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Highlights
d Knol, Poot, et al. identify 67 genetic loci associated with

human head size

d Genes harboring or near head size genetic variants enrich for

macrocephaly genes

d Head size genetic variants preferentially locate to cancer

genes and pathways

d Further research is needed on the potential link between head

size and cancer risk
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In brief

Knol, Poot, et al. identify 67 loci for human

head size in a genome-wide association

study. Genes harboring the lead variants

enrich for cancer genes and pathways,

which was not seen for height variants.

These findings suggest a potential link

between a larger head and a higher

cancer risk.
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SUMMARY
The size of the human head is highly heritable, but genetic drivers of its variation within the general population
remain unmapped. We perform a genome-wide association study on head size (N = 80,890) and identify 67 ge-
netic loci, ofwhich50arenovel.Neuroimagingstudiesshowthat17variantsaffect specificbrainareas,butmost
have widespread effects. Gene set enrichment is observed for various cancers and the p53, Wnt, and ErbB
signaling pathways. Genes harboring lead variants are enriched for macrocephaly syndrome genes (37-fold)
and high-fidelity cancer genes (9-fold), which is not seen for human height variants. Head size variants are
also near genes preferentially expressed in intermediate progenitor cells, neural cells linked to evolutionary
brain expansion. Our results indicate that genes regulating early brain and cranial growth incline to neoplasia
later in life, irrespective of height. This warrants investigation of clinical implications of the link between head
size and cancer.
INTRODUCTION

The size of the human head, measured by head circumference or

intracranial volume, correlates closely with brain size. Head size is
Cell Reports Medicine 5, 101529, M
This is an open access article under the
determined by growth in the first years of life and is largely

completed by6 years of age,whereas the rest of the body typically

grows until early adulthood.1 Head size is highly genetically deter-

mined, ranging from near 90% during childhood to 75% during
ay 21, 2024 ª 2024 The Author(s). Published by Elsevier Inc. 1
CC BY license (http://creativecommons.org/licenses/by/4.0/).
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adulthood.2 Rare genetic syndromes have revealed individual

genes strongly affecting head size.3 Nevertheless, genetic deter-

minants of its variationwithin the general population are still poorly

characterized, with no coherent and well-supported picture of

associated biological pathways.

A previous genome-wide association study (GWAS) on 47,000

individuals identified 18 genetic loci for intracranial volume,4 while

another GWAS on head size in 46,000 children and adults identi-

fied 17 loci for head size including low-frequency variants in

TP53.5 Here, we increased the sample size to a total GWAS dis-

covery sample size of 80,890 individuals, and validated the results

in an independent sample of 25,088 individuals. Our GWAS ana-

lyses show strong enrichment for genes and multiple pathways

involved in cancer, macrocephaly genes, and show preferential

expression of genes near variants in intermediate progenitor cells.
RESULTS

We performed a meta-analysis of GWASs for head size, as

proxied by intracranial volume from brain imaging, or head

circumference (Tables S1–S3 and S4; STAR Methods).

Compared with previous efforts,5,6 we nearly doubled the sam-

ple size (N = 80,890), in majority from European ancestry (N =

75,309). We identified 90 independent genetic variants in 67

loci associated with human head size in the European sample

(Figure 1A; Tables S6–S8; Data S1, S2, and S3), of which 50

loci were novel. Although the results showed some bias (linkage

disequilibrium [LD] score regression intercept 1.056; Table S5),

the identified variants remained genome-wide significant after

correction for this amount of bias. Most variants (N = 48) showed

consistent directions of association among the European, Afri-

can (N = 1,356), and Asian (N = 4,225) ancestry samples (Fig-

ure 1B; Table S6), suggesting population-specific genetic effects

on head size in these loci. Since we had limited non-European

samples, we also tested the combined effect of the lead variants,

which showed positive associations in African and East Asian

ancestry samples (bAfrican = 0.34, confidence interval [CI] 0.08–

0.60; bEast Asian = 0.40, CI 0.24–0.57). In the European validation

sample (N = 25,088), 20 of the 89 lead variants were associated

with head size at a Bonferroni significance level (p < 5.6 3 10�4)

and 54 at a nominal significance level, while all lead variants

showed the same direction of effect. In the UK Biobank valida-

tion sample (N = 23,046), the 89 available lead variants together

explained 2.3% of the phenotypic head size variance. A meta-

analysis combining the European discovery and validation sam-

ple (N = 101,241) identified 102 genomic loci with 126 lead vari-
4 Cell Reports Medicine 5, 101529, May 21, 2024
ants (Table S8), of which 60 loci overlapped with the 67 genomic

loci identified by the discovery meta-analysis.
Head-specific growth vs. general growth
We investigated whether variants affecting head size are specific

for growth of the human head or are driven, at least in part, by an

effect on human body height. Accordingly, we performed a

height-adjusted head size GWAS (N = 50,424). The genetic corre-

lation between head size and height (rgenetic = 0.26, p = 2.1 3

10�30) disappeared in this model (rgenetic = �0.02, p = 0.58) (Fig-

ure 1C), confirming the removal of height-associated effects.

