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Abstract 

In this article, we propose the modelling of a tunable Bistable Piezoelectric Energy Harvester (or BPEH) architecture. The 

latter is a type of ambient energy converter that continues to gain attention due to their wideband frequency response. As the 

non-linear dynamics of BPEHs imply significant modeling complexity, dynamic lumped models are necessary to predict 

BPEHs’ dynamic response and should fit the type of architecture studied. The BPEH architecture of interest uses post-buckled 

beams to create bistability and an Amplified Piezoelectric Actuator (or APA) to convert the ambient vibrations. To date, no 

dynamic lumped models have been found in existing literature that account for both the electromechanical conversion and the 

dynamic behavior of buckled beams, with a specific focus on their axial and bending stiffness, for this BPEH architecture. 

Additionally, the proposed BPEH architecture offers buckling level tunability, which is achieved using an additional APA. 

Hence, the aim of this paper is to propose a new lumped model for a BPEH architecture that considers the effect of the post-

buckled beams’ stiffness and of the additional APA through an elasticity factor 𝜿̅. This lumped model is established using Euler 

Lagrange equations and is experimentally validated on a tunable BPEH prototype. This validation shows an average relative 

error below 6% between the model predictions and experimental dynamic response of the prototype to an ascending frequency 

sweep, compared to an average relative error that is around 14 % for the model proposed in literature. Moreover, numerical 

simulations using the proposed model lead to the conclusion that there is an optimal elasticity factor 𝜿̅ that ensures the 

maximum power output while maintaining the frequency bandwidth.  

Keywords: piezoelectric energy harvester, bistability, dynamic lumped model, post-buckled beams  

1. Introduction 

The interest in Wireless Sensor Networks (or WSNs) has significantly risen in the past decade. This is due to the fact that those 

networks can enable real time monitoring of the physical condition of a wide range of structures, such as aircrafts, medical 

apparatus or even industrial machinery [1], [2]. The energy consumption of sensor nodes is one of the challenges for this 

promising technology.  

The conventional way to power these nodes is chemical batteries. Since these batteries have a limited amount of energy, and 

therefore a short life cycle, it is relevant to use the existing energy in the environment of the monitored structures as an 

alternative [3], [4] .One commonly studied example is vibration energy harvesting , which consists of converting ambient 

mechanical energy into electric energy [5], using electromagnetic induction [6], electrostatic mechanisms [7], [8], or 
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piezoelectric components coupled with mechanical resonators [9]. Piezoelectric Energy Harvesters (or PEHs) will be the focus 

of this work. 

The use of linear mechanical resonators for PEHs was first investigated in the early 2000s by Roundy et al. [10], due to the 

simplicity of modeling and design they offer. Nevertheless, it has been shown that linear resonators are not suitable for all 

ambient vibrations [11], and that a wider frequency bandwidth is preferred for ambient vibrations [12]. 

One of the most promising methods investigated for the purpose of enlarging the PEHs’ bandwidth is the introduction of a non-

linearity in the oscillating structure [13]–[15], such as bistability [16]. Bistability is a type of non-linearity that implies the 

existence of two stable equilibrium positions in a given system.  

This type of non-linearity is achieved by two methods. The first method is referred to as magnetic interaction or magnetic 

coupling and consists of installing magnets on and around the mechanical resonator to create two equilibrium positions [17]. 

Magnet based bistability in BPEH can either be achieved using attractive mechanisms [18], but is most commonly achieved 

using repulsive mechanisms [19]. More recent architectures of this type use both to optimize the elastic potential [20], or use 

beams with complex shapes instead of simple cantilever beams to increase the strain and thus the electromechanical coupling 

of the BPEH [21]. 

Despite the advances in this type of BPEH, the use of magnets implies higher volumes in the BPEH, which leads us to focus 

on the second widely used method to achieve bistability. This method consists of introducing a pre-compression in thin beams 

or plates, which causes the structure to buckle. Apart from simple buckled structures [22], [23], there are architectures that use 

optimized beam shapes to enhance performance at low accelerations [24], and more complex bistable mechanisms that exploit 

different stress modes [25] also exist. The advantage of this type of BPEH structures is the smaller volume they ensure. We 

consequently focus on bistability based buckling and how to design these types of BPEH in the following study.  

The aforementioned solution calls for more intricate modeling that can be either inaccurate, either inappropriate for some 

architectures. The purpose of this paper is to present a model dedicated to the design and the prediction of the dynamic behavior 

of a high performance bistable piezoelectric harvester that uses post-buckled beams to create bistability and a flextensionnal 

device to convert the vibration into electric energy.  

Concerning the modelling of these types of BPEH, a number of models were proposed in literature. Vangbo et al. first 

investigated the modeling of double-clamped post-buckled beams with a centered actuation, proposing a Lagrangian approach 

to study their static behavior [26] which considered the beams' bending and axial extension. This approach was then extended 

by others to propose design approaches as well as elastic static analytical models for post-buckled beams with an off-centered 

actuation[27], [28]. Static modeling results are, however, insufficient to determine how post-buckled beams affect the dynamic 

behavior of a bistable vibrating structure, such as Bistable Piezoelectric Energy Harvesters (or BPEHs).  

Hence, dynamic lumped models have been developed for dynamic structures that use post-buckled beams. An interesting 

example is the model developed and experimentally verified by Saif for a tunable MEMS architecture in the year 2000 [29]. It 

does not, however, take into consideration the electromechanical aspect of the device which is a key element of the study of 

BPEHs. Dynamic electromechanical lumped models were thus developed for BPEH architectures.  

The one proposed by Cottone et al. in 2012 [30] comes to mind as it describes the effect of the beams in the electromechanical 

equations for an architecture that uses piezoelectric patches laminated on the bistable beams of the BPEH [31]. More recently, 

a more detailed model for BPEH using post-buckled beams with piezoelectric patches has been proposed by Karadarakos et al. 

[32]. The latter proposes a more intricate model to account for a wider range of mechanical deformations and conversion modes 

in the piezoelectric element, which allows for more accurate predictions, but also requires more computational power and a 

longer computation time. 

In addition, the effects of the post-buckled beams for this type of architecture differ from those of beams that incorporate the 

piezoelectric element in a different way, more particularly, when exploiting a different Electromechanical Coupling Mode (or 

ECM) such as the 3-3 mode using flextensionnal devices [33].  

Two piezoelectric ECMs are commonly used in electromechanical systems; The 3-1 mode, where the mechanical strain is 

perpendicular to the polarization vector, and the 3-3 mode, which uses stacks with interdigitated (IDT) electrodes and for which 

strain and polarization are collinear. The benefit of exploiting 3-3 ECMs in the piezoelectric element as opposed to the 3-1 

ECMs, solicited in BPEH architectures that use piezoelectric patches such as Qian et al.’s [25] or Chen et al.’s  [24] 

architectures, is to obtain a higher electromechanical coupling level as discussed by Kim et al. [31], which is a definite 

advantage in the context of vibration energy harvesting.  
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A notable contribution to the modeling of this type of architecture, taking advantage of the 3-3 ECMS, is Liu et al.’s model for 

a BPEH that uses Amplified Piezoelectric Actuators (or APAs), also referred to as flextensionnal devices, for energy harvesting 

purposes [34]. The effect of the bending strain contribution of the post-buckled beams was included in Liu et al.’s model [35], 

and was proven to have  no effect on the electromechanical coupling of the BPEH for the architecture investigated. It is unclear, 

however, whether the axial stiffness, which represents the axial extension strain modes of the beams, influences the BPEH’s 

dynamic behavior for structures that use 3-3 ECMs. We investigated the effect of this axial stiffness for a non-tunable BPEH 

architecture in a previous article [36]. It was demonstrated that for this type of BPEH architecture, relatively low values of the 

axial stiffness of the beams can have a detrimental effect on the BPEH’s power output.  

Another contribution concerning this type of BPEH architecture is proposed by Huguet et al. [37], in which a BPEH architecture 

using an additional APA to achieve orbit jumps, a method used to enhance the BPEH’s performance, was suggested. 

Unfortunately, in this contribution, the lumped model proposed does not account for the effect of the buckled beams or that of 

the additional APA used to tune the buckling level. 

