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Summary. In environmental sciences, available data are often available at a coarse res-

olution. This can result in a mismatch between the data resolution and the resolution at

which process inferences should be made. This misalignment, usually named as change

of support (COS) issue, can lead to biased inferences if not addressed in the models.

Yet, solutions to the COS issue have only been proposed for a limited number of simple

observational processes (e.g. Poisson or Gaussian processes), which narrows their range

of application.

Motivated by a fisheries science case study, we introduce a hierarchical method address-

ing COS issue for zero-inflated data with highly skewed tails. Such data are common

in environmental sciences but are not handled by existing COS methods. Our approach

requires to know the spatial locations of point-level data and considers that aggregated

available data are convolutions of these point-level data.

We assess the accuracy of our method through a simulation study, describing different

scenarios of COS. Subsequently, we apply our model to a motivating case study, focusing

on the distribution of the common sole in the Bay of Biscay. Our findings illustrate that

our approach provides better estimates and predictions than the ad hoc methods used to

geoprocess aggregated data and refine their resolution.

1. Introduction

In the field of environmental science, natural processes acts at different spatial scales and

available data do not always have the same spatial resolution. For instance, numerous

ecological analyses aim at inferring drivers of species distribution to predict suitable

habitats over a continuous spatial domain (Carson and Flemming, 2014; Simpson et al.,

2012). Yet, observations (e.g. count of individuals) and predictor variables (e.g. climatic

conditions) are often available at coarser spatial resolution, which results from some sorts

of spatial aggregation (Gelfand et al., 2010). This discrepancy between the resolution

of the process and the data are referred to as spatial misalignment (Wakefield and

Shaddick, 2006) and is frequent in environmental sciences such as health science (Young

and Gotway, 2007), climate science (Parker et al., 2015) or ecology (Gilbert et al., 2021)).

The spatial misalignment between a finely-resolved local process and its coarsely-

resolved descriptors is one of the most classical change of support (COS) issue, also
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known as point-to-area misalignment, modifiable area unit problem, ecological fallacy,

or ecological bias in spatial statistics (Gotway and Young, 2002). This issue arises from

the aggregation process that generates the coarsely-resolved data (Chiles and Delfiner,

2012; Rivoirard, 2005; Gotway and Young, 2007; Young and Gotway, 2007). Indeed,

spatial data aggregation can alter the signal and introduce an aggregation bias (also

known as a scale effect). It can also modify the distribution of confounding variables,

leading to a specification bias (also known as a zoning effect).

Addressing COS is relatively straightforward for count data following a Poisson dis-

tribution (Gilbert et al., 2021; Gotway and Young, 2007; Mugglin et al., 2000; Pacifici

et al., 2019) or continuous data modelled using Gaussian or Gamma distributions (Berro-

cal et al., 2010; Gelfand et al., 2001; Wikle and Berliner, 2005). However, environmental

data rarely follow exact Poisson or Gaussian observations. It is quite common, especially

in ecology, to encounter data that exhibit zero-inflation or heavy-tailed distributions

(Lecomte et al., 2013; Thorson, 2018).

In marine ecology, COS issue often arises when inferring fish spatial distribution at

a relatively fine resolution using commercial catch declaration data, which are typically

registered at the resolution of administrative coarse-areal units (Hintzen et al., 2021).

Addressing COS issue is crucial because catch declaration data constitute the most ex-

tensive source for mapping fish spatial distribution (Alglave et al., 2023) that is central

to design management measures (Jansen et al., 2018). However, no methods exist that

correctly model commercial declarations while accounting for COS. The most commonly

used approach consists in modelling commercial declaration data using a two-step ap-

proach that involves (i) uniformly reallocating areal-level declaration data to point-level

fishing locations obtained from Vessel Monitoring System (VMS) data (Hintzen et al.,

2012; Bastardie et al., 2010), and (ii) fitting a statistical model to the downscaled point-

level data considered as observations (Alglave et al., 2022). However, this approach

implicitly assumes that catches are uniform and constant across fishing locations within

administrative units, which is unlikely for most species. Moreover, declaration data of-

ten exhibit zero-inflation or heavy-tailed structure, rendering the existing COS methods

unsuitable (Berrocal et al., 2010; Gotway and Young, 2007).
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In this paper, after detailing an example of COS in the context of fisheries science

(Section 2), we introduce a novel joint hierarchical model designed to address COS for

zero-inflated positive continuous data (Section 3). The model assumes that fishing loca-

tions are precisely known from GPS data. We rely on a latent spatial field to explicitly

represent the spatial distribution of the resource and its aggregation over a coarser spa-

tial area through a convolution of observations realized over the fixed locations. The

observation process is then modelled at the scale of the aggregation through a zero-

inflated model. We evaluate the performance of this new method against the commonly

used two-step approach through a simulation study (Section 4). Finally, we demonstrate

the model’s application in mapping the spatial distribution of common sole (Solea solea)

in the Bay of Biscay (Section 5).

