
HAL Id: hal-04627022
https://hal.science/hal-04627022

Submitted on 27 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

User Guided Abductive Proof Generation for Answer
Set Programming Queries

Avishkar Mahajan, Martin Strecker, Meng Weng Wong

To cite this version:
Avishkar Mahajan, Martin Strecker, Meng Weng Wong. User Guided Abductive Proof Generation
for Answer Set Programming Queries. PPDP 2022: 24th International Symposium on Principles and
Practice of Declarative Programming, Sep 2022, Tbilisi, Georgia. pp.1-14, �10.1145/3551357.3551383�.
�hal-04627022�

https://hal.science/hal-04627022
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

User Guided Abductive Proof Generation for Answer Set
Programming �eries

Avishkar Mahajan
Meng Weng Wong

Singapore Management University

Singapore

Martin Strecker
University of Toulouse

France

ABSTRACT

We present a method for generating possible proofs of a query with

respect to a given Answer Set Programming (ASP) rule set using an

abductive process where the space of abducibles is automatically

constructed just from the input rules alone. Given a (possibly empty)

set of user provided facts, our method infers any additional facts

that may be needed for the entailment of a query and then outputs

these extra facts, without the user needing to explicitly specify the

space of all abducibles. We also present a method to generate a set of

directed edges corresponding to the justification graph for the query.

Furthermore, through different forms of implicit term substitution,

our method can take user provided facts into account and suitably

modify the abductive solutions. Past work on abduction has been

primarily based on goal directed methods. However these methods

can result in solvers that are not truly declarative. Much less work

has been done on realizing abduction in a bottom up solver like the

Clingo ASP solver. We describe novel ASP programs which can be

run directly in Clingo to yield the abductive solutions and directed

edge sets without needing to modify the underlying solving engine.

CCS CONCEPTS

• Theory of computation → Constraint and logic program-

ming; Automated reasoning; • Applied computing→ Law.

ACM Reference Format:

Avishkar Mahajan, Meng Weng Wong, and Martin Strecker. 2022. User

Guided Abductive Proof Generation for Answer Set Programming Queries.

In 24th International Symposium on Principles and Practice of Declarative

Programming (PPDP 2022), September 20–22, 2022, Tbilisi, Georgia. ACM,

New York, NY, USA, 14 pages. https://doi.org/10.1145/3551357.3551383

1 INTRODUCTION

The goal of this paper is to show how a bottom up ASP reasoner

like Clingo can be used for Abductive reasoning over First Order

Horn clauses. As mentioned in the abstract previous work in ab-

ductive reasoning has mostly focused on implementing abduction

in a top-down manner with Prolog as the underlying engine. CIFF

[Mancarella et al. 2009] is a prominent example of this. More re-

cently sCASP [Arias 2019; Arias et al. 2019] has been developed as

a goal directed ASP implementation that can be used for abduction

but this too uses a top down method for query evaluation. However

ACMacknowledges that this contributionwas authored or co-authored by an employee,
contractor or affiliate of a national government. As such, the Government retains a
nonexclusive, royalty-free right to publish or reproduce this article, or to allow others
to do so, for Government purposes only.

PPDP 2022, September 20–22, 2022, Tbilisi, Georgia

© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9703-2/22/09. . . $15.00
https://doi.org/10.1145/3551357.3551383

there may be use cases where one wants to know all the resulting

consequences of an abductive solution to a query with respect to a

rule-set. Also, as mentioned in the abstract, top-down methods can

sometimes result in solvers that are not truly declarative. Therefore

an abductive reasoner that uses a solver like Clingo [Gebser et al.

2012] can complement the abilities of goal directed reasoners like

sCASP, CIFF etc.

This paper shows how, given an input ASP rule set, one can

write a new ASP program based on that rule set which will yield

abductive solutions to queries, with the input ASP rule set as the

background theory. The user does not have to explicitly specify the

space of abducibles. This translation from the input ASP rule set to

the derived ASP program is a purely mechanical one. The key idea

is to encode backward chaining over the input rules through the

use of meta predicates which incorporate a notion of ’reversing’

the input rules to recursively generate pre-conditions from post

conditions thereby generating a maximal space of abducibles. Then

having generated this maximal space of abducibles, this ’feeds into’

another part of the program where we have a representation of

the input rules in the normal ’forward’ direction. Entailment of the

specified query is then checked via an integrity constraint and a

minimal set of abduced facts is returned.

The main technical challenges are dealing with situations where

input rules have existential variables in pre-conditions or when

the query itself has existential variables. The other challenge is to

control the depth of the abducibles generation process. The work

that seems to come closest to ours is [Schüller 2016]. It too uses

some similar meta predicates to encode backward chaining, and a

forward representation of the rules to check for query entailment

via integrity constraints.

However there are several novel features in our work. Firstly,

depth control for abducible generation is done in a purely declar-

ative way as part of the encoding itself without needing to call

external functions or other pieces of software. Furthermore, adding

facts to the program automatically gives an implicit form of term

substitution where Skolem terms or other ’place-holder’ terms oc-

curring in abducibles are replaced away so that the resulting proof

is simplified, without any need for an explicit representation of

equality between terms. Past work on this topic such as [Schüller

2016] models equality between terms via an explicit equality pred-

icate which may become unwieldy. Another approach to dealing

with existential variables encountered during the abductive proof

search is to simply ground all the rules over the entire domain of

constants. However, this can often lead to too many choices for

what an existential variable may be substituted for which may re-

sult in unexpected/unintuitive solutions. Our method avoids both

of these techniques. We present three main sets of abductive proof

PPDP 2022, September 20–22, 2022, Tbilisi, Georgia Avishkar Mahajan, Meng Weng Wong, and Martin Strecker

generation encodings. One of the encodings only supports partial

term substitution whereas the other two support full term substitu-

tion. Lastly, we also present an encoding which generates a set of

directed edges representing a justification graph for the generated

proof, where the graph can be of any desired depth.

The rest of the paper is organised as follows. First we give a brief

introduction to Answer Set Programming and Abductive reasoning

then, Section 2 defines the problem being tackled more formally.

Section 3 presents the encodings that facilitate the abductive proof

generation and directed edge generation. The sections that follow

discuss some formal results regarding completeness, finiteness of

abductive proof generation. We also discuss a formal result regard-

ing term substitution. Finally Section 7 discusses future work and

concludes.

An extended version of this paper [Mahajan et al. 2022] is avail-

able from arXiv, containing full proofs and further examples.

1.1 Answer Set Programming

Answer Set Programming (ASP) is a declarative language from the

logic programming family. It is widely used and studied by knowl-

edge representation and reasoning and symbolic AI researchers

for its ability to model common sense reasoning, model combina-

torial search problems etc. It incorporates the negation-as-failure

operator as interpreted under the stable model semantics. Clingo is

a well established implementation of ASP, incorporating additional

features such as choice rules and optimization statements. We shall

only briefly touch upon various aspects of ASP and Clingo here.

The reader may consult [Gebser et al. 2012] for a more thorough

description. Each rule in an ASP program consists of a set of body

atoms. Some of these body atoms maybe negated via the negation

as failure operator not . Rules with no pre-conditions are called

facts. Given a set of rules R and a set of facts F , the Clingo solver

computes all stable models of the ASP program F ∪ R. For example

given the fact r (alpha) and the rules:

p(X):-r(X),not q(X).

q(X):-r(X), not p(X).

The solver will show us 2 models or answer sets given by

{r (alpha),p(alpha)} and {r (alpha),q(alpha)}. Note that as opposed

to Prolog, Clingo is a bottom up solver meaning that it computes

complete stable models (also known as answer sets) given any ASP

program. An integrity constraint is formally speaking a rule whose

post-condition is the boolean f alse . In ASP, integrity constraints are

written as rules with no post-conditions and are used to eliminate

some computed answer sets. For example given in the following

ASP program

r(alpha).

p(X):-r(X),not q(X).

q(X):-r(X), not p(X).

:-q(X).

any answer set where some instantiation of q is true is eliminated.

Hence we get just one answer set. {r (alpha),p(alpha)}.

We will now give a quick introduction to two features of Clingo

that we will use throughout this paper. Namely choice rules and

weak constraints. Weak constraints are also often known as opti-

mization statements. Intuitively a choice rule is a rule where if the

pre-conditions are satisfied then the post-condition may or may

not be made true. The post-condition of a choice rule is enclosed in

curly brackets. So given the following ASP program:

r(alpha).

{q(X)}:-r(X).

, where the rule is a choice rule the solver will give us 2 models

namely {r (alpha)}, {r (alpha),q(alpha)}. If we modify the program

by adding an integrity constraint like so:

r(alpha).

{q(X)}:-r(X).

:-q(X).

then we get just one model {r (alpha)}.

Weak constraints are used in Clingo to order answer sets by prefer-

ence according to the atoms that appear in them. Without going

into too much detail let us just explain the meaning of one kind

of weak constraint which is the only kind that we will use in the

paper namely:

:~a(X). [1@1,X]

Adding this to an ASP program, orders the answer sets of the

program according to the number of distinct instantiations of the

predicate a in the answer set. The answer set with the least number

of instantiations of a is called the most optimal answer set.

1.2 Abductive Reasoning

Briefly, abduction is a reasoning process where given a background

theoryT , we wish to find a set of facts F such that F∪T is consistent

and F ∪T entails some goal д for some given entailment relation.

Usually we also want F to be minimal in some well defined sense.

Traditional Abductive Logic Programming has a long history, but

we have our own definitions of what it means to formulate and

solve an abductive reasoning problem and we will make all the

relevant concepts/notions precise in the sections that follow.

