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ANALYTICAL STUDY OF A GENERALISED DIRICHLET-NEUMANN OPERATOR AND
APPLICATION TO THREE-DIMENSIONAL WATER WAVES ON BELTRAMI FLOWS

M. D. GROVES, D. NILSSON, S. PASQUALI, AND E. WAHLEN

ABSTRACT. We consider three-dimensional doubly periodic steady water waves with vorticity, under the action
of gravity and surface tension; in particular we consider so-called Beltrami flows, for which the velocity field
and the vorticity are collinear. We adapt a recent formulation of the corresponding problem for localised waves
which involves a generalisation of the classical Dirichlet—Neumann operator. We study this operator in detail,
extending some well-known results for the classical Dirichlet—Neumann operator, such as the Taylor expansion
in homogeneous powers of the wave profile, the computation of its differential and the asymptotic expansion
of its associated symbol. A new formulation of the problem as a single equation for the wave profile is also
presented and discussed in a similar vein. As an application of these results we prove existence of doubly
periodic gravity-capillary steady waves and construct approximate doubly periodic gravity steady waves.
Keywords: Beltrami flows, vorticity, water waves

MSC2020: 76B15, 76B45, 47G30

1. INTRODUCTION

This paper is concerned with three-dimensional doubly periodic steady water waves with vorticity, under the
action of gravity and surface tension. Irrotational water waves have been studied extensively, both in two and
three dimensions (see the survey paper by Haziot et al. [14] and references therein); fewer results are available for
non-zero vorticity, although it may be significant for modelling the interaction of three-dimensional waves with
non-uniform currents. We restrict ourselves to Beltrami fields, in which the velocity field u and the vorticity curl w
are collinear, so that curl u = au; more precisely, we consider the so-called strong Beltrami fields, for which the
proportionality factor « is a constant (this case appears to be the most relevant, since Enciso and Peralta-Salas
[10] proved that Beltrami fields with non-constant proportionality factors are ‘rare’ in a topological sense).

The importance of Beltrami fields in the context of ideal fluids, and more precisely in the context of stationary
Euler flows, was highlighted by Arnold [3] and Arnold and Khesin [1]: indeed, Arnold’s structure theorem ensures
that, under suitable technical assumptions, a smooth stationary solution to the three-dimensional Euler equation
is either integrable or a Beltrami field. It is thus natural to expect that more complex dynamics (usually associated
to turbulent flows in physical literature) in stationary fluids are related to Beltrami fields (see Monchaux et al.
22]). The dynamics of Beltrami fields, and in particular the dynamics of the so-called ABC flows, have been
numerically studied by Hénon [15] and Dombre et al. [9]. Such studies lead to the conjecture that Beltrami fields
should exhibit chaotic dynamics together with a positive measure set of invariant tori, much like the restriction
to an energy level of a typical mechanical system with two degrees of freedom; recently Enciso, Peralta-Salas
and Romaniega [11] proved that with probability one a random Beltrami field in R* exhibits chaotic regions that
coexist with invariant tori of complicated topology.

There has recently been some interest in variational formulations of the three-dimensional steady water-wave
problem with relative velocities given by Beltrami fields. We mention a recent variational formulation by Lokharu
and Wahlén [20] for doubly periodic waves which is valid under general assumptions on the wave profile (including
for example the case of overhanging wave profiles). More recently, Groves and Horn [12] gave another variational
formulation for localised waves (solitary waves) under the more classical assumption that the free surface is given
by the graph of an unknown function 1 depending only on the horizontal directions. Their formulation, which
can be considered as a generalisation of an alternative variational framework for three-dimensional irrotational
water waves by Benjamin [5, §6.6], is not only more explicit, but it allows one to recover the classical Zakharov—
Craig—Sulem formulation of steady water waves in the irrotational case o = 0. Moreover, this formulation leads
naturally to the definition of a generalised Dirichlet—~Neumann operator H(n) which reduces to the classical
Dirichlet—Neumann operator in the irrotational case.

