule and each process was defined as 1-ρ1 for the fast process 1 and 1-ρ2 for the slow process and represented on a two orthogonal axis plot.

The red diagonal represents points of equal similarity to the two processes. Points above the diagonal are more similar to the fast process and points

below are more similar to the slow process. (C) Sample of replicating pattern in the fast and slow process in the same replicated fraction f=0.48. The

red signal is the replicative signal, and the green is the underlying DNA molecule.

Depletion of Polo-like kinase 1 reduces the spatial
heterogeneity of the replication profiles
To identify molecular determinants involved in the spatial

separation between the fast and slow process during the S

phase, we used RepliCorr to analyze DNA combing data after

inhibition or depletion of different known regulators of DNA

replication (Figure 5A, Supplementary Figure S4). The ATR-

Chk1 dependent intra-S checkpoint pathway inhibits origin

firing at the level of replication clusters in Xenopus [5, 31].

Inhibition of the checkpoint effector kinase Chk1 by UCN-

01 or Chk1 over-expression did not alter the partition of

replicating DNA molecules into two separate classes (Figure

5B, C, Supplementary Figure S5 A-B). Another important

negative regulator of the replication program in Xenopus is

Rif1 [38]. However, using RepliCorr, we found that after Rif1

depletion, the separation of molecules into the two classes

was maintained (Figure 5D, Supplementary Figure S5C). Still,

slightly more data points were found around the diagonal,

especially in higher replicated fraction bins compared to

checkpoint-inhibited conditions. This suggests that the spatial

heterogeneity of patterns is only slightly reduced after Rif1

depletion. We recently found that depletion of Polo-like kinase

1 inhibited DNA synthesis via inhibition of origin activation

during normal S phase in Xenopus, whereas the add-back of

recombinant Plk1 rescued DNA replication [46, 47]. Applying

RepliCorr to replication patterns after Plk1 depletion showed

a dramatic change in the replication pattern partition (Figure

5E), compared to the control (Figure 3B). The long and short

replicated tracks were no longer spatially and temporarily

separated but coexisted on molecules with a high degree of

replication. Interestingly, from the fits of the two independent

processes of the correlation function and their individual

parameter values (Supplementary Figure S6 A, Supplementary

Table S3), we noticed that after Plk1 depletion, the parameters

of the slow process tended toward those of the fast process,

thus resulting in a spatially more homogeneous replication

process. The rate of origin firing decreased for the slow but not

the fast process, suggesting that Plk1 mainly promotes origin

activation in the genomic regions governed by the slow process.

Chk1 inhibition or Rif1 depletion also exclusively affected the

initiation rate of the slow process but to a much lesser extent

than Plk1 depletion. We conclude that Plk1 depletion has the
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Figure 4. Replicorr analysis of the high-throughput optical mapping replication (HOMARD) experiments in the Xenopus in vitro system.

(A) Workflow of the experiment using HOMARD: Sperm nuclei were incubated in egg extracts in the presence of AF647-aha-dUTP, stopped in early

(35 min) and late S phase (120 min), DNA was isolated and separated in Irys system with Yoyo-1 stain. (B) Example field of view of DNA fibers with

Bionano Irys system, blue, Yoyo-1, whole DNA stain, small, red replication tracks (=initiations) labeled directly by AF647-aha dUTP, early S phase (35

min), size bar 20 kb. (C) Normalized correlation coefficients (ρ1, ρ2) between the fibers’ C(r,f) and C1(r,f) and C2(r,f) were calculated. The similarity

distance between the fiber and each process was defined as 1-ρ1 for the fast process and 1-ρ2 for the slow process and represented on a two-orthogonal

axis plot. The red diagonal represents points of equal similarity to the two processes; blue points represent the early S phase (35 min), and orange

points represent the late S phase (120 min).
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Figure 5. Modification of the replication patterns after Plk1 depletion but not after Chk1 inhibition, overexpression, or Rif1

depletion. (A) An outline of experimental workflow: sperm nuclei were incubated in Chk1 inhibited or Chk1 overexpressed egg extracts or Rif1

or Plk1 immunodepleted egg extracts in the presence of biotin dUTP. Genomic DNA was isolated at different times during the S phase, subjected to

combing analysis, and further analyzed by RepliCorr. Normalized correlation coefficients (ρ1, ρ2) between the fiber’s C(r, f) and C1(r, f) and C2(r, f)

were calculated. The similarity distance between the fiber and each process was defined as 1-ρ1 for the fast process and 1-ρ2 for the slow process and

represented on a two orthogonal axis plot. The blue diagonal represents points of equal similarity to the two processes. (B) Chk1 inhibition by UCN-01

(independent experiments n=2). (C) Chk1 overexpression (n=2). (D) Rif1 depletion (n=2) and (E) Plk1 depletion (n=3).
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strongest effect on separating the two replication processes

highlighted by RepliCorr analysis and that Plk1 regulates the

spatial organization of origin firing and fork progression along

the genome.