2 ABDUCTIVE PROOF GENERATION TASK

2.1 Formal Setup

Definition 1 (Abductive Proof Generation Task). Given a source

ASP rule setR, consider the tuple 〈R,q,U ,C,N 〉, which wewill refer

to as the Abductive Proof Generation Task. In this tuple, R denotes a

set of input ASP rules, which we shall also refer to as the input rules

or the source rules throughout the rest of this paper. q is either a

possibly un-ground or partially ground positive atom or, a ground

negation-as-failure atom. q intuitively represents the goal of our

abductive reasoning process. In the context of an abductive proof

generation task we may also sometimes refer to q as the query. The

set U consists of 2 subsets, U = Uf ∪Ua . Here Uf is a set of user

provided facts. Ua is a set of integrity constraints that prevents

certain atoms from being abduced. Throughout the rest of this

paper we may sometimes just refer to the setU as a whole making

it clear what is contained in the subsets. C denotes a set of ASP

constraints which constrain which atoms may or may not appear in

User Guided Abductive Proof Generation for Answer Set Programming �eries PPDP 2022, September 20–22, 2022, Tbilisi, Georgia

the complete model that results from the rules, user provided facts

and abducibles. Finally we have the non-negative integer N . This

acts as the depth control parameter for abductive proof generation.

Given an abductive proof generation task 〈R,q,U ,C,N 〉,let us

define what we mean by a General Solution to the task

Definition 2 (General Solution). Given an abductive proof gener-

ation task 〈R,q,U ,C,N 〉, we say that F is a general solution to this

task if:

(1) If q is a positive atom, it is in some answer setA of F ∪Uf ∪

R∪C where the un-ground variables in q have been replaced

with any set of ground terms. If q is a ground negation-as-

failure (NAF) atom, then there exists an answer set A of

F ∪Uf ∪ R ∪C such that q is not in A.

(2) F does not violate any of the integrity constraints inUa , ie. F

does not contain abducibles that are specifically disallowed

by the constraints inUa .

(3) F does not have any atoms whose depth level is greater than

N .

We will next state some assumptions we make on the set of input

ASP rules R and then also define what we mean by the depth level

of an atom. After this we shall exemplify all these definitions with

an example.

2.2 Input ASP program

When considering any abductive proof generation task we make

the following assumptions on the input ASP rule set R. We assume

that each source ASP rule has exactly the following form:

pre_con_1(V1),pre_con_2(V2),...,pre_con_k(Vk),

not pre_con_k+1(Vk+1),...,not pre_con_n(Vn) -> post_con(V).

We further make the folllowing assumptions:

(1) Each pre-condition pre_coni (Vi) is atomic and so is the post-

condition post_con(V).

(2) The not in front of the pre-conditions denotes negation as

failure interpreted under the stable model semantics

(3) Vi is the set of variables occuring in the ith pre-condition

which is either pre_coni (Vi) or not pre_coni (Vi) andV is the

set of variables occuring in the post condition post_con(V).

We assume that V ⊆ V1 ∪V2 ∪ ... ∪Vn .

(4) Each variable occurring in the post condition is universally

quantified over, and each variable that occurs in some pre-

condition but not the post condition is existentially quanti-

fied. In particular together with (3), this means that there are

no existentially quantified variables in a rule post-condition.

(5) Each variable that occurs in a negation-as-failure pre-condition

also occurs in some positive pre-condition.

(6) Each input rule of the form above is assigned some unique

rule id.

We further assume that given any integrity constraint c in C ,

every variable in a negation-as-failure atom in c also occurs in some

positive atom in c . We will now define the depth level of an atom

with respect to a given input source ASP rule set R and query q.

Definition 3 (Depth level of an atom). Given a ASP rule set R and

some ground or partially ground positive atom q which we shall

call the query, we define a map ϕR,q that maps an arbitrary positive

atom to a set of non-negative integers. We will describe this map

rather informally. For any atom q′ such that q′ is obtained from q

by replacing the variables in q, with some ground terms we have,

0 ∈ ϕR,q (q
′). Now the rest of the definition is recursive. Given an

atom a, the non-negative integer n, n ∈ ϕR,q (a) if and only if there

exists a rule r in R and some substitution θ of the variables in r

such that there exists some precondition (NAF or positive) p of r

such that θ applied to p gives a and θ applied to the post condition

of r gives some atom a′ where n − 1 ∈ ϕR,q (a
′).

Given an atom a let ϕmin
R,q

(a) be −1 if the set ϕR,q (a) is empty and

let ϕmin
R,q

(a) be the minimum member of the set ϕR,q (a) otherwise.

Then ϕmin
R,q

(a) is defined to be the depth level of a with respect to

the rule set R and query q. If q is a ground NAF atom then given

some positive atom a ϕmin
R,q

(a) is simply given by ϕmin
R,q̃

(a), where q̃

is obtained from q by removing the not operator from in front of q.

For example if R consisted of the rules

a(X):-b(X).

b(X):-a(X).

and q was a(X), meaning q is un-ground then we would have that

given any term t , ϕmin
R,q

(a(t)) = 0, ϕmin
R,q

(b(t)) = 1, and for any other

atom p, ϕmin
R,q

(p) = −1.

3 DERIVED ASP PROGRAMS

3.1 A First Example

Before we give the details of the main sets of rule translations that

allow abductive reasoning and justification generation, here is a

simple example to illustrate some key ideas and what the desired

output for an abductive problem is. Consider the rule set R given

by the 3 rules

p(X,Y):-q(X,Y),s(Y).

p(X,Y):-g(X,Y).

d(X,Y):-g(X,Y).

Now let q be p(john, james), letU consist only of a single constraint

that disallows any instance of the predicate p from being abduced.

Next let the set C contain a single constraint that disallows any

instance of the predicate d , meaning that we require a stable model

of the user given facts, the abducibles, and the rules, which does not

contain any instance of the predicate d , finally let N = 2. Then for

this problem the minimal abductive solution can be represented by

abducedFact(q(john,james)), abducedFact(s(james)), which is what

we want to get out of our encoding. Intuitively, the way we will

solve this abductive reasoning problem is by first encoding the

input rules such as the ones above in the usual forward direction.

Thenwewill have a representationwhich corresponds to ’reversing’

the rules, i.e. we go from post-conditions to pre-conditions. These

’reveresed’ rules generate a maximal space of abducibles which

then feed into the forward rule translation. Finally we will have

integrity constraints that ensure that the atom which we want

to be true (represented by q) is indeed entailed by the abductive

solution. An adapted version of this ’reversed rule’ representation

also enables us to generate a set of directed edges corresponding to

PPDP 2022, September 20–22, 2022, Tbilisi, Georgia Avishkar Mahajan, Meng Weng Wong, and Martin Strecker

a justification graph. The technical challenge in this process comes

from finding a way to deal with existential variables and the depth

of abducible generation.

3.2 Input Rule translations

3.2.1 Forward Translation. Given an input ASP rule

pre_con_1(V1),pre_con_2(V2),...,pre_con(Vk),

not pre_con(Vk+1),...,not pre_con_n(Vn) -> post_con(V).

we translate it in the following way:

holds(post_con(V)):-holds(pre_con(V1)),...,holds(pre_con(Vk)), not

holds(pre_con(Vk+1)), ..., not holds(pre_con(Vn)).

We repeat this for each source ASP rule. For each constraint inC ,

we simply enclose each atom in the constraint inside the holds pred-

icate. For example ifC contains the constraint : −b(X ,Y)., (meaning

that we require an abductive solution such that the there exists a

stable model of the abduced facts, rules and user provided facts,

which contains no instantiations of the predicate b), we encode that

constraint as:

:-holds(b(X,Y)).

3.2.2 Generating Abducibles. Before diving into the details of the

abducibles generation encoding let us give a brief intuition for some

key meta-predicates and rules that will show up. Firstly the binary

meta-predicate query has as its first argument an atom which may

become a candidate for abduction and as its second argument an

integer corresponding roughly to the depth level of that atom with

respect to (R,q). Next the meta-predicate explains has as its first

argument, an atom which forms a pre-condition of some input

rule instantiation, and as its second argument the corresponding

input rule instantiation post condition. The third argument of the

explains meta predicate carries the depth of the atom in the first

argument. The final key meta-predicate is createSub. createSub car-

ries information about input rule instantiations. The first argument

of createSub is a tuple which carries generated rule instantiations

of a particular rule via the instantiations of the variables in the rule

in some fixed order, the second argument of createSub is again an

integer depth parameter. Let us now explain the general structure of

some of the rules in the abducibles generation encoding to illustrate

the purpose of these meta predicates. Firstly we have abduction

generation rules with the structure:

createSub(...,N+1):-query(...,N),N<M,max_ab_lvl(M).

Intuitively in this rule, the first argument of thequerymeta-predicate

generates an instantiation of an input rule where that atom is the

post-condition of the rule. Skolem terms or other ’place-holder’

terms are used for rules with existential variables in pre-conditions.

Then we have abducible generation rules with the structure:

explains(...,N):-createSub(...,N).

Here a given createSub atom generates an explains atom where

the first argument of the explains atom carries an input rule pre-

condition given by the rule instantiation corresponding to the

createSub atom and the second argument of the explains atom is

the instantiation of the rule post-condition. Next we have abducible

generation rules with the structure:

query(...):-explains(...).

Here the first two arguments of the explains meta predicate, get

passed on to generate two instances of the query meta predicate.

One can see from this that intuitively, a given query atom that

carries an input rule post-condition generates a createSub atom that

carries an input rule instantiation. This then generates an explains

atom whose left hand side argument is a rule pre-condition which

then generates a new query atom. This is the central part of the

backward chaining process. The choice rule

{abducedFact(X)}:-query(X,N).

Then produces the abducibles. Next we will describe the general

structure of two kinds of rules which are key to enable a notion of

term substitution where user-input is taken into account to simplify

the generated abductive proof. First we have

createSub(...):-createSub(...),holds(...).

and next we have

createSub(...):-createSub(...),query(...).

