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Revisiting the argmin direct control for the Cascaded H-Bridge Inverter

Manon Doré, Yassine Ariba, Oswaldo Lopez-Santos, and Germain Garcia

Abstract— This paper addresses the direct control of the
Cascaded H-Bridge (CHB) converter as an inverter (DC-AC),
using the argmin control law. This control law derived from
the literature on switched affine systems has been used in the
control community for direct control of DC-DC converters.
However, it has limited effectiveness with the CHB, as it fails to
take advantages of the modularity of this topology. To overcome
this, a revisited argmin control law is proposed. This new
version imposes extra constraints on control inputs to improve
the tracking of a suitable reference, offering advantages over
the classical argmin control law for this specific converter.
Specifically, it significantly reduces switches commutations and
the harmonic distortion. Results are further extended with a
state feedback version to specify the closed-loop dynamic. All
results are illustrated with simulations using PSIM.

I. INTRODUCTION

The Cascaded H-Bridge (CHB) Converter is a multilevel
power converter employed as an inverter in high voltage or
high power applications [1]. It finds application in various
fields such as renewable energy systems [2], [3], electric
vehicle propulsion [4], [5] and High Voltage Direct Current
(HVDC) transmission [6], [7]. This converter produces high-
quality voltage waveform, with reduced harmonic distortion
and high efficiency [8]. The CHB inverter consists in multiple
H-Bridges connected in series, also called cells. Each cell can
be regarded as a module, making this converter topology
highly modular and adaptable to different voltage levels.
Additionally, its structure presents redundancy, providing
fault tolerance capabilities [9].

From a modeling perspective, this converter’s model is
linear, unlike other well known converters like the boost
converter. Its specificity arises from the absence of energy
storage elements within the circuit, meaning that the switches
directly determine the output voltage level.

From a control perspective, converters are often considered
as hybrid systems, specifically switched affine systems, ex-
ploiting the switching nature of transistors. Recent advances
in control theory have introduced the so-called argmin con-
trol law for such systems [10], with several applications on
converters [10]–[14]. In this paper, we point out that the
argmin control law is inefficient for the CHB, and unable to
take advantage of its modular topology. Instead of using the
multilevel structure of the system, the control law naturally
selects extreme output levels by optimization. This results
in poor harmonic quality of the output and high switching
losses.
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Université de Toulouse, CNRS, INSA, Toulouse, France. Email:
{mdore,yariba,garcia}@laas.fr, O. Lopez-Santos is with
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To address this issue, this paper revisits the argmin control
law so as to restore the benefit of the converter’s modularity.
The asymptotic stability of the error origin (between the state
and its reference) is proven using Lyapunov methodology
for the closed-loop system. Results are extended with a state
feedback version of the proposed control law, and simula-
tions on PSIM illustrate the effectiveness of the approach.

II. MODELING

The circuit of the considered Cascaded H-Bridge inverter
is shown in Figure 1. Each H-Bridge cell is fed by an isolated
voltage source of same value, denoted Vin. According to the
state of its switches, a cell can generate a constant voltage
level: Vin, −Vin or 0.

The states of the switches are represented by binary control
variables denoted as ui, where 0/1 correspond to open/close
respectively, and ūi = 1−ui. Each cell requires two control
variables, such that the voltage between the arms of the ith

cell is (u2i − u2i−1)Vin.
Each cell contributes to generate a portion of the overall

output voltage Vond. This voltage depends on the state of
the switches, and takes values in the set {−mVin; · · · ; (m−
1)Vin;mVin}, where m is the number of cells. To complete
the system, we consider that the converter is connected to a
resistive load via an LC filter.