In this paper we perform an analytical study of the generalised Dirichlet—-Neumann operator (whose definition
is subtly different in the present context of doubly periodic waves) and of a related operator appearing in a
new single equation formulation of the problem, extending some well-known results for the classical Dirichlet—
Neumann operator, such as the Taylor expansion in homogeneous powers of the profile by Craig and Sulem [g],
the computation of its differential by Lannes [18, §3.3], and the asymptotic expansion of its associated symbol
(see Alazard and Métivier [2, §2.4]).
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As an application of the above results, we prove the existence of doubly periodic gravity-capillary waves by
Lyapunov—Schmidt reduction, recovering a result recently given by Lokharu, Seth and Wahlén [19]. We also show
how the reduction can be formally carried out in the absence of surface tension and thus compute approximate
doubly periodic gravity waves in the form of formal power series. The failure of the Lyapunov—Schmidt reduction
for gravity waves is due to the presence of small divisors when attempting to invert the relevant linear operator.
This problem has been overcome for irrotational waves by Iooss and Plotnikov [16, 17] using Nash-Moser theory;
its treatment for Beltrami flows is deferred to a future article.

1.1. The hydrodynamic problem. We consider an incompressible inviscid fluid occupying a three-dimensional
domain with flat bottom, under the action of gravity and surface tension. We study steady water waves, namely
a fluid flow in which the velocity field and the free-surface profile are stationary with respect to a uniformly
translating frame. In this moving frame, the fluid domain can be parametrized by

Dy ={(z',2) eR* xR: —h < z<n(z)},
so that the free surface is given by the graph of an unknown function n: R* — (—h, 00), and h > 0 is the depth of

the fluid. We consider a so-called strong Beltrami flow, in which the velocity field w: D, — R? and the vorticity
curl u are collinear, that is curlu = au for some constant a. The equations describing the flow are given by

(1.1) divu =0 in Dy,

(1.2) curlu = au in Dy,

(1.3) u-e3=0 at z = —h,

(1.4) u-n=0 at z =1,
L2 Nz My 12

1.5 - ey () 1 A

(15) s 0n=0 () 0 (), =5l we=n

where V1 == (n2,71,)7, g is the acceleration due to gravity, 8 is the coefficient of surface tension, ¢ := (c1,¢2)7 is
the wave velocity, e3 := (0,0,1)T and
_ 1
R
denotes the outward unit normal vector. We discuss doubly periodic solutions to (1.1)—(1.5), that is solutions
which satisfy

N7 N = (_n17_ny71)T

n(x' + ) =n(z), u(x’ + A, 2) = u(x’, 2)
for every A € A, where A is the lattice given by
A= {)\ = miA1 +mala: mi,mg € Z}

for two linearly independent vectors A1, A2. The functions n and w are thefore defined on the periodic domains
R?/A and (with a slight abuse of notation) D, /A.
A ‘trivial solution’ of (1.1)—(1.5) is given by (0,u*), where u* is the two-parameter family of laminar flows

ut = cut + CQu(Q), c1,c2 €R,
uM == (cos(az), — sin(az),0)7,
u'? = (sin(az), cos(az),0)”.

We consider solutions (n,u) of (1.1)—(1.5) which are small perturbations of (0,u*); setting v = u — u* and
representing the velocity field v by a solenoidal vector potential A, we seek solutions (7, A) of the equations

(1.6) divA =0 in Dy,

(1.7) curlcurl A = acurl A in Dy,

(1.8) Axe3=0 at z = —h,

(1.9) A-n=0 at z =1,

(1.10) curlA-n+u*" -n=0 at z =1,

(1.11) l\curlA\Q—&—curlAﬂu*—i—gﬁ—B (7771) -3 (n7y> =0 at z =m.
2 (I+[Vn)2 ), (A +[vnl*)2/,

Note that (1.1)—(1.3) are implied by (1.6)—(1.8), while (1.4), (1.5) are equivalent to (1.10), (1.11); furthermore

u* = curl A*, where

A" =L AD 2 Q)
« [
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AW = (cos(az) — 1, —sin(az),0)7,
AP = (sin(az), cos(az) — 1,0)7.

