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Abstract—Embedded systems are experiencing an increasing
demand for computational power. A commonly adopted solution
to meet this demand involves deploying both critical and non-
critical tasks on a single multicore processor. Nevertheless, the
intricacy of such processors induces nondeterminism, posing
potential risks to the dependability of the system. This becomes
particularly pertinent in safety-critical real-time applications
where temporal faults could lead to missed deadlines for high-
criticality tasks. Emerging technologies like Intel’s Cache Al-
location Technology (CAT) are designed to diminish the non-
determinism instigated by shared cache memory in multicore
systems, by enabling dynamic cache memory allocation. In this
paper, we introduce an experimental methodology to gauge the
efficacy of such technology in a real-time setting. We investigate
the possibility of leveraging dynamic cache memory allocation to
ensure high-criticality tasks meet their deadlines while optimizing
the performance of non-critical tasks. Our proposed methodology
involves an exhaustive analysis of the trade-offs between various
parameters in a mixed-criticality application. The effectiveness
of this approach is substantiated through a sensitivity analysis
on a practical use case.

Index Terms—timing faults, mixed-criticality, real-time, multi-
core, cache allocation policies

I. INTRODUCTION

The use of multicore processors in industrial systems,
particularly embedded systems, is increasing for obvious per-
formance and economic reasons. One of the benefits of these
hardware architectures is to enable applications of mixed
criticality to run on the same component. Most of such
applications are safety critical and mixed criticality systems [2]
must comply with real-time requirements. Timing faults [1] are
a threat to dependability.

The task response time depends on the number of tasks
executed in a given period of time, the processor performance,
and the scheduling policy. However, in multicore systems,
response time also depends on the system’s state and more
precisely on its shared resources (namely caches, buses, etc...).
Shared resources may introduce then nondeterminism for high
criticality tasks, because of their usage by lower-critical tasks.
Their response time increases and may become unpredictable
in case of shared resources contention (namely shared cache).

Despite best practices and techniques to estimate compli-
ance with real-time requirements (WCET evaluation, schedul-

ing analysis, scheduling policies), the new hardware archi-
tectures may have an impact on the timing behavior of both
critical and non-critical tasks: the former may miss deadlines,
the latter may observe a decrease in terms of performance.

Timing faults and timing unpredictability are major
impairments to dependability in multicore-based safety
critical systems, such as in avionics [17].

The current solutions to limit the effects of shared resources
tend to be pessimistic, e.g., the deactivation of all cores except
one during the execution of high-criticality tasks. Another
proposed solution consists in reserving a large amount of
shared resources (e.g., shared cache) to make sure that high
criticality tasks will comply with their real-time constraints,
while non-critical tasks will see their performance very much
diminished. Such pessimistic approaches lead to a sub-optimal
use of a multicore system.

The challenge in multicore systems is striking the right
balance between critical and non-critical tasks. While high-
criticality tasks must invariably meet their deadlines, non-
critical tasks should harness available resources to maximize
performance. However, finding the optimal trade-off is com-
plex. Factors such as hardware architecture, task specifics, and
shared resource allocation play pivotal roles. Given these mul-
tifaceted parameters, there is not a one-size-fits-all solution.

In this context, our primary focus is to delve into the
following research question: How does a specific cache
allocation policy influence the performance of non-critical
tasks, while ensuring the safety of high-criticality tasks?

This paper introduces a methodology and accompanying
experimental framework designed to guide safety-critical real-
time system designers in selecting the most effective policy for
enhanced system efficiency and dependability. Furthermore,
we provide a proof of concept, highlighting the advantages of
the Cache Allocation Technology (CAT) dynamic mechanism
within a real-time mixed-criticality multicore system.

To summarize, we explore how different cache allocation
policies can enhance mixed-criticality systems on multicore
platforms. Through our research, we seek to help system
designers to determine the best trade-offs between critical tasks
and non-critical tasks running on the same multicore processor,
using cache allocation.