In the first kind of rule, arguments of holds atoms can ’combine’

with instances of the createSub meta-predicate to yeild new in-

stances of createSub. The intuition here is that if a certain instance

of an input rule precondition/postcondition has been established via

the holds predicate then this creates new substitutions for variables

in that input rule which then leads to other input rule preconditions

given by that substitution being included in the space of generated

abducibles. The same intuition applies for abducible generation

rules of the second kind, where instances of the query predicate

create new input rule substitutions. It turns out that constructing

these abducible generation rules in a ’naive’ way can lead to infinite

answer sets, when there are skolem terms involved, even when the

integer depth argument of all these meta-predicates is bounded.

Hence we have different encodings for when there are skolem terms

involved versus when there no skolem terms involved. Let us now

get into the technical details of how these rules are constructed.

First we will need a way to assign appropriate skolem terms to

existential variables in pre-conditions. Given some rule in our rule

set, say rule r j , We fix some order O j on the variables occuring in

the combined set of variables from the post and pre-conditions of

the rule r j . Now we will describe a skolemization map that assigns

an existential variable in a pre-condition of r j to a skolem term.

Firstly, let the rule r j carry unique integer id j. Let v be a variable

that occurs in some rule precondition but not the post condition.

Then under this skolemization map, the variable v gets mapped to

skolemFn_j_v_(V)

where V denotes the variables in the post-condition occuring in

the order inherited from Or j . For example consider the rule r1:

p(Y,X):- q(X),r(X,Y),s(Z).

User Guided Abductive Proof Generation for Answer Set Programming �eries PPDP 2022, September 20–22, 2022, Tbilisi, Georgia

Assume that this rule carries integer id 1. Let O1 be [X ,Y ,Z]. Then

the variableZ getsmapped to the skolem term skolemFn_1_Z (X ,Y).

3.2.3 AG1. Given an input ASP rule r in R

pre_con_1(V1),pre_con_2(V2),...,pre_con(Vk),not

pre_con(Vk+1),...,not pre_con_n(Vn) -> post_con(V).

our first set of translated abducible generation rules AG1 is given

by the following.

create_subs(sub_Inst_j((V_sk),N+1):-query(post_con(V),N),max_ab_lvl(M),

N<M-1.

Here Vsk , denotes the ordered list O j but with existential variables

replaced by their skolem term counter parts. Here j is the integer

id for the rule. The integerM = N + 1, where N is the fifth entry

of the tuple representing the abduction task, which represents the

maximum depth of an abducible. Next we have the following rules:

explains(pre_con_1(V1),post_con(V),N):-create_subs(sub_Inst_t((V),N).

explains(pre_con_2(V2),post_con(V),N):-create_subs(sub_Inst_t((V),N).

...

explains(pre_con_n(Vn),post_con(V),N):-create_subs(sub_Inst_t((V),N).

Here V denotes all the variables occuring in the rule in the order

O j .

3.2.4 AG2. Now we shall construct the second set of abducible

generating rules AG2. Given O j construct Fj by adjoining the char-

acter V _ to each entry of O j . So for our example above F1 becomes

[V _X , V _Y ,V _Z]. Given a pre-condition p occurring in rule r with

id j, Mr,p is an ordered list constructed as follows. The ith ele-

ment ofMr,p is the ith element of O j if the ith element of O j is a

variable which occurs in p. Otherwise, the ith element ofMr,p is

given by the ith element of Fr . Now for each negated or positive

precondition p we have the following rule:

create_subs(sub_Inst_t(M_(r,p)),M-1):-create_subs(sub_Inst_t(F_r),N),

holds(p),max_ab_lvl(M), N<M.

Repeat this for each pre-condition. This is the set of rules AG2.

3.2.5 AG3. Finally AG3 consists of just the single rule:

query(X,N):-explains(X,Y,N),max_ab_lvl(M),N<M.

Let us consider another example. Consider the input ASP rule:

a(X):- b(X,Y,Z), not c(X), not d(Y) .

Say this rule r has rule id 5. Let O5 be [X ,Y ,Z]. Here the encoding

for the rule AG1 is:

create_subs(subs_Inst_5(X,skolemFn_5_Y(X),skolemFn_5_Z(X)),N+1):-

query(a(X),N),max_ab_lvl(M),N<M-1.

explains(b(X,Y,Z),a(X),N):-create_subs(subs_Inst_5(X,Y,Z),N).

explains(c(X),a(X),N):-create_subs(subs_Inst_5(X,Y,Z),N).

explains(d(Y),a(X),N):-create_subs(subs_Inst_5(X,Y,Z),N).

AG2 is given by:

create_subs(subs_Inst_5(X,Y,Z),M-1):-

create_subs(subs_Inst_5(V_X,V_Y,V_Z),N),

holds(b(X,Y,Z)),max_ab_lvl(M),N<M.

create_subs(subs_Inst_5(X,V_Y,V_Z),M-1):-

create_subs(subs_Inst_5(V_X,V_Y,V_Z),N),

holds(c(X)),max_ab_lvl(M),N<M.

create_subs(subs_Inst_5(V_X,Y,V_Z),M-1):-

create_subs(subs_Inst_5(V_X,V_Y,V_Z),N),

holds(d(Y)),max_ab_lvl(M),N<M.

3.2.6 Supporting code for Abduction. Given the original problem

〈R,q,U ,C,N 〉, setM = N + 1. Then we have the following:

max_ab_lvl(M).

query(Q,0):-generate_proof(Q).

{abducedFact(X)}:-query(X,M).

holds(X):-abducedFact(X).

holds(X):-user_input(pos,X).

For any predicate p, say of arity n such that no instance of p may

be abduced, we add the constraint.

:-abducedFact(p(X1,X2,...,Xn)).

If instead only a specific ground instance of p or a partially ground

instance of p should be prevented from being abduced then we

simply adapt the above constraint accordingly. For instance if p is a

binary predicate and we want that no instance of p where the first

argument is alpha should be abduced we have the constraint

:-abducedFact(p(alpha,X)).

Next we add the followingweak constraint so that in the optimal

abductive solution as few abducibles as possible are used.

:~abducedFact(X).[1@1,X]

3.2.7 Specifying the goal. Here is the code to encode the goal of

the abductive reasoning process represented by the parameter q. If

q is a ground atom say p(a1,a2..,an) for some predicate p then we

have:

generate_proof(p(a1,a2,...,an)).

goal:-holds(p(a1,a2,..,an)).

:- not goal.

Here the constraint

:- not goal.

ensures that the abduced facts together with the input rules actually

do entail the goal. If on the other hand q is un-ground or only

partially ground then we have the following. Say our goal is of the

form p(a,X ,b,Y ,Y), which means thatX ,Y are existential variables.

Then for the example we have the following:

generate_proof(p(a,v1,b,v2,v2)).

goal:-holds(p(a,X,b,Y,Y)).

:- not goal.

PPDP 2022, September 20–22, 2022, Tbilisi, Georgia Avishkar Mahajan, Meng Weng Wong, and Martin Strecker

Herev1,v2 are fresh constants. If q is a ground NAF atom say not p

then we simply write

generate_proof(p).

goal:-not holds(p).

:- not goal.

Given 〈R,q,U ,C,N 〉 let the complete derived ASP program that

uses AG1, AG2, AG3, the supporting code and the forward transla-

tion be called Pr es
〈R,q,U ,C,N 〉

. We will now give a modified abduction

generation encoding which can be used when no rule in R contains

an existential variable. As mentioned before, it turns out that using

this modified encoding on rules that have existential variables can

lead to infinite answer sets. After giving this modified encoding we

will explain in detail the encodings with the aid of an example.

3.3 Extending abduction generation space for

rules without existential variables

When we have rules without existential variables, we can con-

struct a larger space of abducibles without worrying about our ASP

programs having infinite answer sets because there are now no

skolem expressions. The encoding AG1 is the same as before but

now clearly there will be no skolem terms. The new version ofAG2

which we shall call AG2exp now becomes for each rule

create_subs(sub_Inst_t(M_(r,p)),N):-

create_subs(sub_Inst_t(F_r),N),holds(p).

Notice that as opposed to the previous encoding, here the integer

argument of the createSub predicate on the left hand side is N as

opposed to M − 1. Repeat this for each pre-condition p. Then for

the post-condition of the rule p′, we have:

create_subs(sub_Inst_t(M_(r,p')),N):-

create_subs(sub_Inst_t(F_r),N),holds(p').

Here Mr,p′ is defined exactly the same way as Mr,p for some

pre-condition p. Next, for each rule and for each pre-condition p in

the rule we have.

create_subs(sub_Inst_t(M_(r,p)),N):-

create_subs(sub_Inst_t(F_r),N),query(p,L).

For the post-condition p′ we have:

create_subs(sub_Inst_t(M_(r,p')),N):-

create_subs(sub_Inst_t(F_r),N),query(p',L).

This completes the encoding AG2exp . The adapted version of

AG3, AG3exp , is given by adding to AG3 one extra rule. So AG3exp
is:

query(X,N):-explains(X,Y,N),max_ab_lvl(M),N<M.

query(Y,N-1):-explains(X,Y,N),max_ab_lvl(M),0<N,N<M.

Given 〈R,q,U ,C,N 〉 let the complete ASP program that usesAG1exp ,

AG2exp ,AG3exp , the supporting code and the forward translation

be called P
exp
<R,q,U ,C,N >

3.4 Discussion of Abduction space generation

3.4.1 Full term substitution. We first give an example of the ex-

panded abduction space encoding to explain the intuition behind

various parts of the encoding. Consider the rule set below that has

no existential variables but which has negation as failure and where

the goal is un-ground.

relA(X,Y):-relB(X,Y), relD(Y), not relE(Y).

relE(Y):-relD(Y), not relF(Y).

Let the goal q be relA(P ,R), where P ,R are un-ground existential

variables. Next suppose that the only constraint on abducibles is

that no instantiation of relA can be abduced and further suppose

that the set of user provided facts is initially empty. Finally let

N = 4. Here is the complete encoding for this problem.

