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Abstract

Empirical risk minimization (ERM) is the workhorse of machine learning, whether for 

classification and regression or for off-policy policy learning, but its model-agnostic guarantees 

can fail when we use adaptively collected data, such as the result of running a contextual bandit 

algorithm. We study a generic importance sampling weighted ERM algorithm for using adaptively 

collected data to minimize the average of a loss function over a hypothesis class and provide 

first-of-their-kind generalization guarantees and fast convergence rates. Our results are based on a 

new maximal inequality that carefully leverages the importance sampling structure to obtain rates 

with the good dependence on the exploration rate in the data. For regression, we provide fast rates 

that leverage the strong convexity of squared-error loss. For policy learning, we provide regret 

guarantees that close an open gap in the existing literature whenever exploration decays to zero, as 

is the case for bandit-collected data. An empirical investigation validates our theory.

1 Introduction

Adaptive experiments, wherein intervention policies are continually updated as in the case 

of contextual bandit algorithms, offer benefits in learning efficiency and better outcomes 

for participants in the experiment. They also make the collected data dependent and 

complicate standard machine learning approaches for model-agnostic risk minimization, 

such as empirical risk minimization (ERM). Given a loss function and a hypothesis class, 

ERM seeks the hypothesis that minimizes the sample average loss. This can be used for 

regression, classification, and even off-policy policy optimization. An extensive literature 

has shown that, for independent data, ERM enjoys model-agnostic, best-in-class risk 
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guarantees and even fast rates under certain convexity and/or margin assumptions [e.g. 5, 

6, 35, among others]. However, these guarantees fail under contextual-bandit-collected data, 

both because of covariate shift due to using a context-dependent logging policy and because 

of the policy’s data-adaptive evolution as more data are collected. A straightforward and 

popular approach to deal with the covariate shift is importance sampling (IS) weighting, 

whereby we weight samples by the inverse of the policy’s probability of choosing the 

observed action. Unfortunately, applying standard maximal inequalities for sequentially 

dependent data to study guarantees of this leads to poor dependence on these weights, 

and therefore incorrect rates whenever exploration is decaying and the weights diverge to 

infinity, as happens when collecting data using a contextual bandit algorithm.

In this paper, we provide a thorough theoretical analysis of IS weighted ERM (ISWERM; 

pronounced “ice worm”) that yields the correct rates on the convergence of excess risk under 

decaying exploration. To achieve this, we present a novel localized maximal inequality 

for IS weighted sequential empirical processes (Section 2) that carefully leverages their IS 

structure to avoid a bad dependence on the size of IS weights, as compared to applying 

standard results to an IS weighted process (Remark 2). We then apply this result to 

obtain generic slow rates for ISWERM for both Donsker-like and non-Donsker-like entropy 

conditions, as well as fast rates when a variance bound applies (Section 3). We instantiate 

these results for regression (Section 4) and for policy learning (Section 5), where we can 

express entropy conditions in terms of the hypothesis class and obtain variance bounds from 

convexity and margin assumptions. In particular, our results for policy learning close an 

open gap between existing lower and upper bounds in the literature (Remark 3). We end with 

an empirical investigation of ISWERM that sheds light on our theory (Section 6).

1.1 Setting

We consider data consisting of T observations, OT = O1, …, OT , where each observation 

consists of a state, action, and outcome, Ot = Xt, At, Y t ∈ O = X × A × Y. The spaces X, 

A, Y are general measurable spaces, each endowed with a base measure λX, λA, λY; 

in particular, actions can be finite or continuous (e.g., λA can be counting or Lebesgue). 

We assume the data were generated sequentially in a stochastic-contextual-bandit fashion. 

Specifically, we assume that the distribution of OT  has a density p(T) with respect to (wrt) 

λO
T = λX × λA × λY

T , which can be decomposed as

p(T) oT = ∏
t = 1

T
pX xt gt at ∣ xt, ot − 1 pY yt ∣ xt, at ,

where we write ot = x1, a1, …, yt , using lower case for dummy values and upper case 

for random variables. We define gt(a ∣ x) = gt a ∣ x, Ot − 1  so that gt represents the random 

Ot − 1-measurable context-dependent policy that the agent has devised at the beginning of 

round t, which they then proceed to employ when observing Xt. Since we run the adaptive 

experiment, we assume that gt is known, as it is actually computed at stage t of the 

experiment. We do not assume that gt is known.
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Remark 1 (Counterfactual interpretation). We can also interpret this data collection from a 

counterfactual perspective. At the beginning of each round, Xt, Y t(a):a ∈ A  is drawn from 

some stationary (i.e., time-independent) distribution P*, Xt is revealed, and after acting with 

a non-anticipatory action At, meaning it only depends on past data, we observe Yt = Yt(At). 

This corresponds to the above with pX being the marginal of Xt under P* and pY (· | x, a) the 

conditional distribution of Yt(a) given Xt = x.