In section II, we detail the problem statement. In section III,



we evaluate the suitability of CAT in a real-time context. In
section IV, we describe the experimental approach designed
to help system designers choose the best allocation policy for
their specific system. In section V, we illustrate the experi-
mental approach on a case-study, the side effects of dynamic
cache allocation and its potential benefits. Related works are
presented in section VI and, we conclude in section VII.

II. CONTEXT AND PROBLEM STATEMENT

The parallelism brought by multicores enables the integra-
tion of more applications in a same computing unit, thus
reducing the overall number of components required in an em-
bedded systems. This is key to simplify Electrical/Electronic
(E/E) architectures, facilitate maintenance, reduce weight and
energy consumption, and design reusable and scalable systems.

However, to be safe, the execution time of critical tasks in
a dependable system must have some degree of predictability.
In particular, the worst-case execution time (WCET) of a task
needs to be bounded in order to be able to prove that its
deadlines are met in all cases. A weakness of multicores is
that they add new sources of unpredictability with respect to
single core processors [3].

Indeed, on such architecture, hardware resources like cache
memory, system bus, I/O devices, are shared among the cores
(see [12] for an exhaustive list of unpredictability sources
specific to multicores). Each access to a shared resource is
potentially concurrent with accesses from other cores and these
contentions are arbitrated by low-level hardware components.
Precise prediction of the impact on execution is intractable. As
said in [21]: ”..., it will be extremely difficult, if not impossible,
to develop such a method that can accurately capture the
contention.”. This tends to make WCET estimation pessimistic
which in turn degrades the tradeoff between usability and
dependability in multicores processors.

In this paper, we focus on strategies based on cache
allocation. Despite its limited efficiency in mitigating intra-
core interference — between tasks executing on a shared
core — it is recognized for substantially reducing inter-core
interference in the Last-Level Cache (LLC), thereby enhancing
system predictability [8]. Note that cache allocation should be
regarded as only a part of the solution, since there are other
contributors (memory bus and main memory for instance) to
the unpredictability of task execution time, as shown in [11].

Dedicating part of the cache to critical tasks is an improve-
ment for safety and real-time, however, a static allocation
can be detrimental to non-critical tasks’ performance since it
reduces the amount of cache available to them at all times.

New technologies like Intel’s Cache Allocation Technology
(CAT) [18] allow to dynamically control cache allocation at
run-time. Thus, allocation can be adapted at run-time to best
fit the system requirements and optimise performances [9]. In
this paper, we explore the benefits of this technology for mixed
criticality real-time systems.

Our first goal is to evaluate the suitability of dynamic cache
allocation in a real-time context. Then we show how dynamic
cache allocation can improve the predictability of critical tasks

while mitigating performance degradation of non-critical tasks
in a mixed criticality system. However, since dynamic cache
allocation may not be required for all task sets, we propose
a method to analyse the impact of different cache allocation
policies (dynamic, static, or even no allocation) on a given
task set to help a system designer choose the right policy and
configuration.

III. DYNAMIC CACHE ALLOCATION IN REAL-TIME LINUX

In this section, we assess whether dynamic cache allocation
can be effectively employed in the context of real-time Linux.

A. Cache Allocation Technology

Our work relies on the Cache Allocation Technology (CAT)
provided by Intel. CAT is currently available on Intel Xeon
E5 V4, some Xeon E5 V3, and Celeron J3455, and is fully
supported on Linux [6]. Although these processors are not
designed with embedded systems constraints in mind, they
are suitable testbeds to evaluate the benefits of various cache
allocation strategies. Indeed, CAT is not specific to a given
architecture and could be ported to (or available on) more
dedicated processors.

