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Abstract

Drug development is known to be a costly and time-consuming process, which is prone to high failure rates.
Drug repurposing allows drug discovery to consider reusing approved compounds to mitigate those issues. The
outcomes of past clinical trials can be used to predict novel drug-disease associations by leveraging drug- and
disease-related similarities. To tackle this classification problem, collaborative filtering with implicit feedback
has become popular. It can handle large imbalances between negative and positive known associations and
known and unknown associations. However, properly evaluating the improvement over the state of the art is
challenging, as there is no consensus approach to compare models. We propose a reproducible methodology for
comparing collaborative filtering-based drug repurposing. We illustrate this method by comparing 11 models
from the literature on eight diverse drug repurposing datasets. Based on this benchmark, we derive guidelines
to ensure a fair and comprehensive evaluation of the performance of those models. Those contributions
constitute an essential step towards increased reproducibility and more accessible development of competitive
drug repurposing methods.

Keywords Drug repositioning, Drug repurposing, Collaborative filtering, Benchmark, Matrix factorization

1 Introduction

Developing novel drugs has turned out to be a long, expensive, and strict process. The time window between identifying a drug
candidate and its marketing is around 5 years, but it can take up to 10 years and cost an average of $2.3 billon [38]. Still, the
failure rate in commercializing a candidate drug is up to 90% [50]. This has led researchers to consider already well-understood
drugs instead of de novo drug designs.

Drug repurposing aims to screen large libraries of well-documented chemical compounds in an automated fashion to uncover
new drug-disease associations. In the light of large available amounts of heterogeneous clinical data (with several public
databases storing data, e.g., for omics data from drug perturbations [49], drug sensitivities [58], or clinical trial results [63]), and
increased computational power, this type of approach becomes more and more attractive. The underlying hypothesis behind drug
repurposing is that drugs might target multiple biological processes in which dysregulations are causal factors accounting for
a given pathology. Diseases might share those dysregulations [19]. Moreover, since drug discovery is restricted to approved
molecules, drug repurposing speeds up the early preclinical phases and toxicity analyses in the pipeline. Focusing on well-known
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molecules, in turn, avoids the emergence of unexpected adverse side effects at late development stages, which still constitute one
of the main reasons for marketing failure in late clinical phases [17].

Several approaches to drug repurposing have been developed in the literature. We refer to [18, 39] for a comprehensive overview
of those methods. In drug repurposing, a classifier can be trained to match and predict outcomes from past clinical trials, as
made available by ClinicalTrials.gov [63], or the RepoDB database [7] for instance. Such a classifier might be based on
relevant biological features of drugs and diseases or rely solely on the reported clinical trial outcomes. Those outcomes are
known to be highly imbalanced between positive and negative outcomes because negative results are rarely reported [23, 6].
Those adverse outcomes might result from late discovery toxicity effects or low accrual. Moreover, the number of untested
drug-disease associations dramatically outnumbers the number of past clinical trials. For example, in the TRANSCRIPT [42] and
PREDICT [41] datasets which were published last year, the ratio between negative and positive drug-disease matches is around
3%. In contrast, the sparsity number –the percentage of unknown matches over the total number of possible matches– is larger
than 98.5%. Attempting to overcome this lack of data by considering all unknown outcomes as negative, as tempting as it may
be, might induce considerable bias in the underlying model. Indeed, a drug-disease association might not have been tested for
various reasons, including the incompleteness of knowledge on biological events. This might explain that binary classifiers fail
on not fully annotated datasets [36]. Moreover, another reason untested drug-disease pairs cannot be considered fully-fledged
negative results is that one is looking for novel drug indications among these pairs. Nonetheless, the fact that a drug-disease
association has not been tested is already informative. This type of implicit information (often named implicit feedback) arises in
many other non-medical topics of recommendation, for instance advertising [48].

Collaborative filtering is a flexible semi-supervised approach that has raised a lot of interest in the domain of recommendation
systems. This framework has also become popular in drug repurposing, considering drugs as items and diseases as users [61, 57],
notably thanks to the Netflix Prize problem [51], which aimed to connect movies and viewers. Predicted drug-disease associations
stem from a function whose parameters are learned on a whole matrix of drug-disease matches instead of focusing on a single
disease at a time. Then, such methods rely on filtering patterns learned across diseases and drugs, implementing some
collaboration (see Figure 1 for an illustration of this principle). A few examples of simple collaborative filtering methods are
nearest neighbor approaches, where an outcome is assigned to a pair based on a consensus on similar datapoints [11], and matrix
factorization, in which literature often relies on tensor decomposition, i.e., any drug-disease matching in the matrix is the output
of a classifier in which only lower-rank tensors intervene. This principle is present, for instance, in factorization machines [45].

Figure 1: Principle of collabo-
rative filtering. If two drugs A
and B are similar, and if there
is a known association between
a disease and drug A, then the
same association is predicted be-
tween this disease and drug B.

Although the application of collaborative filtering to drug repurposing has become increasingly
popular in the last ten years [48, 61, 57, 29, 16, 59, 60, 30], the field lacks a standard benchmark
approach to evaluate the performance of new algorithms. Across papers, several different
metrics, datasets, and baseline algorithms have been selected, undermining the comparability
and application of the proposed methods. Due to the hurdles in running the methods and
accessing drug repurposing datasets, numerical results from baseline algorithms are sometimes
copied directly from the original paper. Moreover, reproducibility issues specific to the
implementation of the experiments further undermine the experimental results: for instance,
not setting a fixed random seed, varying number of iterations, lack of package versioning,
and differences in hyperparameter tuning. As a general rule, such a reproducibility issue is
still pervasive in machine learning, as raised by several papers [34, 1, 24]. Conversely, the
tremendous progress in computer vision and large language models (LLMs), for instance, has
been credited to constructing standard datasets and benchmarks in those fields [15, 25].

Contributions 1. To bridge that gap in the literature, we performed a benchmark across
11 published and open-access drug repurposing approaches based on collaborative filtering
(see Table 2) on eight different drug repurposing datasets and a synthetic one (see Table 1).
The algorithms and the datasets are available via two recently published open-source Python
packages [44]. 2. This large-scale benchmark allowed us to suggest guidelines for performing
a fair and comprehensive assessment of those methods applied to drug repurposing. In
particular, the dataset selection, the validation metric, and the split into training and testing sets
are crucial to a benchmark. 3. We show that methods relying on constructing a heterogeneous

graph connecting drugs and diseases usually perform best in this benchmark. This result will hopefully support the faster
development of novel approaches to drug repurposing, especially regarding interpretability.