1.2 Importance Sampling Weighted Empirical Risk Minimization

Consider a class of hypotheses ℱ, a loss function ℓ :ℱ × O ℝ, and some fixed reference 

g*(a | x), any function, for example, a conditional density. As we will see in Examples 1 to 3 

below we will often simply use g*(a | x) = 1. Define the population reference risk as

R*(f) = EpX × g* × pY [ ℓ (f, O)] = ∫ ℓ (f, (x, a, y))pY (y ∣ x, a)g*(a ∣ x)pX(x)dλO(x, a, y) .

We are interested in finding f with low risk R*(f). We consider doing so using ISWERM, 

which is ERM where we weight each term by the density ratio between the reference and the 

policy at time t:

fT ∈ argmin
f ∈ ℱ

RT(f) = 1
T ∑

t = 1

T g* At ∣ Xt
gt At ∣ Xt

ℓ f, Ot .

Example 1 (Regression). Consider Y = ℝ, ℱ ⊆ [X × A ℝ], and ℓ(f, o) = (y − f(x, 

a))2. Then f with small R*(f) is good at predicting outcomes from context and 

action. In particular, for any g*, we have that μ(x, a) = ∫ ypY (y ∣ x, a)dλY (y) solves 

μ ∈ argminf:X × A YR*(f). And, we can write R*(f) − R*(μ) = EpX × g* (f − μ)2(X, A) .

Consider the counterfactual interpretation in Remark 1. Then 

R*(f) = ∫ EP* (Y (a) − f(X, a))2 g*(x ∣ a)dλA(a). For example, if A < ∞, λA is the 

counting measure, and g*(x | a) = 1, then R*(f) = ∑a ∈ AEP* (Y (a) − f(X, a))2  is 

the total counterfactual prediction error. Alternatively, if g*(a | x) = 1(a = a*) 

and given some ℋ ⊆ [X Y] we let ℱ = fℎ(x, a) = ℎ(x):ℎ ∈ ℋ , then we have 

R* fℎ = EP* Y a* − ℎ(X) 2 , that is, the regression risk for predicting the counterfactual 

outcome Y(a*) from X.

Example 2 (Classification). In the same setting as Example 1, suppose Y = ±1 . Then μ(x, 

a) = 2pY(1 | x, a) − 1. And, if we restrict ℱ ⊆ [X × A ±1 ], letting ℓ (f, o) = 1
2 − 1

2yf(x, a)

leads to R*(f) being misclassification rate, an unrestricted minimizer of which is sign(μ(x, 

a)). Focusing on misclassification of sign(f(x, a)) for ℱ ⊆ [X × A ℝ], we can also use a 

classification-calibrated loss [6], such as logistic ℓ (f, o) = log(1 + exp( − yf(x, a))), hinge ℓ(f, 
x) = (1 − yf(x, a))+, etc..
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Example 3 (Policy learning). Consider Y = ℝ, ℱ ⊆ [X × A ℝ], g*(a | x) = 1 and ℓ(f, o) 

= yf(x, a). Then R*(f) = ∫ ypY (y ∣ x, a)dλY (y)f(a ∣ x)dλA(a)pX(x)dλX(x) = EpX × f × pY [y] is the 

average outcome under a policy f. If we interpret outcomes as costs (or, negative rewards), 

then seeking to minimize R*(f) means to seek a policy with least risk (or, highest value).

Consider in particular the counterfactual interpretation in Remark 1 with A < ∞. Consider 

deterministic policies: given ℋ ⊆ [X A], let ℱ = fℎ(x, a) = 1(ℎ(x) = a):ℎ ∈ ℋ . Then we 

have R* fℎ = EP*[Y (ℎ(X))], that is, the average counterfactual outcome.

1.3 Related Literature

Contextual bandits.—A rich literature studies how to design adaptive experiments to 

optimize regret, simple regret, or the chance of identifying best interventions [see 12, 

36, and biblioraphies therein]. Such adaptive experiments can significantly improve upon 

randomized trials (aka A/B tests), which is why they are seeing increased use in practice 

in a variety of settings, from e-commerce to policymaking [3, 4, 29, 32, 37, 43, 44, 

53]. However, while randomized trials produce iid data, adaptive experiments do not, 

complicating post-experiment analysis, which motivates our current study. Many stochastic 

contextual bandit algorithms (stochastic meaning the context and response models are 

stationary, as in our setting) need to tackle learning from adaptively collected data to fit 

regression estimates of mean reward functions, but for the most part this is based on models 

such as linear [7, 14, 23, 37] or Hölder class [26, 47, 47], rather than on doing model-

agnostic risk minimization and nonparametric learning with general function classes as we 

do here. Foster and Rakhlin [19] use generic regression models but require online oracles 

with guarantees for adversarial sequences of data. Simchi-Levi and Xu [50] use offline 

least-squares ERM but bypass the issue of adaptivity by using epochs of geometrically 

growing size in each of which data are collected iid. Other stochastic contextual bandit 

algorithms are based on direct policy learning using ERM [1, 8, 16, 20]; by carefully 

designing exploration strategies, they obtain good regret rates that are even better than the 

minimax-optimal guarantees given only the exploration rates, as we obtain (Remark 3).