Importantly, there was no significant reduction for any of the lead

variants’ effect sizeswith headsize (TableS6).We further explored

the effect of these variants on the size of other body parts using

area measures obtained from bone density scans (N = 3,313). As

expected, a polygenic score of the lead variants was associated

with the skull area, even after adjusting for height (p = 2.1 3

10�12). One lead genetic variant (rs12277225) was significantly

associatedwith the L1-L4 spine area (p=1.3310�5), but the other

lead variants did not affect bone area measures of arm, leg, and

spine (Table S9). Altogether, this indicates that the effect of the

identified variants on head size is predominantly head-specific.

Regional brain volumetric effects
Head size may reflect growth of specific brain regions. Indeed,

15 lead genetic variants or variants in LD (r2 > 0.6) from 12 ge-

netic loci were previously reported to affect volumes of subre-

gions of the brain (Figure 2A; Table S10). We screened all loci

previously associated with these regional brain volumes, and

found 16 of those 132 loci significantly related with head size af-

ter multiple testing correction (Table S11). To determine if the

current findings can be localized to specific brain regions, we

investigated the 90 independent head size variants in relation

to more fine-grained measures of brain morphometry—cor-

rected for head size—in 22,145 individuals (Figure 2B;

Table S12). Thirty-nine variants were associated with one or mul-

tiple cortical, subcortical, and global brain regions of which 17

variants were preferentially associated with one or two specific

cortical or subcortical regions. For example, rs111939932, an in-

tronic variant in PCBP2, is associated with nucleus accumbens

volume and is an expression quantitative trait locus (eQTL) for

several genes, including ATP5G2 in the nucleus accumbens

and basal ganglia. Further analysis revealed its localized effects

on this structure’s shape (Figure 2C; Table S13). In the largest

GWAS on nucleus accumbens volume,7 this variant was nomi-

nally significant (p = 0.02), showing the improved power of our

mailto:hieab.adams@radboudumc.nl
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Figure 1. Genome-wide association studies on human head size

(A) Circos Manhattan plot of the European ancestry head size GWAS, with gray lines corresponding to genome-wide significant (p < 53 10�8) or sub-significant

(p < 13 10�6) p value thresholds. Known variants are in blue, novel ones in red. For each lead variant, the nearest gene is presented, with the color corresponding

to its position to the lead variant: exonic (red), 30-UTR (green), intronic (blue), intergenic including up- and downstream, exonic and intronic non-coding RNA (gray).

Nearest genes for more than one locus are denoted with an asterisk (*).

(B) Circos heatmap showing the betas of lead variants in African, Asian, and European ancestry meta-analyses, as well as the transancestral meta-analysis.

Differences between the height-unadjusted (model 1) and -adjusted (model 2) meta-analysis are also shown.

(C) Bar plot of the genetic correlation coefficient (rgenetic) of the height-unadjusted and -adjusted head size GWASwith the height GWAS, with their accompanying

95% confidence intervals.
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current study to identify novel brain morphometry loci. For the

other 51 variants there was no apparent association with partic-

ular brain regions. Overall, these results suggest that most head

size variants affect generalized brain or cranial growth, while a

minority influence regional brain growth.

Genetic correlation with neuropsychiatric traits
Genetic correlation analyses with neuropsychiatric traits have

been conducted previously.5,6 We replicated positive genetic

correlations with cognitive functioning and Parkinson’s disease,

also when only including new samples (Figure S1; Table S14).

The replicated correlation with Parkinson’s disease provides in-

dependent evidence for the proposed brain overgrowth hypoth-

esis in this disorder.8 Novel genetic correlations were found with

multiple psychiatric traits; negative correlations with attention-

deficit hyperactivity disorder (rgenetic = �0.18, p = 4.5 3 10�7),

insomnia (rgenetic =�0.19, p = 1.83 10�5), major depressive dis-

order (rgenetic =�0.11, p = 2.63 10�4), and neuroticism (rgenetic =

�0.11, p = 5.4 3 10�4) (Figure S1; Table S14). Since psychiatric

disorders themselves are genetically correlated, incorporating

head size and other brain anatomy traits could aid in disentan-

gling underlying genetic factors.
Pathway analysis
Toobtain novel insights into the biologicalmechanismsunderlying

head size variation, we performed a gene set enrichment analysis

of Kyoto Encyclopedia ofGenes andGenomes (KEGG)9 gene sets

and found 14 to be significantly enriched (Figure 3A; Table S15).

Nine of those gene sets represent different cancer types that sub-

stantially overlap between each other and share underlying bio-

logical pathways (Figure 3B). The remaining gene sets represent

the p53, Wnt, and ErbB signaling pathways, all involved in tumor-

igenesis including in the abovementioned cancer types.10

Remarkably, lead variants in our GWASwere predominantly intra-

genic for the seven genes in the p53 pathway, eight genes in the

Wnt pathway, and six genes in the ErbB-EGFR pathway (Fig-

ure 3C), suggesting that modulation of these pathways plays an

important role in head size variation.