So far, no work in literature has proposed a model for BPEHs using APAs and post-buckled beams that considers the influence 

of beam axial and flexural stiffness as well as the stiffness of any extra APA. The presented work aims to propose a lumped 

model for a tunable BPEH architecture, appropriate for testing orbit jump strategies, which accounts for the use of APAs for 

energy harvesting and tuning purposes, as well as the post-buckled beams’ effect on the dynamic behavior of the harvester. 

Unlike previous contributions, this model allows us to predict how each of the previously cited components affects the dynamic 

response of the BPEH.   

This article is organized in the following manner: the second section establishes the dynamic lumped model of the BPEH 

architecture studied. The third section presents the experimental validation of the proposed lumped model, using an existing 

BPEH prototype. The fourth section exploits the proposed lumped model to study how the beams and the tuning APA can 

affect the dynamic response of the BPEH using numerical simulations. 

2. A dynamic lumped model for the tunable BPEH architecture 

2.1 The BPEH architecture presentation 

The BPEH architecture studied in this paper is similar to Huguet et al’s BPEH prototype described in [37], shown in the diagram 

in Figure 1 and in the prototype image in Figure 2. It includes an inertial mass, four bistable post-buckled beams used to create 

bistability and two APAs. Four buckled beams were chosen instead of two in order to prevent in plan rotations of the inertial 

mass.  

One of the two APAs is used for energy harvesting. This APA generates power upon the inertial mass’s movement and is linked 

to a simple resistance load for the rest of the study, for simplification purposes. The harvested energy will be evaluated as the 

energy dissipated in the resistor. 

  

Figure 1 A schematic of the studied BPEH architecture 

that includes an inertial mass, 4 post-buckled beams, one 

APA for energy harvesting and an additional APA for 

tuning the buckling level. 

Figure 2 Image of the BPEH prototype used for the 

experimental validation, that includes a 6𝑔  inertial mass, 4 

post-buckled beams and two APAs for energy harvesting 

(APA120S) and tuning (APA100M). 
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The second APA is used as an actuator to adjust the buckling level of the beams. When used as an actuator, the APA is in 

compression along the horizontal axis when the applied tuning voltage is positive, and in extension when this voltage is 

negative.  

The aim of this architecture is to make it easy to tune the buckling level, so that the model can be validated at different buckling 

levels. For a given real-world application, this second APA could be removed. 

2.2 The BPEH dynamic lumped model formulation 

The modelling approach presented in this paper is illustrated in the schematic shown in Figure 3.  

 

Figure 3 Schematic representation of the Lumped model proposed in this paper to describe the tunable BPEH architecture 

represented in Figure 1 and Figure 2 

As shown in Figure 3, we attach a fixed cartesian reference frame (𝑒𝑥⃗⃗  ⃗, 𝑒𝑦⃗⃗⃗⃗ ) to the BPEH. The variable 𝑥 represents the 

displacement of the inertial mass 𝑀 in the 𝑒𝑥⃗⃗  ⃗ direction, while 𝐷 represents the damping coefficient, and 𝐿 the mass frame 

distance. The variables 𝐾, 𝐶𝑝  and 𝛼 respectively represent the stiffness, capacitance and force factor of the energy harvesting 

APA.  

The axial extension and bending stiffnesses of each beam are noted 𝐾𝑎 and 𝐾𝑏. In addition, the effect of the tuning APA is 

added by considering its stiffness 𝐾2, capacitance 𝐶𝑝2 and force factor 𝛼2. 

The voltage and electric current of the energy harvesting and tuning APAs are respectively represented by the variables (𝑣, 𝐼) 
and (𝑣2, 𝐼2). As depicted in Figure 3, the energy harvesting APA is connected to a resistance load denoted by R, whereas the 

tuning APA is connected to a voltage source. Furthermore, the variable 𝛾 corresponds to the acceleration of the ambient 

vibration. The amplitude of this acceleration will be referred to as 𝛾𝑀. 

Prior to entering detailed modelling considerations of the problem under study, some basic prerequisites and assumptions are 

introduced: 

 

1) The inertial mass 𝑀  is considered moving along the 𝑒𝑥⃗⃗  ⃗ direction only, which is valid when considering the 

displacement of the mass to be very small compared to the length of the beams (𝑥 << 𝐿).  

2) It is assumed that the strain of the 4 identical post-buckled beams is the same. The strain contributions of the post-

buckled beams are accounted for by adding springs for their bending and axial extension stiffnesses, respectively 

named 𝐾𝑏 and 𝐾𝑎 that will thus have an identical value from one beam to another. 

3) The bending stiffness 𝐾𝑏 of the four identical beams act in parallel on the mass and oppose its displacement along the 

𝑒𝑥 ⃗⃗⃗⃗  ⃗direction. They can thus be modelled with an equivalent stiffness 4𝐾𝑏 as shown in Figure 3. The axial extension 

stiffness 𝐾𝑎  oppose the mass’s movement along the 𝑒𝑦 ⃗⃗⃗⃗  ⃗direction. Along this axis the axial extension stiffness of the 

beams adds up on both sides of the mass, but are in series when considering both symmetrical sides. The global 

equivalent axial extension stiffness 𝐾𝑎 is then equal to the axial extension stiffness of one beam. 

4) The movements of the inertial mass in the 𝑒𝑥 ⃗⃗⃗⃗  ⃗ direction induces a displacement of the axial extension stiffness spring 

𝐾𝑎  and of both APAs in the 𝑒𝑦⃗⃗⃗⃗  direction. For a displacement 𝑥 of the inertial mass, a displacement variation ∆𝐿 in the 

𝑒𝑦⃗⃗⃗⃗  direction occurs. The expression of this displacement variation ∆𝐿 is described in (1). The Pythagorean theorem is 

used to derive this formula since the model's linkages enabling the mass's movement are assumed to be infinitely rigid. 
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The strain on the beams is considered independently using the springs for the bending and axial extension stiffnesses 

𝐾𝑏 and 𝐾𝑎. 

The latter is the difference between the mass-frame distance 𝐿 when the inertial mass’s displacement is equal to the buckling 

level (𝑥 = 𝑥0), and the mass-frame distance 𝐿(𝑥) for a given inertial mass displacement (𝑥 ≠ 𝑥0). 

The displacement variation of the energy harvesting APA is denoted by 𝑦𝐾 , and the displacement variation of the tuning APA 

is denoted by 𝑦𝐾2 , while 𝑦𝐾𝑎  represents the displacement variation of the axial extension spring. The sum of these displacement 

variations is evidently equal to the total displacement variation Δ𝐿. This thought is expressed in (2). 

∆𝐿 =  𝑦𝐾𝑎 + 𝑦𝑘 + 𝑦𝐾2 (2) 

With these considerations made, we can now move on to the formulation of the lumped model’s equations. As a classical 

method, the Euler-Lagrange approach to modelling is used to deduce the governing equations of the structure.  

The generalized coordinates considered are the position of the mass 𝑥, the variables 𝑦𝐾   and 𝑦𝐾2 that represent the displacement 

variation of the energy harvesting and tuning APAs upon the inertial mass’s movements and two voltage related coordinates 𝜆 

and 𝜆2 as 𝜆̇ = 𝑣 and 𝜆2̇ = 𝑣2. The corresponding Euler-Lagrange balance is described by the equation system (3).  

{
 
 
 
 
 

 
 
 
 
 𝑀𝛾 − 𝐷𝑥̇ =

𝑑

𝑑𝑡
(
𝜕𝕃

𝜕𝑥̇
 ) − 

𝜕𝕃

𝜕𝑥

0 =
𝑑

𝑑𝑡
(
𝜕𝕃

𝜕𝑦𝐾̇
 ) −  

𝜕𝕃

𝜕𝑦𝐾

0 =
𝑑

𝑑𝑡
(
𝜕𝕃

𝜕𝑦𝐾2̇
 ) − 

𝜕𝕃

𝜕𝑦𝐾2
 

−𝐼 =
𝑑

𝑑𝑡
(
𝜕𝕃

𝜕𝜆̇
 ) −  

𝜕𝕃

𝜕𝜆

−𝐼2 =
𝑑

𝑑𝑡
(
𝜕𝕃

𝜕𝜆2̇
 ) − 

𝜕𝕃

𝜕𝜆2

 (3) 

 

The Lagrangian function 𝕃 of the system is given by equation (4).  