Discussion

In this study, we have explored how the activation of replication

origins is coordinated along the chromosomes in a vertebrate

model system. To address this question, we first developed

a novel analysis method describing the spatial replication

pattern of stretched single DNA molecules obtained by DNA

combing or optical mapping after replication in the Xenopus

in vitro system. We classified the similarity of these patterns,

taking advantage of the correlation concept, and called this

analysis method “RepliCorr”. Second, our results reveal

that two independent, spatio-temporally exclusive processes

regulate DNA replication in Xenopus. These processes differ

by their replication fork speed and rate of origin firing.

Third, the abrogation of two main regulatory pathways of

the DNA replication program, the replication checkpoint and

Rif1 had either no or only a moderate influence on the spatial

distribution of these processes. However, the depletion of the

Polo-like kinase 1, known as checkpoint adaptor, abolished

the spatial separation of these processes. Thus, our results

suggest that Plk1 is an important coordinator of the spatial

replication program and the initiation-elongation coupling

along the chromosomes in Xenopus.

The replication dynamics can be described as a
combination of only two independent processes with
distinct fork speeds and initiation rates in Xenopus
To analyze the dynamics of the stochastic replication process,

detecting replicated tracks on individual DNA molecules

allowed us to measure the time-dependent rate of DNA

replication. In past studies, only initiation rates have been used

to explore the replication process quantitatively. We previously

reported that the initiation rate follows a typical bell-shaped

curve during the S phase in several model organisms [8, 9, 10].

Since fork speeds are not necessarily constant throughout the

S phase [1, 15, 5], we have now investigated how initiation

and elongation are quantitatively connected to ensure S phase

completion. Using RepliCorr, we show that the replication

profiles of single DNA molecules during the normal S phase

in Xenopus can be described by either of two processes,

specified by the inverse relationship between initiation rate

and fork speed. This confirms that initiation rate and fork

speed are intimately linked properties of undisturbed DNA

replication, as observed in mammalian cells [15]. Unexpectedly,

we further demonstrate that the observed replication patterns

can be described by a linear combination of two extreme

configurations: one with a low initiation rate coupled with

a fast fork progression and one with a high initiation rate

associated with a slow fork progression (Figure 6A). We observe

these two replication modes at the level of DNA molecules

with 80-150 kb of size, corresponding to the size of replication

clusters previously described in this experimental system [3, 5].

Therefore, the two replication modes may characterize two

replication cluster types whose possible differences in chromatin

structure or looping would be interesting to investigate. Are

these two different replication strategies correlated with the

temporal program? We observed that both processes co-exist

during the early S phase, whereas the slow process becomes

Figure 6. Model of a Plk1-dependent regulation of the spatial

replication program by a fast and slow replication process in

Xenopus. (A) In the presence of Plk1, two different replication patterns

on DNA molecules can be distinguished, characterized by different fork

speeds and initiation rates, leading to a non-uniform pattern of origin

activation. (B) Upon Plk1 depletion, origin activation along the genome

becomes more homogeneous; the slow replication mode approaches the

fast mode.

predominant as the S phase progresses. The change from a

low to a higher initiation rate could be explained by initially

limiting initiation factors, which, as the S phase progresses,

are recycled towards origins to be activated in the unreplicated

fraction of the genome. Fork speed could slow down during

the S phase because of the progressive exhaustion of dNTPs

at the nuclei concentration we used in the in vitro system

and a low ribonucleotide reductase (RNR) activity expression.