In Section 2, we formally define the drug repurposing problem in a collaborative filtering framework and suggest a classification
of state-of-the-art algorithms that tackle this problem. In Section 5, we describe the methodology behind our benchmark, along
with the selected algorithms and datasets. Section 3 displays our benchmark results, that is, the ranking of the considered
state-of-the-art algorithms and the experiments specific to the choice of a dataset and a validation metric. Finally, we discuss the
impact of our research in Section 4.
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Type Dataset Paper NS FS NP FP #Positive #Negative s (%) IR (%)

Text-mining Cdataset [32] 663 663 409 409 2,532 0 99.1 0
Fdataset [13, 32] 593 593 313 313 1,933 0 99.0 0
DNdataset [33] 550 1,490 360 4,516 1,008 0 99.5 0

Biological Gottlieb [13, 12] 593 1,779 313 313 1,933 0 99.0 0
LRSSL [27] 763 2,049 681 681 3,051 0 99.4 0

(private) PREDICT [41] 1,351 6,265 1,066 2,914 5,624 152 99.6 2.70
(public) PREDICT [41] 1,014 1,642 941 1,490 4,627 132 99.5 2.85

TRANSCRIPT [42] 204 12,096 116 12,096 401 11 98.3 2.74

Artificial Synthetic [43] 300 25 300 25 200 100 99.7 50
Table 1: Datasets in the benchmark. They correspond to the number of drugs and diseases involved in at least one nonzero
drug-disease association. The sparsity s is the percentage of unknown (neither positive nor negative) matches times 100 over the
total number of possible drug-disease matches (rounded up to the first decimal place). The imbalance ratio IR is the ratio between
negative and positive outcomes in the dataset (rounded up to the second decimal place). The private version of PREDICT is the
one generated from notebooks in the original GitHub repository, whereas the public one is the one deposited on Zenodo [41].
The association matrix in the Fdataset comes from [13]. Still, the drug and disease features are from [32].

2 Problem statement

Part of our contribution to this work is an overview of state-of-the-art approaches to collaborative filtering, especially in drug
repurposing. We also provide insights into applying these algorithms for medical and biological research.

2.1 The drug repurposing problem

A drug repurposing dataset first comprises a drug-disease association matrix denoted A ∈ {−1, 0,+1}NS×NP , which summarizes
all known matches between chemical compounds and pathologies. NS is the number of drugs, and NP is the number of diseases
for which at least one matching with a disease/drug is known. That is, every row and every column in matrix A has at least
one non-zero coefficient. 0 means that the drug-disease association is deemed unknown (for instance, no Phase III clinical trial
testing of this association has been reported). +1 means that the drug is efficient in treating the disease, for instance, through a
successful clinical trial. −1 means that matching the drug and the disease is not recommended. Notably, until recently, no drug
repurposing datasets featured negative associations (see Table 1) due to the difficulty in defining a negative association, and only
comprise positive or unknown associations. In the remainder of this paper, similarly to a prior work [44], we define a negative
drug-disease association as a drug-disease pair where either the drug is too toxic or too inefficient (e.g., linked to reported
low accrual in clinical trials). We expect those explicit negative annotations to improve the performance of a drug repurposing
classifier outputting labels in {−1,+1}. How to take into account negative examples is still the subject of recent theoretical
works on collaborative filtering [21], but it has not been tackled in the applications to drug repurposing. Ultimately, collaborative
filtering aims to replace zeroes in matrix A by values in {−1,+1}. In the remainder of the paper, we denote R̂ ∈ RNS×NP the
predicted association score matrix.

In addition to the association matrix A, some information about the drugs and diseases is also available to define drug and disease
similarities. Different data types are featured in currently available drug repurposing datasets, as shown in Table 1. Drug and
disease feature information is very heterogeneous: for instance, the Cdataset, the Fdataset [32], and the DNdataset [33] rely
on text-mining approaches. More specifically, the drug-disease associations are first mined from the DrugBank [56] database.
Then, for the Cdataset and Fdataset, the drug information S corresponds to Tanimoto drug similarity scores computed on 2D
fingerprints of chemical structures. In contrast, disease features in P are a disease similarity matrix computed on their respective
medical descriptions in OMIM [14]. In DNdataset, the drug similarity matrix S is computed using Lin’s node-based similarity
function [28] on the anatomical therapeutic chemical (ATC) codes for drugs. Lin’s node-based similarity is also applied to
disease ontologies [47] for the disease similarity matrix P . Note that those similarities are computed on a set of drugs and
diseases larger than the number of entities involved in at least one non-zero association.

Recently, some works proposed biological data-based datasets for collaborative filtering-based drug repurposing. In the LRSSL
dataset [27], drug features include the binary fingerprints of chemical structures and target protein domains and disease features
are disease semantic similarities based on the intersection between disease-specific directed acyclic graphs of descriptors [53].
Similarly, the Gottlieb dataset [12] comprise drug-pairwise chemical, domain, functional (as Jaccard scores computed on
Gene Ontology [2]) and disease semantic similarity matrices on drugs and diseases present in the associations in Fdataset.
Those similarity matrices are concatenated in Table 1. The PREDICT [41] dataset incorporates several types of drug and disease
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Class of algorithms Name Paper I/O type Use of features Implementation
Matrix Factorization ALS-WR [4] Matrix × Python

LibMF [9] Matrix × Python
LogisticMF [22] Matrix × Python
PMF [46] Matrix × Python
SCPMF [35] Matrix × MATLAB / Octave

Neural Network Fast.ai collab_learner [20] Pair × Python
NIMCGCN [26] Pair ✓ Python

Graph-Based BNNR [57] Matrix ✓ MATLAB / Octave
DRRS [31] Matrix ✓ MATLAB Compiler
HAN [54] Pair ✓ Python
LRSSL [27] Pair ✓ R

Table 2: Overview of algorithms present in the benchmark present in Section 5 and the classification (columns “Class” and “I/O
type”) defined in Section 2.

similarity measures based on disease phenotypes, drug chemical structures, target gene proximity in a protein-protein interaction
network, etc., similar to what was described in the seminal paper of the PREDICT method [13]. Finally, the TRANSCRIPT [42]
dataset only includes transcriptomic-related data, as the drug and disease features are variations of gene-wise transcriptomic
levels induced by the corresponding treatment/pathology, computed by performing a differential analysis on relevant samples
from the LINCS L1000 database [49] (for drugs) or retrieved from the CREEDS database [55] (for diseases and drugs missing
from LINCS L1000). Note that the code that generated both datasets is open-source [40].

All of that drug (resp., disease)-related information is summarized in a drug and a disease feature matrices S ∈ RNS×FS and
P ∈ RNP×FP . FS is the number of drug features (e.g., genes when considering gene expression data, drugs when S is a
similarity matrix), and analogously, FP is the number of disease features. When not considering features, collaborative filtering
relies on drug-drug and disease-disease similarities by comparing rows and columns of matrix A. For instance, if drug d is
associated with row rd = [+1, 0,+1,−1] in matrix A, and drug d′ with row rd′ = [+1,+1,+1,−1], then we can possibly set
the second coefficient of rd to +1. Note that we ignore in this work the impact of missing and non-finite values on classification,
e.g., S ∈ (R ∪ {± inf, N/A})NS×FS , which is in practice extremely relevant when dealing with real-life data. See Section 5 for
the processing of non-finite data.