Remark 1.1. In the irrotational case o = 0 we can write curl A = grad ¢ for a scalar potential ¢, so that
(1.6)=(1.11) becomes the classical steady water-wave problem

Ap =0 in Dy,
Onp =0 at z = —h,
(1+|Vnf*) 20,0 = ¢ Vn atz=n,
1 2 T Nz Ny
- d (s — = ) _ v} = tz=mn.
2|gra ol"te (parpy) +gn—8 ((1+|V7)|2)1/2)x B ((1+|V17|2)1/2 , 0 atz=m

1.2. The formulation. Let F = (F}, F, F3)T be a three-dimensional vector field, and denote by Fy, = (F1, Fg)T
its horizontal component and by F = Fj, + F3Vn|.=, the horizontal component of its tangential part at z = 7.
Let f = (f1, f2)T be a two-dimensional vector field and write f+ = (fa, —f1)7. According to the Hodge-Weyl
decomposition for doubly periodic vector fields on R? (see Majda and Bertozzi [21, Proposition 1.18]) we have

(1.12) f=7+Vo+V"U,

vi=(f), e=ATHV-f), Wi=ATHVS),
where (f) denotes the mean value of f over one periodic cell, V := (9;,8,)T, V* := (9, —0,)T and A™! is the

two-dimensional periodic Newtonian potential.
Equations (1.6)—(1.11) can be reformulated in terms of n and the mean-value and gradient-potential parts of

(curl A)|| using the following procedure. Fix v and ®, let A be the unique solution of the boundary-value problem
(1.13) divA=0 in Dy,

(1.14) curlcurl A = acurl A in Dy,

(1.15) Axe3=0 at z = —h,

(1.16) A-n=0 atz =1,

(1.17) (curl A)y :7+V¢>—aVJ‘A71(V~Aﬁ‘) at z =1,

and define the generalised Dirichlet—Neumann operator by the formula

(1.18) H(n)(v,®) =curl A- N|.—, = V- Aj.

(Note that ¥ = A™' (V" (curl A)|) is necessarily given by ¥ = —a A™'(V - Aﬁ‘) because

(1.19) ¥ =-A"YV- curlAﬁ‘) = A" (curlcurl A - N’ _)=—aA M (curl A- N|_)=-«o ANV AJ”‘),
z=n z=n

in which the vector identity curl F' - N|z:n =V- F”J‘ has been used.)

Proposition 1.2. Equations (1.10) and (1.11) are equivalent to

(1.20) H(n)(v,®) +u” - N|.—,; =0,
1 > (Hn)(v,®) + K(n)(v, ®)-Vn)?
LK) ) b K
(1.21) + K0 (v, ®)  uf|oeny +gn— B (W)wfﬂ ((1_“3?;}'2)1/2)”: 0,

where
K®n)(v,®) =7+ V®—aV A~ (H(n)(y,®)).

This proposition, which is established by an elementary calculation, shows that the mathematical problem
reduces to solving (1.20) and (1.21) for n and ® (with an arbitrary choice of «); the velocity field v = curl A is
recovered by solving (1.13)—(1.17). The method was first given in the context of solitary waves (with a slightly
different Hodge—Weyl decomposition for spatially extended functions) by Groves and Horn [12]; note however the
spurious extra term in the statement of the equations in that reference.

Remark 1.3. In the irrotational case a« = 0 one finds that curl A = grad ¢, where ¢ is the unique harmonic
function such that @n|.=—n =0 and @|.=y = @, so that v = 0 (because (grad ¢)| = V(¢|.=)) and

H(n)(0,®) =Vo: N|.—y = G(n)?,
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where G(n) is the classical Dirichlet-Neumann operator. Furthermore, equations (1.20), (1.21) reduce to
Gm®+c-Vn=0,

G(n)® + Vn - V)2 N =
e - —c- Vo 4+gn—p| —=— ) -8 —="——+) =0,
A (S ) M=\ et ) T Na s weme )

so that we recover the Zakharov—Craig—Sulem formulation of the steady water-wave problem (see Zakharov [27]
and Craig and Sulem [3]).