Considering the notations in Figure 1 and the series
topology of the converter, Kirchoff’s laws allow to write the
following model of the overall system:

Vond =
∑m

i=1(u2i − u2i−1)Vin

(L1 + L2)i̇ = Vond − vC
Cv̇C = i− vC

R
y = vC

Fig. 1: System circuit



Taking x = [i vC ]
T as a state vector, and defining L :=

L1 + L2, we can derive a state space model of the form:{
ẋ = A0x+

∑2m
i=1 uiBuiVin = A0x+B0Vond(u)

y = C0x

where

A0 =

[
0 − 1

L
1
C − 1

RC

]
Bui

=


[
− 1

L
0

]
if i is odd[

1
L
0

]
if i is even

B0 =

[
1
L
0

]
C0 =

[
0 1

]
u ∈ {0; 1}2m

III. CONTROL

The objective of the control problem is to determine Vond,
through the control of the switches, such that the voltage y
across the load tracks a sinusoidal reference waveform ye to
ensure the DC-AC function, such that

ye = M sin(ωt) (1)

Based on the circuit model, the current reference ie
associated to the output voltage reference (1) is:

ie = Cẏe +
ye
R

= CMω cos(ωt) +
M

R
sin(ωt) (2)

And the reference Vonde of Vond is:

Vonde = Li̇e + ye

= M(1− CLω2) sin(ωt) +
ML

R
ω cos(ωt) (3)

Remark 1: The time derivative of the state reference
xe :=

[
ie
ye

]
is given by:

ẋe =

[
−CMω2 sin(ωt) + Mω

R cos(ωt)
Mω cos(ωt)

]
=

[
−ye

L +
Vonde

L
ie
C − ye

RC

]
= A0xe +B0Vonde

A given reference Vonde
for Vond must then ensure Vonde

∈
[−mVin,mVin] to be admissible.

Each ui variable can take value 0 or 1, resulting in
22m possible combinations. However, many combinations
yield to the same Vond voltage. Since Vond can take only
2m + 1 values, we need only one ui combination for each
voltage level to control the converter. For instance, in a
CHB with 8 cells, there are 65536 combinations of uis,
but only 17 of them are needed to generate every Vond

voltage level. To characterize control values, we define set
U , composed of sets Uk that contains uis combinations,
such that if u ∈ Uk, then Vond(u) = k × Vin, for k ∈
{−m,−m+ 1, . . . , 0, 1, . . . ,m}.

To propose a control law, we first introduce the following
lemma, which provides a sufficient condition on Vond to
asymptotically stabilize the origin of the error signal.

Lemma 1: Let e := x − xe be the tracking error. For a
given symmetric positive definite matrix QC ∈ R2×2 and
P ∈ R2×2 satisfying the LMI

AT
0 P + PA0 + 2QC < 0 (4)

if Vond(u) is controlled such that eTPB0(Vond(u) −
Vonde) < 0 always holds, then the origin of e is asymp-
totically stable, in the sense of Filipov.

Proof: Consider the Lyapunov function V (e) = 1
2e

TPe
where P = PT > 0 satisfies (4). V is clearly positive definite
and radially unbounded. Its time derivative is

V̇ (e) = eTP (A0e+B0(Vond(u)− Vonde
))

Considering inequality (4), we have

V̇ (e) ≤ −eTQCe+ eTPB0(Vond(u)− Vonde)

Therefore, if eTPB0(Vond(u)− Vonde
) ≤ 0, then V̇ (e) < 0

and the origin of e is asymptotically stable (AS).
Remark 2: For the considered CHB circuit, the matrix A0

is Hurwitz, condition (4) is then always feasible.
In the following proposition, the classical argmin control

law is recalled, with a slightly different proof though.
Proposition 1: Let the reference xe be admissible. For P

satisfying (4), the classical argmin control law

(u∗
1, . . . , u

∗
2m) = argmin

(d1,...,d2m)∈U

eTP
(
A0x+B0Vond(d)

)
= argmin

(d1,...,d2m)∈U

eTPB0Vond(d) (5)

asymptotically stabilize the origin of the tracking error e.
Proof: Considering the same Lyapunov function as in

the proof of Lemma 1 and P satisfying (4), similar arguments
leads to

V̇ (e) ≤ eTPB0(Vond(u)− Vonde
)

By construction of the control law (5), the inequality

min
(u1,...,u2m)∈U

eTPB0Vond(u) ≤ eTPB0Vonde

holds, and leads to

eTPB0(Vond(u)− Vonde) ≤ 0

Then, Lemma 1 is fulfilled and the origin of e is AS.
Lemma 1 shows that for given values of e, P and Vonde