In set-associative cache structures, the cache is divided
into several sets, and each set contains multiple slots known
as cache ways. Allocation is managed by controlling write
permissions to these cache ways of the last level cache (LLC).
The granularity of allocation corresponds to the number of
ways of the LLC. For instance, the Celeron J3455 LLC is
8-way set-associative, meaning data can be stored in one of
eight positions or ways within a set. Consequently, allocation
is done in chunks equivalent to 1/8th of the total cache
size. In order to keep track of which resource can access
which way, write permissions are managed through the notion
of Class Of Services (CLOS). Software entities like threads,
VMs, containers, can be grouped into a so-called CLOS and
each CLOS indicates how much cache it can use. CLOS
configuration can be conveniently updated at run-time through
a C library or by updating some files in the Linux pseudo-
filesystem /sysfs/rescrtl.

When using cache allocation in our experimentation, we
partition the cache into two parts: one part with write per-
missions only for the critical tasks and one part with write
permissions only for the rest of the system including the non-
critical tasks.

B. Dynamic Cache Allocation Principle

Dynamic cache allocation has been shown to improve appli-
cation performance in server environments [9]. These enhance-
ments occur in the context of large-scale application servers,
where the timescale for online cache management is counted
in minutes. However, it remains uncertain if dynamic cache
allocation could function efficiently with a control frequency
in the range of 100 Hz, a characteristic frequency for real-time
systems. For example, the rocket prototype discussed in [14]
employs three real-time tasks for Guidance and Navigation
Control, operating at 20 Hz, 50 Hz, and 125 Hz.



In this work, we evaluate a simple dynamic allocation
policy: cache memory is allocated to a critical task solely
during its execution - from the start of a job to its termination.
Consequently, when the critical task is not running, the entire
cache memory becomes available for non-critical tasks.

Briefly, the differences between static allocation and dy-
namic allocation are as follows:

• Static allocation implies a permanently reserved cache
memory for the critical task.

• Dynamic allocation refers to the allocation of cache
memory for each instance of the critical task execution (a
job). This process results in an allocation/execution/deal-
location cycle with each task period, i.e. for each job.

The response time for the critical task is expected to be
longer with dynamic allocation compared to static allocation.
Several factors contribute to this: allocating and deallocating
memory every time a job begins and ends incurs overhead.
Furthermore, data or instructions can be evicted from the
cache from one job to the next, potentially leading to more
cache misses. However, we do not expect this latency to be
substantially high in the context of real-time systems. This is
because the typical workflow of a job involves acquiring some
data, processing it, and generating an output, with minimal
carryover from one execution to the next.

C. Overhead Evaluation

To better understand if dynamic cache allocation is suitable
for real-time systems, we evaluate the overhead of this mech-
anism. Fig. 1 illustrates the overhead of using dynamic cache
allocation for a real-time task, mapped against the frequency
of the task. This overhead comprises the time necessary to
allocate some cache at the beginning of each job and the time
it takes to deallocate this cache upon the job’s completion.

For these experiments, we employ an image processing task.
This task is fed images that are sized such that its execution
time is approximately half of the task’s period, resulting in an
average system utilization of 50%. The selected frequencies
are chosen to avoid periodic system activities that might
introduce noise. The experiments are conducted on an Intel
Celeron J3455 system running Linux with kernel 5.15 (low-
latency).

Fig. 1: Dynamic allocation overhead w.r.t. task frequency

The overhead remains stable in the range of 19 Hz to
217 Hz, with an average of 130 µs and a worst-case of 250 µs.
The overhead becomes significant with respect to the execution
time of the task for 200 Hz and higher, with 5.1 % average
and 9.9 % worst-case overhead at 217 Hz for instance. Further
increasing the frequency to 868 Hz results in a worst-case
allocation and deallocation time of 393 µs, corresponding to a
68 % overhead. With such overhead, it seems unlikely that
dynamic allocation might provide advantages over a static
allocation. Therefore, at such high frequencies, we would
recommend opting for a static allocation strategy.

To test if the load of the system impact the overhead, we also
run these experimentation under different workloads, up to
95 % utilization of the CPU. We have not observed significant
impact on the overhead.