The p53 signaling pathway showed the strongest enrichment

(padjusted = 7.63 10�4) (Figure 3A; Table S15). Tumor suppressor

protein p53, encoded by TP53, is activated by different stress

signals to regulate the cell cycle and apoptosis. Our lead signal

in this locus was TP53 30-UTR variant rs78378222 with predicted

deleterious effects (CADD = 15.93), which was identified previ-

ously.5 Three other genes in this pathway (ATR, CDK6, and
Cell Reports Medicine 5, 101529, May 21, 2024 5



Figure 2. Genetic loci for head size and effects on regional brain volumes
(A) Heatmap showing head size loci that overlap with previously identified loci for global brain volumes (red), subcortical volumes (blue), and cortical region of

interest volumes (green).

(B) UpSet plot of associations between head size lead variants and brain volumes. Intersection size corresponds to the frequency of the combination depicted

below the bar. Set size corresponds to the frequency of associations with one of the brain volume categories (i.e., global, subcortical, or cortical).

(C) Plot showing the subcortical shape analysis of rs111939932 using log Jacobian determinants. Colors correspond to t values, with positive associations

depicted in blue, and negative ones in red. Letters point to different subcortical structures: a, putamen; b, pallidum; c, caudate; d, amygdala; e, hippocampus; f,

thalamus; g, accumbens.

Report
ll

OPEN ACCESS
PTEN) also contained 30-UTR or exonic variants in LD (r2 > 0.6)

with lead variants. Identified genes act in cell-cycle arrest and

cellular senescence (CDK6, CDK2, and CCND2), apoptosis

(IGF1), or inhibition of the insulin growth factor (IGF)-1/mamma-

lian target of rapamycin (mTOR) pathway (PTEN), suggesting

comprehensive involvement of the p53 signaling pathway in

head growth. This finding is in line with evidence that p53

signaling regulates both normal and malignant neural stem cell

populations.11–13

The Wnt signaling pathway has links to carcinogenesis and the

developing and adult central nervous system,14,15 as well as to

bone development including cranial growth.16 Of the eight overlap-

ping genes, three contained exonic or 30-UTR variants in LD

(r2 > 0.6) with identified lead variants (APC, TP53, and TCF7L1).

Wnt signaling pathway gene FRZB, not annotated in KEGG, also

contained exonic and 30-UTR variants. In total, 1,948 genetic vari-

ants in LD with the identified lead variants (r2 > 0.6), including 35

exonicvariants,areeQTLs forWNT3 in27different tissues including

the cerebellar hemispheres. In addition, various exonic, 30-UTRand

50-UTRvariants in LDwith the lead variants areeQTLs forTCF7L1 in

brain tissues. These observations suggest that variants in this

pathway affect brain and cranial growth in the human population.

The ErbB pathway (padjusted = 0.014, Figure 3A), also known as

the EGFR signaling pathway, has six overlapping genes near head
6 Cell Reports Medicine 5, 101529, May 21, 2024
size variants, which are involved in calcium signaling (PLCG1),

MAPK signaling (NCK1 and MAPK1), and PI3K-AKT signaling

(ERBB3, AKT3, and CDKN1B). In addition, five genetic variants

are eQTLs for EGFR in the cerebellum. Interestingly, both AKT3

and CDKN1B are linked to clinical head size syndromes and can-

cer risk17–20 and contain, respectively, 30-UTR variants and an

exonic variant that reach genome-wide significance. ErbB

signaling is involved in neurodevelopment,21–23 making it a plau-

sible pathway involved in head size variation.

Since the above signaling pathways also have universal roles in

cell growth, we determined their enrichment in the height GWAS.

We found that only the Wnt signaling pathway was significantly

enriched in the height GWAS (padjusted = 0.038), suggesting that

the p53 and ErbB signaling pathways are more specifically

involved in head growth rather than generalized body growth.

Functional prioritization using gene expression
Using a transcriptome-wide association study (TWAS), we iden-

tified 156 head size-associated variants functioning as eQTLs,

regulating the expression of 112 genes (eGenes) in relevant tis-

sue types (Table S16). Genomic overlap with additional gene-

regulatory and epigenetic features provides evidence for 67

eQTLs regulating the expression of 58 eGenes (RegulomeDB

probability score >0.5), including AKT3 in brain tissue and



Figure 3. Gene sets enriched in human head size loci

(A) Bar plots presenting enriched KEGGgene sets. –log10 of adjusted p value and proportion of nearby genes overlapping with the gene set are presented. Cancer

gene sets are depicted in pink, cell growth and death gene sets in yellow-green, and signal transduction gene sets in turquoise.

(B) Network graph showing enriched KEGG gene sets and their included genes near genetic lead variants. Gene sets are shown in squares with arrows to

overlapping genes. Colors correspond to gene set categories: only cancer gene sets (pink), only cell growth and death gene sets (yellow-green), only signal

transduction gene sets (turquoise), cancer gene sets and cell growth and death gene sets (dark blue), cell growth and death and signal transduction gene sets

(green), or all three gene set categories (orange). Sphere size corresponds to the number of gene sets linked to that gene.