2. An example of COS in the context of fisheries science

A key objective in marine ecology is to predict the spatial distributions of fish biomass

(denoted S) on a spatial domain (denoted D) using a set of environmental predictors

Γ. To achieve this, marine ecologists initially rely on data collected by scientific surveys

that record the quantity (as weights) of fish caught at precisely known locations (Nielsen,

2015). They are referred to as point-level data and henceforth denoted as Y (x) for

a catch at location x ∈ D. The spatial support of this data align with the intended

resolution for modelling (Figure 1). However, scientific surveys are often constrained by

low sample sizes.

Other valuable and extensive data are commercial fishing declarations also called

logbooks (Gerritsen and Lordan, 2011). These data consist of catch weights of fish

aggregated at a coarse spatial resolution (hereafter referred to as areal-level data).

Typically in Europe, the administrative requirement is to declare, for each species of

interest, the total retained weight at the resolution of ICES rectangles, i.e., rectangles of

0.5◦× 1◦covering approximately 3000 km2. Another valuable data source is VMS that

precisely locate fishing vessels at regular time interval. Fisheries scientists have developed

censors and algorithms to identify fishing locations (here denoted (x1, . . . , xm)) from

vessel tracks. If fishers VMS locations are precise, allocating the right behavior (fishing,
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steaming or stopping at port or at sea) is dependent on the algorithm performance to

distinguish between the different states (Vermard et al., 2010). Fishing declarations

are then spatialised using VMS data (Figure 2, see section 3.3.1 for more details on

notations).

Commercial catch declarations are massive, but raise a COS issue when using these

to infer fish spatial distribution at a fine spatial scale. Indeed, even if the precision of

the fishing locations is high, the catches realized at each fishing locations is unknown

and the only available data is the total weight of fish caught in each administrative unit

a ∈ A, denoted as W (a), where A represents the set of all administrative units.

As an additional issue, fishing data are often characterized by an excess of zeroes

(no catch of a given species in a given fishing operation), which cannot be modelled by

simple observational processes (e.g., Poisson or Gaussian). Motivated by this case study,

we formulated a COS method tailored for zero-inflated data with highly-skewed tail.

3. Handling COS with zero-inflation

The point-level and areal-level data sources are integrated within an integrated hierar-

chical statistical framework to infer a unique latent spatial random field. Below we first

present the model for the spatial random field, as defined in a previous paper (Alglave

et al., 2022). We then define the sampling distribution of point-level data as a zero-

inflated distribution. Then, we elaborate on a common ad hoc two-step approach to

bypass the COS problem arising from areal-level data. Finally, we present a new ap-

proach that directly relates areal-level data to the hidden spatial random field to account

for COS.

3.1. Hidden spatial random field

Let’s denote the spatial domain as D ⊂ R2 and S = (S(x), x ∈ D) a spatial random field

of interest, such as the biomass of some species in the context of fisheries science. S is

assumed to be a spatial log-Gaussian Random Field (GRF) defined as:

log(S(x)) = µ+ β · Γ(x) + δ(x), (1)
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where δ = (δ(x), x ∈ D) is a zero mean isotropic GRF with a Matern covariance function

and Γ = (Γ(x), x ∈ D) a known field of predictors, β are the parameters linking Γ and

S. In marine ecology Γ often represents environmental factors, like the bathymetry or

sediment type, and β is referred to as the species-environment relationship parameters.

3.2. Observation process of point-level zero-inflated data

Ideally, the observations needed to infer the latent field S(x) would be available at the

point level, let’s say Y = (Y (x1), . . . , Y (xn)) sampled at a given set of fishing locations

x = (x1, . . . , xn).

Conditionally on the latent field, the observation process for point-level data is mod-

elled through the zero-inflated distribution as proposed by Thorson (2018). Positive

continuous data are assumed to be independent conditionally on S. The catch at the

sampled location x, denoted Y (x), is defined through its conditional density fS(x) defined

through a mixture of a Dirac mass at 0 and a lognormal distribution:

fS(x)(y) = p(x)I{y=0}(y) + (1− p(x))Ψ

(
S(x)

1− p(x)
, σ2

)
I{y>0}(y), (2)

where

• p(x) := exp(−eξS(x)) is the proportion of the mixture representing the probability

to get a zero observation,

• ξ is a parameter controlling the zero-inflation,

• Ψ stands for the density of a lognormal distribution,

• IB(y) stands for the indicator function which equals 1 when y belongs to any

ensemble B,

• σ2 is the variance parameter on the log-scale.

The distribution fS(x) is completely specified with three parameters: p the weight of

the Dirac mass (i.e., the probability of obtaining a zero), µ the mean of the lognormal
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distribution, and its variance σ2, denoted as My(p, µ, σ
2). Note that at location x,

P (Y (x) = 0 |S(x)) = exp(−eξS(x)) = p(x),

E (Y (x) |Y (x) > 0, S(x)) =
S(x)

1− p(x)
= µ(x), (3)

Var(Y (x) |Y (x) > 0, S(x)) = µ(x)2(eσ
2 − 1),

While accounting for the zero inflation in the data, this choice allows to represent contin-

uous positive data and ensures that the expected catch at site x equals the local biomass

S(x). A more detailed presentation is available in the Supplementary Material (Section

S-I).

3.3. Modelling observations from areal-aggregated data

The COS issue arises as we rely on data available only at the aggregated areal-level

denoted W (a), obtained as the sum of all point-level data Y (x) in the unit a:

W (a) =
∑

i|xi∈Ra

Y (xi), (4)

where Ra denotes the geographical area corresponding to the administrative unit a.