𝕃 =  𝑇 − 𝑆4𝐾𝑏 − 𝑆𝐾 − 𝑆𝐾𝑎 − 𝑆𝐾2 +𝑊𝑐 (4) 

The term 𝑇 represents the kinetic energy of the inertial mass. The variables 𝑆4𝐾𝑏 , 𝑆𝐾 , 𝑆𝐾𝑎  and 𝑆𝐾2 represents the elastic energy 

stored in the springs considered, shown in the lumped model schematic in Figure 3. The variable 𝑊𝑐 is the piezoelectric co-

energy that exists in both APAs. The equations (5) to (10) define the expressions of these terms. 

𝑇 =
1

2
𝑀𝑥̇2  (5) 

𝑆𝐾𝑎 =
1

2
𝐾𝑎(Δ𝐿 − 𝑦𝐾 − 𝑦𝐾2)

2
 (6) 

𝑆𝐾 =
1

2
𝐾𝑦𝐾

2  (7) 

𝑆𝐾2 =
1

2
𝐾2𝑦𝐾2

2  (8) 

𝑆4𝐾𝑏 =
1

2
 (4𝐾𝑏𝑥

2) (9) 

𝑊𝑐 =
1

2
𝐶𝑝𝑣

2 + 𝛼𝑣𝑦𝐾 +
1

2
𝐶𝑝2𝑣2

2 + 𝛼2𝑣2𝑦𝐾2  (10) 

When combining the last equations, the Euler-Lagrange balance for the present BPEH architecture takes the form: 

∆𝐿 =  2(𝐿 − 𝐿(𝑥)) = 2𝐿 − 2√𝐿2 + 𝑥0
2 − 𝑥2 (1) 
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{
 
 
 

 
 
 𝑀𝛾 − 𝐷𝑥̇ = 𝑀𝑥̈ + 4𝐾𝑏𝑥 +

𝐾𝑎(Δ𝐿 − 𝑦𝐾)2𝑥

√𝐿2 + 𝑥0
2 − 𝑥2 

 

0 =  𝐾𝑦𝑘 − 𝐾𝑎(Δ𝐿 − 𝑦𝑘 − 𝑦𝐾2) − 𝛼𝑣

0 = 𝐾2𝑦𝐾2 − 𝐾𝑎(Δ𝐿 − 𝑦𝑘 − 𝑦𝐾2) − 𝛼2𝑣2
−𝐼 = 𝐶𝑝𝑣̇ + 𝛼𝑦𝐾̇

−𝐼2 = 𝐶𝑝2𝑣2̇ + 𝛼2𝑦2̇

 (11) 

The second and third equations of the system described in (11) give way to the expressions of the displacement variations 𝑦𝐾  

and 𝑦𝐾2  as functions of the other generalized coordinates considered. These expressions are given by (12) and (13).  

𝑦𝐾 =
𝛼2𝑣2 −

𝛼𝐾𝑎
𝐾 + 𝐾𝑎

𝑣 +
𝐾𝐾𝑎
𝐾 + 𝐾𝑎

Δ𝐿

𝐾𝐾𝑎
𝐾𝑎 + 𝐾

+ 𝐾2

 
(12) 

𝑦𝐾2 =
𝐾𝐾𝑎
𝐾 + 𝐾𝑎

(1 −
(
𝐾𝑎𝐾
𝐾 + 𝐾𝑎

)

𝐾2 + (
𝐾𝑎𝐾
𝐾 + 𝐾𝑎

)
)Δ𝐿 +

1 +
(

𝐾𝑎
𝐾 + 𝐾𝑎

)

𝐾2 + (
𝐾𝑎𝐾
𝐾 + 𝐾𝑎

)

𝐾 + 𝐾𝑎
𝛼𝑣 −

(
𝐾𝑎

𝐾 + 𝐾𝑎
)

𝐾2 + (
𝐾𝑎𝐾
𝐾 + 𝐾𝑎

)
𝛼2𝑣2 

(13) 

In order to facilitate the development and interpretations of the final equation system, the expression of an equivalent stiffness 

𝐾𝑒𝑞  is introduced, as shown in equation (14). 

𝐾𝑒𝑞 =
(
𝐾𝑎𝐾
𝐾 + 𝐾𝑎

)𝐾2

𝐾2 + (
𝐾𝑎𝐾
𝐾 + 𝐾𝑎

)
 

(14) 

When injecting equation (12) and (13) in the Euler-Lagrange Balance, we obtain the equation system described in (15). 

 

{
 
 
 
 

 
 
 
 
𝑀𝑥̈ + 4𝐾𝑏𝑥 +

𝐾𝑒𝑞 (2𝐿 − 2√𝐿
2 + 𝑥0

2 − 𝑥2) 2𝑥

√𝐿2 + 𝑥0
2 − 𝑥²

+
𝐾𝑒𝑞

𝐾
𝛼𝑣

2𝑥

√𝐿2 + 𝑥0
2 − 𝑥²

−
𝐾𝑒𝑞

𝐾2
𝛼2𝑣2

2𝑥

√𝐿2 + 𝑥0
2 − 𝑥2

= 𝑀𝛾 − 𝐷𝑥̇ 

𝐶𝑝𝑣̇ − 𝛼 (
𝐾𝑒𝑞

𝐾
)

2𝑥𝑥̇

√𝐿2 + 𝑥0
2 − 𝑥2

+
1 +

𝐾𝑎𝐾𝑒𝑞
𝐾𝐾2

𝐾 + 𝐾𝑎
 𝛼2𝑣̇ −

𝐾𝑒𝑞

𝐾2𝐾
𝛼2𝛼𝑣2̇ = −𝐼 

𝐶𝑝2𝑣2̇ + 𝛼2
2

𝑣2

𝐾2 +
𝐾𝐾𝑎
𝐾 +𝐾𝑎

̇
−
𝛼𝛼2𝐾𝑒𝑞

𝐾𝐾2
𝑣̇ +

𝐾𝑒𝑞

𝐾2

2𝑥𝑥̇

√𝐿2 + 𝑥0
2 − 𝑥2

= −𝐼2

 
(15) 

 

Since the displacements of the mass and buckling level are small with respect to 𝐿, a Taylor expansion of the first order can be 

applied on the terms of the equation system described in (15), as shown by (19). 

(𝑥0 ≪ 𝐿, 𝑥 ≪ 𝐿 ) ⇒  
𝑥0
2 − 𝑥2

𝐿2
≪ 1 ⇒ √1 +

𝑥0
2 − 𝑥2

𝐿2
 ≈  1 + 

𝑥0
2 − 𝑥2

2𝐿2
+ 𝑜 (

𝑥0
2 − 𝑥2

𝐿2
) 

(16) 

The application of the Taylor expansion developed in (16) gives way to an equation system that includes a mechanical Duffing-

type equation as well as two electrical equations as seen in (17).   
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{
 
 
 
 

 
 
 
 
𝑀𝛾 = 𝑀𝑥̈ − 2𝐾𝑒𝑞 (

2𝐾𝑒𝑞𝑥0
2

𝐿2
− 4𝐾𝑏 −

2𝛼𝑒𝑞2𝑣2

𝐿
) 𝑥 +

2𝐾𝑒𝑞𝑥
3

𝐿2
+ 𝐷𝑥̇ +

2𝛼(
𝐾𝑒𝑞
𝐾
)𝑥𝑣

𝐿
 

𝐼 =
2𝛼𝜅̅𝑥𝑥̇

𝐿
− (𝐶𝑝 +

1 +
𝐾𝑎𝐾𝑒𝑞
𝐾𝐾2

𝐾 + 𝐾𝑎
 𝛼2)𝑣̇ + 𝐶𝑒𝑞 𝑣2̇ 

𝐼2 =
2𝛼2(1 − 𝜅̅)𝑥𝑥̇

𝐿
− (𝐶𝑝2 +

𝛼2
2

𝐾2 +
𝐾𝐾𝑎
𝐾 + 𝐾𝑎

)  𝑣2̇ +  
𝛼𝛼2𝐾𝑒𝑞

𝐾2𝐾
𝑣̇

 (17) 

The writing of the equation system given by (19) is further simplified by introducing a few variables that depend on the 

structural parameters. 