In early Drosophila embryos, the maternally deposited RNR

is activated as dATP concentration decreases during the S

phase [57]. However, decreasing fork speed in Xenopus was

also observed at a ten times lower nuclei concentration [5],

arguing against this explanation. Slow or stalled replication

forks are considered as a sign of replication stress, which may

result from DNA damage. Still, our observations suggest that

impairment of the DNA replication checkpoint does not affect

dual DNA replication modes. Finally, chromatin assembly can

also regulate fork speed [58]. It is possible that the chromatin

remodeling of sperm nuclei introduced into egg extracts creates

a heterogeneous chromatin with co-existing accessible and

difficult-to-replicate regions without activation of checkpoint

mechanisms during DNA replication.
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Polo-like kinase 1 regulates the spatial replication
program
RepliCorr analysis of single-molecule replication patterns after

targeting three different pathways of the replication program

revealed that only Plk1 depletion strongly affected the pattern

distributions between the fast and slow process. Without

Plk1, these two processes were no longer independent, but

they coexisted on DNA molecules with a high degree of

replication, suggesting that Plk1 depletion canceled out the

spatiotemporal exclusive character of the two processes (Figure

6B). In contrast, Rif1 depletion only moderately modified the

pattern distribution, while Chk1 inhibition nor overexpression

had any effect on this distribution. This is consistent with

the fact that Plk1 depletion induced significant changes in

initiation rates, IODs, and eye lengths when molecules of

the same replicated fraction were compared [47], whereas Rif1

depletion [38] or Chk1 inhibition [31] did not. Therefore, these

findings suggest that Plk1 promotes origin activation inside

replication clusters. In contrast, Rif1 has been shown to mainly

accelerate both whole cluster activation and replication of

larger replication domains in Xenopus [38] and in mammalian

cells [36, 37] consistent with only a small effect of Rif1 depletion

on RepliCorr patterns detected in this study. Interestingly, our

results suggest that Plk1 exclusively supports the slow process

(Supplementary Figure S6 A) that predominates during the late

S phase. Therefore, Plk1 may favor the late origin firing, similar

to the dispersed, late firing origins identified in other eukaryotes

[59, 60, 61, 62]. Chk1 inhibition or Rif1 depletion increases the

initiation frequency of the slow process, albeit to a much lesser

extent than Plk1 (Supplementary Figure S6 B, D), suggesting

that the spatial regulation of the replication program by these

known regulators mainly occurs via the regulation of the slow

process in addition to their effects on the temporal program

[47, 38].

It is unclear what could be the molecular mechanisms

of how Plk1 locally regulates both fork speed and initiation

rate in some genomic regions but not in others. Recently,

we demonstrated that Plk1 could inhibit the Chk1-dependent

replication checkpoint [46] and could phosphorylate the PP1

binding site of Rif1, which prevented PP1 inhibition by Rif1

in Xenopus [47]. However, we did not observe any effect

on replication pattern distribution after Chk1 inhibition, and

only a modest effect was seen after Rif1 depletion. Therefore,

other Plk1-dependent pathways seem to be necessary for this

local regulation. Interestingly, Plk1 co-immunoprecipitated

with initiation complex proteins Treslin, MTBP, and TopBP1

[47], which are rate limiting for replication in Xenopus and

budding yeast [63, 64]. In addition, Plk1 depletion results in a

longer persistence of these factors on chromatin, and it has been

suggested that these factors should dissociate from activated

origins to allow fork elongation (conversion from pre-IC into

CMG-complex) [65, 66]. It is, therefore, tempting to speculate

that in the absence of Plk1, the recycling of Treslin/MTBP and

TopBP1 towards neighboring origins is slowed down, resulting

in a decrease in the initiation rate. In further support of this

hypothesis, a recent study showed that for dormant origin

firing, the linear correlation between IODs and fork speed at

different concentrations of aphidicolin is also dependent on

TopBP1 but not on Chk1 [67]. Another possibility is that Plk1

directly interacts with replication fork proteins to reduce fork

speed. In favor of this possibility, we have shown that Plk1

co-immunoprecipitates with Rfc2-5, which is necessary to load

the elongation factor PCNA. During the very early stages of

Xenopus development, Plk1 levels are high but decline after the

onset of zygotic transcription after the mid-blastula transition

(MBT) [46]. The number of active origins also declined after the

MBT [68, 69], but fork speed was not determined. During early

mice developmental stages, mean origin distances gradually

increase after the 2-cell embryo stage together with mean fork

speed [24]. It would be interesting to investigate whether Plk1

could also be implicated in changing the dual replication modes

during development.