Below we provide two different methods to integrate those areal-aggregated data. Note

that both methods work by considering the number and the position of the sampling

points within each zone Ra are known.

3.3.1. The ad hoc two-step COS approach

The two-step approach consists of (1) considering the spatial locations of sampling point

as known and generate a pseudo data set by reallocating the aggregated data to those

sampling point, (2) integrating those pseudo point-wise data through the sampling distri-

bution defined previously. In the context of fisheries science, the reallocation is typically

uniform on each fishing location within a declaration area. It consists of defining the

reallocated data Ya,i associated with declaration/areal observation W (a) as:

Ya,i :=
W (a)

ma
I{Ra}(xi), ∀i = 1, . . . , n, (5)
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where ma is the cardinal of the set {xi ∈ Ra}. A schematic visualization of the reallo-

cation (or imputation) process is proposed in Figure 2.

As noted by Alglave et al. (2022), the uniform reallocation along the fishing route

likely does not match with the true spatial distribution of the catches along the fishing

routes which is most often highly heterogeneous. Hence, using those pseudo data is likely

to underestimate the spatial heterogeneity of the spatial field within each declaration

area.

Moreover, imputing point-level values prior to model fitting artificially increases the

sample size by a factor corresponding to the ratio between the number of fishing loca-

tions and the number of areal units. This artificial data augmentation, akin to pseudo-

replication, can lead to an underestimation of uncertainty associated with estimates

(Alston et al., 2023).

Finally, note that this process is not specific to fishery applications. In many other

fields of environmental science, aggregated data are often geo-processed to refine their

resolution through ad hoc arithmetic methods, such as proportional allocation and zonal

addition (Young and Gotway, 2007; Gotway and Young, 2007).

3.3.2. Joint COS model

To overcome the limitations of the two-step approach, we developed a joint COS model

that addresses the COS issue. Instead of considering the imputed point-level catches as

observed data, we directly relate areal-level data to the underlying point-level spatial

process of interest. This avoids the strong hypothesis needed for the reallocation of the

total catches to the fishing locations.

Let’s denote by MW the conditional distribution of areal-level observations W (a)

associated with area a, given the sampling points xa = (xa,1, ..., xa,i, ..., xa,ma
) and the

spatial random field S.

MW results from the convolution of zero-inflated lognormal distribution. Its math-

ematical form is unknown as there is no analytical form for a convolution of zero in-

flated lognormal distributions. However, given that the individual observations are zero-

inflated with heavy tails, MW takes the form of a mixture distribution with zero inflation
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and long tail. Our approach rely on the hypothesis that the distribution of the variable

W (a) has the same zero inflated lognormal form as the distribution of point-level distri-

bution defined in Equation (2). We will discuss this assumption later.

So, let’s denote MW the corresponding zero inflated lognormal mixture distribution:

W (a) |S,xa ∼ MW (pWa , µW
a , σW 2

a ) (6)

with

• xa = (xa,1, ..., xa,i, ..., xa,ma
) the fishing positions associated with the declaration

Wa in area Ra,

• µW
a the expected positive biomass,

• pWa the proportion of zeros in the mixture,

• σW 2
a the variance parameter.

Conditionally on the random field S and on the sampling locations, the quantities

pWa , µW
a , (σW

a )2 are defined as follow :

(a) Defining Ya = (Y (xa,1), . . . , Y (xa,ma
)) and using conditional independence with

respect to S, we have:

pWa = P(Wa = 0) =

ma∏
i=1

P(Y (xa,i) = 0) = exp

{
−

ma∑
i=1

eξ · S(xa,i)

}
(7)

(b) The continuous component of the mixture is defined by the expected mean of a

positive declaration and a transformation of its variance, which correspond to:

µW
a = E(W (a) |W (a) > 0) =

∑ma

i=1 S(xa,i)

1− pWa

Var(W (a) |W (a) > 0) =

∑ma

i=1Var (Y (xa,i))

1− pWa
− pWa

(1− pWa )2
E(W (a))2 (8)

with Var (Y (xa,i)) =
S(xa,i)

2

1− pa,i
(eσ

2 − (1− pa,i)) and pa,i = P(Y (xa,i) = 0).

The details of the computation are given in the Supplementary Material (from

section S-II to S-VI).
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4. Simulation study

We perform a simulation study to investigate the effect of COS on models’ performance,

and to explore the influence of the level of aggregation as well as the intensity of zero-

inflation in the sampling process.

4.1. Data simulation

We simulate a spatial random field that represents the species distribution (i.e., the

spatial distribution of fish biomass) across a virtual spatial domain with dimensions

similar to the Bay of Biscay (Figure S1). The spatial distribution of the virtual species is

simulated following equation 1 with a single continuous predictor and a spatial random

effect, which were both simulated by GRFs with respectively ranges of 1.5 and 0.6

(approximately 50 km) and marginal variances of 0.5 and 1 respectively. The species-

habitat relationship (β) is fixed to 2 (the table 1 shows all the parameter values used for

the simulation.).