Inference with adaptive data.—A stream of recent literature tackles how to construct 

confidence intervals after an adaptive experiment. While standard estimators like inverse-

propensity weighting (IPW) and doubly robust estimation remain unbiased under adaptive 

data collection, they may no longer be asymptotically normal making inference difficult. 

To fix this, Hadad et al. [24] use and generalize a stabilization trick originally developed 

by Luedtke and van der Laan [38] for a non-adaptive setting with different inferential 

challenges. Their stabilized estimator, however, only works for data collected by non-

contextual bandits. Bibaut et al. [9] extend this to a contextual-bandit setting. Our focus 

is different from these: risk minimization and guarantees rather than inference.

Policy learning with adaptive data.—Zhan et al. [58] study policy learning from 

contextual-bandit data by optimizing a doubly robust policy value estimator stabilized by a 

deterministic lower bound on IS weights. They provide regret guarantees for this algorithm 

based on invoking the results of Rakhlin et al. [45]. However, these guarantees do not match 

the algorithm-agnostic lower bound they provide whenever the lower bounds on IS weights 
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decay to zero, as they do when data are generated by a bandit algorithm. For example, for 

an epsilon-greedy bandit algorithm with an exploration rate of ϵt = t−β, their lower bound 

on expected regret is Ω(T−(1−β)/2) while their upper bound is O(T−(1/2−β)). We close this gap 

by providing an upper bound of O(T−(1−β)/2) for our simpler IS weighted algorithm. See 

Remark 3. Our results for policy learning also extend to fast rates under margin conditions, 

non-Donsker-like policy classes, and learning via convex surrogate losses.

IS weighted ERM.—The use of IS weighting to deal with covariate shift, including 

when induced by a covariate-dependent policy, is standard. For estimation of causal effects 

from observational data this usually takes the form of inverse propensity weighting [28]. 

The same is often used for ERM for regression [15, 22, 48] and for policy learning [34, 

52, 59]. When regressions are plugged into causal effect estimators, weighted regression 

with weights that depend on IS weights minimize the resulting estimation variance over a 

hypothesis class [13, 18, 30, 31, 49]. All of these approaches however have been studied 

in the independent-data setting where historical logging policies do not depend on the same 

observed data available for training, guarantees under which is precisely our focus herein.

Sequential maximal inequalities.—There are essentially two strands in the literature on 

maximal inequalities for sequential empirical processes. One expresses bounds in terms of 

sequential bracketing numbers as introduced by van de Geer [55], generalizing of standard 

bracketing numbers. Another uses sequential covering numbers, introduced by Rakhlin 

et al. [46]. These are in general not comparable. Foster and Krishnamurthy [20], Zhan 

et al. [58] use sequential L∞ and Lp covering numbers, respectively, to obtain maximal 

inequalities. van de Geer [55, Chapter 8] gives guarantees for ERM over nonparametric 

classes of controlled sequential bracketing entropy. However, applying her generic result 

as-is to IS weighted processes provides bad dependence on the exploration rate in the case 

of larger-than-Donsker hypothesis classes (see Remark 2). We also use sequential bracketing 

numbers, but we develop a new maximal inequality specially for IS weighted sequential 

empirical processes, where we use the special structure when truncating the chaining to 

avoid a bad dependence on the size of the IS weights. Equipped with our new maximal 

inequality, we obtain first-of-their kind guarantees for ISWERM, including fast rates that 

have not been before derived in adaptive settings.

2 A Maximal Inequality for IS Weighted Sequential Empirical Processes

A key building block for our results is a novel maximal inequality for IS weighted sequential 

empirical processes. For any sequence of objects (xt)t≥1, we introduce the shorthand x1:T 

to denote the sequence xt t = 1
T . We say that a sequence of random variables ζ1:T is 

O1:T-predictable if, for every t ∈ [T] = {1, …, T}, ζt is Ot − 1-measurable, i.e., is some 

function of Ot − 1.

IS weighted sequential empirical processes.

Let Pg denote the distribution on O = X × A × Y with density w.r.t. λX × λA × λY given 

by pX × g × pY and let us use the notation Pgℎ(o) ≔ ∫ ℎ(o)dPg(o). Let us also define the 

norm ∥h∥p, g = (Pg(hp))1/p. Consider a sequence of ℱ-indexed random processes of the form 
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ΞT ≔ ξt(f) t = 1
T :f ∈ ℱ  where, for every f ∈ ℱ, ξ1:T(f) is an O1:T-predictable sequence 

of O ℝ functions. The IS-weighted sequential empirical process induced by ΞT is the 

ℱ-indexed random process

MT(f) ≔ 1
T ∑

t = 1

T gt* At ∣ Xt
gt At ∣ Xt

ξt(f) Ot − E ξt(f) Ot ∣ Ot − 1 = 1
T ∑

t = 1

T
δOt − Pgt

g*
gt

ξt(f) .

Sequential bracketing entropy.

For any O1:T-predictable sequence sequence ζ1:T of functions O ℝ, we introduce the 

pseudonorm ρT, g* ζ1:T ≔ T −1∑t = 1
T ζt 2, g*

2 1/2
.