2.2 Classification of collaborative filtering algorithms

Based on our review of the literature in the domain in Table 2, we define three large classes of algorithms that depend on the
underlying mechanism of repurposing.

Matrix factorization algorithms typically ignore side information from matrices S and P and aim to infer low-rank tensors such
that a function of their product is as close as possible to matrix A. As such, these algorithms take the incomplete association
matrix A as primary input and output the “completed” matrix R̂ ∈ RNS×NP which should match A on its known coefficients.
High scores in R̂ should match positive coefficients in A, and conversely, low scores should correspond to negative or null values
in A. Predictions on unknown drug-disease matches are made by setting a threshold t on the scores, such that drug-disease pair
(i, j) is a positive association if and only if R̂i,j > t.

Neural networks are versatile algorithms that can be applied to classification. Given a set of weights θ, a neural network f
defines the outcome associated with a feature vector x of a drug-disease pair by fθ(x) ∈ R. Again, such outcomes should match
the values in A. One might obtain true labels either by a thresholding approach or by adding a last softmax layer to the network
and outputting the class associated with the highest score. However, contrary to most matrix factorization approaches, neural
networks are a flexible way to integrate supplementary information about drugs and diseases in matrices S and P or to learn
embeddings of drugs and diseases based on shared matches.

Finally, we define a third, less obvious class of algorithms called “graph-based”. Albeit they might rely to some extent on neural
networks and tensor factorization, they are characterized by their building of a heterogenous (not necessarily bipartite) graph
connecting drugs and diseases. Often, the edges of this graph can be split into three main groups: edges connecting a pair of
drugs, a pair of diseases, or a drug and a disease. Drug repurposing aims to reconstruct edges from the last set, but a critical side
advantage of those algorithms is to retrieve similarities between drugs and diseases. In particular, such edges might be helpful to
justify predicted drug-disease associations and contribute to the interpretability of classifiers. This algorithm can either output
pair-related scores or a full association matrix (see Table 2).
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Type Metric Notation Formula

Global Accuracy Acc(R̂, A; t) (|Ω−|+ |Ω+|)−1
∑

(i,j)∈Ω−∪Ω+ 1((R̂[i, j]− t)A[i, j] > 0)

Area Under the Curve AUC(R̂, A)
∫ 1

0
TPR(FPR−1(x; R̂, A); R̂, A)dx

Local Average AUC AUCd(R̂, A) N−1
P

∑
j≤NP

AUC(R̂[·, j], A[·, j])
Average NS-AUC [62] NS-AUC(R̂, A) |NP |−1

∑
j≤NP

|Ω̃j |−1
∑

(i,i′)∈Ω̃j
1(R̂[i, j] > R̂[i′, j])

Average NDCG@NS NDCG(R̂, A) N−1
P

∑
j≤NP

(∑N+
S

i=1

A[σR̂[·,j](i),j]

log2(i+1)

)
/
(∑N+

S
i=1

1
log2(i+1)

)
Table 3: Description of the considered validation metrics present in Section 5. Ω± ≜ {(i, j), A[i, j] = ±1 | i ≤ NS , j ≤ NP },
whereas Ω+

j ≜ {i | A[i, j] = +1} and Ω̃j ≜ {(i, i′) | A[i, j] > A[i′, j]} for any j ≤ NP . In the benchmark, t = 0 and
1(C) is equal to 1 if C is satisfied, 0 otherwise. σV is the permutation that sorts all coefficients of any vector V of length n

in decreasing order, that is, V [σV (1)] ≥ V [σV (2)] ≥ · · · ≥ V [σV (n)]. The true positive rate is defined as TPR(t; R̂, A) =∑
(i,j),A[i,j]=+1 1(R̂i,j > t)/

∑
(i,j) 1(R̂i,j > t) and FPR(t; R̂, A) =

∑
(i,j),A[i,j]=−1 1(R̂i,j > t)/

∑
(i,j) 1(R̂i,j ≤ t) is the

false positive rate. Finally, N+
S is defined as min(NS , |Ω+

j |).

2.3 Pairs or matrices?

In addition to the three classes of algorithms defined in the last paragraph, state-of-the-art algorithms can also be discriminated
by the type of their input/output (column “I/O type” in Table 2). In particular, those algorithms receive and output either a drug-
disease association matrix or a drug-disease pair. We emphasize that choosing one type of algorithm or the other considerably
impacts the resulting repurposing, both at training and prediction times. We would not recommend using matrix-oriented
methods in drug repurposing.

Indeed, at training/testing time, when run on a subset of a drug repurposing dataset, algorithms that take as input an entire matrix
cannot distinguish between “accessible” zeroes of the association matrix (i.e., zeroes in the whole, initial, drug repurposing
dataset) and “inaccessible” zeroes (that is, drug-disease matches which are masked in the subset but are non-zero coefficients in
the full dataset). This simultaneously leads to data leakage and corrupted validation.

The data leakage stems from the fact that, in that case, an unknown drug-disease matching can never be hidden in the training set,
as there is no mechanism to encode “inaccessible” true zeroes in the association matrix. As such, the algorithm is trained on
information that is supposed to be accessible only at testing time. An approach to avoid this would be to ensure all zeroes in the
initial association matrix A belong to the training set and none belong to the validation subset. Then, the chosen accuracy metric
would be computed only on non-zero elements of the validation subset. Since most drug repurposing datasets only feature 0-1
values (and none of the true negatives denoted by −1’s), most standard metrics cannot be computed, as they require at least
two types of labels. That metric type notably includes the popular Area Under the Curve (AUC). Note that, given the (very)
low number of negative drug-disease associations in Table 1, restricting the training to datasets involving at least one negative
example would inevitably lead to overfitting, which is, of course, undesirable. This problem of data leakage cannot then be fixed
and might, unfortunately, account for the apparent good results of matrix-oriented approaches in our benchmark (see Section 3).

The corrupted validation comes from an incorrect implementation of the validation procedure, which is present in papers
mentioning matrix-oriented approaches for drug repurposing and publishing code for their experiments. Indeed, if the selected
accuracy/validation metric is computed across all coefficients/labels of matrix R̂ –regardless of the accessibility of the coefficients
at training time– this metric might be inflated by the values obtained on unknown drug-disease pairs. This issue was solved
during the implementation of our benchmark. Indeed, regardless of the input type of the benchmarked algorithm, the validation
metrics are computed on a fold and never directly on the predicted and ground truth association matrices (R̂i,j , Ai,j)i≤NS ,j≤NP

.
A fold is defined as a set of values referring to drug-disease pairs: i.e., a set of indices I ⊆ {1, 2, . . . , NS} × {1, 2, . . . , NP }
such that the validation metric is computed on vectors (R̂i,j , Ai,j)(i,j)∈I .