In conclusion, our work shows that Plk1 promotes the

spatio-temporal heterogeneity of initiation rate and fork speed.

Plk1 is often over-expressed in aggressive cancer types [70] but

is mainly studied for its role in mitosis entry. We believe it

is necessary to consider the role of Plk1 during the S phase

more carefully in tumor development. RepliCorr is a powerful

tool for analyzing replication dynamics and initiating rate and

fork speed coupling. It is robust enough to handle fluctuations

resulting from the stochasticity of the replication process. The

bell shape of the initiation rate was first observed in Xenopus

[8] and later found to be universal in all eukaryotes [9, 10]. It

would be of great interest to use RepliCorr analysis in single-

molecule data from other model systems to see whether the

basic principles observed in the Xenopus embryonic model can

also apply to differentiated cells.
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Atomique (CEA, A.G.), and in part by the Fondation de

la Recherche Medicale (FRM, DEI20151234404, O.H., A.G.),

Institut National du Cancer (INCa, PLBIO16-302, O.H.,

A.G.). and the Agence Nationale de la Recherche (ANR-15-

CE12-0011-01, O.H.). We thank Mathis Miroux for technical

assistance in LaTeX.

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 27, 2024. ; https://doi.org/10.1101/2024.06.21.600047doi: bioRxiv preprint 

https://github.com/DidiCi/RepliCorr
https://doi.org/10.1101/2024.06.21.600047
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 Ciardo et al.

References

1. D A Jackson and A Pombo. Replicon clusters are

stable units of chromosome structure: evidence that nuclear

organization contributes to the efficient activation and

propagation of S phase in human cells. The Journal of

cell biology, 140(6):1285–1295, March 1998.

2. R Berezney, D D Dubey, and J A Huberman. Heterogeneity

of eukaryotic replicons, replicon clusters, and replication

foci. Chromosoma, 108(8):471–484, March 2000.

3. J. Julian Blow, Peter J. Gillespie, Dennis Francis, and

Dean A. Jackson. Replication Origins in XenopusEgg

Extract Are 5–15 Kilobases Apart and Are Activated in

Clusters That Fire at Different Times. The Journal of cell

biology, 152(1):15–26, 2001.

4. K Marheineke and O Hyrien. Aphidicolin triggers a block

to replication origin firing in Xenopus egg extracts. The

Journal of biological chemistry, 276(20):17092–17100, May

2001.

5. Kathrin Marheineke and Olivier Hyrien. Control of

replication origin density and firing time in Xenopus

egg extracts: role of a caffeine-sensitive, ATR-dependent

checkpoint. The Journal of biological chemistry, 279(27):

28071–28081, July 2004.

6. J J Blow and R A Laskey. Initiation of DNA replication in

nuclei and purified DNA by a cell-free extract of Xenopus

eggs. Cell, 47(4):577–587, November 1986.

7. J Herrick, P Stanislawski, O Hyrien, and A Bensimon.

Replication fork density increases during DNA synthesis in

X. laevis egg extracts. Journal of molecular biology, 300

(5):1133–1142, July 2000.

8. Arach Goldar, Hélène Labit, Kathrin Marheineke, and

Olivier Hyrien. A dynamic stochastic model for DNA

replication initiation in early embryos. PloS one, 3(8):

e2919, 2008.

9. Arach Goldar, Marie-Claude Marsolier-Kergoat, and

Olivier Hyrien. Universal Temporal Profile of Replication

Origin Activation in Eukaryotes. PLoS ONE, 4(6):e5899,

June 2009.

10. Jean-Michel Arbona, Arach Goldar, Olivier Hyrien, Alain

Arneodo, and Benjamin Audit. The eukaryotic bell-shaped

temporal rate of DNA replication origin firing emanates

from a balance between origin activation and passivation.

eLife, 7:e35192, June 2018.

11. John Bechhoefer and Nicholas Rhind. Replication timing

and its emergence from stochastic processes. Trends in

Genetics, 28(8):374–381, August 2012.

12. Nicholas Rhind. DNA replication timing: Biochemical

mechanisms and biological significance. BioEssays, 44(11):

2200097, November 2022.

13. Diletta Ciardo, Olivier Haccard, Hemalatha

Narassimprakash, Jean-Michel Arbona, Olivier Hyrien,

Benjamin Audit, Kathrin Marheineke, and Arach Goldar.