,
multiple Vond values can stabilize the origin of e, which
give a certain degree of freedom in the control that can
be exploited. The classical argmin control law can select
many ui combinations, but ends up selecting only extreme
values, due to the optimisation mechanism. In Proposition 2,
a reduced argmin control law is introduced. This new law
uses the degree of freedom in the control to select Vond

values that are close to its reference Vonde . This is achieved
by reducing the control values that the control law can select
to those close to the reference Vonde

.
Proposition 2: Let the reference xe be admissible. For P

satisfying (4), the reduced argmin control law

For Vonde
∈ [kVin, (k + 1)Vin] then

(u∗
1, . . . , u

∗
2m) = argmin

(d1,...,d2m)∈{Uk,Uk+1}
eTPB0Vond(d) (6)

asymptotically stabilizes the origin of the tracking error e.



Proof: Considering the same Lyapunov function as in
the proof of Lemma 1 and P satisfying (4), similar arguments
leads to

V̇ (e) ≤ eTPB0(Vond(u)− Vonde)

The control law (6) can only select combinations in sets Uk

or Uk+1 as a control, leading to Vond = kVin or Vond =
(k + 1)Vin. By construction of the control law (6)

min
(u1,...,u2m)∈{Uk,Uk+1}

eTPB0Vond(u) < eTPB0Vonde

, since Vonde
∈ [kVin, (k + 1)Vin]. Therefore, inequality

eTPB0(Vond(u)− Vonde
) < 0

holds, Lemma 1 is fulfilled and the origin of e is AS.

IV. STATE FEEDBACK CONTROL

The proposed control strategy can be extended by in-
cluding a state feedback in the control design. First, we
study the dynamic of the tracking error e = x − xe, where
xe = [ie ye]

T is defined in (1) and (2). Its dynamic is

ẋe = A0xe +B0Vonde

where Vonde
from (3) is the reference of Vond. The dynamic

of the tracking error is

ė = ẋ− ẋe = A0e+B0(Vond(u)− Vonde
)

Considering Vond as a continuous virtual control, we design
a state feedback control of the form:

Vond = Vonde
−Ke

where the state feedback gain K ∈ R1×2 has to be designed.
The dynamic of the system would then be

ė = (A0 −B0K)e := Āe

The gain K can be designed using the classical pole place-
ment technique to achieve a desired performance of the
closed-loop system.

Since Vond is in fact discontinuous and takes a limited
number of values, the key idea is to use the reduced version
of the argmin control to ensure Vond switches along the state
feedback reference VC := Vonde

−Ke.
Proposition 3: Let e := x− xe denote the tracking error,

K ∈ R1×2 a given state feedback gain ensuring the matrix
Ā = A0 − B0K is Hurwitz, and VC = Vonde − Ke be an
admissible state feedback reference. Let a given symmetric
positive definite matrix QC ∈ R2×2, and a symmetric
positive definite matrix P ∈ R2×2 solution of the LMI

ĀTP + PĀ+ 2QC < 0 (7)

Then, the state feedback reduced argmin control law

For VC ∈ [kVin, (k + 1)Vin] then

(u∗
1, . . . , u

∗
2m) = argmin

(d1,...,d2m)∈{Uk,Uk+1}
eTPB0Vond(d) (8)

asymptotically stabilizes the origin of the tracking error e.

Proof: First, let’s remark that the dynamic of the state
reference can be expressed as:

ẋe = A0xe +B0Vonde
= A0xe +B0(VC +Ke)

Then, consider the Lyapunov function V (e) = 1
2e

TPe where
P = PT > 0 satisfies (7). V is clearly positive definite and
radially unbounded. Its time derivative is

V̇ (e) = eTP (A0x+B0Vond −A0xe −B0(VC +Ke))

= eTP ((A0 −B0K)e+B0(Vond − VC))

Considering LMI condition (7), we have

V̇ (e)≤−eTQCe+eTPB0(Vond−VC)≤eTPB0(Vond−VC)

By construction of the control law (8), we have the following
inequality

eTPB0Vond < eTPB0VC

involving

V̇ (e) ≤ eTPB0(Vond − VC) < 0

Since V̇ < 0, the origin of e is asymptotically stable.
Next, we will show through simulation of the application

that using the specific control choice (6) reduces changes
in state variables compared to using (5). It also reduces the
number of switches commutations, which reduces the associ-
ated circuit losses. Additionally, less calculations are needed
to establish the control, as the number of combinations to test
is reduced from 2m + 1 to 2. Moreover, the state-feedback
extension allows to select the closed-loop dynamics of the
tracking error.

