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The COVID-19 infection due to severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) is a major public health 
issue worldwide, as no vaccines or drugs for prevention and 
treatment have been approved so far, except remdesivir that 
has been recently authorized for use in the USA and Japan 
[1]. Many clinical studies are ongoing. Most of them evalu-
ate established antiviral drugs such as lopinavir/ritonavir, 
and chloroquine (CQ) or its derivative hydroxychloroquine 
(HCQ), which have shown in vitro antiviral activity against 
SARS-CoV-2 [2]. Because SARS coronavirus infections 
are known to induce inflammation and subsequent tis-
sue damage in the lungs in moderate-to-severe cases [3], 
using immunomodulating drugs could provide a benefit in 
the treatment of COVID-19. Drugs with the most relevant 
immunomodulatory profile remain to be found. We believe 
the antibacterial macrolide azithromycin (AZM) has a spe-
cial and interesting profile in this search for drug therapy for 
COVID-19. We discuss below the arguments for this claim.

It has been shown that AZM has significant antiviral 
properties. In contrast with CQ or HCQ, its antiviral activ-
ity has been shown in vitro and/or in vivo on a large panel of 
viruses: Ebola, Zika, respiratory syncytial virus, influenzae 
H1N1 virus, enterovirus, and rhinovirus [4–13]. Its activity 
against respiratory syncytial virus has been demonstrated 
in a randomized study in infants [10]. Azithromycin exhib-
ited a synergistic antiviral effect against SARS-CoV-2 when 
combined with HCQ both in vitro [11] and in a clinical set-
ting [13]. Of note, the pre-print version of the article from 
Andreani et al. [14] also reported a significant antiviral effect 
of AZM alone on SARS-CoV-2. The mechanisms of the 
antiviral effect of AZM support a large-spectrum antiviral 

activity. Azithromycin appears to decrease the virus entry 
into cells [2, 8]. In addition, it can enhance the immune 
response against viruses by several actions. Azithromy-
cin up-regulates the production of type I and III interfer-
ons (especially interferon-β and interferon-λ), and genes 
involved in virus recognition such as MDA5 and RIG-I [7, 
12, 13, 15, 16]. These mechanisms are universally involved 
in the innate response against infectious agents, and poten-
tially against SARS-CoV-2.

The immunomodulation properties of AZM are the 
rationale of its use against inflammatory manifestations 
leading to interstitial lung disease [17, 18]. SARS-CoV-2 
has been shown to exacerbate the inflammatory response of 
its host, leading to serious damage of lung interstitial tissue 
[19]. Patients with severe COVID-19-associated pneumo-
nia may exhibit a syndrome of systemic hyper-inflammation 
designated as a cytokine storm [20]. Cytokine profiles of 
patients with severe COVID-19 have been compared to 
those of patients with moderate forms and have shown a 
notable increase in some pro-inflammatory cytokines such 
as interleukin (IL)-1β, IL-2, IL-6, IL-8, IL-10, IL-17, and 
tumor necrosis factor-α [19–21]. Therapeutic approaches 
targeting only IL-6 have been proposed but may be dou-
ble-edged because the timing of its administration might 
adversely affect viral clearance [21]. By contrast, AZM 
shows an interesting immunomodulatory profile by inhibit-
ing several cytokines involved in COVID-19 severe respira-
tory syndrome. Indeed, AZM regulates and/or decreases the 
production of IL-1β, IL-6, IL-8, IL-10, IL-12, and IFN-α 
[10, 22, 23]. Hydroxychloroquine also has immunomodula-
tory effects, and has been reported to decrease IL-1, IL-2, 
IL-6, IL-17, IL-22, IFN-α, and tumor necrosis factor [24, 
25]. Azithromycin and HCQ both decrease the production of 
major inflammatory cytokines such as IL-1 and IL-6. How-
ever, the different profiles of immunomodulation between 
the two drugs may be crucial for selecting one of them for 
the treatment of COVID-19, in relation to the pathogenicity 
of the virus. Indeed, HCQ may decrease IL-2 levels but not 
AZM, while AZM may decrease IL-8 levels but not HCQ.
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Interleukin-2 is a key cytokine involved in the host innate 
immune response to bacterial or viral pathogens by inducing 
T-lymphocyte proliferation and differentiation [26]. Despite 
elevated IL-2 soluble receptor levels reported by Huang et al. 
in patients with COVID-19 [19], lymphocyte counts were 
at the lower limit and subsets were deeply modified [27]. 
Qin et al. showed that B cells, T-helper cells, T-regulatory 
cells, and natural killer counts were significantly decreased 
in patients with COVID-19, with a more pronounced decline 
in the severe cases [27]. A lower count of memory T cells 
was also observed in patients with COVID-19, which raises 
concerns about limited immunization against the virus [27]. 
Interleukin-2 production, enhanced by a native immune 
response in patients with COVID-19, should be maintained 
to favor an adaptive antiviral immune response and allow 
a sufficient production of adequate memory T and natural 
killer cells, but also induce T-regulatory cells to control 
inflammation. Chloroquine (and possibly HCQ) has been 
shown to inhibit IL-2 production [27, 28], while AZM 
showed an opposite action [29]. Hence, AZM could allow a 
sufficient memory T-cell count to be maintained and a bet-
ter immunization. Otherwise, IL-8 is involved in neutrophil 
chemotaxis facilitating the lung infiltration and macrophage 
activation-like syndrome observed in patients with severe 
disease [20, 30]. Therefore, the inhibitory effect of AZM on 
IL-8 may also be of interest for COVID-19 therapy.