(C) Schematic overview of enriched signaling pathwayswith proteins encoded by genes near (<10 kb) identified genetic loci. Proteins encoded by these genes are

colored (green, ErbB pathway; red, p53 pathway; blue, Wnt pathway), other proteins are depicted in gray. Circles next to protein names provide the locus number

of the encoding gene. Locations of lead variants and variants in LD (r2 > 0.6) are shown in squares next to the proteins: exonic (e; red), 30-UTR (30; green), 50-UTR (5;

light green), intronic (i; blue), intergenic including up- and downstream, exonic and intronic non-coding RNA (g; gray). For Frizzled, not only FZD2 but also FRZB is

taken into consideration.
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TCF7L1 in the cerebellum—part of the ErbB and Wnt pathway,

respectively. In addition, 22 eGenes were suggested to be regu-

lated by 22 splicing QTLs (sQTLs), including AKT3. The omnibus

test revealed a shared effect for 80 eGenes across the tested

gene expression panels (Table S17), including WNT3, AKT3,

and EGFR.
Enrichment of Mendelian head size genes and cancer
genes
Target genes of GWAS variants are often close to the lead

variant.24 Accordingly, we determined the enrichment of

different categories of genes located nearby head size variants,

stratified by their distance (Table S18).
Cell Reports Medicine 5, 101529, May 21, 2024 7
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First, we investigated genes mutated in OMIM syndromes

associated with abnormal head size, i.e., macrocephaly or

microcephaly (Tables S19 and S20). We found increasing enrich-

ment for macrocephaly genes with decreasing distance to the

lead variants, culminating in a 37-fold enrichment of macroce-

phaly genes in genes containing an intragenic lead variant (Fig-

ure 4A). In contrast, microcephaly genes were not enriched

with shorter distance from lead variants. The striking enrichment

of macrocephaly genes did not change in the height-adjusted

head size GWAS (Table S21). Furthermore, there was only a

modest enrichment for macrocephaly genes in the height

GWAS, even for the top 67 loci (i.e., the same number of loci

as our GWAS; Table S21). Macrocephaly syndrome genes with

intragenic lead variants include AKT3, PTCH1, PTEN, CCND2,

and NFIX (Table S19). We conclude that common genetic vari-

ants near genes associated with macrocephaly syndromes,

but not microcephaly syndromes, contribute to variation in

head size in the general population. Our GWAS of head size

may therefore identify novel macrocephaly genes. Accordingly,

a patient with intellectual disability25 presented with macroce-

phaly and a mutation in TICRR, a gene for which a lead variant

and variants in LD were eQTLs in 12 different tissues. TICRR

acts in initiation of DNA replication and interacts with CDK2,26

a gene nearby another lead variant. TICRR is therefore an inter-

esting candidate macrocephaly syndrome gene.

We determined whether cancer genes are enriched close to

lead variants (Figure 4A). Indeed, there was a 9-fold enrichment

for high-fidelity cancer genes (first-tier COSMIC27) among genes

with an intragenic lead variant, which persisted after height

adjustment (Table S21). There was only a modest enrichment

of cancer genes close to height GWAS variants, providing addi-

tional evidence that cancer-related genes are specifically rele-

vant for head size variation.

At a variant-level, no genetic correlation was foundwith GWAS

meta-analyses of various cancer types28–31 (Table S22).

Autosomal dominance score
We did not observe a significant enrichment for microcephaly

genes (Figure 4A). This may be due to differences between the

micro- and macrocephaly gene sets. Macrocephaly typically re-

sults from mutations with an autosomal dominant inheritance

pattern (64.6%, Table S19), whereas microcephaly predomi-

nantly involves mutations with an autosomal recessive inheri-

tance pattern (72.3%, Table S20). We observed a profound in-

crease for genes with a predicted dominant inheritance pattern

closer to our lead variants (Figure 4B). However, neither domi-

nant nor recessive microcephaly genes were enriched

(Table S21) and the predominant recessive inheritance patterns

of microcephaly genes could not explain their lack of enrich-

ment. An alternative explanation is that microcephaly syndromes

are more clinically heterogeneous and the underlying mecha-

nisms are less specific to brain and cranial growth.

Gain of function and loss of function
The overlap among macrocephaly genes, microcephaly genes,

and cancer genes is shown in Figure 4C. Macrocephaly-associ-

ated genes were more enriched for high-fidelity cancer genes

than microcephaly-associated genes (enrichment ratio 12.9 vs.
8 Cell Reports Medicine 5, 101529, May 21, 2024
3.2, Table S21).We therefore investigated whether the samemu-

tation type, i.e., gain of function or loss of function, causes both

macrocephaly syndromes as a germline mutation but also asso-

ciate with cancer as somatic mutations. We found that this was

the case for the vastmajority of macrocephaly-associated genes

with a defined role in cancer (37 of 41 genes, Table S19), i.e., the

same type of mutation associated with both macrocephaly and

cancer. Moreover, germline mutations in 14 of these 37 genes,

including our GWAS genes PTEN, PTCH1, and SUFU, are asso-

ciated with a syndrome or condition with a suggested cancer

predisposition (Table S19). Our GWAS data and these observa-

tions may therefore suggest that subtle up-regulation of onco-

genes and oncogenic pathways or down-regulation of tumor

suppressor genes and pathways increases head size in the gen-

eral population.