V. SIMULATION

To illustrate the proposed control law, a CHB inverter
with m = 8 H-Bridge cells is simulated with PSIM. The
parameters of the circuit are given in Table I.

As explained in Section 3, first paragraph, we can use
only one combination of ui variables to generate each
voltage level of Vond. Table II presents sets Uk contain-
ing the ui combination selected to obtain the 17 possible
Vond voltage levels. This specific choice ensure that when
switching between two consecutive voltage levels, only one
control variable, and thus two transistors, need to switch,
which limits switching losses. For example, u ∈ U4 =
(0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1) leads to Vond = 4Vin.
In this case, H-Bridges number 5, 6, 7 and 8 will each have
a voltage equal to Vin between their arms.

For this example, the simulation step is Tint= 1µs and the
control update period is Tcom= 10µs. The matrix P needed
to compute the classic and reduced control laws (5) and (6)
is obtain by solving (4) while minimizing the trace of P with
MATLAB and a semidefinite programming (SDP) solver. For

QC=

[
1 0
0 10

]
arbitrarily, we obtain P=

[
0.2027 −0.0002
−0.0002 0.0223

]
.

To test the state feedback version, the gain K is designed
to achieve a stable closed-loop dynamic with a damping coef-
ficient of ζ = 1.1 and a natural frequency ωn = 4000 rad/s.
The resulting gain is K =

[
8.3455 2.1855

]
. The matrix P



TABLE I: Circuit parameters

Parameter Value Parameter Value
Vin 40 V ω 2π × 50 rad/s

L1 = L2 1 mH M 220
√
2 V

C 220 µF R 10 Ω

TABLE II: Selected combinations of ui to obtain all possible
values of Vond

Ui Vond Active H-Bridge uis equal to 1
8 8 Vin 1,2,3,4,5,6,7,8 2,4,6,8,10,12,14,16
7 7 Vin 2,3,4,5,6,7,8 4,6,8,10,12,14,16
6 6 Vin 3,4,5,6,7,8 6,8,10,12,14,16
5 5 Vin 4,5,6,7,8 8,10,12,14,16
4 4 Vin 5,6,7,8 10,12,14,16
3 3 Vin 6,7,8 12,14,16
2 2 Vin 7,8 14,16
1 Vin 8 16
0 0
-1 - Vin -1 1
-2 - 2 Vin -1,-2 1,3
-3 - 3 Vin -1,-2,-3 1,3,5
-4 - 4 Vin -1,-2,-3,-4 1,3,5,7
-5 - 5 Vin -1,-2,-3,-4,-5 1,3,5,7,9
-6 - 6 Vin -1,-2,-3,-4,-5,-6 1,3,5,7,9,11
-7 - 7 Vin -1,-2,-3,-4,-5,-6,-7 1,3,5,7,9,11,13
-8 - 8 Vin -1,-2,-3,-4,-5,-6,-7,-8 1,3,5,7,9,11,13,15

needed for this control law is computed for QC =

[
1 0
0 10

]
.

We obtain P =

[
0.0016 0.0027
0.0027 0.0061

]
by minimizing its trace

while solving (7) with MATLAB and a SDP solver.
Figure 2 presents the current with its reference for all

control methods. The classical control results in larger high-
frequency component, causing larger ripples. Like the output,
the transient phase is longer with the reduced control than
with the classical control, but it better tracks its reference,
as emphasized in Figure 5b.