Conditionally on this random field, point-level and areal-level data were simulated to

mimic different scenarios of data clustering and zero-inflation. Each simulated scenario

was replicated 100 times.

Baseline scenario

Point-level data were generated by virtually sampling 100 points following a stratified

sampling scheme over the virtual Bay of Biscay (Figure S1). For each point, biomass

observations are simulated following the observation equation of MY (with specific pa-

rameters, see Table 1). This corresponds to the standardized scientific data.

We simulate 300 area-level data in square cells across a spatial domain covering 2/3

of the virtual Bay of Biscay (Figure S1). For each areal-level data, we simulate 10

point-level locations spatially clustered to mimic real fishing zones (i.e., small areas tar-

geted by fishermen). This spatial clustering is simulated using a Neymann-Scott process

(Waagepetersen, 2007) in two steps: (1) within the areal unit where the areal-level data

is simulated, we sample a spatial point representing the center of a single fishing zone,

and (2) the 10 sampled locations are uniformly sampled around the fishing zone center
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within a squared area approximating the distance of a trawl haul (Figure S2). Finally,

at each fishing location, a point-level catch is sampled conditionally on the value of the

spatial random field following the distribution MY . Last, the point-level data are ag-

gregated at the areal-level.

Effect of spatial clustering

Alternative scenarios were simulated to investigate the effects of the spatial clustering

of the point-level fishing locations within the areal units. We simulate three types of

areal-level data with one, three, or five visited zones, respectively, within each adminis-

trative areal unit (see Figure S2 for illustration).

Proportion of zeros

We modify the observation process for areal-level data to generate four levels of zero-

inflation with 0%, 7%, 37%, or 70% of zeroes in the areal-level data.

4.2. Model fitting and comparison

We consider three types of models described in table 2:

• a model with point-level data only (point-level model).

• a model fitted to scientific data and to the reallocated data (two-step approach)

• the model accounting for COS (joint COS approach).

All three models were fitted to the simulated datasets representing the different sce-

narios (i.e., the baseline, the three scenarios regarding the number of fishing zones, and

the four levels of zero-inflation), each replicated 100 times, resulting in 800 fits for each

model. These fitted models were then used to predict the species distribution across the

entire simulated area.

Inference was conducted using maximum likelihood methods with the package Tem-

plate Model Builder (Kristensen et al., 2016). We leverage the SPDE approach to

efficiently estimate the spatial random effect δ (Lindgren et al., 2011).
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We compared the explanatory and predictive performance of the three models by

assessing the discrepancy between the estimated parameter β̂ and the simulated one β,

and by computing the mean squared prediction errors (MSPE), respectively. The MSPE

quantifies the accuracy of the predictions Ŝ over the spatial domain by comparing the

simulated latent field S with the estimated ones Ŝ using the formula:

MSPE =

∑n
i=1(S(xi)− (Ŝ(xi)))

2

n

where n is the number of points in the spatial domain.

4.3. Results

The species-environment relationship is unbiased for both the point-level and the joint

COS models (Figure 3, right). Conversely, the two-step approach produces biased esti-

mates tending towards zero. The ad hoc two-step approach also tends to produce overly

smoothed species distribution predictions (Figure 4). These are direct consequences of

the uniform reallocation of areal-level data that smooth the distribution and blur the

perception of the effects of predictors in the species-environment relationship. This can

also be seen in the variance and zero-inflation parameters that are respectively strongly

under- and over-estimated in the two-step approach compared with the joint COS model

(Figure S3).

By comparison, in addition to accurately estimating the species-environment rela-

tionship, the joint COS model demonstrates the most accurate predictions, with mean

squared prediction errors (MSPE) being 1.5 and 2 times lower than those of the two-step

and point-level models, respectively (Figure 3, left). The higher predictive performance

of the joint COS model may be attributed to the COS part of the model that improves

the capacity to capture fine-scale predictor effects. However, it is important to note that

the joint COS model is the only model that face convergence issues, with only 63% rate

of convergence (Table 3).

The ad hoc two-step approach demonstrates high sensitivity to the number of fishing

zones within the administrative areal units (i.e., the clustering resolution of the fishing

locations), with the MSPE increasing from 0.3 to 0.75 on average and a bias in species-

environment relationship coefficients increasing with the number of fishing zones (Figure
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5, left). By contrast, the predictive and explanatory performances of the joint COS model

remains almost constant and better than the point-level model when increasing numbers

of fishing zones.

The proportion of zeroes in observations negatively impacts the performance of the

two-step approach and the joint COS model (Figure 5, right). Predictive performances of

the two-step and joint COS models decrease as the amount of zeroes in the data increases

but they still have better predictive performance than the point-level model (Figure 5,

top-right). Furthermore, the joint COS model outperforms the two-step approach in

predictive accuracy. The benefit of choosing the joint COS model over the two-step

approach increases with higher levels of zero-inflation.

The prevalence of zeroes also increases convergence issues for the joint COS model,

with only 17% of the fitted models that converged in the worst-case scenario (70%

zeroes).

5. Application: Fine-scale distribution of common sole in the Bay of Biscay (NE

Atlantic)

The three models were applied using a real case study to map the distribution of common

sole (Solea solea, Linnaeus, 1758) in the Bay of Biscay (NE Atlantic).