1 max_ab_lvl(5).

2 % Encoding the goal

3 generate_proof(relA(v1,v2)).

4 query(X,0):-generate_proof(X).

5 goal:-holds(relA(P,R)).

6 :- not goal.

7

8 % forward translation

9 holds(relA(X,Y)) :- holds(relB(X, Y)),holds(relD(Y)), not

holds(relE(Y)).

10 holds(relE(Y)) :- holds(relD(Y)), not holds(relF(Y)).

11

12 % AG1_exp

13 createSub(subInst_r1(X,Y),N+1) :-

query(relA(X,Y),N),max_ab_lvl(M),N<M-1.

14 createSub(subInst_r2(Y),N+1) :- query(relE(Y)

,N),max_ab_lvl(M),N<M-1.

15

16 explains(relB(X, Y), relA(X,Y) ,N) :- createSub(subInst_r1(X,Y),N).

17 explains(relD(Y), relA(X,Y) ,N) :- createSub(subInst_r1(X,Y),N).

18 explains(relE(Y), relA(X,Y) ,N) :- createSub(subInst_r1(X,Y),N).

19

20

21 explains(relD(Y), relE(Y) ,N) :- createSub(subInst_r2(Y),N).

22 explains(relF(Y), relE(Y) ,N) :- createSub(subInst_r2(Y),N).

23

24

25 % AG2_exp for rule 1

26

27 createSub(subInst_r1(X,Y),N) :- createSub(subInst_r1(V_X,V_Y),N),

holds(relA(X,Y)).

28 createSub(subInst_r1(X,Y),N) :- createSub(subInst_r1(V_X,V_Y),N),

holds(relB(X,Y)).

29 createSub(subInst_r1(V_X,Y),N) :- createSub(subInst_r1(V_X,V_Y),N),

holds(relD(Y)).

30 createSub(subInst_r1(V_X,Y),N) :- createSub(subInst_r1(V_X,V_Y),N),

holds(relE(Y)).

31

32 createSub(subInst_r1(X,Y),N) :- createSub(subInst_r1(V_X,V_Y),N),

query(relA(X,Y),L).

33 createSub(subInst_r1(X,Y),N) :- createSub(subInst_r1(V_X,V_Y),N),

query(relB(X,Y),L).

34 createSub(subInst_r1(V_X,Y),N) :- createSub(subInst_r1(V_X,V_Y),N),

query(relD(Y),L).

35 createSub(subInst_r1(V_X,Y),N) :- createSub(subInst_r1(V_X,V_Y),N),

query(relE(Y),L).

36

37 % AG2_exp for rule 2

38

39 createSub(subInst_r2(Y),N) :- createSub(subInst_r2(V_Y),N),

holds(relE(Y)).

40 createSub(subInst_r2(Y),N) :- createSub(subInst_r2(V_Y),N),

holds(relD(Y)).

41 createSub(subInst_r2(Y),N) :- createSub(subInst_r2(V_Y),N),

holds(relF(Y)).

42

43

User Guided Abductive Proof Generation for Answer Set Programming �eries PPDP 2022, September 20–22, 2022, Tbilisi, Georgia

44 createSub(subInst_r2(Y),N) :- createSub(subInst_r2(V_Y),N),

query(relE(Y),L).

45 createSub(subInst_r2(Y),N) :- createSub(subInst_r2(V_Y),N),

query(relD(Y),L).

46 createSub(subInst_r2(Y),N) :- createSub(subInst_r2(V_Y),N),

query(relF(Y),L).

47

48 % AG3_exp

49 query(X,N):-explains(X,Y,N),max_ab_lvl(M),N<M.

50 query(Y,N-1):-explains(X,Y,N),max_ab_lvl(M),N<M,0<N.

51

52 % Supporting code

53 {abducedFact(X)}:-query(X,N).

54 holds(X):-abducedFact(X).

55 holds(X):-user_input(pos,X).

56

57

58 :~abducedFact(Y).[1@1,Y]

59 :-abducedFact(relA(X,Y)).

We will now discuss various parts of the encoding.

As mentioned earlier, the general idea is to recursively generate

a maximal space of abducibles by ’reversing’ the rules and then

checking via the Forward Translation and encoding of the goal,

which abducibles are needed for entailment of the original query.

More specifically in line with the intuitive discussion from before,

any atom of the form query(h, i) generates an input rule instantia-

tion where h is the post-condition that particular rule instantiation.

Such rule instantiations are represented by the createSub atom. In

the example above, this is done via lines 13, 14 of the encoding. Line

13 corresponds to instantiations of rule 1 and line 14 corresponds to

instantiations of rule 2. Then any such createSub atom, generates

the appropriate set of explains atoms. This is lines 16-18 for rule

1 in the example, and lines 21, 22 for rule 2. The first argument of

an explains atom is a pre-condition or body atom corresponding

to the rule instantiation given by the createSub atom. The second

argument is the post-condition or head of the rule instantiation.

We have one such explains atom for each rule pre-condition. Via

line 49, the first argument of an explains atom becomes the first

argument of a query atom. This new query atom then recursively

generates more query atoms via the process described. Any query

atom corresponds to a candidate for abduction via the choice rule

in line 53. Any fact which is abduced must hold due to line 54. At

this point, before moving ahead let us first briefly comment further

upon the integer arguments occuring in the explains , createSub

and query atoms.

The integer parameter roughly represents the depth of an ab-

ducible in the proof graph of the original query. When a query

atom carrying the post-condition of a rule generates a rule instan-

tiation like in line 13 for example, the integer argument of the

corresponding createSub atom increases by one. Then an explains

atom derived from the application of a rule like line 16 retains the

same integer argument and so does the corresponding fresh query

atom generated from the application of the rule on line 49. Note

that a fresh query atom can only be created from an explains atom

if the integer parameter of the explains atom is less than M . The

use of these integer parameters is important when we need skolem

functions/terms in our abducible generation encoding due to hav-

ing rules with existentially quantified variables in pre-conditions.

The use of these integer parameters allows us to control the depth

of the abducible generating space thus preventing infinite answer

sets even in the presence of skolem functions. We will discuss this

more later on. For now let us turn our attention to some of the other

parts of the encoding. The AG2exp encoding enables a notion of

implicit term substitution in (minimal) abductive solutions. This set

of rules creates new instantiations of the input rules based on which

other atoms are true. As stated earlier, creating new instantiations

of the core input rules via the createSub atoms, then allows new

abducibles to be added to the generated space of abducibles. Let us

illustrate some of these ideas with an example. Upon running the

above ASP program as the optimal solution given by the solver is:

abducedFact(relD(v2))

abducedFact(relB(v1,v2))

abducedFact(relF(v2))

Now if relB(john, james) is added to the set of user provided facts

then firstly, due to line 55 holds(relB(john, james)) becomes true.

Then we have the following instantiation of line 28.

createSub(subInst_r1(john,james),1):-

createSub(subInst_r1(v1,v2),1),holds(relB(john,james)).

Hence due to lines 16 and 50, the atom query(relA(john, james), 0)

becomes true. This leads to the atoms query(relD(james), 1) and

query(relF (james), 2) becoming true. Hence the atoms relD(james)

and relF (james) become part of the space of abducibles and the

solver gives us the new optimal solution:

abducedFact(relD(james))

abducedFact(relF(james))

On the other hand if we instead add the fact relF (mary) to the

initially empty set of user provided facts then we get the follwing

instantiation of line 41:

createSub(subInst_r2(v2),2):-createSub(subInst_r2(v2),2),

holds(relF(mary)).

Hence the atom createSub(subInst_r2(mary), 2) becomes true. Via

line 22, and line 50 the atom query(relE(mary), 1) becomes true.

We thus get the following instantiation of line 35:

createSub(subInst_r1(v1,mary),1):- createSub(subInst_r1(v1,v2),1),

query(relE(mary),1).

Thus the atom createSub(subInst_r1(v1,mary), 1) becomes true,

which then via say line 16 and line 50 causes the atom

query(relA(v1,mary), 0) to become true. Now, because of

query(relA(v1,mary), 0), relD(mary), relB(v1,mary) become part

of the space of abducibles and the solver gives us the optimal ab-

ductive solution:

abducedFact(relD(mary))

abducedFact(relB(v1,mary))

and a similar result is obtained if we add an instance of the predicate

relD to the initially empty set of user provided facts. Thus with

this encoding we have full implicit term substitution. The place

holder or ’dummy’ variables v1, v2, always get replaced away in

the optimal abductive solution based on the user provided facts.

A subtle point here is that there is no notion of equality between

terms. We are not setting v2 =mary. We are instead enlarging the

PPDP 2022, September 20–22, 2022, Tbilisi, Georgia Avishkar Mahajan, Meng Weng Wong, and Martin Strecker

space of abducibles in a systematic way based on user provided

facts so that a more optimal solution which involves replacing the

term v2 for the term mary can be realized. Note that adding an

’unrelated’ fact such as say relG(mary)will not enlarge the space of

abducibles in any way. So in some sense what we have is a method

to enlarge the space of abducibles in an ’economical’ way while

still supporting a notion of term substitution. We will formulate

and prove a formal result regarding this notion of term substitution

later on.

3.4.2 Partial term substitution. When skolem terms/function are

used to handle existential variables, we have to use the non- ex-

panded abducible generation encoding which forces us to give up

on complete term substituion. This is because having the complete

term substitution mechanism can result in programs that have in-

finitely large abducible spaces. To recover finiteness of the space

of the abducibles we have to forgo full term substitution. What we

get instead is a kind of partial term substitution mechanism where

skolem terms may only sometimes be substituted for user provided

terms. First let us examine why in the presence of skolem functions,

even a subset of the expanded abduction generation encoding can

lead to infinite answer sets.

Consider the rule set consisting of just the single rule

relA(X):-relB(X,Y),relA(Y).

Suppose the goal is a(john) Consider the encoding below, which

is a subset of the expanded abducible generation encoding.