We say that a collection of 2N-many O1:T-predictable sequences of O ℝ functions 

λ1:T
(k) , v1:T

(k) :k ∈ [N]  is an (ϵ, ρT,g*)-sequential bracketing of ΞT, if (a) for every f ∈ ℱ, 

there exists k ∈ [N] such that λt
(k) ≤ ξt(f) ≤ vt

(k) ∀t ∈ [T] and (b) for every k ∈ [N], 

ρT, g* v1:T
(k) − λ1:T

(k) ≤ ϵ.We denote by N[] ϵ, ΞT , ρT, g*  the minimal cardinality of an (ϵ, ρT,g*)-

sequential bracketing of ΞT.

The special case of classes of classes of deterministic functions.

Consider the special case ξt(f) ≔ ξ(f), where Ξ ≔ ξ(f):f ∈ ℱ  is a class of functions where 

for every f ∈ ℱ, ξ(f) is a deterministic O ℝ function. Observe that for a fixed function 

ζ:O ℝ, letting ζt ≔ ζ, we have that ρT,g*(ζ1:T) = ∥ζ∥2,g*. Therefore, N[] ϵ, ΞT , ρT, g* , 

the (ϵ, ρT,g*)-sequential bracketing number of ΞT, reduces to N[](ϵ, Ξ, ∥ · ∥2,g*, the usual 

ϵ-bracketing number Ξ in the ∥ · ∥2,g* norm.

The maximal inequality.

Our maximal inequality will crucially depend on the decay rate of the the IS weights, that is, 

the exploration rate of the adaptive data collection.

Assumption 1. There exists a deterministic sequence of positive numbers (γt) such that, for 

any t ≥ 1, ∥g*/gt∥∞ ≤ γt, almost surely. Define γT
avg ≔ T −1∑t = 1

T γt and γT
max ≔ maxt ∈ [T]γt.

For example, if the data were collected under an ϵt-greedy contextual bandit algorithm then 

we have γt = ϵt−1. If we have ϵt = t−β for β ∈ (0, 1) then γT
max = O γT

avg = O T β . Note that 

having γt < ∞ in Assumption 1 does restrict us to contextual bandit algorithms that are 

conditionally random, such as ϵ-greedy and Thompson sampling, and rules out algorithms 

with deterministic policies given the history, such as UCB.

Theorem 1. Consider ΞT ≔ ξ1: t(f):f ∈ ℱ  as defined above. Suppose that Assumption 1 

holds, and that there exists B > 0 such that maxt ∈ [T] supf ∈ ℱ ξt(f) ∞ ≤ B. In the special 

case where ξt(f) = ξ(f), ξ1:T ∈ ΞT, are deterministic functions, we let γT ≔ γT
avg. Otherwise, 
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in the general case, we let γT ≔ γT
max. Let r > 0. Let ℱT (r) ≔ f ∈ ℱ:ρT , g* ξ1:T (f) ≤ r . For 

any r− ∈ [0, r/2], and any x > 0, it holds with probability at least 1 − 2e−x that

sup
f ∈ ℱT(r)

MT(f) ≲ r− +
γT
T ∫r−

r
log 1 + N[] ϵ, ΞT , ρT , g* dϵ +

γT
maxB

T log 1 + N[] r, ΞT , ρT , g* +
γTx

T

+
BγT

maxx
T .

Remark 2 (Leveraging IS structure). Theorem 1 is based on a finite-depth adaptive 

chaining device, in which we leverage the IS-weighted structure to carefully bound 

the size of the tip of the chains. In contrast, applying Theorem 8.13 of van de 

Geer [55] to the IS weighted sequential empirical process would lead to suboptimal 

dependence on γt. The crucial point is to work with IS-weighted chains of the form 

g*/gt ξ(f) = g*/gt ξ(f) − uJ, f + ∑j = 0
J uj, f − uj − 1, f + u0, f , where the uj, f are upper 

brackets of the unweighted class Ξ, at scales ϵ1 > … > ϵJ (we simplify here a 

bit the chaining decomposition for ease of presentation compared with the proof). In 

adaptive chaining, the tip is bounded by the L1 norm of the corresponding bracket. In 

our case, denoting lJ,f the lower bracket corresponding to uJ,f, the tip is bounded by 

Pgt g*/gt uJ, f − lJ, f = Pg* uJ, f − lJ, f , in which we integrate out the IS ratio, thereby 

paying no price for it. Applying directly Theorem 8.13 of van de Geer [55], we would 

be working with a bracketing of the IS weighted class g*/gt ξ(f):f ∈ ℱ . When working 

with generic L2 brackets of the weighted class, the IS-weighting structure is lost, and we 

cannot do better than bounding the L1 of the tip by its L2 norm, which depends on γt. 

Since in sequential settings, γt generally diverges to ∞, good dependence is paramount to 

obtaining tight, informative results. Our proof technique otherwise follows the same general 

outlines as those of van de Geer [55, Theorem 8.13] and van Handel [57, Theorem A.4] (or, 

40, Theorem 6.8 in the iid setting). Like these, we too leverage an adaptive chaining device, 

as pioneered by Ossiander [41].