5.1. Data

Point-level data are scientific data sourced from the DATRAS database for the Orhago

beam trawl survey (Coupeau and Biais, 2019), which employs similar fishing method-

ologies as commercial fishermen. The scientific dataset were filtered to retain specimens

exceeding the minimum catch size threshold i.e. > 24 cm (ICES), ensuring alignment

with the size structure observed in commercial data.

Area-aggregated data are commercial catch declaration data, including logbook en-

tries detailing catch weights, and data from the VMS providing geolocations of fishing

activities. Commercial data were gathered from ”bottom trawlers” operating in the Bay

of Biscay, which target Solea solea. For a comprehensive understanding of the data pre-

processing procedures, including the integration of information from both logbooks and
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VMS data, as well as the filtration of targeted fishing activities, refer to Alglave et al.

(2022).

Biomass data from both sources were standardized by fishing effort to yield Catch

Per Unit of Effort (CPUE), measured in kg.h−1.

Sediment type can strongly influence sole spatial distribution and is used as an en-

vironmental predictor in the model (Holzhauer et al., 2019; Künitzer et al., 1992). Sed-

iment type data were extracted from the EMODNET platform with resolution 0.05◦,

categorized into two main types: ‘sand and coarse substrate’ and ‘mud’. Sediment type

was coded as a binary variable taking value 0 for ‘sand and coarse substrate’ and 1 for

‘mud’ sediments. Therefore, in equation 1, µ represents the expected biomass in sand

and coarse substrate, while β is the effect of ”mud” on sole distribution.

Finally, note the different data sources may not share the same scale of response,

meaning they may not exhibit the same probability and efficiency of catch. To address

such differences, we introduce an offset parameter k = E(Y (1)(xi) |S(xi),xi)
E(Y (2)(xi) |S(xi),xi)

, serving as a

scaling factor between some data sources 1 and 2 (i.e. here Y (1)(xi) and Y (2)(xi) are

the commercial and the scientific datasets at the point-level). In the context of fisheries,

such scaling factor typically denotes relative differences in catchability between scientific

survey and commercial catch data.

5.2. Model fitting

The joint COS model encountered convergence issues, particularly in estimating some

parameters such as the range parameter. To facilitate convergence, we incorporated on-

board observer data from the same fleet into the analysis. These data can be regarded

as point-level commercial catch data, comprising 86 samples for the corresponding time

step. The integration of these data provides direct point-level observations of the dec-

larations data and helps estimating the observation parameters of the area-level data

(including observation variance and zero-inflation parameter of the declaration data).

Moreover, as commonly done in fisheries modelling with automatic differentiation

methods (Fournier et al., 2012), we applied a phased optimization approach to initialize

the optimization algorithm for the joint COS model. The estimates derived from the
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two-step approach serve as the starting point for the optimization algorithm used in

estimating the joint COS model. Subsequently, parameters that are hard to estimate

during the initial optimization phases (such as intercept µ, covariate effect β, range, and

marginal variance) were fixed, and left free one by one in the next phases of estimation.

5.3. Results

Predictor effects and spatial predictions of species distribution differ between the joint

COS model and the ad hoc two-step approach (Figures 6, 7). Notably, the joint COS

model estimates a larger substrate effect compared to the ad hoc two-step approach,

aligning more closely with estimates derived from the point-level model (Figure 6).

Consistently with simulations, the zero-inflation parameter ξ estimated by the joint

COS model for areal data is notably smaller than the one estimated by the ad hoc two-

step approach (Figure S3). Also, the observation variance of areal-data estimated by

the joint COS model is higher, suggesting that the this model estimates more noise in

the areal data.

Furthermore, the joint COS model produces wider confidence interval than the ad

hoc approach (Figure 6). Compared with the two-step approach, the joint COS model

yields notably wider confidence intervals for the species-habitat relationship (β), the

marginal variance, the range, the zero-inflation parameter (ξareal), and the variance of

areal-data (σareal). This divergence indicates an underestimation of uncertainty by the

two-step approach.

Regarding the spatial predictions of species distribution (Figure 7), the spatial pat-

terns are overall consistent for the two-step approach and the joint COS model. Areas of

high densities are consistent in the North of the Bay of Biscay (4◦W - 47.5◦N), offshore

the estuary of Gironde (1.5◦W, 45.5◦N) and along the Vendée coast (2◦W - 46.5◦N). The

point-level data is shaped by the sediment effect and produces a smooth pattern due to

low sampling density.

Consistently with simulations, the two-step approach generates smoother spatial pre-

dictions relative to the joint COS model. The coefficient of variation of the latent field

in the two-step approach equals 0.47 while it is 1.07 for the joint COS approach. Also,
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some low biomass areas are evidenced by the joint COS model for instance in the North

of the Bay of Biscay (3◦W - 47◦).

As for the point-level model, the joint COS model predictions are shaped by the

sediment effect while the two-step approach predictions are not.