Figure 3 shows the evolution of the output voltage y
compared to its reference for all control laws (m stands
for milliseconds on the time axis). With the reduced argmin
control, the output closely track its reference. The classical
control produces a sinusoidal signal, but with a smaller
amplitude than the reference, as depicted in Figure 5. This
figure also pictures that the transient phase is longer with
the reduced control, but the signal tracks its reference more
accurately at steady state. A shorter transient is not surprising
with the classical control, since it can select more negative
values of the Lyapunov function’s time derivative.

With the state-feedback control law, output and current
follow their references after a short transient phase, with
reduced oscillations. As depicted in Figure 6, signals reach
their references faster with the state-feedback than with the
reduced law without state-feedback. This is expected, as the
state-feedback control law is tuned for a faster closed-loop
system than the open-loop one.

To better understand the control behavior, Figure 4 shows
the inverter output Vond alongside its reference. The classic
argmin control law selects only extreme Vond values, due to
the expression minimized by the law. The reduced version

Fig. 2: Inductor current and reference for a: classical argmin
- b: reduced argmin - c: state-feedback reduced argmin

(with or without state-feedback) forces to choose Vond values
close to its reference, ensuring accurate tracking, and re-
ducing high-frequency content. The behavior of Vond differs
during the converter start-up, but is similar in the steady
state for both reduced control laws. This is expected since
VC = Vonde for e = 0, which is the case in steady-state.

Given the selected closed loop characteristic, we can also
expect less overshoot with state-feedback in the system error
compared to the reduced control law. This prediction is
confirmed in Figure 7, which shows the output error for both
control laws. It is clear that the transient phase is longer with
the reduced control law (6).

Finally, Table III presents performance indicators for the
output voltage with tested control laws. Indicators are: total
number of commutation of u, mean tracking error and
associated standard deviation computed over the last period
of simulation (40 ms to 60 ms, representing steady-state),
and THD (total harmonic distortion) computed over the last
two simulation periods (20 ms to 60 ms). The reduced
argmin control law significantly reduces the number of



Fig. 3: Output voltage and reference for a: classical argmin
- b: reduced argmin - c: state-feedback reduced argmin

TABLE III: Output voltage performance indicators

argmin Total commut. Mean error Std. dev. THD(%)
Classic (5) 39984 7.3170 3.6582 0.1231 %

Reduced (6) 3093 0.0530 0.0336 0.0165 %
State-feedback (8) 3397 0.0156 0.0109 0.0096 %

commutations, and thus associated losses compared to the
classic one. It also ensures better tracking and generates high-
quality signal, with a THD around 0.01%. The state feedback
version allows to select the behavior of the closed-loop
system. As denoted on the figures, the system is faster and
more precise with feedback. The overshoot is also reduced,
but these improvements come at the cost of more switching,
which is expected for faster dynamics.

VI. CONCLUSION

This paper has introduced a modified argmin control
law designed for the cascaded H-Bridge inverter. Using a
state space model of the system, we have derived reference
signals for the inductor current and the capacitor voltage to
achieve a sinusoidal output voltage. Through constraints on

Fig. 4: Inverter output voltage and reference for a: classical
argmin - b: reduced argmin - c: state-feedback reduced
argmin

the admissible control inputs, we have significantly increased
the output signal quality compared to the classic argmin
control law, and reduced the number of commutations. We
have also proposed a state feedback version of the reduced
argmin control law, extending the approach, and simplifying
the specification of the closed-loop dynamic. Simulations
have shown that it was possible, for example, to speed up
the system at the cost of increase the number of switch
commutations.

However, some aspects were not addressed in the proposed
approach. Specific circuit configuration choices were made to
simplify the control problem, but alternative strategies could
further reduce commutations and optimize power distribution
among H-Bridge cells. Future research should focus on
the robustness of the proposed strategy regarding external
perturbations to give a more realistic study.

Also, a digital implementation of the proposed control in
laboratory is being considered to further validate the concept
and analyze the impact of delays, quantization and noise in
the general performance of the system.



Fig. 5: Start-up of the converter for both control laws, a:
output voltage - b: inductor current

Fig. 6: Start-up of the converter for both control laws, a:
output voltage - b: inductor current

Fig. 7: Output voltage tracking error for both control laws
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