Moreover, at prediction time, matrix-oriented approaches can only provide predictions for drugs and diseases present in the
matrix on which they have been trained. Suppose one needs to predict the outcome of a new drug-disease pair. In that case, one
needs to concatenate information about this new drug or disease to the initial association matrix, run a training routine on this
matrix again, and then make predictions. The same goes for supplementary information about drug-disease matches accrued
after the initial training of the model. Consequently, this is potentially time-consuming and hinders drug repurposing of novel
compounds.
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Topic Questions Our recommendation
Evaluation of models RQ1. Which metric should the model optimize for? NS–AUC

RQ2. Which dataset should the model be evaluated on? PREDICT (private)
or DNdataset

Future models RQ3. Should a method be pair– or matrix–oriented? Pair–oriented
RQ4. Which type of algorithms (MF, NN, GB) is the most promising? Graph–based

Table 4: Our guidelines for fairer and comprehensive benchmarks of collaborative-filtering-based drug repurposing models. MF:
matrix factorization. NN: neural network. GB: graph–based.

2.4 Validation metrics for drug repurposing

As illustrated by Table 1, drug repurposing datasets are highly imbalanced and information-scarce, both between the known
(−1/+ 1) and unknown (0) labels (column “sparsity”), and between the positive (+1) and negative (−1) associations (column
“IR”). As such, a standard accuracy metric that only accounts for correct label predictions on known drug-disease associations is
bound to be biased [3]. Moreover, only focusing on binary labels removes essential information about the ability of the model
to rank drug-disease associations. We suggest several conditions to get the best interpretation out of a validation metric (in
particular, for real-life applications). The metric should be bounded, ideally in the range [0, 1], where 1 applies to a perfect drug
repurposing model, 0 to a model which perfectly ranks negative associations first, and finally 0.5 for a ranking at random. See
Table 3 for a few examples of standard metrics that satisfy these constraints. Moreover, in the application of drug repurposing,
given that some diseases are investigated more than others, there is a discrepancy in the amount of information available on
diseases. This is why we distinguish in Table 3 between “global” metrics, computed across all associations, and “local” ones,
which average the metric obtained on disease-specific associations. As we will show in our benchmark in Section 3, models
aiming at optimizing a global metric will not necessarily maximize a local metric.

As a consequence, we conjecture that a model that achieves a high global validation metric on a training set might provide a
degraded prediction for a specific disease. This situation would not be satisfying for drug repurposing.

2.5 Quantifying robustness

In addition to the evaluation of the approximation error of a model –that is, how well the model retrieves known drug–disease
associations– one is also interested in quantifying the robustness of the model and checking whether the model still performs well
on data which is significantly dissimilar from the training data. This problem is pervasive in machine learning, particularly in
health-related applications [8], where differences in technicians and measurement protocols can induce a shift in the distribution
of values in the data. In prior works [13], this robustness was measured by training and testing a model on two datasets such that
the Tanimoto score between one drug in the training set and another drug in the testing set is at most equal to 0.8.

In our benchmark, we generalize this procedure to other data types than structural fingerprints by splitting in an automated
dataset into weakly correlated subsets depending on the drug similarity, as described in Section 5. This procedure allows us to
have a proxy of the error induced by the distribution shift between the training and testing sets.

3 Results

We ran N = 100 iterations of each algorithm in Table 2 on each dataset in Table 1, and collected all metrics present in Table 3 as
computed on the testing subset (20% of the total dataset) with the best model selected through a 5-fold cross validation on the
training subset. The best model is the one that achieves the highest value of AUC across all five folds. Unless otherwise specified,
a dataset is randomly split into training and testing sets containing disjoint drug–disease pairs. For further details about the
setting of the benchmark, please refer to Section 5. Figure 2(a) shows a summary of the benchmarking pipeline. We summarize
our insights from the benchmark in Table 4, highlighting the main research questions and our suggestions for tackling each of
them. Figure 3 is the crucial result of the benchmark and shows the Top-3 contenders (in terms of average testing accuracy
metric) for each dataset. We first consider questions regarding the evaluation of the drug repurposing performance.

3.1 Optimizing for AUC does not guarantee good disease–wise, nor ranking performance

We chose to perform model selection based on optimizing the (global) AUC, as done in many prior works [13, 32]. Figure 2(b)
compares the distribution of the different metrics in Table 3. Unsurprisingly, as the models run on the testing subsets are selected
based on their AUC value on the validation subset (part of the training subset), the AUC and accuracy values obtained on the
testing subsets are overall relatively high. However, as illustrated by the diagonal plots and correlation values in Figure 2(b),
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(a) (b)

Figure 2: (a). Benchmarking training and testing pipeline iterated N = 100 times for drug repurposing for a specific algorithm,
a splitting method for training/testing and validation subsets, and a validation metric. Note that the training/testing subsets are
always split at random. (b). Correlogram of metrics collected during the benchmark on randomly split training and testing sets,
referring to metrics in Table 3. The total number of considered values is then N = 18, 700 (see Table 14 in Appendix). The
lower triangle of the plot shows linear regressions between each pair of metrics, with the corresponding R2 when greater than
0.25. The upper triangle displays the Spearman’s ρ correlations between each pair of metrics. The diagonal shows the empirical
frequency distribution of values for each metric.

Synthetic LRSSL Gottlieb Cdataset Fdataset PREDICT (public) PREDICT DNdataset TRANSCRIPT

1.00 0.87 0.84 0.84 0.81 0.79 0.78 0.73 0.68
Table 5: Median NS–AUC value across Top-3 algorithms (in average) and all N = 100 iterations for each dataset in Table 1.
The values are rounded up to the closest second decimal place.

AUC is only weakly positively correlated to local metrics (average AUC, average NS–AUC) and ranking metrics (NDCG@NS).
This is also illustrated in Figures 3 where the Top-3 algorithms in average testing AUC often differ from those computed based
on average NS–AUC values (in 12 out of 16 comparisons). In the context of drug repurposing, the typical use case is to consider
a disease for which treatments are missing (e.g., in rare diseases) or no longer as effective (e.g., in refractory epilepsies) and
predict new therapeutic indications for this disease from a drug library. The first answer to RQ1 in Table 4 (“Which metric
should the model optimize for?”) would be NS–AUC. On the other hand, users of a drug repurposing method might also be
interested in a good ranking performance, as typically, several drug candidates will be outputted and checked in decreasing order
of the associated scores. In that case, the answer to RQ1 would be NDCG@NS .