1 max_ab_lvl(5).

2 query(relA(bob),0).

3 :-not holds(relA(bob)).

4

5 holds(relA(X)) :- holds(relB(X, Y)),holds(relA(Y)).

6

7 explains(relB(X, Y), relA(X) ,N) :- createSub(subInst_r1(X,Y),N).

8 explains(relA(Y), relA(X) ,N) :- createSub(subInst_r1(X,Y),N).

9

10

11 createSub(subInst_r1(X,skolemFn_r1_Y(X)),N+1) :- query(relA(X)

,N),max_ab_lvl(M),N<M-1.

12

13 createSub(subInst_r1(X,Y),N) :- createSub(subInst_r1(V_X,V_Y),N),

holds(relB(X, Y)).

14 createSub(subInst_r1(V_X,Y),N) :-

createSub(subInst_r1(V_X,V_Y),N),holds(relA(Y)).

15

16

17 query(X,N):-explains(X,Y,N),max_ab_lvl(M),N<M.

18 {abducedFact(X)}:-query(X,N).

19 holds(X):-abducedFact(X).

20 holds(X):-user_input(pos,X).

21

22 :~abducedFact(Y).[1@1,Y]

23 :-abducedFact(relA(bob)).

Due to line 11 in the encoding we get the atom

createSub(subInst_r1(bob,skolemFn_r1_Y(bob)),1).

Then due to lines 7 and 8 of the encoding we get the atoms

query(relA(skolemFn_r1_Y(bob)),1)

query(relB(bob,skolemFn_r1_Y(bob)),1).

Then via lines 11 and 7 and due to the atom

query(relA(skolemFn_r1_Y(bob)),1)

we get the atom

query(relB(skolemFn_r1_Y(bob), skolemFn_r1_Y(skolemFn_r1_Y(bob))),2)

Then due to lines 18, 19, we get the atom

holds(relB(skolemFn_r1_Y(bob), skolemFn_r1_Y(skolemFn_r1_Y(bob))

Then due to line 13 of the encoding and the atom

createSub(subInst_r1(bob,skolemFn_r1_Y(bob)),1)

we get the atom

createSub(subInst_r1(skolemFn_r1_Y(bob),

skolemFn_r1_Y(skolemFn_r1_Y(bob))),1)

Then due line 8 and line 17, we get the atom

query(relA(skolemFn_r1_Y(skolemFn_r1_Y(bob)),1)

In this way we can see that with the encoding above we would

have answer sets that contain atoms of the form

query(relA(skolemFn_r1_Y (...), 1) for aribtrarily large skolem func-

tion nesting depth. Hence the encoding above leads to infinitely

large answer sets.

Intuitively, the core problem is lines like 13, 14 where the skolem

depth of terms in the createSub predicate has no relation with

the integer argument of the createSub predicate, thus allowing

for abducibles, where the skolem depth of the arguments inside

predicates can be arbitrarily large despite having a finite maximum

abduction depth level. The solution to this problem then is to replace

the N occuring as the integer argument of the createSub predicate

in the head of the rule on lines 13, 14 with M − 1, where the M

corresponds to the argument ofmax_ab_lvl . This means that query

atoms which occur due to the use of rules like line 13, 14 cannot

further cause fresh query atoms to be added to the abducibles space

via rules like the one on line 11.

As a result of this however we lose complete term substitution.

Consider the following abduction problem. R is given by the fol-

lowing ASP rules:

relA(P):-relB(P,R),relD(R).

relB(P,R):-relA(R),relC(P).

Let q be the atom relA(john), let U consist of the constraints :

−abducedFact(relA(john))., : −abducedFact(relB(X ,Y)). meaning

that q cannot itself be abduced and no instantiation of the predicate

relB can be abduced. Let the set of user provided facts be empty

for now. Let the set C also be empty and let N = 4. This is the non

expanded abduction encoding for this problem.

1 max_ab_lvl(5).

2

3 % Encoding the goal

4 generate_proof(relA(john)).

5 goal:-holds(relA(john)).

6 :-not goal.

7 query(X,0):-generate_proof(X).

8

9 % Core rule translation

10 holds(relA(P)) :- holds(relB(P, R)),holds(relD(R)).

User Guided Abductive Proof Generation for Answer Set Programming �eries PPDP 2022, September 20–22, 2022, Tbilisi, Georgia

11 holds(relB(P, R)) :- holds(relA(R)), holds(relC(P)).

12

13 % AG1

14 createSub(subInst_r1(P,skolemFn_r1_R(P)),N+1) :- query(relA(P)

,N),max_ab_lvl(M),N<M-1.

15 createSub(subInst_r2(P,Q),N+1) :- query(relB(P, Q)

,N),max_ab_lvl(M),N<M-1.

16

17

18

19 explains(relB(P, R), relA(P) ,N) :- createSub(subInst_r1(P,R),N).

20 explains(relD(R), relA(P) ,N) :- createSub(subInst_r1(P,R),N).

21

22

23 explains(relA(R), relB(P,R) ,N) :- createSub(subInst_r2(P,R),N).

24 explains(relC(P), relB(P,R) ,N) :- createSub(subInst_r2(P,R),N).

25

26

27 % AG2 for rule 1

28 createSub(subInst_r1(P,R),M-1) :- createSub(subInst_r1(V_P,V_R),N),

N<M, holds(relB(P, R)),max_ab_lvl(M).

29 createSub(subInst_r1(V_P,R),M-1) :-

createSub(subInst_r1(V_P,V_R),N), N<M,

holds(relD(R)),max_ab_lvl(M).

30

31 % AG2 for rule 2

32 createSub(subInst_r2(V_P,R),M-1) :-

createSub(subInst_r2(V_P,V_R),N), N<M,

holds(relA(R)),max_ab_lvl(M).

33 createSub(subInst_r2(P,V_R),M-1) :-

createSub(subInst_r2(V_P,V_R),N), N<M,

holds(relC(P)),max_ab_lvl(M).

34

35 % AG3

36 query(X,N):-explains(X,Y,N),max_ab_lvl(M),N<M.

37

38 % Supporting code

39 {abducedFact(X)}:-query(X,N).

40 holds(X):-abducedFact(X).

41 holds(X):-user_input(pos,X).

42

43

44 :~abducedFact(Y).[1@1,Y]

45 :-abducedFact(relA(john)).

46 :-abducedFact(relB(X,Y)).

Running this program in Clingo, we get the output

abducedFact(relC(john))

abducedFact(relD(skolemFn_r1_R(skolemFn_r1_R(john))))

abducedFact(relA(skolemFn_r1_R(skolemFn_r1_R(john))))

as the solution with the least number of abducibles. Now adding

relC(john) as a user provided fact gives the following smaller ab-

ductive solution

abducedFact(relD(skolemFn_r1_R(skolemFn_r1_R(john))))

abducedFact(relA(skolemFn_r1_R(skolemFn_r1_R(john))))

Now if we further add relA(mary) to the set of user provided facts

then we get as a minimal abductive solution the answer relD(mary).

This is because by after adding these facts, holds(relB(john,mary))

becomes true. Then by line 28 of the encoding

createSub(subInst_r1(john,mary), 4) becomes true. Then by line

20, and line 36 query(relD(mary), 4) becomes true which then gives

us the minimal abductive solution. However if instead of adding

the fact relA(mary)we instead add the fact relD(mary), then we do

not get a substitution of terms and the minimal abductive solution

is still

abducedFact(relD(skolemFn_r1_R(skolemFn_r1_R(john))))

abducedFact(relA(skolemFn_r1_R(skolemFn_r1_R(john))))

This is because by line 29, the atom

createSub(subInst_r1(john,mary), 4) becomes true, which due to

line 19 and line 36 makes query(relB(john,mary), 4) true. However

now this cannot cause the atom query(relA(mary), 5) to become

true because line 15 cannot apply due to the constraint on the inte-

ger argument of the query atom. So what we have can be regarded

as a partial term substitution mechanism.

3.4.3 Replacing skolem functions by a single constant. Let us see

how having term substitution as a derived effect via enlargement of

the space of abducibles rather than doing term substitution through

an explicit equality predicate allows us to better handle problems

where the core rules have existential variables but we do not wish to

use skolem functions in the abductive reasoning process. Recall that

not having skolem functions allows us to get full term substitution

without the possiblity of infinitely large answer sets. Consider the

problem , 〈R,q,U ,C,N 〉 where R is the following input rule set:

relA(X):-relB(X,Y),relC(X,Y).

relB(X,Y):-relD(X,Y,Z),relE(X,Y,Z).

let our q be relA(john). Let the initial set of user provided facts be

empty, furthermore, suppose that no instance of relA or relB may

be abduced. Finally let the set C be empty and let N = 4. Consider

the following encoding

1 max_ab_lvl(5).

2 % Encoding the goal

3 generate_proof(relA(john)).

4 query(X,0):-generate_proof(X).

5 goal:-holds(relA(john)).

6 :- not goal.

7

8

9

10 % Core rule translation

11 holds(relA(X)) :- holds(relB(X, Y)),holds(relC(X,Y)).

12 holds(relB(X,Y)) :- holds(relD(X,Y,Z)), holds(relE(X,Y,Z)).

13

14 % AG1_exp

15 createSub(subInst_r1(X,extVar),N+1) :- query(relA(X)

,N),max_ab_lvl(M),N<M-1.

16 createSub(subInst_r2(X,Y,extVar),N+1) :- query(relB(X,Y)

,N),max_ab_lvl(M),N<M-1.

17

18 explains(relB(X, Y), relA(X) ,N) :- createSub(subInst_r1(X,Y),N).

19 explains(relC(X, Y), relA(X) ,N) :- createSub(subInst_r1(X,Y),N).

20

21 explains(relD(X,Y,Z), relB(X,Y) ,N) :-

createSub(subInst_r2(X,Y,Z),N).