The first variable considered appears when rewriting the linear reaction force of the BPEH as shown in (18).  

(
2𝐾𝑒𝑞𝑥0

2

𝐿2
− 4𝐾𝑏 −

2𝛼𝑒𝑞2𝑣2

𝐿
) 𝑥 =

2𝐾𝑒𝑞

𝐿2
𝑥01
2 𝑥 

(18) 

This variable noted 𝑥01 is representative of a new buckling level written in terms of the ideal buckling level 𝑥0 and of the 

influence of the bending stiffness 𝐾𝑏 and tuning APA’s compression that varies with the voltage 𝑣2. The expression of this 

buckling level 𝑥01, which will be referred to as the actual buckling level as it is the one observed experimentally, is given by 

(19). 

𝑥01 = √(𝑥0
2 −

2𝐾𝑏𝐿
2

𝐾𝑒𝑞
− 
𝛼𝑒𝑞2𝑣2𝐿

𝐾𝑒𝑞
) (19) 

The second variable introduced is a correction factor that will be referred to as the elasticity factor 𝜅̅ for the rest of the study. 

This variable account for the elastic energy stored in the tuning APA and axial extension stiffness spring 𝐾𝑎 of the beams. The 

expression of the elasticity factor 𝜅̅ is given by (20).  

𝜅̅ =
1

1 +
𝐾

𝐾𝑎𝐾2
𝐾2 + 𝐾𝑎

 
(20) 

In addition, the equivalent capacitances of the energy harvesting APA and tuning APA, respectively symbolized 𝐶𝑝𝑒𝑞  and  

𝐶𝑝2𝑒𝑞, as well as the additional capacitance 𝐶𝑒𝑞  are given by (21), (22) and (23). 

𝐶𝑝𝑒𝑞 =
1 +

𝐾𝑎𝐾𝑒𝑞
𝐾𝐾2

𝐾 + 𝐾𝑎
 𝛼2 

(21) 

𝐶𝑝2𝑒𝑞 =  
𝛼2
2

𝐾2 +
𝐾𝐾𝑎
𝐾 + 𝐾𝑎

 (22) 

𝐶𝑒𝑞 = 
𝛼𝛼2𝜅̅

𝐾2
 (23) 

The capacitances 𝐶𝑝𝑒𝑞 and 𝐶𝑝2𝑒𝑞  account for the change in boundary conditions of the APAs when fixed to the rest of the 

BPEH, and are added to the capacitances 𝐶𝑝 and 𝐶𝑝2 respectively measured for the energy harvesting APA and tuning APA for 

free-free boundary conditions. The capacitance 𝐶𝑒𝑞  accounts for the exitance of both APAs in the structure.  

The equation system given by (24) stems from applying the Taylor expansion (see equation (16)) and considering the previously 

described variables.  
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{
 
 

 
 𝑀𝛾 = 𝑀𝑥̈ − 2𝐾𝜅̅

𝑥01
2

𝐿2
𝑥 +

2𝐾𝜅̅𝑥3

𝐿2
+ 𝐷𝑥̇ +

2𝛼 𝜅̅𝑥𝑣

𝐿
 

𝐼 =
2𝛼𝜅̅𝑥𝑥̇

𝐿
− (𝐶𝑝 + 𝐶𝑝𝑒𝑞)𝑣̇ + 𝐶𝑒𝑞  𝑣2̇ 

𝐼2 =
2𝛼2(1 − 𝜅̅)𝑥𝑥̇

𝐿
− (𝐶𝑝2 + 𝐶𝑝2𝑒𝑞)  𝑣2̇ + 𝐶𝑒𝑞𝑣̇

 (24) 

 

The purpose of this article is to investigate the response of the BPEH architecture for different buckling levels, and to compare 

the experimental response with the predictions of the model. For this purpose, the value of the actual buckling level 𝑥01is 

modified by varying the tuning voltage 𝑣2 before each test, which consists of observing the dynamic response of the BPEH.  

Consequently, for the study carried out in this paper, the actual buckling level is kept constant when the BPEH is subjected to 

a given excitation of amplitude 𝛾𝑀.  

The voltage applied to the tuning APA is then kept constant (𝑣2̇ = 0, 𝑣2 = 𝑉2). The expression for the actual buckling level is 

therefore that given by (25). The third equation in the system of equation (24)is thus useless for the following study, as it only 

provides information on the current that flows through the tuning APA as a function of the BPEH’s motion.  

𝑥01 = √(𝑥0
2 −

2𝐾𝑏𝐿
2

𝐾𝑒𝑞
− 
𝛼𝑒𝑞2𝑉2𝐿

𝐾𝑒𝑞
) (25) 

The two remaining equations given by (26) describe a BPEH with a tunable buckling level that depends on the value set to the 

tuning APA voltage 𝑉2.  

Additionally, for the APAs considered in this paper, the additional capacitances 𝐶𝑝𝑒𝑞 , 𝐶𝑝2𝑒𝑞
 and 𝐶𝑒𝑞  that account for the 

difference in boundary conditions in the energy conversion process of the APAs are negligible in comparison to the capacitances 

𝐶𝑝 and 𝐶𝑝2 of the free-free APA configuration. The terms containing these variables are therefore considered negligible in both 

electric equations, and the simplified equation system given by (26) is finally found.  

{
𝑀𝛾 = 𝑀𝑥̈ − 2𝐾𝜅̅

𝑥01
2

𝐿2
𝑥 +

2𝐾𝜅̅

𝐿2
𝑥3 + 𝐷𝑥̇ +

2𝛼𝜅̅

𝐿
𝑥𝑣

𝐼 =
2𝛼𝜅̅

𝐿
𝑥𝑥̇ − 𝐶𝑝𝑣̇ 

 (26) 

 

The system of equations (26) describes the oscillations of an inertial mass attached to a nonlinear spring and a linear damper, 

with additional nonlinear electromechanical coupling terms. These nonlinear terms are given by the equations (27), (28) and 

(29).  

𝐹𝑠𝑝𝑟𝑖𝑛𝑔 = −(2𝐾𝜅̅
𝑥01
2

𝐿2
)𝑥 + (

2𝐾𝜅̅

𝐿2
) 𝑥3 (27) 

𝐼𝑀 = 
2𝛼𝜅̅

𝐿
𝑥𝑥̇ (28) 

𝐹𝐴𝑃𝐴 =
2𝛼𝜅̅

𝐿
𝑥𝑣 (29) 

The first nonlinear term represents the nonlinear mechanical spring force 𝐹𝑠𝑝𝑟𝑖𝑛𝑔. This nonlinear restoring force is typical of 

duffing-type oscillators. In this particular case, the term proportional to 𝑥 is negative and the term proportional to 𝑥3 is positive, 

which corresponds to the existence of two stable equilibrium positions (𝑥𝑠𝑡𝑎𝑏𝑙𝑒 = ±𝑥01) and one unstable equilibrium position 

(𝑥𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒 = 0) of the inertial mass.  

Bistable oscillators can exhibit two different dynamic responses; one is the oscillation of the mass around one of the two stable 

equilibrium positions of the harvester (±𝑥01) without crossing the unstable position. This behavior is called intra-well motion 

[35]. The back and forth oscillation of the mass from one stable equilibrium position to another, by crossing the unstable 

position, is the second possible dynamic response. This type of response is called inter-well motion [35]. The latter is the 

oscillation that provides the high energy broadband response sought for this type of nonlinearity.  

https://en.wikipedia.org/wiki/Spring_(device)
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The second nonlinear term is the term representing the nonlinear electromechanical coupling (the piezoelectric direct effect 

where 𝐼𝑀  is the current generated when the APA is deformed, and the piezoelectric inverse effect where 𝐹𝐴𝑃𝐴 is the force 

generated by the APA due to the voltage in its electrodes).  