3.2 Negative-Sampling AUC (NS–AUC) is a good measure of the performance of a model

[62] introduced what we call the “negative-sampling AUC” metric, which corresponds to the percentage of the natural order
of associations (positive associations first, negative ones last, separated by unknown pairs) which is preserved by a classifier.
The full expression of this metric is displayed in Table 3. Compared to the ranking measure NDCG@NS , the NS–AUC has the
advantage of being more strongly positively correlated with a global performance on known and unknown pairs (accuracy and
“global” AUC values), as exemplified by Figure 2(b). Ultimately, the answer we recommend to Question 1 is to optimize for
NS–AUC when training a drug repurposing model, as it fits the drug repurposing use case and obtains good performance for
other validation metrics. Based on this recommendation, we focus on NS–AUC values to draw our conclusions in the remainder
of this paper.

3.3 There is a need for more diverse reference drug repurposing datasets

The next question in Table 4 is “Which dataset should the model be evaluated on?”. In a benchmark of drug repurposing
approaches, a reference dataset should feature data types that can be retrieved from public databases in a real-life application and
be challenging enough to discriminate between drug repurposing algorithms. To quantify the difficulty associated with a dataset,
we computed the median NS–AUC value across the Top-3 algorithms in average and all N = 100 iterations for this specific
dataset. We focused on the top-3 contenders to determine a proper baseline for the performance expected on this dataset. The
datasets are ranked according to these resulting scores in Table 5. As a sanity check, the synthetic dataset that we have built is
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(a) (b)

(c) (d)

Figure 3: Boxplots of testing metric values for the Top-3 algorithms (in average) across N = 100 iterations for each dataset
in Table 1, for a specific training/testing set splitting method. PREDICT(p) corresponds to the public version of PREDICT,
whereas PREDICT refers to the private version of the dataset. (a) AUC values for randomly split sets. (b) AUC values for weakly
correlated sets. (c) NS–AUC values for randomly split sets. (d) NS–AUC values for weakly correlated sets.

indeed very easy, as more than 50% of the time, the best algorithms on this dataset achieve perfect predictive power. The most
frequent datasets present in the literature (LRSSL [27, 12], Cdataset, Fdataset [31]) also come at the top of this ranking, which
seem unsurprising as most of the state–of–the–art algorithms which we have considered in the benchmark were trained (and
probably finetuned) on these datasets. More interestingly, as described in Section 2, those datasets share the same types of data,
namely, drug–disease associations from DrugBank, drug-pairwise chemical structure similarities, and disease-pairwise semantic
similarities. This might explain why, even if they haven’t been tested on all of these “silver standard” datasets, state–of–the–art
algorithms generally perform well on these. However, the DNdataset featuring drug annotation codes and disease ontologies,
along with the newer PREDICT and TRANSCRIPT datasets with supplementary information from transcriptomics and regulatory
networks, is a lot more challenging, as evidenced by the apparent drop in the ranking score. Then, we consider that the new
challenge in drug repurposing is to beat the state–of–the–art on these three datasets.

3.4 Biological data–based drug and disease features are predictive of drug–disease associations

However, perhaps these three datasets have low ranking scores in Table 5 because the corresponding drug and disease features
are not predictive of the drug–disease associations, hence inducing into error most of the drug repurposing algorithms. To
test this theory on these three datasets, we used a (non-parametric) Kruskal–Wallis H–test to check whether the NS–AUC
median value obtained with feature–agnostic algorithms was significantly different (and greater) than the NS–AUC median
value obtained with algorithms that take into account drug and disease features. At significance level α = 1% and adjusting
p–values for multiple–tests with the Benjamini–Hochberg method [5], the test was significant for all of these three datasets: the
TRANSCRIPT (H = 26.5), PREDICT (private version, H = 50.0), PREDICT (public, H = 17.5) and DNdataset (H = 45.3)
datasets. Eventually, as mentioned in Table 4, we suggest the evaluation of drug repurposing methods on the private version
of PREDICT (if the associated generating code can be run) or on the DNdataset which seem to be the most predictive of the
drug–disease associations.
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Dataset Cdataset LRSSL PREDICT DNdataset TRANSCRIPT Fdataset PREDICT (public) Gottlieb

H 26.4 43.0 70.8 84.1 97.3 128.5 143.2 144.1
µNN − µGB -0.07 -0.06 -0.09 -0.21 -0.08 -0.11 -0.11 -0.11

Table 6: Results of Kruskal–Wallis H–tests for each dataset. For a fixed dataset d, the null hypothesis is “the median NS–AUC
value µNN(d) obtained on dataset d by pair–oriented neural networks is equal to the median NS–AUC value µGB(d) on the same
dataset by pair–oriented graph–based approaches”. In each test, the number of elements in each group is N = 200. The values
are rounded up to the closest first or second decimal places. All tests on adjusted p–values are significant at level α = 1%.

3.5 As a general rule, matrix–oriented methods perform better

We now focus on developing future collaborative filtering approaches for drug repurposing. Across the top algorithms for average
testing (global) AUC and NS–AUC values in Figure 3, the frequency of a pair–oriented algorithm being in the Top-3 is only
27/(4× 8× 3) ≈ 28%, where the HAN algorithm [54] is the most frequent top pair–oriented method. This frequency decreases
to 25% when considering only the top contender, whereas 36% of the algorithms in Table 2 are pair–oriented. Alas, the reason
behind this is probably a certain amount of data leakage happening due to the structure of matrix–oriented methods, as described
in Section 2. As such, even though this group of algorithms has good performances, we advise focusing on pair–oriented
algorithms for Question 3 in Table 4.

3.6 General–purpose collaborative filtering algorithms remain competitive

Some of the algorithms present in Table 2 were not explicitly developed for drug repurposing but aimed to provide a generic
recommender system for various goals, for instance, movie recommendation. As those algorithms are often ignored in drug
repurposing–focused publications, we selected some general–purpose algorithms for the benchmark: based on matrix factorization
approaches (ALS–WR, LibMF, LogisticMF, PMF) or embedding learning with neural networks (Fast.ai implementation of
a collaborative learner). Our benchmark shows that those methods remain competitive for the drug repurposing problem,
particularly LogisticMF, even if they are often not the top contender. As such, we advocate for including a comparable
general–purpose recommender system when evaluating the performance of a drug repurposing algorithm.