22 explains(relE(X,Y,Z), relB(X,Y) ,N) :-

createSub(subInst_r2(X,Y,Z),N).

23

24

25 % AG2_exp for rule 1

26

27 createSub(subInst_r1(X,V_Y),N) :- createSub(subInst_r1(V_X,V_Y),N),

holds(relA(X)).

28 createSub(subInst_r1(X,Y),N) :- createSub(subInst_r1(V_X,V_Y),N),

holds(relB(X,Y)).

29 createSub(subInst_r1(X,Y),N) :- createSub(subInst_r1(V_X,V_Y),N),

holds(relC(X,Y)).

30

31 createSub(subInst_r1(X,V_Y),N) :- createSub(subInst_r1(V_X,V_Y),N),

query(relA(X),L).

32 createSub(subInst_r1(X,Y),N) :- createSub(subInst_r1(V_X,V_Y),N),

query(relB(X,Y),L).

PPDP 2022, September 20–22, 2022, Tbilisi, Georgia Avishkar Mahajan, Meng Weng Wong, and Martin Strecker

33 createSub(subInst_r1(X,Y),N) :- createSub(subInst_r1(V_X,V_Y),N),

query(relC(X,Y),L).

34

35

36 % AG2_exp for rule 2

37

38 createSub(subInst_r2(X,Y,V_Z),N) :-

createSub(subInst_r2(V_X,V_Y,V_Z),N), holds(relB(X,Y)).

39 createSub(subInst_r2(X,Y,Z),N) :-

createSub(subInst_r2(V_X,V_Y,V_Z),N), holds(relD(X,Y,Z)).

40 createSub(subInst_r2(X,Y,Z),N) :-

createSub(subInst_r2(V_X,V_Y,V_Z),N), holds(relE(X,Y,Z)).

41

42

43 createSub(subInst_r2(X,Y,V_Z),N) :-

createSub(subInst_r2(V_X,V_Y,V_Z),N), query(relB(X,Y),L).

44 createSub(subInst_r2(X,Y,Z),N) :-

createSub(subInst_r2(V_X,V_Y,V_Z),N), query(relD(X,Y,Z),L).

45 createSub(subInst_r2(X,Y,Z),N) :-

createSub(subInst_r2(V_X,V_Y,V_Z),N), query(relE(X,Y,Z),L).

46

47 % AG3_exp

48 query(X,N):-explains(X,Y,N),max_ab_lvl(M),N<M.

49 query(Y,N-1):-explains(X,Y,N),max_ab_lvl(M),N<M,0<N.

50

51 % Supporting code

52 {abducedFact(X)}:-query(X,N).

53 holds(X):-abducedFact(X).

54 holds(X):-user_input(pos,X).

55

56

57 :~abducedFact(Y).[1@1,Y]

58 :-abducedFact(relA(X)).

59 :-abducedFact(relB(X,Y)).

Note that in lines 15, 16 instead of using skolem functions we use

a single fresh constant extVar to represent the existential variable

in both rules. Now, when we run the program we get the following

optimal solution

abducedFact(relC(john,extVar))

abducedFact(relE(john,extVar,extVar))

abducedFact(relD(john,extVar,extVar))

Now because, term substitution is only a derived effect and there

is no equality relation, it is possible for different instances of extVar

to get replaced (or not) by different constants upon the addition

of some user provided facts. For instance upon adding the fact

relD(john, james,mary), we get the optimal solution:

abducedFact(relC(john,james))

abducedFact(relE(john,james,mary))

So some instances of extVar from the original solution have

been replaced by ’james’ and others by ’mary’. What this means

is that each occurence of extVar in the original solution can be

thought of as simply a place-holder for a term where each instance

maybe a placeholder for a different term. When we use skolem func-

tions instead this is simply more explicit because we have different

skolem terms representing different existential variables. More for-

mally in the first solution the variables [X ,Y ,Z] get mapped to

[john, extVar , extVar] respectively. Upon the addition of the extra

fact the we get the mapping [X ,Y ,Z] → [john, james,mary]. Us-

ing an equality relation to get from the first solution to the second

would be impossible because we would need both the following

equalities to hold: extVar = james , extVar =mary. (Of course the

above solution could be obtained if one simply grounds the rules

over the entire domain of constants but as mentioned in the intro-

duction, the methods in this paper are aimed at avoiding such a

naïve grounding as in general, one may get too many substitutions

for existential variables)

Given < R,q,U ,C,N >, let this ASP program where we use

AG1exp ,AG2exp ,AG3exp but replace all use of skolem terms with

extVar be called Psemi−r es
<R,q,U ,C,N >

.

We will now turn to the problem of generating a set of directed

edges corresponding the computed abductive solution.

3.5 Generating Justification Trees

Given a source rule

pre_con_1(V1),pre_con_2(V2),...,pre_con_k(Vk),not

pre_con_k+1(Vk+1),...,not pre_con_n(Vn) ->

post_con(V).

For each positive pre-condition pre_con_u(Vu), we add the fol-

lowing ASP rule:

causedBy(pos,pre_con_u(Vu), post_con(V),N+1):-holds(post_con(V)),

holds(pre_con_1(V1)),

holds(pre_con_2(V2)),...,holds(pre_con_k(Vk)),not

holds(pre_con_k+1(Vk+1)),...,

not holds(pre_con_n(Vn)),justify(post_con(V),N).

For each negative preconditionpre_con_f (Vf)we add the following

ASP rule:

causedBy(neg,pre_con_f(Vf), post_con(V),N+1):-holds(post_con(V)),

holds(pre_con_1(V1)),

holds(pre_con_2(V2)),...,holds(pre_con_k(Vk)),not

holds(pre_con_k+1(Vk+1)),...,

not holds(pre_con_n(Vn)), justify(post_con(V),N).

3.5.1 Supporting code for justification tree.

justify(X,N):-causedBy(pos,X,Y,N), not user_input(pos,X),N<M,

max_graph_lvl(M).

directedEdge(Sgn,X,Y):-causedBy(Sgn,X,Y,M).

justify(X,0):-gen_graph(X),not user_input(pos,X).

directedEdge(pos,userFact,X):-directedEdge(pos,X,Y),

user_input(pos,X).

directedEdge(pos,userFact,X):-gen_graph(X), user_input(pos,X).

3.6 Discussion of Justification generation

The intuition for the justification graph encoding is that given some

user provided facts F and an input rule set R, an atom a is only

contained in a stable model M of F , R if either a is in F or there

exists some rule r in R such that for some ground instantiation rд of

r , all the pre-conditions of rд , (ie. the body atoms) are true inM and

the post-condition (ie. head) of rд is a. Here the truth value of NAF

atoms is interpreted in the usual way. The edges for the justification

graph are calculated recursively. An atom justi f y(h,k) represents

the fact that holds(h) needs to be justified. If rд is a ground instan-

tiantion of an input rule where the post condition of rд is h and all

the pre-conditions of rд are true then for every positive precondition

bi of rд we have the atom causedBy(pos,bi ,h,k + 1) and for every

User Guided Abductive Proof Generation for Answer Set Programming �eries PPDP 2022, September 20–22, 2022, Tbilisi, Georgia

NAF pre-condition bj we have the atom causedBy(neд,bj ,h,k + 1).

Then if k < M , where we havemax_дraph_lvl(M) for some integer

value ofM , we get the atoms justi f y(bi ,k + 1), for every positive

pre-condition bi which is not a user provided fact. Finally each

causedBy atom generates a directedEdдe atom, and these atoms

are the set of directed edges representing the justification graph.

3.7 Some example executions

Given the following program

1 gen_graph(relA(john)).

2 max_graph_lvl(5).

3

4 user_input(pos,relE(john,james,mary)).

5 user_input(pos,relD(john,james,mary)).

6

7 holds(X):-user_input(pos,X).

8

9 holds(relA(X)) :- holds(relB(X, Y)),not holds(relC(X,Y)).

10 holds(relB(X,Y)) :- holds(relD(X,Y,Z)), holds(relE(X,Y,Z)).

11

12 causedBy(pos,relB(X,Y),relA(X),N+1):-holds(relA(X)),holds(relB(X,

Y)),not holds(relC(X,Y)),justify(relA(X),N).

13 causedBy(neg,relC(X,Y),relA(X),N+1):-holds(relA(X)),holds(relB(X,

Y)),not holds(relC(X,Y)),justify(relA(X),N).

14

15 causedBy(pos,relD(X,Y,Z),relB(X,Y),N+1):-holds(relB(X,Y)),

16 holds(relD(X,Y,Z)),holds(relE(X,Y,Z)),justify(relB(X,Y),N).

17 causedBy(pos,relE(X,Y,Z),relB(X,Y),N+1):-holds(relB(X,Y)),

18 holds(relD(X,Y,Z)),holds(relE(X,Y,Z)),justify(relB(X,Y),N).

19

20 justify(X,N):-causedBy(pos,X,Y,N), not user_input(pos,X),N<M,

max_graph_lvl(M).

21 directedEdge(Sgn,X,Y):-causedBy(Sgn,X,Y,M).

22

23 justify(X,0):-gen_graph(X),not user_input(pos,X).

24

25 directedEdge(pos,userFact,X):-directedEdge(pos,X,Y),

user_input(pos,X).

26

27 directedEdge(pos,userFact,X):-gen_graph(X), user_input(pos,X).

We get the following set of directed edges representing the justifi-

cation graph.

directedEdge(pos,relB(john,james),relA(john))

directedEdge(pos,relE(john,james,mary),relB(john,james))

directedEdge(pos,relD(john,james,mary),relB(john,james))

directedEdge(neg,relC(john,james),relA(john))

directedEdge(pos,userFact,relD(john,james,mary))

directedEdge(pos,userFact,relE(john,james,mary))

4 SIMPLE ABDUCTIVE PROOF GENERATION

TASK

We shall define here the notion of a Simple Abductive Proof Gener-

ation Task, as all of our formal results will apply to this restricted

class of abductive proof generation tasks.