The nonlinearity in the electromechanical coupling corresponds to the fact that the piezoelectric element is compressed twice 

per period during the displacement of the dynamic mass in the case of inter-well motion. This frequency doubling phenomenon 

illustrates the nonlinear nature of the coupling, which is expressed by the products 𝑥𝑥̇ and 𝑥𝑣 in equation (26).  

The advantage of the proposed lumped model described in (26) for this specific BPEH architecture is that it accounts for the 

effect of the tuning APA and the post-buckled beams’ main strain contributions.  

As previously mentioned, the difference with Huguet et al’s modelling approach [37] is the consideration of the tuning APA 

and the post-buckled beams’ bending and axial compression stiffnesses. When the energy harvesting APA’s stiffness is 

assumed to be small in regards to the tuning APA’s stiffness (𝐾2 ≫ 𝐾), and when the post-buckled beams’ elasticity is not 

considered, the equations describing the dynamic behavior of the BPEH demonstrated by Huguet et al in [37] are obtained. 

Such a model amounts to consider the energy harvesting APA connected to the proof mass by Perfect Revolute Joints (PRJs) 

with infinitely rigid bars (𝐾𝑏 = 0, 𝐾𝑎 → +∞, 𝜅̅ = 1) instead of real beams characterized by the axial and flexural elasticities. 

{
𝑀𝛾 = 𝑀𝑥̈ − 2𝐾

𝑥0
2

𝐿2
𝑥 +

2𝐾

𝐿2
𝑥3 + 𝐷𝑥̇ +

2𝛼

𝐿
𝑥𝑣

𝐼 =
2𝛼

𝐿
𝑥𝑥̇ − 𝐶𝑝𝑣̇

 (30) 

A schematic of the modelling approach proposed by Huguet et al [37] is illustrated in Figure 4.  

 

Figure 4 Schematic representation of the PRJ (Perfect Revolute Joint) lumped model used to describe the studied 

BPEH architecture by Huguet et al. [37] 

In this study, we propose an extension of Huguet et al.'s [37] method for 𝜅̅ ≤ 1. The Huguet et al’s method will be referred to 

as the ideal PRJ model. One important conclusion stems from observing the difference between the ideal PRJ model and the 

model investigated in this paper: the tuning APA and post-buckled beams affect the dynamic behavior of the BPEH when 𝜅̅ is 

inferior to one.   

2.3 Initial considerations / Lumped model normalization  

In order to determine the effect of the tuning APA and post-buckled beams’ effect on performance, the influence of 𝜅̅ on key 

normalized parameters of the BPEH must be observed. The normalization of the equations is performed to obtain expressions 

of these key normalized parameters as a function of 𝜅̅ , 𝑥01 and the rest of the structural parameters present in the equation 

system (26).    



Journal XX (XXXX) XXXXXX Benhemou et al  

 10  
 

{
 
 

 
 
𝛾̅ = 𝑥̈̅ +

𝜔0
²

𝜀2
𝑥̅3

2
−
𝜔0

²𝑥̅

2
 +

𝜔0
𝑄𝑚

𝑥̇̅ + 𝑘𝑚
2
𝜔0

²

𝜀2
𝑣̅𝑥̅

𝜔𝑟𝑣̅ =
𝑥̅𝑥̇̅

𝜀
 − 𝑣̇̅

 (31) 

The normalized form of the equations describing the BPEH’s response is given by (31) and the expressions of the normalized 

structural parameters of the BPEH that stem from it are expressed in (32).  

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 𝑥̅ =

𝑥

𝐿

𝑣̅ =  
𝐶𝑃𝑣

2𝛼𝜅̅𝑥01 

𝜀 =
𝑥01
𝐿

𝜔0 = 𝜀√
4𝐾𝜅̅

𝑀
 

𝑄𝑚 =
𝜀√4𝐾𝜅̅𝑀

𝐷
𝑘𝑚
2 = 𝑘𝑚𝐴𝑃𝐴

2 𝜅̅²

𝜔𝑟 =
1

𝑅𝐶𝑝

 (32) 

 

The variable 𝑘𝑚𝐴𝑃𝐴
2  refers to the modified electromechanical coupling coefficient of the APA in a free-free configuration. The 

latter’s expression is given by (33).  

𝑘𝑚𝐴𝑃𝐴
2 =

𝛼2

𝐾𝐶𝑝
 (33) 

This normalization allows the model to highlight parameters relevant to study VEHs’ behaviors. Three parameters that are 

common to both linear and non-linear VEH are the characteristic pulsation 𝜔0, the quality factor 𝑄𝑚 and the electromechanical 

coupling coefficient 𝑘𝑚
2 . An additional parameter 𝜀 that accounts for the buckling level is added for BPEHs.  

It is worth noting that since the quality factor is a measure related to the system's damping, a variable that is challenging to 

forecast, its value will be considered fixed for the entire study.  

Consequently, the normalization allows us to conclude that the elasticity factor 𝜅̅ given by (20) impacts the value of the 

characteristic pulsation 𝜔0 and the electromechanical coupling coefficient 𝑘𝑚
2 . 

 

 

3. Experimental validation  

3.1 Prototype and test presentation  

Figure 2 shows a prototype of the BPEH architecture studied.  

The prototype incudes an APX4 steel block that was manufactured by the spark erosion process and that includes the beams, 

the inertial mass, as well as the spaces assigned for the APAs. 

The APAs used for energy harvesting and tuning the buckling level are respectively the APA120S and the APA100M from 

Cedrat technologies.  

Two types of experimental tests were carried out to explore the predictive capacity of the lumped model proposed.  

The first type of tests are characterization tests that aim to compare the estimated key normalized parameters of the structure, 

based on the APAs’ identified characteristics and beam geometry, to the ones obtained by impedance analysis. Following these 

tests, the structural parameters of the BPEH prototype are determined, and listed in Table 3. 
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The second type of experimental tests consist of observing the displacement, power and phase responses of the BPEH prototype 

for a given sinusoidal ascending frequency sweep with a fixed acceleration amplitude. The results are then compared to the 

numerical estimations based on the lumped model. 

3.2. BPEH impedance analysis tests  

A. Experimental setup  

The experimental setup for the impedance analysis tests is represented in Figure 5. 

A Keysight E4990A impedance analyzer is connected to the energy harvesting APA. The tests consist of varying the buckling 

level of the BPEH by imposing a constant voltage to the tuning APA through a Rhode and Schwartz NGE100 power supply, 

and then subjecting the BPEH to an impedance analysis for a low voltage of 5 𝑚𝑉 around each stable position of the inertial 

mass.  

The low level of voltage implies that the BPEH is subjected to a small excitation. In that regard, the observed response 

corresponds to small displacements of the inertial mass around the BPEH's stable equilibrium points. In prior references, these 

oscillations are referred to as low orbits [37] or intra-well movements [35].   

 

Figure 5 Experimental setup used for the impedance analysis tests 

carried out for the BPEH prototype 

 

Consequently, the non-linear terms of the proposed lumped model described by  (31) can be neglected, leading to a linearized 

version of the electromechanical equations. The linearized version of the normalized equations is given by (34), with 𝑢̅ =  𝑥̅ −
𝜀 ( see equation (32) ) and considering low values of normalized displacement as described in equation (35) 

{
𝛾̅ =  𝑢̈̅ + 𝜔0

2𝑢̅ +
𝜔0𝑢̇̅

𝑄𝑚
+ 𝑘𝑚

2 𝜔0
2𝑣̅

𝐼 ̅ = 𝑢̇̅ − 𝑣̇̅

 (34) 

𝑢 ≪ 𝜀 (35) 

The analytical resolution of this system gives way to an expression of the theoretical normalized admittance 𝑌̌ =
𝐼

𝑗𝐶𝑝𝜔
, similar 

to the one proposed by Kim et al [38]. This expression of the theoretical normalized admittance 𝑌̌, given by (36), is fitted to 

the experimental response in order to deduce the values of (𝑘𝑚
2 , 𝑄𝑚 , 𝜔0).  