3.7 Neural networks are noticeably better at generalizing

We observed the influence of weakly correlated training and testing subsets on the performance of models. From Figure 3, we
expect that the difference in performance is vast between random and weakly correlated training and testing sets, independently
from the validation metric and the algorithm. To confirm or infirm this assumption, we tested with a Kruskal-Wallis H test
whether the median testing NS–AUC value across all datasets is significantly different for a specific type of algorithm (matrix
factorization, neural networks, graph-based) on random splits compared to weakly correlated splits. It turns out that the difference
in median values is significative at level α = 1% (with p–values adjusted for multiple tests) for all types of algorithms and yields
respective H–values 21.4, 308.5 and 1, 100.2 for neural networks, graph-based approaches, and matrix factorization methods.
The lower the H–value is, the lesser the difference in performance when facing a testing subset weakly correlated to the training
data. Unsurprisingly, neural networks are shown to have the most significant ability to generalize and be robust under data
distribution shifts, which seems on par with observations from other research fields [52]. However, graph–based approaches
come second.

3.8 Graph–based approaches perform best

Given our previous remarks, we restrict our comparison of algorithm types to pair–oriented methods. This automatically excludes
matrix factorization approaches in our benchmark, according to Table 2. For each dataset, we want to determine whether a
specific type of drug repurposing is noticeably better than the other. Similarly to our previous tests, we compare the median
validation metric obtained by neural networks and graph-based approaches. The result table is shown in Table 6. Overall,
graph–based approaches have a performance significantly superior to neural networks. We suppose that since most of these
graph–based approaches aim to reconstruct a graph connecting drugs and diseases (including edges between pairs of drugs
or diseases), these methods might be able to uncover some form of reasoning behind a given drug–disease association. Since
graph–based methods have some ability to generalize, we recommend developing further the idea of completing drug–disease
heterogeneous graphs for drug repurposing.
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4 Discussion

To better understand the current landscape in collaborative filtering–based drug repurposing, we developed a benchmark of the
11 algorithms present in Table 2 on several diverse datasets shown in Table 1. We focused on the validation metrics mentioned in
Table 3. This extensive benchmark allowed us to answer important questions about the proper development and evaluation of
such models, especially related to their end goal: drug repurposing. Overall, we showed that specific care should be brought to
the design and testing of drug repurposing models, as mistakes might lead to biased evaluations. We suggest developing further
graph-based methods, which are promising according to our benchmark. We hope that those contributions and insights will
further improve the development and the real-life application of drug repurposing approaches.

We have identified several future works of interest in this field of research. First, in addition to the prediction of novel drug–disease
associations, an application in practice for medical purposes needs the implementation of accountability, meaning that further
arguments beyond a simple score should be provided to justify a predicted positive association. The increase in the research
related to interpretable or explainable machine learning is a step toward tackling this issue. Moreover, actual prediction scores
can rank and prioritize specific drug–disease associations but do not represent a probability or an actual meaningful quantification
of the strength of the association. Being able to quantify accurately and control for errors in false positive associations, for
instance, is another important venue for research, related to the problem of calibration [10]. Finally, the problem of missing
values is pervasive in many research fields, and biology is no exception. Whether imputation methods should be specific to
biological data types is an interesting question, especially in the context of preserving interpretability and good calibration.

5 Methods

We describe in this section supplementary details about the benchmark and the statistical tests applied in Section 3.

Figure 4: Training times in seconds across N = 100 iterations for each dataset and the fastest three algorithms among the most
frequent Top-3 reported in Figure 3.

Selection of state–of–the–art algorithms We have considered drug repurposing algorithms from the recent literature (less
than 8-year-old), which were: 1. based on collaborative filtering, 2. using as input only three matrices, as described in Section 2,
3. implemented and their code available in open–source or in a readily executable binary file. As such, all algorithms that we
considered were run with their original implementation in R, MATLAB/Octave, or Python. In some cases, they encountered
errors during their run. Please refer to the benchmark status in Table 14. A reimplementation in pure Python would probably fix
these errors. However, this work is out of the scope of our paper. We also report in Figure 4 for each dataset the boxplots of
training times (i.e., the time to perform a 5-fold cross-validation) for the fastest three algorithms among those reported in at least
two Top-3 in Figure 3.

The prediction times (i.e., the time to generate scores on the 20% remaining drug–disease associations) are of the order of the
second on all datasets and most algorithms. The exceptions are Fast.ai [20] and NIMCGCN [26], where the maximum prediction
time across iterations and datasets is at most 50 seconds.

Processing of missing data in the benchmark Missing data refers here to unknown values in drug and disease feature
matrices S and P , and occurs in dataset PREDICT (in the private version, 22% of drug feature values are missing in S, and
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around 83% in P ). To deal with this, for any dataset and any algorithm, each missing feature is imputed by the average value
across the corresponding line (that is, other values for the same feature type across the dataset), and then standard–centered with
classes SimpleImputer and StandardScaler in scikit-learn [37] before training a model.

Figure 5: Illustration of the “weakly correlated” splitting approach to obtain training and validation subsets from a dataset.

Weakly correlated splits We introduced a simple procedure that generalizes the principle of assessing the predictive power
of a model on novel drugs, dissimilar to the ones present in the training subset [13]. In prior works, authors chose a simple
thresholding criterion, where drugs present in training and testing subsets have a Tanimoto similarity score on chemical structures
at most 0.80.

Given a parameter s ∈ (0, 1) corresponding to the desired percentage of associations in the training set, our procedure
automatically splits the dataset of associations into two subsets such that the cosine similarity (by default) in a pair of drugs
from different subsets is small. Our algorithm leverages a dendrogram built from a hierarchical clustering (with average linkage)
applied to the drug feature vectors. Then, the procedure identifies with binary search the number of clusters n0, 2 ≤ n0 ≤ NS ,
such that there exists a cluster identifier c0 ≤ n0

|{(d, p) ∈ A | Clust(d) ≤ c}| ≈ (1− s)NSNF ,

where Clust is the function that assigns to a drug its cluster identifier in {1, 2, . . . , n0}. In Figure 5, the corresponding number of
clusters for s = 80% is n0 = 5 and c0 = 4.

This procedure has a cubic time and memory computational complexity in the number of drugs in the worst case. In practice, for
the small drug repurposing datasets in this paper, the computational cost of this procedure is negligible compared to the training
phase.