6. Discussion

6.1. The benefit of a statistical approach for COS

Dealing with COS is a key issue in spatial statistics. An extensive literature has been

dedicated to develop statistical methods that predict fine-scale processes from coarse

resolution data (Wikle et al., 2019; Wakefield and Lyons, 2010). However, in many

cases, data resolution refinement is often achieved through ad hoc arithmetic methods

such as proportional allocation or zonal addition. These methods can alter the data

and result in information loss (Young and Gotway, 2007; Gotway and Young, 2002) or

artificially inflate the amount of data (Alglave et al., 2022). In this paper, we propose a

model capable of handling complex environmental data, including zero-inflated or highly

skewed data distributions. We demonstrate that failure to properly account for COS

can bias the link with linear predictors and substantially overestimates the precision of

estimates.

6.2. The hierarchical structure of the approach and the point-level sampling distribu-

tion

Our strategy for handling COS follows the conventional hierarchical framework structure.

The hierarchical structure allows us to establish the link between the hidden spatial

random field and areal-level data. Given the observation distribution of a zero-inflated

point-level observation, we calculated the probability to get a zero at the areal-level,

and the sampling distribution of a positive value was approximated by a lognormal

distribution by identifying the first two moments.

Our approach stands on the hypothesis that the convolution of zero-inflated lognormal

distribution is well approximated by a zero-inflated lognormal distribution. Previously,

some studies have intended to identify approximations for convolutions of lognormal ob-
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servations. They concluded that in practice this convolution could be modelled through

a lognormal distribution by matching the moment of the single variables and the result-

ing convoluted variable, though there is no explicit relationship (Furman et al., 2020;

Beaulieu et al., 1995). Here, we demonstrated through the simulations that this ap-

proximation holds reasonably well for our model. However, it is worth noting that this

hypothesis can be violated depending on the context. Exploring alternative observation

models that satisfy additive properties, such as the Gamma distribution, could be an

interesting avenue for future research.

Another common approach in the COS literature is ‘Block kriging’ (Gelfand et al.,

2001; Pacifici et al., 2017). In this approach, the aggregation process is modelled within

the latent field. By defining a spatial block B (e.g., a statistical rectangle), the average

latent field over the spatial block is considered as S(B) = |B|−1
∫
B S(x)dx. Here, obser-

vations are assumed to stem from a distribution MB conditionally on S(B), following

Dj |S(B) ∼ MB(S(B), σ2). While this method considers areal-level data arising from

the averaged biomass over the spatial block, it may encounter similar challenges as real-

located data and could lead to smoothed estimates of the linear predictor. Indeed, the

observations and the latent field are still linked at a coarse resolution and the observa-

tions are not downscaled in the model. Furthermore, our approach maintains sparsity

in the Hessian of the likelihood and improves computation time, whereas Block kriging

would entail losing sparsity by integrating over block areas B.

6.3. Future perspectives for the framework

Aggregated declarative data are important source of information in numerous fields of

environmental science such as ecology, epidemiology, and environmental sciences. These

datasets typically include hunting records (Gilbert et al., 2021), administrative health-

care data (Morel et al., 2020), and teledetection data (Garrigues et al., 2008). While

these data are not specifically tailored for scientific analysis, they hold immense potential

for research and expertise once related methodological challenges are addressed. Several

drawbacks may hinder the use of these data, including issues with data aggregation,

sampling bias as seen in citizen science programs (Botella et al., 2021), and species mis-
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specification (Botella et al., 2018). Also, in our specific case, vessels may cross several

administrative rectangles for one single declaration and there might be uncertainty on

the administrative unit the observation is assigned to (Gábor et al., 2022). Tackling

these sources of bias all together with COS is a major challenge, and our model could

be extended to account for these other bias.
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Gábor, L., Jetz, W., Lu, M., Rocchini, D., Cord, A., Malavasi, M., Zarzo-Arias, A.,
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Morel, M., Bacry, E., Gäıffas, S., Guilloux, A. and Leroy, F. (2020) Convsccs: convolu-

tional self-controlled case series model for lagged adverse event detection. Biostatistics,

21, 758–774.

Mugglin, A. S., Carlin, B. P. and Gelfand, A. E. (2000) Fully model-based approaches

for spatially misaligned data. Journal of the American Statistical Association, 95,

877–887.

Nielsen, J. R. (2015) Methods for integrated use of fisheries research survey information

in understanding marine fish population ecology and better management advice: im-

proving methods for evaluation of research survey information under consideration of

survey fish detection and catch efficiency. Wageningen University.

Pacifici, K., Reich, B. J., Miller, D. A., Gardner, B., Stauffer, G., Singh, S., McKerrow,

A. and Collazo, J. A. (2017) Integrating multiple data sources in species distribution

modeling: a framework for data fusion. Ecology, 98, 840–850.

Pacifici, K., Reich, B. J., Miller, D. A. and Pease, B. S. (2019) Resolving misaligned

spatial data with integrated species distribution models. Ecology, 100, e02709.

Parker, R. J., Reich, B. J. and Sain, S. R. (2015) A multiresolution approach to estimat-

ing the value added by regional climate models. Journal of Climate, 28, 8873–8887.

Rivoirard, J. (2005) Concepts and methods of geostatistics. In Space, Structure and Ran-

domness: Contributions in Honor of Georges Matheron in the Field of Geostatistics,

Random Sets and Mathematical Morphology, 17–37. Springer.