𝑌̌ = 1 +
𝑘𝑚
2

1 −
𝜔2

𝜔0
2 +

𝑗𝜔
𝑄𝑚𝜔0

 
(36) 
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B. The elasticity factor experimental validation 

The following study focuses on the estimated and experimentally determined values of 𝑘𝑚
2  and the characteristic frequency 𝑓0, 

linked to the value of the characteristic pulsation 𝜔0 as shown in (37). 

𝑓0 =
𝜔0
2𝜋

 (37) 

The theoretical value of 𝑘𝑚
2  is calculated using the expression given by (32).  

In addition, the values of the length 𝐿, width 𝑙𝑧 and thickness 𝑙𝑦 of the rectangular straight section of the post-buckled beams 

are provided in Table 1. These dimensions allow us to determine the bending and axial extension stiffnesses 𝐾𝑏 and 𝐾𝑎 of the 

beams, using the formulas given by (38) and mentioned in [36], with 𝐸𝐴𝑃𝑋4 the young modulus of the steel used to manufacture 

the beams.  

(𝐾𝑏 , 𝐾𝑎) = (
8𝐸𝐴𝑃𝑋4𝑙𝑧𝑙𝑦

3

(2𝐿)3
 ,
𝐸𝐴𝑃𝑋4𝑙𝑧𝑙𝑦

𝐿
 ) (38) 

 

Moreover, the electromechanical coupling coefficient 𝑘𝑚𝑃𝑅𝐽
2  of the APA120S used for energy harvesting was measured using 

the impedance analyzer on the energy harvesting APA in a free-free configuration, before installing it on the BPEH. This value 

is listed in Table 1 as well.  

TABLE 1 THE MEASURED VALUES OF THE APAS AND DIMENSIONS OF THE BEAMS USED IN THE BPEH PROTOTYPE 

BPEH parameter Symbol (unit if applicable) Value 

Length of the beams 𝐿(𝑚𝑚) 35 

Width of the beams 𝑙𝑧(𝑚𝑚) 5 

Thickness of the beams 𝑙𝑦(𝑚𝑚) 0.2 

APA120S coupling coefficient 𝑘𝑚𝐴𝑃𝐴 
2  0.11 

 

Additionally, the nominal values of the energy harvesting APA’s stiffness 𝐾 and tuning APA’s stiffness 𝐾2 are listed in Table 

2. 

TABLE 2 THE THEORETICAL VALUES OF THE STIFFNESSES 

Theoretical parameter Symbol (unit if applicable) Value 

APA120S stiffness 𝐾(𝑁/µ𝑚) 0.342 

APA100M stiffness 𝐾2(𝑁/µ𝑚) 1.8 

Beam axial extension stiffness 𝐾𝑎(𝑁/µ𝑚) 6 

Beam bending stiffness 𝐾𝑏(𝑁/𝑚) 196.87 

 

The values of 𝑘𝑚
2  and 𝑓0 are measured for different values of the voltage imposed on the tuning APA, and thus, for different 

values of the buckling level 𝑥01, computed based on the expression, given by (32), of 𝑥01 as a function of the resonant pulsation 

𝜔0 .The values of 𝑥01  are calculated using the theoretical value of the elasticity factor 𝜅̅ .The measured values of the 

electromechanical coupling coefficient 𝑘𝑚
2  for different buckling levels 𝑥01, and thus for different levels of the voltage of the 

tuning APA, are represented in Figure 6. Theory predicts a fixed value of the electromechanical coupling coefficient (see 

equations (32)), which is plotted in Figure 6 as well. In addition, the electromechanical coupling coefficient computed from 

the PRJ model (Figure 4), noted 𝑘𝑚𝑃𝑅𝐽
2 , is plotted. The latter is equal to the electromechanical coupling coefficient of the 

APA120S in a free-free configuration 𝑘𝑚
2
𝐴𝑃𝐴

 as an elasticity factor 𝜅̅ equal to 1 is considered for the PRJ model. 

According to the experimental results represented in Figure 6, the measured values of the coupling coefficient 𝑘𝑚
2  are far from 

the value 𝑘𝑚
2
𝑃𝑅𝐽

, which is the value attained when the elasticity factor 𝜅̅ is equal to one. Moreover, these values do not deviate 

from the theoretical value by more than 10% over the investigated range of buckling levels. Thus, the effect of the beams and 

tuning APA must be considered to have an accurate estimation of the electromechanical coupling coefficient of the BPEH 𝑘𝑚
2 .  
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The relative error between the proposed model and experimental measurements may be due to measurement and manufacturing 

inaccuracies. It is observed that for high values of the voltage of the tuning APA, and thus low values of the apparent buckling 

level, the error reaches the uncertainty envelope’s limit. This makes sense because for low resonance frequencies, the measured 

admittance is lower. Therefore, the current measured by the impedance analyzer reaches lower values that come close to the 

accuracy limit of the device, which justifies greater dispersion at low buckling levels. 

Because the relative error between theory and experience is still less than 10%, the theoretical value of the elasticity factor is 

considered valid for the rest of the study. 

 

Figure 6 The evolution of the measured electromechanical coupling coefficient for different buckling levels (magenta circles 

and blue triangles) and the theoretical (black solid line) and PRJ [37] model (red solid line) values of the electromechanical 

coupling coefficient : 𝑘𝑚
2 = 𝜅

2
𝑘𝑚
2
𝐴𝑃𝐴

 and 𝑘𝑚𝑃𝑅𝐽
2 = 𝑘𝑚

2
𝐴𝑃𝐴

. 

C. The actual buckling level experimental validation  

Figure 7 represents the evolution of the actual buckling level 𝑥01 as a function of the voltage imposed on the tuning APA. A 

theoretical curve is plotted as well, using the theoretical buckling level 𝑥01 expression given by (19).  An additional theoretical 

curve based on the formula provided by (19) for a null value of the bending stiffness 𝐾𝑏 and an elasticity factor  𝜅 ̅ equal to 1 

is presented, similar to the prior experimental validation. The latter will be referred to as the PRJ buckling level.  
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Figure 7 The evolution of the measured, theoretical and PRJ [37] actual buckling level for different values of the voltage 

𝑉2 applied through the tuning APA 

According to the experimental findings displayed in Figure 7, the measured values of the apparent buckling level 𝑥01  differ 

from the PRJ apparent buckling level values by at least 0.4 𝑚𝑚. This underlines once more the importance of accounting for 

the impact of the tuning APA and the beams when making estimations.  

The average relative error between the theoretical and the experimental results is equal to 12% for a tuning voltage lower than 

70V. For a tuning voltage 𝑉2 higher than 70V, the buckling level is too low and the assumption that the displacement of the 

inertial mass is very small with respect to the buckling level (𝑢 ̅ ≪ 𝜖 ) is no longer valid, which explains why the experimental 

results differ from the model. In addition, at these low buckling levels, errors due to manufacturing defects, misalignments or 

asymmetries take on a greater relative importance. For a tuning voltage lower than 70 V, the average relative error is low 

enough to draw the conclusion that the lumped model's presumptions are reliable and enable accurate prediction of some BPEH 

properties before testing. 

For a thorough validation of the proposed lumped model, oscillations from one stable position to another, referred to as high 

orbits [37] or inter-well motions [35] are studied in the next subsection. This type of response is relevant, as previously 

suggested, for energy harvesting applications.  

3.3. BPEH response to an ascending sinusoidal frequency sweep 

A. Experimental setup  

The experimental setup for the high orbit tests is represented in Figure 8.  

The BPEH prototype is fixed on an electromagnetic shaker driven by a power amplifier. The shaker’s acceleration is monitored 

by an accelerometer fixed on the shaker and connected to a dSpace controlling board, which drives the power amplifier in a 

closed loop to control the acceleration amplitude with a PI controller. 