Organization of DNA Replication Origin Firing in Xenopus

Egg Extracts: The Role of Intra-S Checkpoint. Genes, 12

(8):1224, 2021.

14. Renata Retkute, Conrad A. Nieduszynski, and Alessandro

de Moura. Mathematical modeling of genome replication.

Physical review. E, Statistical, nonlinear, and soft matter

physics, 86(3 0 1):031916, September 2012.

15. Chiara Conti, Barbara Sacca, John Herrick, Claude Lalou,

Yves Pommier, and Aaron Bensimon. Replication Fork

Velocities at Adjacent Replication Origins Are Coordinately

Modi?ed during DNA Replication in Human CellsD.

Molecular Biology of the Cell, 18, 2007.

16. Bertrand Theulot, Laurent Lacroix, Jean-Michel Arbona,

Gael A. Millot, Etienne Jean, Corinne Cruaud, Jade

Pellet, Florence Proux, Magali Hennion, Stefan Engelen,

Arnaud Lemainque, Benjamin Audit, Olivier Hyrien, and
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Supplementary Methods

The theoretical framework

Stable phase fraction

The quantitative relation between the density of nucleated

domains, the speed of growth, and the transformed volume

during a nucleation and growth process were obtained between

the end of the 30s and the beginning of the 40s by Kolmogorov,

Johnson, Mehl and Avrami. The theory was pushed further

by Sekimoto for the one-dimensional case [11]. In the KJMA

model, the system undergoes a gradual transformation from an

initial phase (metastable phase) to a final phase (stable phase),

and the two phases coexist during the entire transition. In

our case, the two phases correspond to the unreplicated and

replicated state. During the transformation, stable domains

nucleate randomly and grow in the metastable phase. The

critical nucleus size, above which nuclei grow but below which

they dissolve, is considered in the replication process to be

infinitesimal. The process is characterized by I(t), the rate of

nucleation per unit volume of metastable material, and 2v, the

constant positive speed at which the stable phase grows after

nucleation. We introduce the phase indicator function u(r, t),

defined as follows:

u(x, t) =

{
1, if the point r belongs to the metastable phase

0, otherwise

(1)

The fraction ϕ(t) for the metastable phase is then defined as:

ϕ(t) = ⟨u(x, t)⟩ (2)

where ⟨⟩ denotes the average over the ensemble of the random

variable u(x, t). ϕ(t) should be a decreasing function of t.

In order to obtain the formula for the metastable phase fraction,

we must introduce the notion of a causal cone. This notion

allows us to keep track of the complete history of the nucleation

process, which is necessary in the case of continuous nucleation.

The growth of the domain with constant speed 2v, from a

specific nucleation site, can be viewed as an expanding triangle

in the space-time representation. For multiple nucleations, the

growth can be represented as the combination of different

triangles, as shown in Fig. 1.

Fig. 1. Nucleation and growth in one dimension. The stable domains that

grow from multiple nucleation sites are unions of triangles in the space-

time representation; the resulting region is highlighted in grey.

Fig. 2. Representation of the one dimensional causal cone for the point

(x, t).

On the other hand, for a point x to remain in the metastable

phase at time t, nucleation events cannot occur within the

inverted triangle, whose apex is at the point (x, t), as shown in

Fig. 2. The inverted triangle is called the causal cone. As ϕ(t)

corresponds to the probability that for any t′ < t nucleation

centers do not appear in the length S(t − t′) = 2v(t − t′).

Assuming nucleation as a rare event with a density I(t), we use

the Poisson distribution to write:

ϕ(t) = exp

(
−

∫ ∞

0

dt
′
I(t

′
)S(t − t

′
)

)
(3)

with S(t − t′) = 0 for t < t′. This expression and what follows

are valid only if: i) the speed v is not an increasing function of

t, ii) the rate of nucleation is spatially homogeneous, and iii)

the nucleation events occur independently. The fraction f(t) for

the stable phase is:

f(t) = 1 − ϕ(t) (4)

To have a more complete description of the nucleation and

growth process, it is possible to analyze other quantities

such as the length of islands, holes, and the island-to-island

distances. The probability distribution of these quantities can

be expressed as a function of the time t or the fraction of

the stable phase f. In his work, Sekimoto also studied the

time evolution of domain statistics by solving Fokker-Plank-

type equations for island and hole distributions in the case

of a constant nucleation rate I(t)=const [9, 10]. Sekimoto’s

approach was extended in [6] in the case of a general nucleation

rate I(t).