3 Applications to Guarantees for ISWERM

We now return to ISWERM and use Theorem 1 to obtain generic guarantees for ISWERM. 

We will start with so-called slow rates that give generic generalization results and then 

present so-called fast rates that will apply in certain settings, where a so-called variance 

bound is available. Let f1 be a minimizer of the population risk R* over ℱ, that is 

f1 ∈ argminf ∈ ℱR*(f).

Assumption 2 (Entropy on ℓ (ℱ)). Define ℓ (ℱ) ≔ ℓ (f, ⋅ ):f ∈ ℱ . There exist an 

envelope function Λ:O ℝ of ℓ (ℱ), and p > 0 such that, for any ϵ > 0,

log N[] ϵ Λ 2, g*, ℓ (ℱ), ⋅ 2, g* ≲ ϵ−p .
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The case p < 2 corresponds to the Donsker case, and p ≥ 2 to the (possibly) non-Donsker 

case.

Assumption 3 (Diameters on ℓ (ℱ)). There exist b0 > 0 and ρ0 > 0 such that

supf ∈ ℱ l(f, ⋅ ) − l f1, ⋅ ∞ ≤ b0 Λ 2, g*,     supf ∈ ℱ l(f, ⋅ ) − l f1, ⋅ 2, g* ≤ ρ0 Λ 2, g* .

Theorem 2 (Slow Rates for ISWERM). Suppose Assumptions 1 to 3 hold. Then for any δ ∈ 
(0, 1/2), we have that, with probability at least 1 − δ,

R* fT − inf
f ∈ ℱ

R*(f) ≲ Λ

2, g*

×

ρ0
γT
avg

T ρ0
−p/2 + log(1/δ) +

b0γT
max

T ρ0
−p + log(1/δ) p < 2,

γT
avg

T

1
p

+ ρ0
γT
avg

T log(1/δ) +
b0γT

max

T ρ0
−p + log(1/δ) p > 2.

For p = 2 the bound is similar to the second case but with polylog terms; for brevity we omit 

the p = 2 case in this paper. Theorem 2 suggests that the excess risk of ISWERM converges 

at the rate of γT
avg/T

1
p ∧ 1

2 . For example, if γT
avg = O T β  and p < 2, we obtain O T − 1

2(1 − β) . 

For β = 0 this matches the familiar slow rate of iid settings. However, in many cases we can 

obtain faster rates.

Assumption 4 (Variance Bound). For some α ∈ (0, 1], we have

ℓ (f, ⋅ ) − ℓ f1, ⋅ 2, g* ≲ Λ
2, g*

R*(f) − R* f1
Λ 2, g*

α
2     ∀f ∈ ℱ .

As we will see in Lemmas 2 and 3, we can ensure Assumption 4 holds for least-squares 

regression and for policy learning with a margin condition.

Assumption 5 (Convexity). ℱ is convex and ℓ(·,O) is almost surely convex.

Theorem 3 (Fast Rates for ISWERM). Suppose Assumptions 1 to 5 hold with p < 2. Then 
for any δ ∈ (0, 1/2), we have that, with probability at least 1 − δ,

R* fT − R* f1 ≲ Λ

2, g*

×
γT
avg

T

1
2 − α + pα/2

+
b0γT

max

T

1
1 + pα/2

+
γT
avg log(1/δ)

T

1
2 − α

+
b0γT

max log(1/δ)
T
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The entropy condition.

Assumption 2 assumes an entropy bound on the loss class ℓ (ℱ). For many loss functions, 

we can easily satisfy this condition by assuming an entropy condition on ℱ itself.

Assumption 6 (Entropy on ℱ). There exists p > 0 and an envelope function F of ℱ such that

log N[] ϵ F 2, g*, ℱ, ⋅ 2, g* ≲ ϵ−p .

Lemma 1 (Lemma 4 in Bibaut and van der Laan [10]). Suppose that ℓ ( ⋅ , O):O ∈ O
is a set of ℝ ℝ unimodal functions that are equi-Lipschitz. Then Assumption 6 implies 
Assumption 2.

There are many examples of ℱ for which bracketing entropy conditions are known. 

The class of β-Hölder smooth functions (meaning having derivatives of orders up to 

b = sup i ∈ ℤ:i < β  and the b-order derivatives are (β − b)-Hölder continuous) on a compact 

domain in ℝd has p = d/β [56, Corollary 2.7.2]. The class of convex Lipschitz functions on 

a compact domain in ℝd has p = d/2 [56, Corollary 2.7.10]. The class of monotone functions 

on ℝ has p = 1 [56, Theorem 2.7.5]. If ℱ = f(o; θ):θ ∈ Θ , f(o; θ) is Lipschitz in θ, and 

Θ ⊆ ℝd is compact, then any p > 0 holds [56, Theorem 2.7.11]. The class of càdlàg functions 

[0, 1]d ℝ with sectional variation norm (aka Hardy-Krause variation) no larger than M > 

0 has envelope-scaled bracketing entropy O(ϵ−1|log(1/ϵ)|2(d−1)) [10], so Assumption 6 holds 

with any p > 1 (or, we can track the log terms). Since trees with bounded output range 

and finite depth fall in the class of càdlàg functions with bounded sectional variation norm, 

decision tree classes also satisfy Assumption 6 with any p > 1.