COS for zero-inflated heavy-tailed data 23

Simpson, D., Lindgren, F. and Rue, H. (2012) Think continuous: Markovian gaussian

models in spatial statistics. Spatial Statistics, 1, 16–29.

Thorson, J. T. (2018) Three problems with the conventional delta-model for biomass

sampling data, and a computationally efficient alternative. Canadian Journal of Fish-

eries and Aquatic Sciences, 75, 1369–1382. Publisher: NRC Research Press.
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Table 1. Parameter values for the simulations.

’areal’ refer to the areal-level data. ’point’ refer

to the point-level data.

Parameters Simulation values

µ 2

β 2

Range of δ 0.6 (≈ 50 km)

Marginal variance of δ 1

ξareal -1

σareal 1

kareal 1

ξpoint 0

σpoint 0.8



COS for zero-inflated heavy-tailed data 25

Table 2. Model configurations.

Model name Configuration

Point-level model The model fitted to point-level data only.

Two-step approach The original model fitted with imputed

point-level data in Alglave et al. (2022).

Joint COS model The alternative approach introduced

in this paper where the biomass model

is fitted using areal-level data

and few precisely point-level data.

Table 3. (Simulations) Percentage of con-

vergence for the alternative models (point-

level only, two-step and joint approach).

Model Convergence (%)

Two-step approach 100

Joint approach 63

Point-level model 100
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Table 4. (Simulations) Percentage of convergence for various level

of zero-inflation. Two-step approach: integrated model fitted to reallo-

cated observations. Joint approach: integrated model accounting for

change of support.

Model Proportion of zero values Convergence (%)

Two-step approach 0 % 100

Two-step approach 7 % 100

Two-step approach 37 % 100

Two-step approach 70 % 99

Joint approach 0 % 78

Joint approach 7 % 63

Joint approach 37 % 49

Joint approach 70 % 17
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Fig. 1. Maps of the different data sources with the corresponding spatio-temporal sampling

densities. Grey rectangles represent the level of aggregation of the catch declarations (i.e. the

grid resolution).



28

Fig. 2. Schematic representation of the reallocation process. The biomass field (the spatial

field, S(x)) depends on a covariate (Γ(x)) and a GRF (δ(x)). The covariate is the x-axis. It has

a positive effect on biomass values (i.e. biomass is higher on the right of the grid than on the

left). The spatial random effect creates an area of high density on the bottom-right of the latent

field. The study domain is considered as a rectangle (grey square). Points represent catches

made by fishermen and their colors are related to the weights of the catches. These punctual

catches (Yi) belong to the same rectangle Ra and are summed to constitute the declaration

Wa =
∑

i|xi∈Ra
Y (xi) = 50 that is recorded in catch declaration data (logbook) at the resolution

of the statistical rectangle. Based on VMS data, we know the fishing positions xi. In standard

processing, to refine the spatial resolution of the declaration, Wa is uniformly reallocated over

the related fishing positions xi. This strongly homogenizes the catch and the effect of the

environment disappears from the reallocated catch Y r
i .
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Fig. 3. (Simulations) Boxplot of the performance metrics for the alternative models. Blue

boxplots: model fitted to point-level data only. Red boxplots: integrated model fitted to reallo-

cated data. Green boxplots: integrated model accounting for change of support, joint approach.

MSPE : mean squared prediction error. β: species-environment parameter. Red line: true value

for the species-environment parameter.
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Fig. 4. (Simulations) Distribution of simulated/estimated biomass field in the log scale for

alternative model configurations.
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Fig. 5. (Simulations) Boxplots of the performance metrics of alternative scenarios for the

number of fishing zones within a single declaration (left) and the level of zero-inflation of the

data (right). x-axis, left: number of fishing zones for a single declaration. x-axis, right: amount

of zero in the data (at the point-level Y (xi)). Blue boxplots: model fitted to point-level data only.

Red boxplots: integrated model fitted to reallocated observations. Green boxplots: integrated

model accounting for change of support. MSPE: mean squared prediction error. β: species-

habitat parameter. Red line: true value for the species-habitat parameter.
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Fig. 6. (Real data) Parameters estimated by alternative models. ’areal’ refers to the areal-level

data. ’point’ refers to the point-level data.
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Fig. 7. (Real data) Maps of common sole distribution in the log-scale predicted by the different

models.
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Supplementary Material

S-I. Reparameterization of the Lognormal distribution

The Lognormal distribution is usually written as Z ∼ L(ρ;σ2) where ρ is the mean

component in the log scale and σ is the variance component. Also, Z = eρ+σN and

N ∼ N (0, 1). In this case, E(Z) = eρ+
σ2

2 and Var(Z) = (eσ
2 − 1)e2ρ+σ2

.

We choose to reparameterize the Lognormal distribution so that ρ = ln(µ) − σ2

2 .

Then:

• Z = µeσN−σ2

2

• E(Z) = µ

• Var(Z) = µ2(eσ
2 − 1) ⇔ σ2 = ln(Var(Z)

E(Z)2 + 1)

S-II. Mixture probability of the individual observation layer

We have to express the probability distribution of Da and its moments as a function

of Y (xi) and its related moments. Let’s assume Y (x) = C(x) · Z(x) is a zero-inflated

Lognormal distribution with C(x) and Z(x) the two components of the mixture. C(x)

is a binary random variable and Z(x) a Lognormal random variable.