Definition 4 (Simple Abductive Proof Generation Task). Given an

abductive proof generation task 〈R,q,U ,C,N 〉, we say that this task

is a simple abductive proof generation task if the following hold:

(1) R contains no negation as failure.

(2) R contains no function symbols, arithmetic operators.

(3) No post condition of any rule inR contains repeated variables.

For example the rule:

p(X ,X) : −r (X ,X ,Y) is not allowed but the rule:

p(X ,Y) : −r (X ,X ,Y) is allowed.

(4) C is empty.

(5) Any constraint on abducibles in Ua must consist of only a

single positive fully un-ground atom with no repeated vari-

ables amongst its arguments. For example if p is a binary

predicate, then the constraint : −abducedFact(p(X ,Y)). is

allowed but the constraint : −abducedFact(p(X ,X)). Con-

straints where more than one atom appears are also not

allowed. For instance the following would be disallowed:

: −abducedFact(p(X ,Y)),abducedFact(r (X)). Finally, con-

straints containing partially or fully ground atoms are disal-

lowed. For example the following would be disallowed

: −abducedFact(p(james,Y)).

(6) If Ua is such that no instance of some predicate p can be

abduced, thenUf must not contain any instantiation of p.

(7) q must be positive and fully ground.

5 FINITENESS AND COMPLETENESS

PROPERTIES OF SIMPLE TASKS

Theorem 5 (Finiteness). Assume that 〈R,q,U , ∅,N 〉 is such that

it is a simple abductive proof generation task. Then Pr es
〈R,q,U , ∅,N 〉

cannot have infinite answer sets.

The proof can be found in [Mahajan et al. 2022].

Theorem 6 (Completeness). Given a simple abductive proof

generation task, if there exists a general solution S to that task then

there exists a ASP solution SASP to that task corresponding to an

answer set of the ASP program Pr es
〈R,q,U , ∅,N 〉

.

The proof can be found in [Mahajan et al. 2022].

Let us just comment on the results above in a slightly broader

context . Firstly it is not difficult to see that the above results for

finiteness and completeness hold for a slightly larger class of abduc-

tive proof generation tasks than the class of simple tasks. Namely

we can in fact relax condition 7 in the definition of simple tasks, to

allow q to be un-ground or only partially ground. Call this class of

abduction tasks semi-simple . Also, the completeness result in fact

holds if Pr es
〈R,q,U , ∅,N 〉

is replaced with Psemi−r es
〈R,q,U , ∅,N 〉

. In summary

what we have then is the following

Given a semi-simple task 〈R,q,U , ∅,N 〉. Pr es
〈R,q,U , ∅,N 〉

, Psemi−r es
〈R,q,U , ∅,N 〉

,

both enjoy the completeness and finiteness properties. However

only Psemi−r es
〈R,q,U , ∅,N 〉

supports full implicit term substitution whereas

Pr es
〈R,q,U , ∅,N 〉

only supports partial term substitution. We shall for-

mulate and prove a formal result regarding term substitution for

Psemi−r es
〈R,q,U , ∅,N 〉

next.

6 PROOF SIMPLIFICATION USING USER

PROVIDED FACTS

Definition 7 (Abstract Proof Graph). Given a rule set R which does

not contain NAF, a predicate p and integer n define the abstract

proof graph GR,p,n as follows. The nodes of GR,p,n is the set of

query predicates generated by the rules just by the rules AG1 and

AG3, in the encoding Pr es
〈R,q,U ,C,N 〉

where in 〈R,q,U ,C,N 〉, q is

p(v1,v2..,vk) assuming p has arity k , U , C are empty and N =

n. The edge relation is defined as follows. Two nodes d1, d2 are

PPDP 2022, September 20–22, 2022, Tbilisi, Georgia Avishkar Mahajan, Meng Weng Wong, and Martin Strecker

connected by a directed edge represented as E(d1,d2) if and only

if, d1 represents a pre-condition of an input rule where d2 is the

post condition.

So if R′ consisted of the rules:

a(X):-b(X,Y),c(Y).

b(X,Y):-d(X,Y,Z).

Then GR′,a,2 is:

E(query(b(v1,sk(v1)),1),query(a(v1),0)),

E(query(c(sk(v1)),1),query(a(v1),0)))

E(query(d(v1,sk(v1),sk'(v1,sk(v1))),2),query(b(v1,sk(v1)),1))

Here sk sk ′ are just abbreviations of the full skolem function names.

Also we assume the order [X ,Y ,Z] on variables in the second rule,

and the order [X ,Y] on variables in the first rule. (Recall that when

defining the abducible generation rules in section 3 we had an order

on variables in a rule)

Definition 8 (Abstract Instance Set). Given a rule set R, predi-

cate p and integer n, the corresponding Abstract Instance Set de-

noted corresponding to this triple denoted by IR,p,n is the set of

create_Sub predicates generated by the rules just by the rules AG1

and AG3, in the encoding Pr es
〈R,q,U ,C,N 〉

where in 〈R,q,U ,C,N 〉, q

is p(v1,v2..,vk) assuming p has arity k ,U ,C are empty and N = n.

So for the example above the set IR′,a,2 is:

createSub(subInst_r1(v1, sk(v1)), 1),

createSub(subInst_r2(v1, sk(v1), sk ′(v1, sk(v1))), 2)

Definition 9 (Minimal abstract Proof Graph). Given an abstract

proof graphGR′,p,N , construct the minimal proof graphGmin
R′,p,N

as

follows. Firstly for given an integer k , going from left to right, delete

all duplicate nodes query(a′,k) such that query(a,k) is already in

the proof graph and a′ = a. Next for going down the proof graph,

for each k ∈ 0, 1...,N , delete the node query(a,k), if there exists

l < k , such that query(a′, l) is in the proof graph a = a′. This forms

Gmin
R′,p,N

. The edge relation is inherited fromGR,p,N in the obvious

way.

Note firstly that if for some b, j, query(b, j) is in GR′,p,N , then

there exists someh ≤ j such that query(b,h) is inGmin
R′,p,N

. Secondly

we have the following property:

Lemma 1. Given query(a,k) inGmin
R′,p,N

, unless k = 0, there exists

query(a′,k − 1) in Gmin
R′,p,N

such that we have

E(query(a,k),query(a′,k − 1)).

Proof. (sketch).

Let query(a′′,k − 1) be such that E(query(a,k),query(a′′,k − 1)) is

an edge ofGR′,p,N . Now if query(a′′,k − 1) is not inGmin
R′,p,N

, then

there exists s < k−1 such that query(a′′, s) is inGmin
R′,p,N

. Therefore

query(a′′, s) is in GR′,p,N . Then it follows that query(a, s + 1) is in

GR′,p,N . However this is a contradiction since s + 1 < k . Hence it

must be the case that query(a′′,k − 1) is in Gmin
R′,p,N

. �

For the example we have been considering, the minimal abstract

proof graph is the same as the abstract proof graph.

Definition 10 (Concrete Proof Graph). Given a minimal abstract

proof graph Gmin
R,p,n

, and a substitution θ for terms in the minimal

abstract proof graph, define the concrete proof graph CR,p,n,θ to

be the set of query atoms obtained after doing the substitution θ

on the set of query atoms in Gmin
R,p,n

. (We drop the min from the

notation for the concrete proof graph as we will always mean a

substitution from the minimal abstract proof graph)

Note that such a substitution θ need not be injective.

Definition 11 (Parent node, child node, sibling node, descendant).

Given any concrete or abstract, minimal or non minimal proof

graphG and given two nodes d1,d2 inG , we say that d2 is a parent

of d1 if we have E(d1,d2). In such a case we say d1 is a child of

d2. Given two nodes d3 and d4, we say d3 is a sibling node of d4,

if there exists some node d ′ such that E(d3,d ′) and E(d4,d ′). (d4

is then also a sibling node of d3) Given two nodes d5 and d6, we

say d5 is a descendant of d6 if Etr (d5,d6) is true where Etr is the

transitive closure of E.

Definition 12 (Concrete Instance Set). Given an abstract instance

set IR,p,n , and a substitution θ for terms in the instance set, define

the concrete instance set IR,p,n,θ to be the set of createSub atoms

obtained after applying the substitution θ on the set of createSub

atoms in IR,p,n , (which itself is associated to the full abstract proof

graph rather than the minimal one).

For our example consider the substitutionθ = [v1 → john, sk(v1) →

extVar , sk ′(v1, sk(v1)) → extVar]. Then CR′,a,2,θ is :

E(query(b(john,extVar),1),query(a(john),0)),

E(query(c(extVar),1),query(a(john),0)))

E(query(d(john,extVar,extVar),2),query(b(john,extVar),1))

IR,p,n,θ = createSub(subInst_r1(john, extVar), 1),

createSub(subInst_r2(john, extVar , extVar), 2)

Definition 13 (Derived Substitution - T). Given some Gmin
R,p,n

,

and an associated CR,p,n,θ , let qc be a query atom from CR,p,n,θ .

Let Sqc be the set of query atoms in Gmin
R,p,n

, which upon appli-

cation of the substitution θ give qc . Now pick an atom qo from

Sqc . Now suppose qc is given by query((t1, t2, ..., tj),k), qo is given

by query((e1, e2, ..., ej),k). Now consider an arbitrary query atom

qf given by query((a1,a2, ...,aj),k), which is such that the mapψ

mapping each ei to the corresponding ai is well defined. (ie. ψ is

not one-to-many). Then define the substituion ϕ = T (θ ,qc ,qo ,qf)

on terms in Gmin
R,p,n

by the following:

For a term u in Gmin
R,p,n

(meaning u occurs as the argument of the

predicate inside some query atom), if u is in the set {e1, e2, ..., ej }

then ϕ(u) = ψ (u), otherwise ϕ(u) = θ (u).