4 Least squares regression using ISWERM

We now instantiate ISWERM for least squares regression. Consider Y = [ − M, M], for 

some M > 0, ℱ ⊆ [X × A Y], and ℓ(f, o) = (y − f(x, a))2. If ℱ is convex, strongly convex 

losses such as ℓ always yield a variance bound with respect to any population risk minimizer 

over ℱ (see e.g. lemma 15 in [6]). Let f1 ∈ argminf ∈ ℱR*(f) be such a population risk 

minimizer. We present in the lemma below properties relevant for application of theorems 2 

and 3

Lemma 2 (Properties of the square loss.). Consider the setting of the current section. The 
square loss ℓ over ℱ × O satisfies the following variance bound:

ℓ (f, ⋅ ) − ℓ f1, ⋅ 2, g* ≤ 4 M R*(f) − R* f1 1/2∀f ∈ ℱ,

and the following Lispchitz property:

ℓ (f, o) − ℓ f′, o ≤ M f(a, x) − f′(a, x) ∀f, f′ ∈ ℱ, o ∈ O .
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Theorem 4 (Least squares regression). Suppose Assumption 1 holds. Suppose Assumption 

6 holds for the envelope taken to be constant equal to M, the range of the regression 
functions. Then for any δ ∈ (0, 1/2), we have that, with probability at least 1 − δ,

R* fT − R* f1 ≲ M ×

γT
max

T

1
1 + p/2

+
γT
max log(1/δ)

T if p < 2,

γT
avg

T

1
p

+
γT
max

T +
γT
avg log(1/δ)

T +
γT
max log(1/δ)

T if p > 2.

5 Policy Learning using ISWERM

We next instantiate ISWERM for policy learning. Consider Y = [ − M, M], 
ℱ ⊆ [X × A ℝ] as in Example 3. Let ℓ(f, o) = yf(x, a) and g*(a | x) = 1 so that 

Pg* ℓ (f, ⋅ ) = EpX × f × pY [y] = EpX ∑a ∈ Af(X, a)μ(X, a)  is exactly the average outcome 

under a policy f (or, its negative value), where we define μ(x, a) = ∫ ypY (y ∣ x, a)dλY (y).

We first give specification-agnostic slow rates, which also close an open gap in the literature.

Theorem 5 (ISWERM Policy Learning: slow rates). Suppose Assumption 1 holds and 
suppose that Assumption 6 holds withe envelope constant equal to 1 (which is the maximal 
range of policies). Then for any δ ∈ (0, 1/2), we have that, with probability at least 1 − δ,

R* fT − inf
f ∈ ℱ

R*(f) ≲ M ×

γT
avg

T log(1/δ) +
γT
max

T log(1/δ) p < 2,

γT
avg

T

1
p

+
γT
avg

T log(1/δ) +
γT
max

T log(1/δ) p > 2.

Remark 3 (Comparison to Zhan et al. [58]). Given a deterministic policy class (fh(x, 

a) = 1(h(x) = a)), ℋ ⊆ [X A])with a Natarajan dimension, Zhan et al. [58] show a 

lower bound of Ω γT
avgT −1/2

 on the expected regret of any policy-learning algorithms for 

some logging policy satisfying Assumption 1 (see their Theorem 1), that is, Ω(T−(1−β)/2) 

when γT
avg = Ω T β . Zhan et al. [58] also provide an upper bound of O γT

avgT −1/2  for 

their particular algorithm (see their Corollary 2.1), that is, O(T−1/2+β) when γT
avg = O T β , 

assuming that log NH(ϵ, ℋ) ≲ ϵ−p for p < 1, where NH is the Hamming covering number, 

which would be implied by having a Natarajan dimension. This is a potentially significant 

gap in the regret rate in T when exploration is diminishing, β > 0, as is often the case with 

bandit-collected data. For example, for β = 1/2, this yields a vanishing lower bound and a 

non-vanishing upper bound.
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In comparison, our Theorem 5 gives the rate O γT
avgT −1/2

 on the expected regret of policy 

learning with ISWERM in the case of p < 2 (given by integrating the tail inequality in 

Theorem 5), that is, O(T−(1−β)/2) when γT
avg = O T β . This matches the rate of the lower 

bound of Zhan et al. [58], seemingly closing the gap. While Natarajan dimension, Hamming 

covering entropy with p < 1, and bracketing entropy with p < 2 are generally incomparable 

conditions (aside from the first implying the second), they all generally hold for policy 

classes parametrized by finite-dimensional parameters and tree policy classes, for which we 

definitely close gap. It remains an open question how to close the gap for general policy 

classes that only satisfy a Hamming covering entropy condition.