From our experimentation, we conclude that the overhead of
dynamic cache allocation is manageable for real-time embed-
ded systems implemented on Linux. In particular since high
frequency task (> 1 kHz), such as sensor fusion are usually
executed on dedicated microcontrollers.

IV. EXPERIMENTAL APPROACH

We propose an experimental approach to analyse the impact
of different cache allocation policies (dynamic, static, and no
allocation) on a given task set to help a system designer choose
the right policy, and allocation configuration. We apply it in
section V for illustration and show how a simple dynamic
allocation policy can help with mixed criticality system.

Fig. 2 summarises the four main steps of the approach.
Outputs of the decision diagram are either a suitable policy
and its associated configuration or ”failure” meaning that the
system designer should explore additional means to improve
the system predictability and/or performance. This may in-
volve using different hardware or having more drastic control
on non-critical tasks as in [16] for instance.

Fig. 2: Decision diagram to configure the allocation
Step 1 tests if the shared cache is actually a significant

bottleneck for the performance of the task set. If not, then
experiment stops and ”no allocation” is chosen because cache
allocation is not required.



Otherwise, we proceed to step 2 in order to find a static
allocation allowing safe execution of the critical tasks. We
look for a static allocation before a dynamic one because it
is the easiest implementation. In addition, the response time
with dynamic allocation can only be greater or equal than with
static allocation for the critical task. If no allocation is found
then the experiment stops and the system designer needs to
find other means to improve determinism.

When static allocation is found, then we go to step 3
and evaluate performance degradation of non-critical tasks.
If performance is satisfactory for non-critical tasks, then the
experiment stops and an acceptable configuration is found.

If step 3 does not conclude, we go to step 4 to evaluate
performance improvement achievable thanks to dynamic allo-
cation. In the following the different steps are detailed.

A. Step 1: Do I need cache allocation?

In this first step, we focus on the critical task. The objective
of this step is to conclude on the effect of shared cache
memory on the critical task. To achieve this, we need to
consider best and worst-case scenarios.

First, we need to characterise the critical task in the best-
case. To do so, we measure the task response time in the most
favorable context: the execution of the critical task alone in
the system. The ideal manner to characterise the critical task
Response Time (RT) is to repeatedly execute the task until the
variance of the measured RT is constant. However, measuring
RT and estimating the variance at each repetition might distort
the results. So we run batch experimentation, only capturing
timestamps at the start and end of the task each period. At
the end of a batch, we determine the RT of each execution
and the variance. We run batches until the variance stabilizes.
Once that’s the case, we can have some important experimental
information on the critical task: its Worst Case Response Time
(WCRT), its Average Case Response Time (ACRT), and its
percentage of LLC misses. This WCRT is optimistic due to
the favorable conditions of this scenario.

Then, we need to characterise the critical task in the worst-
case. To do so, alongside the critical task, we execute stress-
ng [10] as a worst-case non-critical workload with options
to target the LLC and workers on each core. With the full
utilization of the CPU by stress-ng, we expect the most
aggressive pressure on the shared cache.

At this point, we can compare metrics, in particular the
WCRTs, of both scenarios with and without stress on the
cache. If the probability of deadline violation increases too
much with stress, then we move to step 2 to evaluate how
cache allocation might help.

B. Step 2: Find a safe static allocation

In this step, we are looking for a cache allocation configu-
ration that prevents degradation of the WCRT of our critical
task due to interference with non-critical tasks. Since CAT
enables way-based partitioning, we partition the cache ways
between the critical task and the rest of the system. Allocation
is exclusive, we do not allow overlapping partitions.

To check if a partition is acceptable, we execute the critical
task alongside stress-ng, as previously, but we activate the CAT
mechanism. Considering stress-ng as a worst-case workload,
if an acceptable configuration is found, it will also be safe for
any real workload.