C(x)|S(x), x ∼ B(1− p(x))

with p(x) = exp(−eξ · S(x)) the probability to obtain a zero value.

Z(x)|S(x), x ∼ L(
S(x)

1− p(x)
, σ2)

S-III. Probability of obtaining a zero declaration

As mentioned in the core text, the probability to obtain a zero declaration is the prob-

ability that all individual observations within this declaration are null. This gives:
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P(Da = 0) =
∏

i|xi∈Ra

P(Yi = 0|S(xi), xi),

= exp

−
∑

i|xi∈Ra

eξ.S(xi)

 = πa.

S-IV. Expectation of a positive declaration

Conditionally on S and Pj .

E(Da|Da > 0) = E(Da1{Da>0})/P (Da > 0) ,

= E(Da1{Da>0})/ (1− πa) .

As E(Da1{Da>0}) = E(Da), we can write E(Da|Da > 0) as:

E(Da|Da > 0) = (1− πa)
−1 E(Da),

= (1− πa)
−1

∑
i|xi∈Ra

E(CiZi),

= (1− πa)
−1

∑
i|xi∈Ra

(1− pi)
S(xi)

1− pi
,

= (1− πa)
−1

∑
i|xi∈Ra

S(xi).
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S-V. Variance of a positive declaration

The variance then can be expressed as:

Var(Da|Da > 0) = E(D2
a|Da > 0)− E(Da|Da > 0)2.

with,

E(D2
a|Da > 0) = (1− πa)

−1E(D2
a1{Da>0})

= (1− πa)
−1E(D2

a)

and

E(Da|Da > 0)2 = ((1− πa)
−1E(Da1{Da>0}))

2

= (1− πa)
−2E(Da)

2

Then, using these two expressions in the variance formula gives:

Var(Da|Da > 0) = (1− πa)
−1E(D2

a)− (1− πa)
−2E(Da)

2

= (1− πa)
−1(Var(Da) + E(Da)

2)− (1− πa)
−2E(Da)

2.

= (1− πa)
−1Var(Da)−

πa
(1− πa)2

E(Da)
2.

As the (Yi)i|xi∈Ra
are independent, Var(Da) =

∑
i|xi∈Ra

Var(Y (xi)) =
∑

i|xi∈Ra
Var(C(xi)Z(xi)).

Obtaining Var(C(xi)Z(xi)) is then straightforward due to conditional independence

properties:
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Var(C(xi)Z(xi)) = E(C(xi)
2Z(xi)

2)− E((xi)Z(xi))
2,

= E(C(xi)
2)E(Z(xi)

2)− E(C(xi))
2E(Z(xi))

2,

= (1− p(xi))E(Z(xi)
2)− (1− p(xi))

2E(Z(xi))
2,

= (1− p(xi))(Var(Z(xi)) + E(Z(xi))
2)− (1− p(xi))

2E(Z(xi))
2,

=
S(xi)

2

1− p(xi)
(eσ

2 − 1) +
S(xi)

2

1− p(xi)
− S(xi)

2,

=
S(xi)

2

1− p(xi)
(eσ

2 − (1− p(xi)))
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S-VI. Sum up of the main formulas

The main formulas can be summarised as follows:

n.b. all the formulas are conditionned on S and on the fishing positions (xi or Pj).

• The probability to obtain a zero areal-level data

P(Da = 0) = exp

−
∑

i|xi∈Ra

eξS(xi)

 = πa

• The expectancy of a positive declaration

E(Da|Da > 0) =

∑
i|xi∈Ra

S(xi)

1− πa

• The variance of a positive declaration

Var(Da|Da > 0) =

∑
i|xi∈Ra

Var(Y (xi))

1− πa
− πa

(1− πa)2
E(Da)

2

• The variance of an individual observation

Var(Y (xi)) =
S(xi)

2

1− pj
(eσ

2 − (1− p(xi)))

Then, assuming Da|Da > 0 also follows a Lognormal distribution we can write:

Da|Da > 0 ∼ L(µa = E(Da|Da > 0), σ2
a = ln(

Var(Da|Da > 0)

E(Da|Da > 0)2
+ 1))
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S-VII. Simulation domain and data

Fig. S1. Simulated biomass field with point-level samples (scientific data are the red dotes)

and statistical rectangles. The rectangles that have not been sampled by areal data (commercial

declaration) are the transparent rectangles. They represent 1/3 of the full area.
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S-VIII. Simulation of several fishing zones

Fig. S2. Simulations of 10 fishing locations within 1, 3 and 5 fishing zones. The full grid cor-

responds to a statistical rectangle. Crosses are the centroid of the fishing zones. A declaration

declared at the resolution of the statistical rectangle would be uniformly reallocated over these

fishing locations.
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S-IX. Additional parameters of the simulations

Fig. S3. (Simulations) Boxplot of the variance (σ) and zero-inflation parameter (ξ) of the

observation model for the areal-level data. Red boxplots: integrated model fitted to reallocated

data. Green boxplots: integrated model accounting for change of support, joint COS model.

Red line: true value for the parameters.
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