We proceed by specialising to v = 0, writing ¢ = ¢o + p, where ¢o = (c1o0, czo)T is a reference wave velocity to
be chosen later, so that
u* = (cr0 + Hl)u(l) + (c20 + uz)u(z),

and reducing equations (1.20), (1.21) to a single equation for 7 (see Oliveras and Vasan [24] for a derivation of the
corresponding single-equation formulation for irrotational water waves). Eliminating ® from (1.21) using (1.20),
we find that

T, ) = a2 CENITO V) gy gy (niz)jﬁ ((77) =0,

2 201+ [Vnl?) (L+[Vn[?)1/2 L+ [Vn|2)t/2
where
T(n) ==V (H{n)(0,) ' (u" - N)) + a VA" (u" - N)
and the underscore denotes evaluation at z = 7.
Remark 1.4. Let Sy be the reflection
Son(z’) = n(-="),
and T, be the translation
Ton(x') = n(z +v).
The mapping J is equivariant with respect to both So and T, that is

J(Torn, i) = Ty J (0, 1), J(Son, ) = SoJ(n, ).

The operator T'(n) can be defined more rigorously in terms of a boundary-value problem. Noting that
u* - N =V-8(n)*, where
_ ¢ (cos(an) -1 c2 sin(an)
(1.22) S(n) = a ( —sin(an) T cos(an) —1)"
we can define
T'(n) = M(n)(0,5(n)),
where
M(n)(v,g) = —(curl B)y,

and B solves the boundary-value problem

(1.23) curlcurl B = a.curl B in Dy,
(1.24) divB =0 in Dy,
(1.25) Bxe3s=0 at z = —h,
(1.26) B-n=0 at z =1,
(1.27) V~Bﬁ:V~gL atz =1,
(1.28) ((curl B))) = .

Any solution to this boundary-value problem satisfies
(curl B)j =+ V® —aV A~ (V- Bj)
for some ® (see equation (1.19)), so that ® = H(n)(v,-) 'V - g+ and
~(curl B)| = —y = V(H(n)(~,) 'V -g7) +aV AT (V- g7).

A rigorous treatment of the boundary-value problems (1.13)—(1.17) and (1.23)—(1.28) is given in Section 2.1
using a traditional weak/strong-solution approach.
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1.3. Analytical results for the operators H and M. We write functions f: RQ/A — R as Fourier series
fla)) = Z Fre®’
keA’

where A’ is the dual lattice to A; the Fourier coefficients fk are given by
~ 1 il !’
fk _ 7/ f(a:')e ik-x daz'7
12 Jo

where Q is the parallelogram built with A1, A2. We write k = (k1, kz)T and work in the Sobolev spaces

H*(R*/A) = {f e LX(®*/A): |If115 =D (1+ k)" |fel® < 00}7 520,

keA!
and their subspaces
H*(R*/A) = {f € H (R®): fo =0}
of functions with zero mean, noting that the Hodge-Weyl decomposition (1.12) of a function f € H*(R*/A)? is
given by
R® 5 v = (fi0, f20)",

HP @ /AP 50=- ) (”“f b 2’“) e’

|k|?
keA’
k£0
bl 2 A2 _ iko fire — ik for \ ikea’
ke’
k£0

In Section 2.2 we show that the solutions to the boundary-value problems (1.13)—(1.17) and (1.23)—(1.28)
depend analytically upon 1 and use this result to deduce that the same is true of H(n) and M (n). We proceed
by ‘flattening’ the fluid domain by means of the transformation ¥: Do — D, given by

S (2, v) = (2, v+ o2, v)), o(x',v) =n(x)(1+v/h)

which transforms the boundary-value problems for A and B into equivalent problems for A = AoY. and B := BoX
in the fixed domain Dy (equations (2.16)—(2.20) and (2.21)—(2.26) respectively). The spatially extended version

of the boundary-value problem for A was studied by Groves and Horn [12, §4] under the following non-resonance
condition.

(NR) The restrictions
k| # |al,
a? — |kl ¢ 5N, if|k| <laf,
hold for each k € A'.