To reduce experimental iterations, we employ a binary
search to identify the minimal cache ways needed for the
critical task. Each experiment continues until the Response
Time (RT) variance stabilizes. The search concludes upon
finding the smallest cache allocation meeting the designer’s
Worst Case Response Time (WCRT) criteria.

C. Step 3: Non-critical tasks performance degradation

Since static allocation can be very detrimental to the
performance of the non-critical tasks, step 3 checks if the
performance level is acceptable. To establish a baseline for the
performance of non-critical tasks, we launch critical and non-
critical tasks with no allocation. Of course, different perfor-
mance metrics can be used, but the percentage of LLC misses,
and the distribution of response time are recommended.

Then, we run the experiment with the amount of ways
determined in step 2 for the static allocation and we compare
the results with the baseline obtained without allocation. The
output depends very much on the task set selected. In some
cases, the use of static allocation (reducing thus the cache
size allocated to non-critical tasks) will degrade the response
time of non-critical tasks. This is true when these tasks
are highly cache sensitive. If the system designer estimates
that degradation of performance of non-critical tasks is too
important with static allocation, a dynamic allocation strategy
will be tried in step 4. If not, we stop the experimentation
because we have already ensured safety for the critical task
and acceptable performance for the non-critical ones.

D. Step 4: Dynamic cache allocation

Step 4 proposes to use dynamic allocation to limit the
detrimental effect of static allocation on non-critical tasks.
Dynamic allocation can take many forms. For illustration, we
choose a very simple policy. We allocate to the critical task a
fixed number of ways. Then, we activate the allocation when
the task starts, and we deactivate it when the task terminates,
until the next task period. To determine the minimum accept-
able number of ways for the critical task, in line with the
system designer’s WCRT criteria, we use the same method as
in step 2: a binary search combined with stress-ng. Finally, we
conduct an experiment with the non-critical tasks to evaluate if
their performance level is satisfactory for the intended system.
Typical criteria for non-critical tasks can include percentage of
deadline misses, Last Level Cache (LLC) misses, Instructions
per Cycle (IPC), and Average Case Response Time (ACRT).

To conclude, we have presented a four steps experimental
approach to take advantage of cache allocation technology
in the integration of a mixed criticality system. With this
approach, as will be shown in section V, the high criticality
task complies with its deadline while non-critical tasks in-
crease their performance, at least in the experiments we have



conducted. Of course, the benefits of cache allocation depend
greatly on the task set and the targeted CPU. Tasks are more or
less cache sensitive and so cache allocation might not always
be a solution to predictability and performance issues.

V. IMPLEMENTATION AND EXPERIMENTAL RESULTS

In this section, we implement our approach on an il-
lustrative example. Our computing unit is a Celeron J3455
which supports CAT. We use two cores that share an 8-
way set-associative, 1 MB, LLC. Due to its known cache
sensitivity [7], we select an image corner detection task, Susan
from Mibench [5] as the critical task. We’ve modified the task
in order to schedule it with the Linux Deadline scheduling
class and to record its own response time. We use a period of
9.6 ms which is equivalent to 104 Hz and is characteristic of
real-time systems. Since we want to observe response time
variability, we choose a larger than necessary runtime and
deadline parameters, 9 ms, in order to never trigger deadline
misses or overrun runtime budget.

A. Illustrative example of Step 1

As indicated in section IV-A, the goal of the first step of
our experimental approach is to determine whether our critical
task is sensitive to LLC stress or not. To do so, we first run
experiments to establish a best-case baseline, i.e. without stress
on the LLC, then we establish the worst-case behaviour by
imposing a maximum stress on the LLC.