The displacement, velocity and acceleration of the inertial mass are monitored with a differential laser vibrometer also 

connected to the dSpace controlling board. The tuning APA is driven by a power supply that imposes a constant voltage; the 

buckling level of the beams is thus fixed for the duration of the experiments. The energy harvesting APA is connected to a 

programmable resistance load, linked to the dSpace controlling board that can adjust its value. The voltage across the energy 

harvesting APA is also monitored with a voltage follower connected to the dSpace board.  
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Figure 8 Schematic representation of the experimental setup used to observe the response of the BPEH 

prototype to an ascending sinusoidal frequency sweep 

B. Experimental validation results  

This experiment consists of observing the displacement amplitude, the harvested power and the phase lag between the 

displacement and input acceleration of the harvester for the BPEH prototype represented in Figure 2, when the latter is in high 

orbit, for different values of the buckling level. The numerical responses obtained by using the lumped model proposed and a 

numerical differential equation solver on MATLAB are then compared to the experimental test response, for the fixed initial 

conditions expressed in (39). 

(
𝑥(𝑡 = 0)

𝑥̇(𝑡 = 0)

𝑣(𝑡 = 0)

) =  (
𝜀
0
0

) (39) 
 

The acceleration imposed is an ascending frequency sweep with an acceleration amplitude 𝛾 that ranges from 30 𝐻𝑧 to 90 𝐻𝑧. 

The sweep rate chosen is of 0.1 Hz per second, which ensures a quasi-static evolution of the acceleration frequency.  

The identified parameters of the BPEH prototype represented in Figure 2 are listed in Table 3. The tested buckling level values, 

chosen resistance load as well as the acceleration amplitude and frequency range can be found in Table 3 as well.  

 

TABLE 3 THE IDENTIFIED STRUCTURAL PARAMETERS OF THE BPEH PROTOTYPE USED FOR THE EXPERIMENTAL VALIDATION 

Parameter Symbol (unit if applicable) Value 

Mass frame distance 𝐿(𝑚𝑚) 35 

Inertial mass 𝑀(𝑔) 6 

Buckling level 𝑥0(𝑚𝑚) {0.7, 0.85, 0.975,1.05,1.75} 

Electromechanical coupling coefficient 𝑘𝑚
2  0.071 

Quality factor 𝑄𝑚 160 

Characteristic frequency 𝑓0(𝐻𝑧) {47,57,65,70,78} 

Resistance load 𝑅 (Ω) 1000 

Acceleration amplitude 𝛾𝑀 (𝑚. 𝑠
−2) 5 

Acceleration frequency range 𝑓 (𝐻𝑧) [30,90] 
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The experimental and numerical inter-well responses of the BPEH prototype for different buckling level values are shown in 

Figure 9.   

The calculated relative error between theoretical model and experiment is computed using the next equation where 𝑛𝑥01  and 𝑛𝑓 

are the number of buckling levels and frequencies tested. 𝑃𝑡ℎ and 𝑃𝑒𝑥𝑝 are theoretical mean power and experimental mean 

power respectively. 𝐷𝑡ℎ represents the theoretical displacement amplitude and 𝐷𝑒𝑥𝑝 the experimental displacement amplitude. 

The average relative error is equal to 5.86% for the model presented in this article. For the ideal PRJ model, this relative error 

is equal to 14.18%.   

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟 =
1

2𝑛𝑥01𝑛𝑓
∑∑(

|𝑃𝑡ℎ − 𝑃𝑒𝑥𝑝|

𝑃𝑒𝑥𝑝
+
|𝐷𝑡ℎ − 𝐷𝑒𝑥𝑝|

𝐷𝑒𝑥𝑝
)

𝑛𝑓𝑛𝑥01

 (40) 
 

 

Consequently, the model assumptions can be considered more predictive than the ones proposed by Huguet et al in [37] or what 

is referred to as the ideal PRJ model represented in Figure 4. Furthermore, The response of the harvester for different buckling 

levels is coherent with what was predicted theoretically by Morel et al [39]; for a specific driving frequency 𝑓, the output power 

and displacement are higher for higher buckling levels. However, the maximum power output attained at the critical frequency 

is lower for higher buckling levels.  

This leads to a very relevant conclusion regarding this type of BPEH architecture; varying the buckling level can allow a tuning 

of the BPEH’s performance as it acts on the power harvested and on the bandwidth of its high orbit response. This tunability 

can also be exploited for orbit jump strategies, as suggested by Saint-Martin et al [40] for the prototype presented in this paper. 

4. The effect of the elasticity factor 𝜿̅ on a BPEH’s dynamic performance   

4.2. Numerical simulation presentation  

In this section, we investigate the effect of the elasticity factor 𝜅 on the inter-well response [35] or high orbit response [39] of 

a given BPEH. The dynamic response of the BPEH to a sinusoidal ascending frequency sweep with a high enough acceleration 

amplitude 𝛾 to cause this high orbit is investigated using numerical simulations. 

 

Figure 9 Displacement, Power and phase lag responses of the BPEH prototype tested for an ascending frequency sweep 

with a fixed acceleration 𝛾 = 5 𝑚. 𝑠−2 and a fixed resistance load  𝑅 = 1𝑘Ω 
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The numerical simulations are run using the lumped model for different values of the elasticity factor 𝜅̅, in the case of a BPEH 

prototype with similar features as the one used for the experimental validation presented in the previous section. These 

simulations are carried out for an ascending frequency sweep with a fixed acceleration 𝛾 = 20 𝑚/𝑠².  
The resistance load 𝑅 is fixed in regards to the value of the damping ratio 𝛽, described in [39], which represents the ratio 

between the electric and mechanical damping of the BPEH.   

The value of the resistance load 𝑅 is chosen so as to have the damping ratio 𝛽 set to the closest value to 1 when the driving 

frequency is equal to the cut-off frequency 𝑓𝑐 of the high orbit response for the set acceleration amplitude. The cut-off frequency 

𝑓𝑐, as described in [39], is the frequency at which the high orbit ceases to exist. When the electric damping ratio 𝛽 is set to 1, 

the electric damping and mechanical damping of the BPEH are equal. Consequently, the maximum power of the BPEH is 

reached and is equal to 𝑃𝑙𝑖𝑚 which is given by (41). 

 

𝑃𝑙𝑖𝑚 =
𝑀𝛾2𝑄𝑚
8𝜔0

  (41) 
 

The numerical results presented are obtained using a numerical differential equation solver on MATLAB for the fixed initial 

conditions expressed in (39).   

The parameters set for the numerical simulations are given by Table 4.  

 

TABLE 4 THE BPEH STRUCTURAL PARAMETERS SET FOR THE NUMERICAL SIMULATION  

Variable Quantity (unit if applicable) Value 

𝑀 Inertial mass (g) 5 

𝑥01 Actual buckling level (mm) 0.7 

𝑄𝑚  Mechanical quality factor 100 

𝐿 Mass-frame distance (mm) 35 

𝐾 Energy harvesting APA stiffness (N/µm) 0.342 

𝑘𝑚𝐴𝑃𝐴
2  APA120S coupling coefficient 0.11 

𝛾𝑀 Driving acceleration amplitude (g) 2 

𝑓 Driving frequencies tested (Hz) [40, 300] 

𝜅̅ Elasticity factors tested (-) {0.1,0.3,0.5,0.7,0.9,1} 

 

It is worth noting that the actual buckling level 𝑥01 is kept at a constant value in these simulations. This can be achieved by 

modifying the voltage that goes through the tuning APA for each value of the elasticity factor 𝜅̅ . For simplicity's sake, the 

quality factor's value is considered to be constant regardless of the beam geometry or the tuning APA used. 

Consequently, the elasticity factor variation only affects the electromechanical coupling level and resonant frequency of the 

harvester studied, as described by the equation system (32) .  

4.3. Numerical simulation results and physical interpretations 

The simulation results are the displacement amplitude, the harvested power and the phase lag between the displacement and 

input displacement of the harvester, for different values of the elasticity factor  𝜅̅. These results are shown in Figure 10 - (a).  

In addition, the evolution of the damping ratio 𝛽, expressed in (42) was plotted as a function of the elasticity factor and driving 

frequency. This result is shown in Figure 10 - (b). 

𝛽 =
𝑘𝑚
2 𝑄𝑚𝑥

2(𝑅𝐶0𝜔0)
2

4𝑥0
2 (1 + 4(𝑅𝐶0𝜔0)

2 (
2𝜋𝑓
𝜔0

)
2

)

 
(42) 
 

𝛽 equal to 1 is obtained at the cut-off frequency 𝑓𝑐 with a resistive load provided the value of 𝑘𝑚
2 𝑄𝑚 surpasses a threshold 

determined by the generator's geometric parameters and the level of acceleration. This threshold can be determined using the 

simple model proposed by Morel et al [39], which gives way to the condition described (43). 