Brain cell expression
As neural progenitors are the actively dividing cells in the devel-

oping brain, their expressed genes may explain the observed ge-

netic variants for head size.32 Indeed, genes at or near the head

size loci were enriched in differentially expressed neural progeni-

tor cell genes (Figure 4D; Table S23). Subsequently, we looked at

a single-cell RNA-sequencing (scRNA-seq) dataset from cell

types in the human cortex.33,34 Intriguingly, we find that genes

close to head size variants are strongly enriched for genes prefer-

entially expressed in intermediate progenitor cells (IPCs) (Fig-

ure 4E; Tables S24 and S25; Figure S2). Increased proliferation

of IPCs in a primate-specific area of the brain, the outer region

subventricular zone, is believed to be responsible for the evolu-

tionary expansion of the human brain.35,36 This suggests that ge-

netic variation regulating the proliferation or neuronal differentia-

tion of IPCs plays an important role in determining human head

size. Indeed, Wnt pathway genes, p53 pathway genes, and

PTCH1, SUFU, and NFIX, which we find near genetic variants

determining head size, are examples of regulators of IPCs.37–43

To understand which type of variants influence head size, we per-

formed a partitioned heritability analysis that classifies variants

into categories based on functional elements.We found anenrich-

ment for variants in the regulatory elements of both neural progen-

itors and their neuronal progenies (enrichmentprogenitors = 12.7, p =

8.3 3 10�4; enrichmentneurons = 16.1, p = 3.7 3 10�4).

Finally, we assessedwhether a similar pattern was seen for the

Catalog of Somatic Mutations in Cancer (COSMIC) first-tier can-

cer genes. Indeed, our differential gene expression analysis da-

taset indeed showed an enrichment of cancer genes in the genes

specific for neural progenitors (enrichment = 2.9, p = 1.73 10�6,

Table S23). However, no significant enrichment was found for

IPCs using the scRNA-seq data.

DISCUSSION

Here we performed the largest head size GWAS to date and

found that associated genetic variants significantly locate to

cancer genes and cancer-associated pathways. Genes near

head size variants were enriched for high-fidelity cancer genes

even after adjustment for height, suggesting a specific associa-

tion of head growth with cancer, rather than general growth.

Germline mutations in multiple macrocephaly syndrome genes



Figure 4. Gene enrichments stratified by distance from head size lead variants

(A) Enrichment of OMIM macro- and microcephaly genes and COSMIC tier 1 genes near identified genetic loci. Depicted are enrichments of genes within 1 Mb

(orange), 100 kb (purple), or 10 kb (pink) of identified genetic loci, genes with intragenic genetic variants (light green) and genes with intragenic genetic lead

variants (yellow) in comparison with genes in the reference genome (dark green). *p < 0.05; **p < 0.0125 (0.05/4); ***p < 0.0025 (0.05/4/5).

(B) Violin plots showing DOMINO autosomal dominance scores of different gene sets. *p < 0.05; **p < 0.01; ***p < 0.001.

(C) Venn diagram showing genes within 10 kb of genetic loci that overlap with OMIM microcephaly genes (yellow) or macrocephaly genes (green) or COSMIC

cancer tier 1 genes (red). Genes with intragenic lead variants are depicted in black, others in gray.

(D) Bar plot showing enrichments of gene sets for genes differentially expressed in neurons and progenitors. *p < 0.05; **p < 0.025 (0.05/2); ***p < 0.003 (0.05/2/8).

(E) Bar plots showing enrichments of gene sets for the various cell types in the human cortical brain using single-cell RNA-sequencing data. *p < 0.05;

**FDR < 0.05; ***p < 0.0007 (0.05/9/8).
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are known to be an increased cancer risk, including PTEN (Cow-

den syndrome) and PTCH1 (Gorlin syndrome) (Table S19). Our

GWAS was performed in the general population, which prompts

the question of whether the link between head size and cancer

extends beyond rare genetic syndromes.

Previous meta-analyses of prospective observational studies

found associations between adult height and increased risk for

various forms of cancer.44 Similarly, head circumference at birth

has previously been positively associated with brain cancer dur-

ing childhood,45 and with different types of cancer later in life

including stomach cancer and breast cancer,46 with stronger as-

sociations than for respectively birth weight or birth length. The

correlation between head size at birth and breast cancer later

in life was further supported by a pooled analysis of 32 studies,47

but not by another prospective cohort study.48 Our study pro-

vides further evidence for this link between head size and cancer.

The abovementioned observational studies together with our

genetic results suggest that early growth rather than later

adolescent growth may be associated with neoplasia, since cra-

nial growth is completed around the sixth year of age, whereas

height is primarily determined by peri-pubertal growth. Head

size at birth and its growth during early infancy in relation to can-

cer risk therefore deserves further studies to identify potential

underlying pathophysiological mechanisms and its potential

clinical implications.45,49,50

Limitations of the study
Although this study suggests an association between head

growth and cancer, further studies are needed to investigate

whether head size is causally related to cancer development.