For the best-case scenario, i.e. without stress and non-
critical tasks, the critical task is the only task running on the
CPU. We use perf-stat to record the LLC misses of the
critical task. Timestamps used for response time estimation
are captured by the task itself. We execute the critical task
for five minutes. Then we extract statistics on LLC misses
and the task response time. We use the same stopping con-
dition as before. Then, we execute our worst-case scenario
by launching stress-ng running on the two cores alongside
the critical task. The graph in Fig. 3 represents the results of
our two scenarios via a cumulative distribution function which
represent the probability of deadline violation with respect to a
given deadline. In this example with a deadline of 5.1 ms, we
observe a probability of deadline violation of less than 0.01%
in the scenario without stress, while the probability of deadline
violation goes up to 87% in scenario with stress. We observe
an increase of 11% of the critical task worst-case response
time between the without stress scenario and with stressed
one. This effect is confirmed by the increase of average LLC
misses which go from 10,51% to 30.14% with stress.

With a probability of 87% of deadline violation in a stressed
scenario, we need to protect the critical task with cache
memory allocation.

B. Finding a safe static allocation (Step 2)

The second step of our experimental approach focuses on
identifying the optimal configuration to mitigate the impact of
stress on task deadline violations and LLC misses. We employ
static cache allocation to minimize excessive LLC misses.

Fig. 3: Stress-ng effect on the critical task

We investigate all potential configurations, ranging from no
allocation to allocations spanning up to 7 ways. An allocation
of 8 ways (which would be a complete cache allocation) is
restricted by the Operating System. Using the same worst-
case experimental conditions from step 1, Fig. 4 illustrates the
probability of deadline violation for the critical task relative
to the number of ways statically allocated.

Fig. 4: Probability of deadline violation for the critical task
w.r.t. the number of ways allocated

In Fig. 4, it’s evident that the allocation of more ways
(or cache memory) enhances the performance of the critical
task, which aligns with our expectations. The curve with no
allocation matches the stressed curve depicted in Fig. 3. Im-
portantly, allocating merely one way yields inferior outcomes.
This constrained cache space for the critical task results in
increased cache misses, primarily because the task ends up
evicting its own cache lines. Such eviction subsequently affects
its response time. For the critical task to maintain a sufficiently
low probability of violating the 5.1 ms deadline, we allocate 5
ways. With this allocation, the violation probability is 0.21%,
and the LLC misses stand at 17.38%.



C. Performance degradation on non-critical task (Step 3)

Once a satisfactory configuration is identified, and the
probability of deadline violation meets the designer’s criteria,
the next step focuses on assessing the impact of this allocation
on the performance of non-critical tasks.

For our practical scenario, we selected a cache-sensitive task
as our non-critical workload, which has an average execution
time of 85 ms when no allocation is applied. For simplicity,
the critical and non-critical tasks are executed on different
cores. This approach helps to prevent scheduling effects from
degrading the performance of non-critical tasks. Note that this
is not a limitation of the proposed approach. The non-critical
workload runs continuously and is managed by Linux’s default
scheduler, albeit at a higher priority relative to standard Linux
processes, in order to focus on the delays incurred by the cache
allocation policy.

To evaluate the performance of the non-critical task, we
measure its response time and the LLC misses. We run two
scenarios: with and without the static allocation paired with
the critical task. In Fig. 5 we have plotted the probability of the
response time of a non-critical job to be lesser than a given
value X for both scenarios. The higher the probability the
better for the performance of the task. We can then compare
the effect on the non-critical task performance.

Fig. 5: Effect of static cache allocation on non-critical task

We observe a degradation of performance (i.e. increase
of the response time of the non-critical task). For instance,
without allocation, 51.2% of the non-critical jobs have a
response time lesser than 85 ms, with respect to only 24,6%
when allocating 5 ways of cache memory to the critical task. It
is clear that the response time of a majority of non-critical jobs
is greater with static allocation. Concerning the LLC misses,
we have 9.82% without allocation and we have 15.51% with
the static allocation.

In order to mitigate the performance degradation of the non-
critical workload caused by the static allocation, we jump into
the last step to improve the trade-off between critical and non-
critical tasks performance using dynamic allocation.