The correlation function

A further development of the theory was achieved by Sekimoto

[11], who derived an exact expression for the two-point

correlation function of growing domains in different dimensions.

The correlation function provides in fact a more complete

characterization of the spatial distribution of the two phases.

Otha et al. [8] extended this result, introducing the possibility

of nucleation of p different stable phases, and the limit of

p → ∞ was analyzed by Axe and Yamada in one and two

dimensions [4].

We derive the two-point correlation function in one dimension

as deduced by Sekimoto [11] and Ohta, Ohta and Kawasaki [8].

The two-point correlation function can be expressed as:

G(r, t) = ⟨u(x, t)u(x + r, t)⟩ (5)

which quantifies the probability that two points separated by

a distance r are both in the metastable phase at time t. In
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Fig. 3. Representation of the causal cones for two uncorrelated points.

Fig. 4. Representation of the causal cones for two correlated points. The

region of overlap (in red) defines the degree of correlation between the

two points.

this case, the probability is governed by the union of the causal

cones relatives to the two points (Fig. 3 and Fig. 4).

With the same argument that we used for the evaluation of

ϕ(t), we can write:

G(r, t) = exp

(
−

∫ ∞

0

dt
′
I(t

′
)S∪(t − t

′
)

)
(6)

where S∪(t − t′) is the spatial length, in which no nucleation

events must occur at time t′ < t in order that the points x and

x + r belong to the metastable phase at time t. We have:

S∪(t − t
′
) = 2S(t − t

′
) − S∩(t − t

′
) (7)

where S∩(t− t′) = 2v(t− t′)−r is the spatial length relative to

the eventual intersection of the two causal cones and is equal

to zero for r > 2v(t− t′). By substituting (7) in (6), we obtain:

G(r, t) =exp

(
−

∫ ∞

0

dt
′
I(t

′
)2S(t − t

′
)

)
exp

(∫ ∞

0

dt
′
I(t

′
)S∩(t − t

′
)

)
=ϕ(t)

2
exp

(∫ ∞

0

dt
′
I(t

′
)S∩(t − t

′
)

)
(8)

For r > 2vt, G(r, t) = ϕ(t)2 meaning that the phase state of

two points at distance r > 2vt are independent. This reflects

the fact that at the time t, the maximum size of a stable domain

is 2vt and no long-range correlation is mediated by the stable

domains.

We can then easily obtain the two-point correlation function

for the stable phase as:

C(r, t) = ⟨(1 − u(x, t))(1 − u(x + r, t))⟩

= 1 − ⟨u(x, t)⟩ − ⟨u(x + r, t)⟩ + ⟨u(x, t)u(x + r, t)⟩

= 1 − 2ϕ(t) + G(r, t)

(9)

Correlation function of fluorescence profiles from
DNA fiber experiments
As detailed above, Kolmogorov, Johnsol, Mehl and Avrami

developed a stochastic model that describes the kinetics of the

transition from an initial phase (metastable phase) to a final

phase (stable phase). [7, 5, 1, 2, 3]. A further development of

the theory was achieved by Sekimoto [11], who derived an exact

expression for the two-point correlation function of growing

domains in different dimensions. The KJMA theory can be

used to describe the replication process if the replicated state

is considered as the stable phase and the unreplicated phase

as the metastable phase. In this context, the growth speed v

corresponds to the replication fork speed, and the nucleation

rate I(t) to the frequency of initiation. Once obtained an

explicit form for the two-point correlation function, we applied

it to the study of the correlation function of fluorescence

intensity profiles from DNA fiber experiments.