In our study, we were not able to account for environmental fac-

tors such as socio-economic status and diet, especially during

childhood, which would be important to adjust for in future

studies. In addition, the clinical implications of the findings of

our study need to be investigated, for example if patients with

clinical macrocephaly syndromes need to be screened for can-

cer more extensively.
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REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Genome-wide association

study summary statistics

CHARGE dbGaP and

http://enigma.ini.usc.edu/research/

download-enigma-gwas-results

phs000930 (dbGaP accession

number)

Software and algorithms

EasyQC Winkler et al.51 Software - Universität Regensburg

(uni-regensburg.de)

METAL Willer et al.52 METAL Documentation - Genome

Analysis Wiki (umich.edu)

LD score regression Bulik-Sullivan et al.53 GitHub - bulik/ldsc: LD Score

Regression (LDSC)

LocusZoom Pruim et al.54 LocusZoom - Create Plots

of Genetic Data

FUMA GWAS Watanabe et al.55 Functional Mapping and Annotation

of Genome-wide association

studies (ctglab.nl)

TWAS-Fusion Gusev et al.56 TWAS/FUSION (gusevlab.org)

DOMINO Quinodoz et al.57 Domino (iob.ch)

Other

OMIM database Amberger et al.58 Home - OMIM

Cortical organoids’

scRNA-seq data

Bhaduri et al.34 https://organoidreportcard.cells.

ucsc.edu

e/sQTLs, and allele-specific

expression in cultured primary

human neural progenitors and

their sorted neuronal progeny

Ayg€un et al.32 https://bitbucket.org/steinlabunc/

expression_splicing_qtls_public/src/

master/
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Hieab H.H.

Adams (Hieab.Adams@radboudumc.nl).

Materials availability
This study did not generate new unique reagents.

Data and code availability
The genome-wide summary statistics that support the findings of this study will be made available through the CHARGE dbGaP

(accession number phs000930) and ENIGMA (http://enigma.ini.usc.edu/research/download-enigma-gwas-results) websites.

No previously unreported custom computer code or mathematical algorithm was used to generate results central to the

conclusions.

Any additional information required to re-analyse the data reported in this work paper is available from the lead contact upon

request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Study population
Most studies participate in the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE)59 or the Enhancing

NeuroImaging Genetics through Meta-Analysis (ENIGMA)60 consortium. We also included the results of the most recent head
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circumference GWAS.5 A complete overview of the included studies is shown in Table S1 and their population characteristics are

presented in Table S2. Each contributing study was approved by their institutional review boards or local ethical committees. Written

informed consent was obtained from all study participants.

Genotyping
Genotyping of individualswas performed on commercially available arrays, and imputed to 1000Genomes (1KG) or Haplotype Refer-

ence Consortium (HRC) imputation panels (Table S3). Quality control was performed using the EasyQC software.51 In each study,

genetic variants with an imputation quality r2 below 0.3 and a minor allele frequency (MAF) below 0.001 were excluded. Additionally,

variants were filtered on study level requiring ðr2 x MAF x NÞ> 5.

Phenotyping
Different methods were used tomeasure human head size across studies. Briefly, either head circumference wasmeasured, or intra-

cranial volume was measured on computed tomography (CT) or magnetic resonance imaging (MRI) scans. In total, human head size

was measured using intracranial volumemeasured on CT or MRI scans in respectively 1,283 and 84,171 individuals, and using head

circumference in 20,524 individuals (Table S4). These measures have previously shown to be phenotypically and genetically corre-

lated,.5,6,61 Genetic correlations between our MRI scans and head circumference measurements was 0.75. Together, this allowed us

to perform a combined meta-analyse of different measures of head size.

METHOD DETAILS

Genome-wide association studies
GWAS were performed for each study adjusted for age, age2 (if significant), gender, eigenstrat PC1-4 (if significant), study-specific

adjustments and case-control status (if applicable). In a secondmodel, additional adjustment for height weremade. TheMETAL soft-

ware52was used to perform a sample sizeweighted Z scoremeta-analysis. After meta-analysis, genetic variants available in less than

5,000 individuals were excluded. Comparable betas were derived using the formula Zscore x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N x 2 x MAF

q
as was done previously.62

Genomic inflation and polygenic heterogeneity were assessed using the LD score regression software53 by comparing the genomic

control inflation factor and the LD score regression intercept (Table S5).

GWAS meta-analyses were performed separately for African, Asian and European samples. We also performed a transancestral

meta-analysis. Since the analyses in non-European samples were underpowered, we additionally used an inverse-variance weighted

method to test the combined effects of the lead variants in the non-European samples. This analysis was performed using the gtx

package as implemented in R.

Functional annotations
Regional association plots were made with the LocusZoom software.54 The Functional Mapping and Annotation of Genome-Wide

Association Studies (FUMA GWAS) platform55 was used to derive the independent genomic loci and genetic lead variants, and to

functionally annotate the identified genetic variants. Additionally, enrichment for KEGG9 biological pathways was assessed for

genes located nearby the identified genetic loci using the default options in FUMA, using hypergeometric tests. Genotype-

Tissue Expression (GTEx) v7 was used to identify expression quantitative trait loci (eQTL) for the lead genetic variants and variants

in LD (r2 > 0.6).