The gap arose from the specific technical route Zhan et al. [58] followed (not their 

algorithm). For the sake of exposition, we give an explanation of the phenomenon 

in a non-sequential i.i.d. setting, under stationary logging policy g1, and under our 

own notation. The same phenomenon translates to the sequential setting. Since they 

use a symmetrization and covering-based approach, they need to work with uniform 

covering-type entropies1 of the form supQ log N ϵ, ℋ, L2(Q)  for a certain class ℋ, where 

the supremum is over all finitely supported distributions. Their approach amounts to 

taking ℋ to be the weighted loss class {(g*/gt)ℓ(π)}. While for Q = Pg1, it holds that 

g*/g1 ℓ (π) − ℓ π′ 2, Pg1 ≤ γ1
1/2 ℓ (π) − ℓ π′ 2, Pg * ≲ γ1

1/2dH π, π′ , for a general Q, 

the best bound is g*/g1 ℓ (π) − ℓ π′ 2, Q ≲ γ1dH π, π′ , where dH is the Hamming 

distance. By contrast, when working with bracketing entropy, one only needs to control 

the size of brackets in terms of L2 Pg1 , that is the L2-norm under the distribution of the 

data Pg1. This allows to save a γ1 factor. Our results also show that a simple IS weighting 

algorithm suffices to obtain optimal rates, and the stabilization by γt employed by Zhan et 

al. [58], which is inspired by the stabilization employed by Hadad et al. [24], Luedtke and 

van der Laan [38] for inference purposes, may not be necessary for policy learning purposes. 

The doubly-robust-style centering may still be beneficial in practice for reducing variance 

but it does not affect the rate.

Remark 4 (Comparison to [20]). Foster and Krishnamurthy [20], albeit in a slightly 

different setting, derive a maximal inequality under sequential covering entropy that also 

exhibits the correct dependence on the exploration rate as ours. This shows in particular 

that the suboptimal dependence on the exploration rate of Zhan et al. [58] is not a 

necessary consequence of using sequential covering entropy. Analogously to us, Foster and 

Krishnamurthy [20] exploit the specific IS-weigthed structure of the loss process, and work 

with covers of the unweighted policy class directly. Using an L∞ sequential cover of the 

unweighted class and using Holder’s inequality, they are able to factor out the L1 norm of 

the IS ratios. This allows them to circumvent the type of sequential cover of the weighted 

class that Zhan et al. [58] need, and yields optimal γ scaling. One caveat of this approach is 

that the entropy integral in the corresponding bound is expressed in terms of L∞ sequential 

1See van der Vaart and Wellner [56, Chapter 2.3] for an explanation of why uniform covering entropy is natural for bounding 
symmetrized Rademacher processes.
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covering entropy, which makes it hard to obtain fast rates via localization. Indeed, while 

variance bounds that allow for localization in L2 norm are common, it is in general much 

harder to obtain localization in L∞ norm.

In well-specified cases, much faster rates of regret convergence are possible. We focus 

on finitely-many actions, A < ∞. Define μ*(X) = mina ∈ Aμ(X, a) and fix a*(X) with μ(X, 

a*(X)) = μ*(X).

Assumption 7 (Margin). For a constant ν ∈ [0, ∞], we have for all u ≥ 0,

PrpX mina ∈ A\ a*(X) μ(X, a) − μ*(X) ≤ Mu 1/ν ≲ u,

where we define 01/∞ = 0 and x1/∞ = 1 for x ∈ (0, 1].

This type of margin condition was originally considered in the case of binary classification 

[39, 54]. The condition we use is more similar to that used in multi-arm contextual bandits 

[25, 26, 42]. The condition controls the density of the arm gap near zero. It generally holds 

with ν = 1 for sufficiently well-behaved μ and continuous X and with ν = ∞ for discrete X 
[see, e.g., 27, Lemmas 4 and 5].

Lemma 3. Suppose Assumption 7 holds and minf ∈ ℱR*(f) = EpXμ*(X). Then Assumption 

4 holds for α = ν/(ν + 1) and Λ : o ↦ M.

Theorem 6 (ISWERM Policy Learning: fast rates). Suppose Assumptions 1, 6 and 7 hold 
with p < 2 and minf ∈ ℱR*(f) = EpXμ*(X). Then for any δ ∈ (0, 1/2), with probability at 

least 1 − δ,

R* fT − EpXμ*(X) ≲ M
γT
avg

T

1 + ν
2 + ν(1 + p/2)

+
γT
max

T

1 + ν
1 + ν(1 + p/2)

+
γT
avg log(1/δ)

T

1 + ν
2 + ν

+
γT
max log(1/δ)

T .

Remark 5 (Classification using ISWERM). The above results can easily be rephrased for 

the classification analogue to the regression problem in Section 4, where Y = ±1  and 

we want a classifier based on features x, a to minimize misclassification error. Because 

the policy learning problem is both of greater interest and greater generality, we focus our 

presentation on policy learning.