𝑘𝑚
2 𝑄𝑚 ≥

12 (
2𝜋𝑓𝑐
𝜔0

)

1 + 2 (
2𝜋𝑓𝑐
𝜔0

)
2   (43) 
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Figure 10 : - (a) Displacement, power and phase lag responses of the BPEH to an ascending frequency sweep with a 

fixed acceleration 𝛾 = 20 𝑚. 𝑠−2 for different elasticity factor values 𝜅 ̅ ∈ [0.1,1]- (b) Damping ratio 𝛽 as a function 

of the driving frequency 𝑓 for different values of the elasticity factor  𝜅 ̅ ∈ [0.1,1] 

 

If the value of 𝑘𝑚
2 𝑄𝑚  is high enough in regards to the previously described condition, the electric damping ratio 𝛽 reaches 1 

when the phase between the displacement and the acceleration is equal to -90°, and thus, when the driving frequency is equal 

to the cut-off frequency. In this case, the first takeaway is that the cut-off driving frequency 𝑓𝑐 remains the same when varying 

the elasticity factor, despite it having an effect on the electromechanical coupling 𝑘𝑚
2  and the resonant frequency of the BPEH. 

The elasticity factor variation does, however, have an effect on the harvested power and displacement amplitudes. When the 

elasticity factor is smaller, these amplitudes rise, implying that more power is harvested since the amplitude of the inertial 

mass’s displacement is larger. This is because lower elasticity factor values imply more flexible structure when compared to 

the stiffness of the energy harvesting APA. Moreover, we notice in Figure 10 – (a) that the harvested power at the cut-off 

frequency increases as 𝜅 decreases provided 𝑘𝑚
2 𝑄𝑚 is high enough and 𝛽 equal to 1 is reached. This is because 𝑃𝑙𝑖𝑚 is inversely 

proportional to 𝜔0 (see equation (41)) and 𝜔0  is proportional to the square root of 𝜅 (see equation (32)). 

If 𝑘𝑚
2 𝑄𝑚 is too low, which is the case for 𝜅̅ = 0.1, a value of electric damping ratio 𝛽 of 1 cannot be reached at the cut-off 

frequency with a resistive load. In this case, the maximum harvested power does not reach 𝑃𝑙𝑖𝑚  and the harvested power at the 

cut-off frequency decreases when 𝜅̅ increases. At a certain point, the degradation caused by lowering the elasticity factor is 

therefore not beneficial. Additionally, a change in the cut-off frequency due to the difference in damping ratios is noticed.  

These simulation results can be further explained theoretically. The value of 𝑃𝑙𝑖𝑚 is higher when the value of the elasticity factor 

𝜅̅ is lower. This can be concluded by observing the formula given by (41) since the value of the resonant pulsation 𝜔0 is lower 

when the elasticity factor 𝜅̅ decreases, as shown by equation (32). The expression given by (41) can therefore be rewritten as a 

function of the elasticity factor  𝜅̅ to highlight this further, by considering the variable 𝜔0𝑃𝑅𝐽  which is equal to 𝜀√
4𝐾

𝑀
 and 

corresponds to the resonant pulsation of the BPEH when the perfect revolute joint model is considered. This expression is given 

by (44).  

𝑃𝑙𝑖𝑚 =
𝑀𝛾2𝑄𝑚

8𝜔0𝑃𝑅𝐽√𝜅̅
  (44) 

 

However, the harvested power can only reach 𝑃𝑙𝑖𝑚  if the condition described by (43) is satisfied. Satisfying this condition 

implies that the damping ratio can reach 1 when the driving frequency is equal to the cut-off frequency. For the condition 

described by (43) to be satisfied, the coupling coefficient 𝑘𝑚
2  must be high enough, since the quality factor 𝑄𝑚  is assumed to 

be independent of 𝜅̅. A decrease in the value of the elasticity factor 𝜅̅ implies a decrease in the value of the coupling coefficient 

𝑘𝑚
2 , as shown by the expressions given by (32).  
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Consequently, in order for the harvested power to reach 𝑃𝑙𝑖𝑚 at the cut-off frequency the elasticity factor  𝜅̅ must be equal to 

the lowest value that guarantees that the criterion given by (43) is satisfied. This optimal value ensures that the damping ratio 

𝛽 can reach 1 at the cut-off frequency 𝑓𝑐 and that the harvested power reaches 𝑃𝑙𝑖𝑚  at this particular frequency. 

The optimal value of 𝜅̅ can be determined thanks to the next equation that expresses the threshold value of (45) as a function 

of 𝜅̅ using the equation (32).  

 𝜅̅²𝑘𝑚𝐴𝑃𝐴
2 𝑄𝑚 =

12√𝜅̅ (
2𝜋𝑓𝑐
𝜔0𝑃𝑅𝐽

)

𝜅̅ + 2(
2𝜋𝑓𝑐
𝜔0𝑃𝑅𝐽

)

2   (45) 

Since 𝑓𝑐 is constant when 𝛽 = 1 is reached for a given quality factor 𝑄𝑚 and acceleration level 𝛾, the equation can be solved 

with respect to 𝜅̅ for our architecture. Considering 𝑄𝑚 = 160 and 𝛾 = 20 𝑚/𝑠², which imply a cut-off frequency of 179 Hz 

for our configuration, we find an optimal value of 𝜅̅ equal to 0.21 by solving the equation with 𝜔0𝑃𝑅𝐽 = 332.19 𝑟𝑎𝑑. 𝑠
−1. 

Moreover, the optimal value of 𝜅̅  can be found through numerical simulations by varying 𝜅̅ and observing the threshold where 

𝛽 = 1 is reached. The optimal value is also found to be equal to 0.21 for the BPEH studied at 𝛾 = 20 𝑚/𝑠². The value of the 

threshold 𝑘𝑚
2 𝑄𝑚  is equal to 0.5 in our case.  

Considering the value of the elasticity factor when designing the BPEH is thus necessary. The optimal value of the elasticity 

factor is the minimum value of 𝜅̅  for which 𝑘𝑚
2 𝑄𝑚 is high enough to reach 𝛽 = 1. The geometry of the beams and tuning APA 

must consequently be chosen in regards to the optimal value.  

 

4. Conclusion 

This paper presents a predictive lumped model suited for a type of BPEH architecture that uses post-buckled beams to 

create bistability, and APAs to harvest the vibration energy and, eventually, tune the BPEH’s buckling level. This model 

accounts for the effect of the buckled beams’ bending and axial extension stiffnesses, as well as the effect of the tuning APA. 

The lumped model proposed is established using Euler-Lagrange equations, and a system describing the mechanical and 

electrical response of the dynamic system’s behavior are found. The theoretical results that stem from the lumped model 

proposed to show that, while the bending stiffness of the beams has no effect on the dynamic response, the axial extension 

stiffness and the tuning APA’s stiffness impact the latter and can be taken into account using an elasticity factor.  

Experimental tests were carried out using a BPEH prototype with the studied architecture. These tests reveal that the 

numerical and theoretical results are in good agreement as they show an average error below 6%. Furthermore, a numerical 

study is made to investigate the effect of the elasticity factor on the high orbit response of the BPEH. The results of this study 

show that for a given BPEH, there’s an optimal value of the elasticity factor that ensures a maximum power output while 

maintaining the operating frequency band.   

By incorporating the elasticity factor, the suggested model improves the understanding of the effect of the post-buckled 

beams and tuning APA on the dynamic response of the BPEH. The suggested lumped model's predictive capability therefore 

simplifies the design of BPEHs for optimal dynamic performance. Finally, the inclusion of the tuning APA’s effect in the 

lumped model facilitates the simulation of orbit jump scenarios, made to improve the BPEH’s power response, using a rapid 

buckling level variation, such as the one described in Huguet et al’s [37] and Saint-Martin et al’s [40] contributions.   
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