Model NS AUC AUC
HAN 1.00± 0.0 1.00± 0.0
BNNR 1.00± 0.0 1.00± 0.0
LogisticMF 1.00± 0.0 1.00± 0.0
ALSWR 1.00± 2.10−6 1.00± 1.10−3

Fast.ai 1.00± 1.10−2 1.00± 1.10−3

LibMF − 0.95± 9.10−4

PMF 0.99± 2.10−3 0.93± 4.10−3

SCPMF 0.88± 2.10−1 −
NIMCGCN 0.54± 4.10−3 0.94± 5.10−4

Table 7: The average ± standard deviation validation metric on the randomly selected testing subset across N = 100 iterations
for the Top-10 algorithms on the “Synthetic” dataset in Table 1. Average (resp., standard deviation) values are rounded to the
closest second (resp., first) decimal place.
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Model NS AUC AUC
HAN 1.00± 0.0 1.00± 0.0
Fast.ai 1.00± 0.0 1.00± 9.10−4

LogisticMF 0.99± 9.10−4 0.99± 1.10−4

BNNR 0.76± 3.10−3 0.98± 2.10−4

NIMCGCN 0.54± 3.10−4 0.97± 4.10−6

ALSWR 0.50± 0.0 −
LibMF 0.45± 1.10−16 0.98± 3.10−16

SCPMF 0.44± 7.10−2 0.40± 1.10−1

LRSSL − 0.15± 8.10−3

PMF − 0.08± 7.10−3

Table 8: The average ± standard deviation validation metric on the weakly correlated testing subset across N = 100 iterations
for the Top-10 algorithms on the “Synthetic” dataset in Table 1. Average (resp., standard deviation) values are rounded up to the
closest second (resp., first) decimal place.

Synthetic dataset The synthetic dataset in Table 1 is the only dataset not directly available from the literature. It allows us to
define a task with a controllable level of difficulty. In particular, the synthetic dataset in our benchmark should be an easy task on
which all drug repurposing methods should perform excellently and provide a control for some statistical tests.

The generating function takes as input npos, the number of positive associations (+1’s in matrix A), nneg, the number of negative
associations (−1’s in matrix A), nF , the even number of drug and disease features, and µ, σ the parameters from the Gaussian
distribution of feature values. In practice, µ = 0.5 and σ = 1. Then, we draw each feature value independently and identically
(iid) from two Gaussian distributions of mean µ and −µ and variance σ2. That is, for any drug or disease j ≤ npos, nneg and
feature i ≤ nF :

Xpos[i, j] ∼iid N (+µ, σ) and Xneg[i, j] ∼iid N (−µ, σ).

From those matrices, we build the final dataset as follows. A is the matrix in {−1, 0,+1}NS×NP with zeros everywhere except
in the square {(i, j) | 0 ≤ i, j ≤ npos − 1} where there is only +1, and in the square {(i, j) | npos ≤ i, j ≤ npos + nneg − 1},
which only contains −1, and where NS = NP = npos + nneg. Then

S =

[
Xpos[0 : NF − 1, :]
Xneg[0 : NF − 1, :]

]
and P =

[
Xpos[NF : nF , :]
Xneg[NF : nF , :]

]
,

where NF = nF /Z, and M [k : l, :] is the matrix where only the rows k, k + 1, . . . , l − 1 to l (included) remain. Then, the
difficulty of the underlying drug repurposing problem can be tuned by the parameters of the Gaussian distributions µ and σ. The
larger µ > 0 and the smaller σ, the easier the problem. See Table 7, resp. Table 8, for the resulting validation matrics on the
Top-10 algorithms for random, resp. weakly correlated, training/validation splits.

Statistical information We report here the missing result tables corresponding to the two–tailed Kruskal–Wallis H–tests run
from Section 3.

• Predictive power of features in datasets TRANSCRIPT, PREDICT and DNdataset Table 9 shows the result table for the
corresponding Kruskal–Wallis H–tests. For a fixed dataset d, the null hypothesis is “the median NS–AUC value µwf(d) obtained
on dataset d by feature–aware methods is equal to the median NS–AUC value µwof(d) on the same dataset by feature-oblivious
approaches. In each test, the number of elements in each group is N = 600. The values are rounded up to the closest first or
second decimal places. The level of significance is α = 1%.

Dataset A B C D

H 26.5 17.5 50.0 45.3
adjusted p 0.0 3.10−6 0.0 0.0
µwf − µwof 0.07 0.12 0.12 0.14

Table 9: Kruskal–Wallis H–tests on the predictive power of features in datasets A=TRANSCRIPT, PREDICT (B=public and
C=private versions) and D=DNdataset. The significance level is set to 1%, and p–values are adjusted for multiple tests with the
Benjamini–Hochberg method [5]. All tests are statistically significant.
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• Generalization power of algorithm types For a given algorithm type t, the null hypothesis is “the median NS–AUC
value µt,Rand obtained by algorithms of type t on randomly split training/validation subsets is equal to the median NS–AUC
value µt,WC on weakly correlated subsets. The values are rounded up to the closest first or second decimal places. The level of
significance is α = 1%. In Table 10, NRand, resp. NWC, is the number of samples in the “random”, resp. “weakly correlated”,
group of validation metrics.

Type GB MF NN

H 308.5 1100.2 21.4
adjusted p 0.0 0.0 4.10−6

µt,Rand − µt,WC 0.10 0.15 0.02
NRand 2,500 4,600 1,700
NWC 2,500 4,600 1,800

Table 10: Kruskal–Wallis H–tests on the generalization power of algorithm types “matrix factorization” (MF), “neural networks”
(NN) and “graph–based” (GB) across datasets. The significance level is set to 1%, and p–values are adjusted for multiple tests
with the Benjamini–Hochberg method [5]. All tests are statistically significant.

Model Hyperparameter Value
ALSWR reg 0.01

alpha 15
n_iters 15
n_factors 15

LibMF fun 0
k 8
nr_bins 26
n_iters 20
lambda_p1 0.04
lambda_p2 0.0
lambda_q1 0.04
lambda_q2 0.0
eta 0.1
do_nmf False

LogisticMF num_factors 2
reg_param 0.6
gamma 1.0
iterations 30

PMF reg 0.01
learning_rate 0.1
n_iters 160
n_factors 15
batch_size 100

SCPMF r 15

Table 11: Hyperparameters of matrix factorization algorithms.

Hyperparameter tuning We considered for each algorithm the parameters provided in experiments in their current
implementation, as, first, most were tested on the text–mining datasets in Table 1 and we aimed to reproduce their results; second,
we wanted an evaluation of their performance in “real–life conditions” of drug repurposing, where the hyperparameter tuning is
unlikely to be thorough. We were also wary of introducing further data leakage into the benchmark, especially, as the considered
drug repurposing datasets are quite small. For general–purpose algorithms, we tune hyperparameters to corresponding values in
drug repurposing algorithms, when possible (for instance, the learning rate or the embedding dimension). We report in Tables 13,
11 and 12 below the hyperparameter configurations for each algorithm across all datasets and iterations. We use the same
parameter names as in the implementation in the benchscofi package [44].
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Model Hyperparameter Value
Fast.ai n_iterations 5

n_factors 20
weight_decay 0.1
learning_rate 0.005

NIMCGCN epoch 10
alpha 10
fg 256
fd 256
k 32
learning_rate 0.001

Table 12: Hyperparameters of neural networks.