In order to use the expressions (4) and (9), we need to choose

an explicit form for the frequency of initiation I(t). We will

consider the form:

I(t) = I0t
α

(10)

with I0 ≥ 0 and α ≥ 0. This expression is a good approximation

for the increasing region of the frequency of initiation. We then

restricted the analysis to this region. By using the Eq. (3) and

(4), we obtain:

f(t) =1 − exp

(
− 2vI0

∫ t

0

dt
′
(t

′
)
α
(t − t

′
)

)

=1 − exp

(
−

2vI0t
α+2

(α + 1)(α + 2)

) (11)

where we used S(t − t′) = 0 for t < t′. In a similar way, from

the Eq. (8) and (9), we have:

C(r, t) = 1 − 2ϕ(t) + ϕ(t)
2
exp

(
I0

∫ t−r/2v

0

dt
′
(t

′
)
α
[2v(t − t

′
) − r]

)

= 1 − 2ϕ(t) + ϕ(t)
2
exp

(
2vI0t

α+2

(α + 1)(α + 2)

(
1 −

r

2vt

)α+2)
(12)

where we used S∩(t−t′) = 0 for r > 2v(t−t′) or equivalently for

t′ > t− r
2v . The Eq. (12) will be valid for r < lmax = 2vt, where

lmax represents the maximum replication eye length present at

time t.

Statement of the problem
The DNA combing and HOMARD technique allows the analysis

of the replication state of a DNA fiber at a certain time during

the replicative phase. Between all the information that we

can obtain through the analysis of the fluorescence intensity

profiles, we will focus on the replicated fraction, the frequency

of initiation, and the correlation function of the single fiber. In

the analysis, there will be two major consequences related to

the use of data obtained with the DNA combing technique:

1. The finite size of the analyzed fibers implies that we only

have access to the local evolution of the process. The

results of the quantitative analysis will be not valid for the

replication process of the entire genome.

2. To apply the theory as it is, we would need to know

the exact time at which replication starts on the single

fiber, but the experimental technique does not provide this

information. We will have to use the replicated fraction as
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a measure of the local evolution of the process. This will

introduce some uncertainty in the analysis, due to the lack

of knowledge of the hidden variable, that is, the time.

We can define the problem as follows. We want to analyze the

similarity between replication patterns of different fibers by

comparing the correlation function of the fluorescence intensity

profiles. The specific pattern depends on the frequency of

initiation and the fork speed. So, we will estimate the variables

v, I0 and α, given the experimental frequency of initiation I(f)

as a function of the replicated fraction f and the correlation

function C(r, f) for different replicated fractions f as a function

of r. The time will be obtained from the analytical inversion of

the Eq. (11) as t = f−1(v, I0, α).
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Supplementary Figures and Tables

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 27, 2024. ; https://doi.org/10.1101/2024.06.21.600047doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.21.600047
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary Table S1: Comparison of fit results for correlation function with one

process between simulated and experimental data. The rate of initiation is I(t)=I0t
a per unit

time per length of unreplicated DNA. Therefore, the replication process is characterized by three

parameters: v, and for the initiation rate, I0, a. Results of fit with a constant I0, a and fork speed v

for the autocorrelation function of simulated data from Figure 1C and from fit to experimental data

from Figure 1D. The parameter values were averaged over 100 trials. A χ2 value close to 1 is

considered as a very good fit.

v

(kb/min)

I0

(1/(kb∗minα+1))

α χ2

Simulation parameters 1 0.03 0

Fit parameters

Simulated replication data Fig. 1C 1.009 0.029 0 2.2

Fit parameters

Experimental data Fig. 1D 0.76 0.000029 1.98 13.1
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Supplementary Figure S1: Clustering evaluation by the average of silhouette values for the first

control set. Each image corresponds to a different interval of replicated fractions from 0 to 75% (Bin 1-7)

and the averaged replicated fraction is reported on the top. The fibers in each interval of replicated

fraction were grouped into two to five clusters and the silhouette value was calculated for each

configuration.

Supplementary Figure S2: Histogram reporting the number of fibers in each cluster for the first

control set. Each image corresponds to a different interval of replicated fractions from 0 to 75% (Bin 1-7)

and the averaged replicated fraction is reported on the top.
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Fit parameters v1

kb/min

I1

1/(kb∗minα+1)

a1 Ttot

1

v2

kb/min 

I2

1/(kb∗minα+1)

a2 Ttot 2 Χ2

different v and I0,a 1.07 0.002 0.003 23 0.17 0.016 0.24 19 0.75

different v, same I0,a 1.4 0.0013 0.4 18 0.4 0.0013 0.4 79 1.9

same v, different I0, a 0.25 0.0004 0.06 103 0.25 0.03 0.002 13 0.9

Supplementary Table S2: Fitting parameters values from Figures 3A with 2 processes with

varying v and I0 compared to fitting parameters with constant I0, a, or constant v from

Supplementary Figure S4 A and B. The initiation rate is given by I(t)=I0*t
a per unit time per length of

unreplicated DNA. Therefore, each process is characterized by three parameters: v, I0, a. For

different I(t) values of I0 and a are set or parameters given after fitting. I1 and I2 are I0 for process 1

and 2, respectively. Ttot is the time in min to replicate a fiber to 75 %. Values in red are those

differing from the fit with two different I0, a and v.