For instance going back to our example if we let qc be

query(b(john, extVar), 1) letqo bequery(b(v1, sk(v1)), 1) and letqf
be query(b(john, james), 1) then ϕ = T (θ ,qc ,qo ,qf) is the substitu-

tion θ = [v1 → john, sk(v1) → james, sk ′(v1, sk(v1)) → extVar].

We now have the following theorem:

Theorem 14 (Term substitution). Consider the abductive proof

generation task 〈R,q,U ,C,N 〉, and suppose that his task is a simple

abductive proof generation task. Let p be the predicate correspond-

ing toq. SupposeA is an answer set of Psemi−r es
<R,q,U ,C,N >

and letA contain

User Guided Abductive Proof Generation for Answer Set Programming �eries PPDP 2022, September 20–22, 2022, Tbilisi, Georgia

CR,p,N ,θ and IR,p,N ,θ . Now say the atomqc query(pi (t1, t2, .., tj),k)

is in CR,p,N ,θ . Let qo be some query atom from the set Sqc given by

query((e1, e2, ..., ej),k). Now suppose, qf = query((a1,a2, ...,aj),k)

is an arbitrary query atom such that the mapψ from the eis to the

ais as described in the definition above is well defined. Then upon

adding the fact query(pi (a1,a2, ..,aj),k) to P
semi−r es
<R,q,U ,C,N >

, the re-

sulting program has an answer setA′ such thatA′ containsCR,p,N ,ϕ

and IR,p,N ,ϕ where ϕ = T (θ ,qc ,qo ,qf)

The proof can be found in [Mahajan et al. 2022].

Corollary 1 (Adding facts). Given the simple abductive proof

generation task 〈R,q,U ,C,N 〉, let p be the predicate corresponding

to q. Suppose A is an answer set of Psemi−r es
<R,q,U ,C,N >

and let A contain

CR,p,N ,θ and IR,p,N ,θ . Now say the atomqc query(pi (t1, t2, .., tj),k)

is inCR,p,N ,θ . Let qo be some query atom from the set Sqc (The set of

pre-images of qc in Gmin
R,p,N

) given by query((e1, e2, ..., ej),k). Now

suppose, hf = holds((a1,a2, ...,aj)) is an arbitrary holds atom such

that the map ψ from the eis to the ais as described in the earlier

definition of derived substitution is well defined. Then upon adding the

fact holds(pi (a1,a2, ..,aj)) to P
semi−r es
<R,q,U ,C,N >

, the resulting program

has an answer set A′ such that A′ contains CR,p,N ,ϕ and IR,p,N ,ϕ ,

where ϕ = T (θ ,qc ,qo ,qf), where qf = query(pi (a1,a2, ..,aj),k).

The proof can be found in [Mahajan et al. 2022].

The preceding theorem and corrolary correspond to the notion

of full implicit term substitution which we discussed earlier. For

example going to our main example in this section. Let R be the set

of rules:

a(X):-b(X,Y),c(Y).

b(X,Y):-d(X,Y,Z).

Let q be a(john), let the set of user provided facts be empty and

suppose that no instances of the predicate a or b can be abduced.

Finally suppose that the set C is empty and N = 2. Then upon

running the ASP program Psemi−r es
〈R,q,U ,C,N 〉

we will get the minimal

abductive solution

abducedFact(c(extVar)), abducedFact(d(john,extVar,extVar))

This corresponds to the substitution θ = [v1 → john, sk(v1) →

extVar , sk ′(v1, sk(v1)) → extVar]. Then upon modifying the set

of user provided facts by adding the fact c(james), we get the smaller

abductive solution:

abducedFact(d(john,james,extVar))

which corresponds to the substitution θ = [v1 → john, sk(v1) →

james, sk ′(v1, sk(v1)) → extVar].

As was the case for the finiteness and completeness results, it

is in fact the case the theorem and corollary proved in the pre-

vious section hold for the slightly larger class of abductive proof

generation tasks which we called semi-simple. Overall, we have

the following results. Given a semi-simple task 〈R,q,U , ∅,N 〉, if no

rule in R contains existential variables, then to solve this task we

can use the encoding P
exp

〈R,q,U , ∅,N 〉
, which enjoys the completeness,

finiteness and full term substitution properties. If R does contain ex-

istential variables then we can either use the encoding Pr es
〈R,q,U , ∅,N 〉

which enjoys the properties of completeness and finiteness but only

gives us partial term substitution or we can use Psemi−r es
〈R,q,U , ∅,N 〉

which

enjoys the properties of completeness, finiteness and full term sub-

stitution.

7 CONCLUSIONS

We have presented several encodings for abductive proof gener-

ation in ASP, incorporating notions of depth control and novel

implementations of term substitution. We have also given an encod-

ing that allows one to generate a set of directed edges representing

a justification graph.

It seems to us that some of the ideas involved in the term sub-

stituion mechanism are similar to the ideas involved when one

uses Sideways Information Passing Strategies [Beeri and Ramakrish-

nan 1991] to re-write datalog rules for more efficient evaluation of

queries by incorporating elements of top-down reasoning. However

we have not explored this connection in detail. Those techniques

typically involve a complete re-write of the input rules according

some chosen fixed sideways information passing strategy, which

makes that whole approach quite different to ours. [Stickel 1994]

describes an approach to doing abductive reasoning in a bottom up

manner. He uses ’continuation predicates’ to pass substitutions from

previously evaluated rule pre-conditions to rule pre-conditions yet

to be evaluated, given the rule post-condition as the ’goal’. This

somewhat resembles our use of ’createSub’ predicates. However it

seems to us that that approach imposes a strict order on the evalu-

ation of preconditions of a rule, which makes that method much

less general than ours.

There are several possible directions for future work. One pos-

sible line of theoretical investigation could be to study how the

abductive solutions calculated by our methods (and any resulting

extra consequences of the abductive solution and input rules) could

be generalised to sentences in first order logic. Roughly speak-

ing, given an abductive solution involving instances of ’extVar’

the aim would be to map these solutions to solutions where in-

stances of ’extVar’ are replaced by universally quantified variables

(where perhaps such a variable may not take values from some

finite set). Distinguishing between instances of ’extVar’ that should

get mapped to distinct universally quantified variables can be done

by adding certain facts that would result in the generated abduc-

tive solution being modified so that the ’matching’ occurrences

of ’extVar’ get replaced by some other fresh constant. Intuitively,

it seems to us that our method of calculating and simplifying ab-

ductive solutions without grounding over the entire domain of

constants gives an appropriate setting to explore some of these

ideas. Of course the correctness/applicability of such techniques

would have to be investigated in a rigorous and formal manner.

Another possible future line of work may include extending the

formal results presented here to a larger class of abductive proof

generation problems. It also seems to us that the main technique

used to generate the directed edge set representing the justifica-

tion graph could be adapted for use in SAT/SMT solvers to get

justifications out of them.

We also have yet to study the complexity problems associated

with the methods presented in this paper. [Eiter et al. 1997] pro-

vides a thorough study of the complexity of abductive reasoning.

It remains to be seen how those results, many of which deal with

PPDP 2022, September 20–22, 2022, Tbilisi, Georgia Avishkar Mahajan, Meng Weng Wong, and Martin Strecker

propositional logic, could be carried over to our setting, where we

aim to compute abductive solutions without complete grounding

of rules.

ACKNOWLEDGMENTS

This research is supported by the National Research Foundation,

Singapore, under its Industry Alignment Fund – Pre-positioning

(IAF-PP) Funding Initiative. Any opinions, findings and conclusions

or recommendations expressed in this material are those of the au-

thors and do not reflect the views of National Research Foundation,

Singapore.

REFERENCES
Joaqu’in Arias. 2019. Advanced Evaluation Techniques for (Non)-Monotonic Reasoning

Using Rules with Constraints. Ph.D. Dissertation. Universidad Politécnica deMadrid.
Joaquín Arias, Manuel Carro, Zhuo Chen, and Gopal Gupta. 2019. Constraint Answer

Set Programming without Grounding and its Applications. In Datalog 2.0 (CEUR

Workshop Proceedings, Vol. 2368), Mario Alviano and Andreas Pieris (Eds.). CEUR-
WS.org, Philadelphia, PA (USA), 22–26. http://ceur-ws.org/Vol-2368/paper2.pdf

Catriel Beeri and Raghu Ramakrishnan. 1991. On the power of magic. The Journal of
Logic Programming 10, 3 (1991), 255–299. https://doi.org/10.1016/0743-1066(91)
90038-Q Special Issue: Database Logic Progamming.

Thomas Eiter, Georg Gottlob, and Nicola Leone. 1997. Abduction from Logic Programs:
Semantics and Complexity. Theor. Comput. Sci. 189, 1-2 (1997), 129–177. https:
//doi.org/10.1016/S0304-3975(96)00179-X

Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub. 2012.
Answer Set Solving in Practice. Morgan & Claypool Publishers, Uni Potsdam.

Avishkar Mahajan, Martin Strecker, and Meng Weng Wong. 2022. User Guided Abduc-
tive Proof Generation for Answer Set Programming Queries (Extended version).
Forthcoming. https://arxiv.org/

Paolo Mancarella, Giacomo Terreni, Fariba Sadri, Francesca Toni, and Ulle Endriss.
2009. The CIFF proof procedure for abductive logic programming with constraints:
Theory, implementation and experiments. Theory Pract. Log. Program. 9, 6 (2009),
691–750. https://doi.org/10.1017/S1471068409990093

Peter Schüller. 2016. Modeling Variations of First-Order Horn Abduction in Answer
Set Programming. Fundam. Informaticae 149, 1-2 (2016), 159–207. https://doi.org/
10.3233/FI-2016-1446

Mark E. Stickel. 1994. Upside-Down Meta-Interpretation of the Model Elimination
Theorem-Proving Procedure for Deduction and Abduction. J. Autom. Reason. 13, 2
(1994), 189–210. https://doi.org/10.1007/BF00881955