Model Hyperparameter Value
BNNR maxiter 300

alpha 1
beta 10
tol1 0.002
tol2 1.10−5

DRRS − −
HAN k 15

learning_rate 0.001
epoch 1000
weight_decay 0.0

LRSSL k 10
mu 0.01
lam 0.01
gam 2
tol 0.01
maxiter 500

Table 13: Hyperparameters of graph–based approaches.

Computational resources The experiments were run on remote cluster servers of Inria Saclay (processor QEMU Virtual
v2.5+, 48 cores @2.20GHz, RAM 500GB) and SBI Rostock (processor Intel Core i7-8750H, 20 cores @2.50GHz, RAM 7.7GB).
The clusters of Inria Saclay were favored for pure Python drug repurposing algorithms, whereas the server of SBI Rostock ran
the other types of experiments. No GPU was used during the benchmark.

Benchmark status Table 14 displays the status of each runs of 100 iterations for each algorithm and dataset in the benchmark.
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Figure legends

1 Principle of collaborative filtering. If two drugs A and B are similar, and if there is a known association between
a disease and drug A, then the same association is predicted between this disease and drug B. . . . . . . . . . . 2
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2 (a). Benchmarking training and testing pipeline iterated N = 100 times for drug repurposing for a specific
algorithm, a splitting method for training/testing and validation subsets, and a validation metric. Note that the
training/testing subsets are always split at random. (b). Correlogram of metrics collected during the benchmark
on randomly split training and testing sets, referring to metrics in Table 3. The total number of considered
values is then N = 18, 700 (see Table 14 in Appendix). The lower triangle of the plot shows linear regressions
between each pair of metrics, with the corresponding R2 when greater than 0.25. The upper triangle displays the
Spearman’s ρ correlations between each pair of metrics. The diagonal shows the empirical frequency distribution
of values for each metric. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Boxplots of testing metric values for the Top-3 algorithms (in average) across N = 100 iterations for each
dataset in Table 1, for a specific training/testing set splitting method. PREDICT(p) corresponds to the public
version of PREDICT, whereas PREDICT refers to the private version of the dataset. (a) AUC values for randomly
split sets. (b) AUC values for weakly correlated sets. (c) NS–AUC values for randomly split sets. (d) NS–AUC
values for weakly correlated sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 Training times in seconds across N = 100 iterations for each dataset and the fastest three algorithms among the
most frequent Top-3 reported in Figure 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

5 Illustration of the “weakly correlated” splitting approach to obtain training and validation subsets from a dataset. 11

Tables

1 Datasets in the benchmark. They correspond to the number of drugs and diseases involved in at least one nonzero
drug-disease association. The sparsity s is the percentage of unknown (neither positive nor negative) matches
times 100 over the total number of possible drug-disease matches (rounded up to the first decimal place). The
imbalance ratio IR is the ratio between negative and positive outcomes in the dataset (rounded up to the second
decimal place). The private version of PREDICT is the one generated from notebooks in the original GitHub
repository, whereas the public one is the one deposited on Zenodo [41]. The association matrix in the Fdataset
comes from [13]. Still, the drug and disease features are from [32]. . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Overview of algorithms present in the benchmark present in Section 5 and the classification (columns “Class”
and “I/O type”) defined in Section 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Description of the considered validation metrics present in Section 5. Ω± ≜ {(i, j), A[i, j] = ±1 | i ≤ NS , j ≤
NP }, whereas Ω+

j ≜ {i | A[i, j] = +1} and Ω̃j ≜ {(i, i′) | A[i, j] > A[i′, j]} for any j ≤ NP . In the
benchmark, t = 0 and 1(C) is equal to 1 if C is satisfied, 0 otherwise. σV is the permutation that sorts all
coefficients of any vector V of length n in decreasing order, that is, V [σV (1)] ≥ V [σV (2)] ≥ · · · ≥ V [σV (n)].
The true positive rate is defined as TPR(t; R̂, A) =

∑
(i,j),A[i,j]=+1 1(R̂i,j > t)/

∑
(i,j) 1(R̂i,j > t) and

FPR(t; R̂, A) =
∑

(i,j),A[i,j]=−1 1(R̂i,j > t)/
∑

(i,j) 1(R̂i,j ≤ t) is the false positive rate. Finally, N+
S is

defined as min(NS , |Ω+
j |). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4 Our guidelines for fairer and comprehensive benchmarks of collaborative-filtering-based drug repurposing
models. MF: matrix factorization. NN: neural network. GB: graph–based. . . . . . . . . . . . . . . . . . . . . 6

5 Median NS–AUC value across Top-3 algorithms (in average) and all N = 100 iterations for each dataset in
Table 1. The values are rounded up to the closest second decimal place. . . . . . . . . . . . . . . . . . . . . . 7

6 Results of Kruskal–Wallis H–tests for each dataset. For a fixed dataset d, the null hypothesis is “the median
NS–AUC value µNN(d) obtained on dataset d by pair–oriented neural networks is equal to the median NS–AUC
value µGB(d) on the same dataset by pair–oriented graph–based approaches”. In each test, the number of
elements in each group is N = 200. The values are rounded up to the closest first or second decimal places. All
tests on adjusted p–values are significant at level α = 1%. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

7 The average ± standard deviation validation metric on the randomly selected testing subset across N = 100
iterations for the Top-10 algorithms on the “Synthetic” dataset in Table 1. Average (resp., standard deviation)
values are rounded to the closest second (resp., first) decimal place. . . . . . . . . . . . . . . . . . . . . . . . . 11

8 The average ± standard deviation validation metric on the weakly correlated testing subset across N = 100
iterations for the Top-10 algorithms on the “Synthetic” dataset in Table 1. Average (resp., standard deviation)
values are rounded up to the closest second (resp., first) decimal place. . . . . . . . . . . . . . . . . . . . . . . 12
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9 Kruskal–Wallis H–tests on the predictive power of features in datasets A=TRANSCRIPT, PREDICT (B=public
and C=private versions) and D=DNdataset. The significance level is set to 1%, and p–values are adjusted for
multiple tests with the Benjamini–Hochberg method [5]. All tests are statistically significant. . . . . . . . . . . 12

10 Kruskal–Wallis H–tests on the generalization power of algorithm types “matrix factorization” (MF), “neural
networks” (NN) and “graph–based” (GB) across datasets. The significance level is set to 1%, and p–values are
adjusted for multiple tests with the Benjamini–Hochberg method [5]. All tests are statistically significant. . . . 13

11 Hyperparameters of matrix factorization algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

12 Hyperparameters of neural networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

13 Hyperparameters of graph–based approaches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

14 Report of the benchmark status across datasets and algorithms. ✓ means that the 100 iterations were successfully
run, whereas × indicates an error (M: memory, E: runtime error). . . . . . . . . . . . . . . . . . . . . . . . . . 15
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