Supplementary Figure S3: Comparison between fits with two processes for correlation

profiles with different or same I0,a and v. (A) with different v and same I0. (B) with same v and

different I0 for the two processes. (C) table with fitted parameter values from A and B compared to

the parameters from Figure 3 A; with Ttot being the time in min to replicate a fiber to 75 %. We

highlight values in red those differing from the fit with two different I0 and v. The parameter values of

fork speed and initiation frequency were averaged over 100 trials.

B
Same v and different I0, a for the two processes

A
Different v and same I0,a for the two processes
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A

C

Chk1 

inhibition

Control

Control Chk1 overexpression

Rif1 

depletion

Control

Plk1 

depletion

Control

Supplementary Figure S4:

Mean autocorrelation function

C(r,f) profiles (blue curve, with

standard deviation) with fit

(red curve) as in Figure 3A for

different pathways per-

turbations and corresponding

controls. The green curve is

the correlation profile

produced by the fast fork

process (C1(r,f), model 1),

and the black curve is the

correlation profile produced

by the slow fork process

(C2(r,f), model 2), f. (A) Chk1

inhibition by UCN-01 (n=2).

(B) Chk1 overexpression

(n=2). (C) Rif1 depletion

(n=2). (D) Plk1 depletion

(n=3).

D

B Control
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Control -UCNA

Control Chk1 overexpressionB

Control depletion (Rif1)C

Supplementary Figure S5: Similarity distances of the fast and the slow process from control experiments

from Figure 5. Normalized correlation coefficients (ϱ1, ϱ2) between the fiber’s C(r,f) and C1(r,f) and C2(r,f) were

calculated for control conditions in Figure 5 B-D. The similarity distance between the fiber and each process was

defined as 1- ϱ1 for fast process and 1- ϱ2 for slow process and represented on a two orthogonal axis plot. The red

diagonal represents points of equal similarity to the two processes. (A) +DMSO as control condition for Chk1

inhibition by UCN. (B) Control for Chk1 overexpression protein buffer addition. (C) Control depletion for Rif1

experiment.
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Supplementary Figure S6: Fits for correlation functions C(r,f) and associated initiation rates for fast

process (process 1, green curves) and slow process (process 2, black curves) from experiments of (A)

Plk1 depletion and its control. (B) UCN inhibition and control. (C) Chk1 overexpression and control. (D)

Rif1 depletion and control.

A B

C D

Plk1 depletion Chk1 inhibition

Chk1 overexpression Rif1 depletion
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Supplementary Table S3: Values from fits to autocorrelation profiles with two processes (1=

fast process, 2=slow process) under different experimental conditions. The rate of initiation is

I(t)=I0t
a per unit time per length of unreplicated DNA. Therefore, the replication process is

characterized by three parameters: v, and for the initiation rate, I0, a. I1 and I2 are the I0’s for each

process. The parameter values of fork speed and initiation frequency were averaged over 100

trials.

Fast process Slow process

Experimental conditions

v1

(kb/min)

I1

1/(kb*minα+1)

α1 v2

(kb/min)

I2

1/(kb*minα+1)

α2 χ2

Control -UCN 2.251 0.003 0.009 0.211 0.021 0.197 1.14

Chk1 inhibition + UCN 1.556 0.004 0.014 0.191 0.020 0.356 0.40

Control Chk1 

overexpression

1.141 0.005 0.002 0.138 0.018 0.178 0.63

+Chk1 1.333 0.003 0.032 0.167 0.019 0.155 0.68

Control depletion (Rif1) 0.807 0.002 0.160 0.208 0.008 0.383 0.86

Rif1 depletion 0.767 0.001 0.160 0.297 0.011 0.303 1.05

Control depletion (Plk1) 1.073 0.002 0.003 0.170 0.016 0.236 0.74

Plk1 depletion 1.034 0.002 0.022 0.471 0.004 0.209 0.93
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