D. Dynamic cache allocation benefits (Step 4)

In this experimental step, we implement a very simple
policy. We allocate a fixed number of ways (5 ways) to the
critical task and, as explained before, we activate the allocation
when one of its jobs starts, we deactivate it when the job
terminates. Thanks to the libraries provided for Linux [6],
dynamic policies are easy to implement. More sophisticated
policies are under consideration.

1) Impact on Critical Task Performance: As presented in
section III, dynamic allocation may be less favorable than
static allocation for the critical task, in part because of the allo-
cation overhead; to check this, we run an experiment executing
our dynamic allocation paired with stress-ng. The results
obtained should illustrate how much performance degradation
the dynamic allocation approach implies with respect to static
allocation for the critical task. No allocation is a baseline we
consider as well.

The corresponding experiments enable comparing three
scenarios: without allocation, with 5 ways static allocation,
then 5 ways dynamic allocation. We present the results we
obtained in Fig. 6 and Tab. I.

Fig. 6: Comparison between three policies
for the critical task

No alloc. Static alloc. Dynamic alloc.
Prob(RT>D) 87 % 0.21 % 0.37 %
WCRT 6 ms 5.4 ms 5.7 ms
LLC misses 30.14 % 17.38 % 19.99 %

TABLE I: Critical task performance

As expected, we have a degradation of the performance
due to the dynamic allocation mechanism, compared to the
static allocation, for the critical task. However, the results are
quite acceptable compared to the no allocation policy which
is clearly worse.

2) Impact on Non-Critical Task Performance: Lastly, we
run another experiment to analyze the impact of our dynamic
allocation mechanism for non-critical tasks. The critical task
still has access to 5 ways of cache memory when it is



executing. And with the dynamic policy, the non-critical task
has access to 3/8th of the cache memory during the execution
of a critical job and gets full access to the cache memory in
the interval between the completion of a critical job and the
beginning of the next one. We compare the performance results
of the non-critical tasks for the three policies. We display the
results in Fig. 7 and Tab II.

We observe some performance improvements (i.e. decrease
of the response time of the non-critical task). For instance, with
static allocation, 24.6% of the non-critical jobs have a response
time lesser than 85 ms, with respect to 41.2% with dynamic
allocation. It is clear that the response time of a majority of
non-critical jobs is lesser with dynamic allocation. Concerning
the LLC misses, we have 15.51% with static allocation and
we have 10.76% with the dynamic allocation.

Fig. 7: Comparison between three policies
for the non-critical task

No alloc. Static alloc. Dynamic alloc.
Prob(RT<85ms) 51.2% 24,6% 41.2%
LLC misses 9.82 % 15.51 % 10.76 %

TABLE II: Non-critical task performance

3) Finding the right trade-off: In summary:

• critical task: the best strategy is static allocation, the
worst is no allocation.

• non-critical task: the best strategy is no allocation, the
worst is static allocation.

Clearly, the proposed dynamic allocation provides the best
compromise, satisfaction of deadline for the critical task
while increasing the performance of the non-critical task. The
dynamic allocation executed for the critical task has a cost, but
it is not a heavy penalty at least for the practical use case we
have used. As illustrated previously, this depends very much
on the tasks set and several parameters we have identified. The
experimental approach we propose clearly helps the system
designer to take appropriate decisions regarding the allocation
strategy to use.

VI. RELATED WORK

Dynamic cache allocation has been shown to improve
application performance in server environments [9]. However,
to the best of our knowledge, the application of dynamic cache
allocation at the job level in real-time systems has not yet been
explored.

The state of the art in managing interference between cores
for safe real-time embedded systems is rich, offering solutions
that range from shared resource allocation strategies to strict
access scheduling, or even new hardware design.

Time partitioning [19], implemented in systems like PikeOS
or as used by Girbal et al. [4], allows scheduling to be
configured such that no non-critical tasks can be executed
while critical tasks are running. Consequently, contention on
the shared resources can be entirely avoided. Although this
approach provides high safety, it can result in suboptimal
processor utilization and is most suited for scenarios where
the highest performance level is not a requirement.