Another property of AZM is its antibacterial effect, 
which may be most interesting to prevent or treat co-infec-
tion by bacteria and SARS-CoV-2. Recent data suggested 
that anaerobic bacteria of lung microbiota may be involved 
in the SARS-CoV-2 pathogenesis. Prevotella cells, which 
have been found in abnormal quantities in patients with 
severe disease, could internalize SARS-Cov2 and enhance 
its pathogenicity [31–33]. Prevotella spp. are commensal 
anaerobic bacteria in the lungs [33]. They are involved in 
idiopathic inflammatory lung diseases, notably by facilitat-
ing IL-6 and IL-8 production [34–36]. Azithromycin is a 
possible treatment for Prevotella infections and decreases 
Prevotella-induced inflammation [37, 38].

Azithromycin has other attractive pharmacological and 
therapeutic properties in the search for COVID-19 drug 
therapy. It is extensively distributed into tissue, especially 
in lungs where average concentrations in both extracellular 
fluids and within cells are much higher than in plasma [39].

Azithromycin is approved in both adults and children 
aged ≥ 6 months. First approved in the USA in 1991, it 
has been administered to numerous patients and its tol-
erance is well known. The most frequent adverse drug 
reactions are related to the gastrointestinal tract (e.g., 
nausea, vomiting, diarrhea, or abdominal pain). Those 
are mild to moderate in severity and reversible. Like 
CQ and HCQ, AZM may prolong the QT interval but 

clinical consequences such as arrhythmias are rare. The 
arrhythmogenic potential of AZM appears to be lower 
than that of other macrolides [40]. Therefore, the risk of 
interactions with other drugs that prolong the QT interval 
is arguably lower as well.

Unlike other macrolide antibiotics such as erythromy-
cin and clarithromycin, AZM is only a weak cytochrome 
P450 inhibitor [41]. Clinically relevant drug–drug inter-
actions with AZM as the perpetrator drug appear to be 
rare. Interestingly, a study investigated the effect of AZM 
on CQ pharmacokinetics and reported no significant drug 
interaction [42].

A retrospective study has evaluated the effect of vari-
ous macrolides including AZM in critically ill patients 
with MESR-CoV and reported no significant benefits [43]. 
However, AZM alone was used in a limited number of 
patients in this study, and late in the course of MERS-CoV 
infection. This uncontrolled study has many confounders, 
including co-treatment and is of low evidence. The optimal 
time for the introduction of drug therapy in COVID-19 
including AZM is uncertain and needs to be investigated 
as well. A recent observational study reported data on 
AZM used alone in patients with COVID-19 [44]. Patients 
were treated immediately after diagnosis and received 
HCQ plus AZM or HCQ alone, or AZM alone. The mor-
tality rates adjusted for comorbidities and demographics at 
21 days were 22.5% (95% confidence interval 19.7–25.1) 
in patients with HCQ plus AZM, 18.9% (95% confidence 
interval 14.3–23.2) in patients with HCQ alone, and 10.9% 
(95% confidence interval 5.8–15.6) in patients with AZM 
alone [43]. These encouraging results need to be confirmed 
by further randomized studies. Considering the uncertain 
efficacy of most agents currently in use in patients with 
COVID-19 and the greater risk of adverse drug reactions 
associated with drug combinations [45], we believe that 
each drug candidate for treating COVID-19 should be first 
evaluated alone in randomized controlled trials.

To conclude, there are several arguments supporting a 
potential effectiveness of AZM in SARS-CoV-2 infection, 
including its antiviral activity and immunomodulatory 
effects. We believe AZM should be clinically investigated 
as a monotherapy in patients with SARS-CoV-2 infection.
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