We performed a transcriptome-wide association study (TWAS) using the association statistics from the European-only head size

GWAS summary statistics and weights from 21 publicly available gene expression reference panels. We focused on the gene

expression weights from blood (Young Finns Study, YFS), arterial (GTEx), brain (GTEx, CommonMind Consortium (CMC)) and pe-

ripheral nerve tissues (GTEx). Precomputed SNP-expression weights in the 1-Mb window were obtained for each gene in the refer-

ence panel, including the highly-tissue specific splicing QTL (sQTL) information on gene isoforms in the dorsolateral prefrontal cor-

tex (DLPFC, CMC). Using the SNP-expression weights, SNP-trait effect estimates and the SNP correlation matrix, we used the

TWAS-Fusion56 to estimate the association statistic between the predicted expression and head size (TWAS Z score). Transcrip-

tome-wide significant genes (eGenes) and the corresponding QTLs (eQTLs) were determined using Bonferroni correction in each

reference panel, based on the average number of features (4,320 genes) tested across all the reference panels.56 Finally, using a

prior association probability of 1.1 3 10�5 and colocalization analysis (COLOC)63 for each locus we estimated the posterior prob-

ability of a shared causal variant (PP4>0.75) between the gene expression and trait association. eGene regions with eQTLs not

reaching genome-wide significance in the head size GWAS were considered putatively novel TWAS signals. Furthermore, func-

tional validation of the eGenes was performed by integrating eQTL with the functional genomics feature from the RegulomeDB.64

A RegulomeDB probability score greater than 0.5 and closer to 1 indicates the likelihood of the eQTL having a gene-regulatory

role. Finally, accounting for pairwise correlation between the gene expression features we conducted the multiple degree of

freedom omnibus analysis, to test for the shared effect of eGenes across the different gene reference panels. A significance

threshold of p < 3.48 3 10�6 accounting for the number of genes (N = 14,385) tested was used to identify significant eGenes

in the omnibus test.
e2 Cell Reports Medicine 5, 101529, May 21, 2024
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Effects on anthropomorphic measures and regional brain volumes
The LD score regression software53,65 was used to assess genetic correlationswith adult height,66 for both the height-unadjusted and

height-adjusted model.

Dual-energy X-ray absorptiometry (DXA) measurements of the UK Biobank imaging subsample (N = 3,313) were used to examine

the effect of the identified lead variants on anthropometric measures across the body, i.e., bone area of the arms, legs, pelvis, ribs,

spine, trunk and vertebrae L1-L4. In these analyses values more than three standard deviations from the mean were considered out-

liers and removed from the analyses. We adjusted for age, age,2 gender and principal components (model 1), and additionally for

height (model 2) to correct for an overall growth effect.

To investigate the effects of the identified variants for head size on growth in specific brain regions, we investigated the overlap

between the identified loci for head size and previous genome-wide association studies (GWASs) on brain volumes.7,67–70 We

also analyzed the associations between the identified lead genetic variants and global volumes (i.e., four brain lobes and lateral

ventricle volumes), subcortical volumes (i.e., volumes of eight subcortical structures) and cortical volumes (i.e., volumes of 34 cortical

regions of interest) in the UK Biobank (N = 22,145). Volumes were derived using the FreeSurfer 6.0 software. Values more than 3.5

standard deviations away from the mean were considered outliers and removed from the analysis. In the first model, we adjusted for

age, age,2 gender and principal components, and in the second model additionally for intracranial volume.

Additionally, we took the lead variants specifically associated with one or two subcortical volumes, and investigated their effects on

the shape of seven subcortical structures, i.e., amygdala, caudate nucleus, hippocampus, nucleus accumbens, pallidum, putamen

and thalamus. The radial distances and log Jacobian determinants were derived using the ENIGMA-Shape package (http://enigma.

usc.edu/ongoing/enigma-shape-analysis/). Volumetric outliers more than 3.5 standard deviations from themeanwere removed from

the analysis.

We performed 10,000 permutations to define the number of independent DXA, brain volumetric and subcortical shape outcomes.

We used this number to define our multiple testing adjusted p value thresholds for significance, i.e., 0.05/(number of independent

outcomes x number of lead genetic variants).

Genetic correlations
We investigated the genetic correlations with neuropsychiatric traits using the LD score regression software.53,65 Genetic correlation

analyses were performed for educational attainment,71 general cognitive function,72 all stroke,73 Alzheimer’s disease,74 frontotem-

poral dementia,75 Parkinson’s disease,76 anorexia nervosa,77 attention-deficit hyperactivity disorder,78 autism spectrum disorder,79

bipolar disorder,80 extraversion,81 insomnia,82 major depressive disorder,83 neuroticism,84 obsessive compulsive disorder85 and

schizophrenia.80 Analyseswere performed in the entire GWASdataset aswell as in theGWAS set with newly included studies in com-

parison to the intracranial volume GWAS performed by Adams et al.6

We also performed genetic correlation analyses for publicly available cancer GWAS, namely for breast cancer,28 ovarian cancer29

and prostate cancer.30 To obtain information on more cancer types, we additionally included GWAS of cancer registries from the UK