6 Empirical Study

Next, we empirically investigate various risk minimization approaches using data collected 

by a contextual bandit algorithm, including both ISWERM and unweighted ERM among 
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others. We take 51 different mutli-calss classification datasets from OpenML-CC18 [11] 

and transform each into a multi-arm contextual bandit problem (following the approach of 

[15, 17, 51]). We then run an epsilon greedy algorithm for T = 100000, where we explore 

uniformly with probability ϵt = t−1/3 and otherwise pull the arm that maximizes an estimate 

of μ(x, a) based on data so far. Details are given in Appendix F.1.

We then consider using this data to regress Yt on Xt, At using different methods where 

each observation is weighted by wt using different schemes: (1) Unweighted ERM: wt 

= 1; (2) ISWERM: wt = gt−1 At ∣ Xt ; (3) ISFloorWERM: wt = γt−1, where–inspired by 

[58]–we weight by the inverse (nonrandom) floor γt = ϵt/ A  of the propensity scores; (4) 

SqrtISWERM: wt = gt−1/2 At|Xt , which applies the stabilization of [24, 38] to ISWERM; 

(5) SqrtISFloorWERM: wt = γt−1/2; (6) MRDRWERM: w(t) =
1 − gt At ∣ Xt

gt2 At ∣ Xt
, which are the 

weights used by Farajtabar et al. [18]; (7) MRDRFloorWERM: w(t) =
1 − γt

γt2
, which is 

like MRDRWERM but uses the propensity score floors γt. With these sample weights, 

we run either Ridge regression, LASSO, or CART using sklearn’s RidgeCV(cv=4), 

LassoCV(cv=4), or DecisionTreeRegressor, each with default parameters. For Ridge 

and LASSO we pass as features the intercept-augmented contexts 1, Xt t = 1
T  concatenated 

by the product of the one-hot encoding of arms At t = 1
T  with the intercept-augmented 

contexts 1, Xt t = 1
T . For CART, we use the concatenation of the contexts Xt t = 1

T  with the 

one-hot encoding of arms At t = 1
T . To evaluate, we play our bandit anew for Ttest = 1000 

rounds using a uniform exploration policy, g*(a | x) = 1/K, and record the mean-squared 

error (MSE) of the regression fits on this data. We repeat the whole process 64 times and 

report estimated average MSE and standard error in Fig. 1.

Results.

Figures 1a and 1b show that ISWERM clearly outperforms unweighted ERM and all 

other weighted-ERM schemes for linear regression, with ISWERM’s advantage being even 

more pronounced for LASSO. Intuitively, since a linear model is misspecified, this can be 

attributed to ISWERM’s ability to provide agnostic best-in-class risk guarantees. In contrast, 

for a better specified model such as CART, all ERM methods perform similarly, as seen in 

Fig. 1c. We highlight that our focus is not necessarily methodological improvements, and the 

aim of our experiments is to explore the implications of our theory, not provide state-of-the-

art results. We provide additional empirical results in Appendix F.2, the conclusions from 

which are qualitatively the same.

7 Conclusions and Future Work

We provided first-of-their-kind guarantees for risk minimization from adaptively collected 

data using ISWERM. Most crucially, our guarantees provided good dependence on the size 

of IS weights leading to correct convergence rates when exploration diminishes with time, as 

happens when we collect data using a contextual bandit algorithm. This was made possible 
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by a new maximal inequality specifically for IS weighted sequential empirical processes. 

There are several important avenues for future work. We focused on a fixed hypothesis class. 

One important next question is how to do effective model selection in adaptive settings. We 

also focused on IS weighted regression and policy learning, but recent work in the iid setting 

highlights the benefits of using doubly-robust-style centering [2, 21, 33]. These benefits 

are most important to avoid rate deterioration when IS weights are estimated, while our IS 

weights are known, but there are still benefits in reducing the loss variance in the leading 

constant. Therefore, exploring such methods in adaptive settings is another important next 

question.

8 Societal Impact

Our work provides guarantees for learning from adaptively collected data. While the 

methods (IS weighting) are standard, our novel guarantees lend credibility to the use of 

adaptive experiments. Adaptive experiments hold great promise for better, more efficient, 

and even more ethical experiments. At the same time, adaptive experiments, especially 

when all arms are always being explored (γt < ∞) even if at vanishing rates (γt = ω(1)), 

must still be subject to the same ethical guidelines as classic randomized experiments 

regarding favorable risk-benefit ratio of any arm, informed consent, and other protections 

of participants. There are also several potential dangers to be aware of in supervised and 

policy learning generally, such as the training data possibly being unrepresentative of the 

population to which predictions and policies will be applied leading to potential disparities 

as well as the focus on average welfare compared to prediction error or policy value on each 

individual or group. These remain concerns in the adaptive setting, and while ways to tackle 

these challenges in non-adaptive settings might be applicable in adaptive ones, a rigorous 

study of applicability requires future work.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Comparison of weighted regression run on contextual-bandit-collected data. Each dot is 

one of 51 OpenML-CC18 datasets. Lines denote ±1 standard error. Dots are blue when 

ISWERM is clearly better, red when clearly worse, and black when indistinguishable within 

one standard error.
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