Kritikakou et al. [13] and Loche et al. [16] propose a more
optimistic approach. Recognizing that deadline violation is an
infrequent event, the system operates without any interference
prevention measures to optimize performance. However, the
system is continuously monitored, and if a risk of a deadline
miss is detected, non-critical tasks are halted to avoid con-
tention and ensure the critical tasks complete on time.

Suzuki et al. [22] suggest dedicating a subspace of the cache
memory to each core. Critical tasks are then all assigned to
one specific core, while non-critical tasks are delegated to the
remaining cores. While this method improves predictability, it
could lead to processor under-utilization, as the core assigned
to critical tasks may not be fully occupied. Additionally, it
inherits the drawbacks of static allocation.

Other research, such as that by Liu et al. [15], proposes
new CPU architecture paradigms that can avoid unpredictable
contention on shared resources. While such solutions may be
ideal, their large-scale adoption could prove challenging.

The real-time community has shown interest in mechanisms
that enhance determinism in multicore systems. Sohal et al.
[20] conducted a comprehensive analysis of all mechanisms
proposed by Intel within the Resource Director Technology
(RDT) framework. Specifically, regarding the Cache Allo-
cation Technology (CAT) – a component of RDT – they
introduce a method to estimate the efficacy of CAT across
different CPU models. While their focus remains on static
allocation, they demonstrate that although cache allocation is
effective, it cannot fully mitigate the side effects caused by
shared resources.

VII. CONCLUSION

The experimental approach proposed in this paper has been
applied in a practical use case involving a critical image corner
detection task extracted from the MiBench benchmark. The
primary goal of this example is to offer a proof of concept in
terms of the efficiency of dynamic allocation and the various
parameters that need consideration. Although this use case
doesn’t encapsulate all potential application characteristics, it



aids in understanding the various steps needed to perform the
analysis and decide which cache allocation strategy suits the
application characteristics and requirements.

Prior to initiating our experimental approach, we examined
the overhead of the CAT mechanism in relation to the ac-
tivation frequency. We concluded that the cost of the CAT
allocation mechanism remains acceptable until 200 Hz.

In the first step, we verified that the chosen critical task is
sensitive to LLC stresses. In the second step, we analyzed the
temporal behavior of our critical task based on the number of
ways allocated statically. In the third step, we evaluated the
impact of the static allocation, chosen in step 2, on a non-
critical task as compared to the case without allocation. The
non-critical task was observed to run more slowly with static
allocation, thus motivating the strategy proposed in step 4.

The dynamic allocation strategy evaluated in step 4 operates
on an allocation/execution/deallocation profile for the critical
task, i.e., LLC space is allocated when the job starts and
released upon job completion. The results demonstrated an
interesting trade-off between the performance of the non-
critical task and the behavior of the critical task from a real-
time perspective, despite a minor runtime overhead.

In this work, we found that even a simple dynamic cache
allocation policy, under certain conditions, significantly im-
prove the performance of non-critical tasks. This was achieved
without compromising the real-time behavior of critical tasks,
showcasing the usefulness of dynamic cache allocation.

However, it is worth noting again that the impact of
these cache allocation policies greatly depends on several
parameters, including task set, multicore CPU, critical task
sensitivity to LLC stress, frequency/period to consider, etc.

This implies that such an approach should be tailored by
each mixed-criticality system designer to fit their specific oper-
ational context.We’ve demonstrated that there isn’t a universal
solution suitable for all scenarios, which is why the proposed
experimental approach is so valuable.

A limitation of the proposed approach is that we divide the
LLC cache into two partitions—one for the critical tasks and
one for the rest of the system. This implies that all critical
tasks operate within the same partition, potentially leading to
cache line eviction amongst them. Future work will explore
using to multiple partitions for the critical tasks.

As a perspective, our goal is to incorporate additional
criticality levels to better align with industrial standards.
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