Biobank and Kaiser Permanente Genetic Epidemiology Research on Adult Health and Aging (GERA).31 Of those, we excluded cancer

types with less than 1,000 cases, which left the following cancer types to be analyzed: bladder cancer (Ncases = 2,242), breast cancer

(Ncases = 17,881), cervical cancer (Ncases = 6,563), colon cancer (Ncases = 3,793), endometrial cancer (Ncases = 2,037), esophageal/

gastric cancer (Ncases = 1,091), kidney cancer (Ncases = 1,338), lung cancer (Ncases = 2,485), malignant melanoma (Ncases = 6,777),

non-Hodgkin’s lymphoma (Ncases = 2,400), prostate cancer (Ncases = 10,792) and rectal cancer (Ncases = 2,091). Genetic correlations

with oral cavity/pharyngeal cancer (Ncases = 1,223) and ovarian cancer (Ncases = 1,259) could not be calculated due to low heritability

estimates.

Enrichment analyses
We performed enrichment analyses of different gene sets: genes within 1 Mb, 100 kb or 10 kb of the identified genetic loci, genes

within 10 kb of the identified genetic loci with intragenic genetic variants, and genes within 10 kb of the identified genetic loci with

intragenic genetic lead variants. As a reference, we used the rest of the protein-coding genome.

First, the Online Mendelian Inheritance in Man (OMIM) database58 was used to retrieve information on genes related to heritable

phenotypes affecting head size (Tables S19 and S20). Second, the COSMIC database27 was used to extract Tier 1 cancer genes.

Taking the rest of the genome as our reference gene set, we calculated the enrichment of these macrocephaly, microcephaly and

cancer genes in the abovementioned gene sets.

Lastly, DOMINO,57 a previously developed machine learning tool, was used to assess if the genes in the different gene sets were

more often predicted to harbor dominant changes in comparison with genes in the rest of the genome.

Mean autosomal dominance scores were compared with the reference genome using aMann-Whitney test. Differences in the pro-

portions for the OMIM macro- and microcephaly genes, intellectual disability genes and COSMIC genes were calculated using a

Pearson’s c2 test.

We performed these analyses for the head size height-unadjusted GWAS results, but also the GWAS in the subset of studies for

which height was available, the height-adjusted GWAS and the height GWAS.66 For comparison, we also selected the top 67 loci for

the height GWAS, so the results were not driven by a difference in the number of associated loci.
Cell Reports Medicine 5, 101529, May 21, 2024 e3

http://enigma.usc.edu/ongoing/enigma-shape-analysis/
http://enigma.usc.edu/ongoing/enigma-shape-analysis/


Report
ll

OPEN ACCESS
Experimental datasets of brain cells
To assess whether the identified genes in the current study are enriched for genes differentially expressed in human progenitors

versus neurons, we utilized differential gene expression data of those cell lines, derived from a previously published sample popu-

lation (Ndonor = 85 in progenitors and Ndonor = 74 in neurons).32 Using genes with at least 10 counts in more than 5% of the cell-type

specific donors in either cell-type (resulting in 16,172 protein-coding genes out of 28,785 genes in total), we performed a paired dif-

ferential gene expression analysis with design matrix: model.matrix(� CellType + as.factor(DonorID) + RIN, data) as described pre-

viously,32 using the limma R package.86 We detected 1,095/1,420 protein genes upregulated in progenitors/neurons, respectively,

for abs(logFC) > 1.5 and adjusted p value < 0.05. Performing a hypergeometric test, we evaluated if multiple protein-coding gene

sets: head size gene sets with different distances from the lead variants, OMIM macrocephaly and microcephaly genes, and

COSMIC tier 1 cancer genes are enriched among the protein-coding genes upregulated in progenitors or neurons.

Using a different approach, scRNA-seq data were used to investigate whether our genes of interest were enriched for genes spe-

cific for certain cortical brain cell types. Specifically, scRNA-seq data from the developing human cortex (gestational week 6–22,

more than 189,000 cells) were used to identify the top 10% of genes specific for a certain cell type.34 Using this data, we first per-

formed LD score regression53 based enrichment analyses of the head size GWAS summary statistics, as previously described.33,87

Gene specificity was defined as the ratio of expression of a gene in a cell type by the total expression of that gene in all cell types. In

parallel, we again tested the enrichment of various gene sets: head size gene sets with different distances from the lead variants,

OMIM macrocephaly and microcephaly genes, and COSMIC tier 1 cancer genes, with the top 10% of cell specific genes for each

cell type using hypergeometric tests. FDR correction was used to correct for the multiple gene sets tested for enrichment in each

cell type.

To determine if regulatory elements of neural progenitors are enriched for the heritability of head size, we performed partitioned

heritability analyses53,88 using chromatin accessibility profiles from a population of 76 primary human neural progenitor cells and

61 of their differentiated neuronal progenies, as was done previously.89

QUANTIFICATION AND STATISTICAL ANALYSIS

Please see the statistical analyses and software in method details.
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