Their analysis in the present context leads to the first statement in the following theorem; the second is deduced
from it. Condition (NR) is a blanket hypothesis in Sections 2.3, 2.4, 3 and 4, which rely upon these theorems.

Theorem 1.5. Suppose that s > 2, and assume that the non-resonance condition (NR) holds. There exists an
open neighbourhood U of the origin in HS+%(R2/A) such that

(i) the boundary-value problem (2.16)~(2.20) has a unique solution A = A(n,~,®) in H*(Do/A)* which depends
analytically upon n € U, v € R? and & € }DIS_%(]Rz/A) (and linearly upon (v, ®));

’

(i) the boundary-value problem (2.21)~(2.26) has a unique solution B = B(n,~,g) in H*(Do/A)* which depends
analytically uponn € U and g € H#%(R2)2 (and linearly upon (v,g)).

The analyticity of H, M and T follows from Theorem 1.5 and the facts that
(1.29) H(n)(v,®)=V-Aj,  M(n)(v,9) = —(curl” B)|,
and T(n) = M (n)(0, S(n)), where

curl” B(z',v) := (curl B) o X(x’,v).
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Theorem 1.6. Suppose that s > 2, and assume that the non-resonance condition (NR) holds. There exists
an open neighbourhood U of the origin in Hs+%(R2/A) such that n — H(n), n — M(n) and n — T(n) are
analytic mappings U — L(R? x H*"2(R2/A), H*=%(R?/A)), U — L(R> x H*"2(R?/A)% H*"2(R?/A)?) and
U— Hsfg(R?/A)2 respectively.
In Section 2.3 we turn to the differentials of H(n) and M(n). Applying the operator d — dody, where

35 = (1 + 8,0) 78y, to equations (1.29) shows that

dH[n](én)(v,®) =V - C"f‘ + 87 curl” A - N|y—odn — (curl” A)y, - Von,

dM(n](dn)(v,9) = —(curl’ D) — dn(d5 curl” B)| — (curl” B)s|v—oVdn,
where C = (dA — dodJ A) and D = (dB — dodJB). Careful inspection of the boundary-value problems for
C and D (which are obtained by applying d — dod] to the boundary-value problems for A and B) yields the

following result. Note the increased regularity requirement due to the double application of H(n) and M (n) in
the formulae.

Theorem 1.7. Suppose that s > 3.
(i) The differential of the operator H(-): U — L(R? x }OIS*%(]RQ/A), 1—0157%(]1%2/A)) is given by
dH [n](dn) (v, @)
= H(n) (~al(K )y, ®) = uVn)"on), ~aA ™V - (K (n)(v, ®) — u¥n)*5n) — uén + (udn))
= V- (K ()(y, ®) — uVin)dn),

where

y KM, ®) - Vn+ H(m(y, ¢)
1+[Vn|?
(ii) The differential of the operator M(-): U — L(R? x H“%(R2/A)2,H“%(R2/A)2) is given by
dM [n](6n)(v; 9)
= M) (al(M(n)(v,g) + u¥n)“on), (M (n)(v,9) +u¥n)"6n) = V(uon) + a(M(n)(v,g) + udn) "o,

where N
we V9 = Mm)(v.9)-Vn
1+ [Vnl? '

In Section 2.4 we show how to use recursion formulae to compute the terms in the Taylor expansions

(1.30) H(n) = ZHj(n% M(n) = ZMj(n)

of H(n) and M (n) at n = 0 systematically, where H;(n) and M (n) are homogeneous of degree j in 1 (compare with
the recursion formulae for the Taylor expansion of the Dirichlet—-Neumann operator appearing in the irrotational
case given by Craig and Sulem [8]). The recursion formulae are derived by substituting the expansions (1.30)
into the expressions for dH [n](n)(v, ®) and dM|[n](n)(v,g) given by Theorem 1.7, and equating terms of equal
homogeneity in 7. The individual terms in the series are computed as functions of Hy and M) using the recursion
formulae, and straightforward calculations using Fourier series show that
1
Ho(v,®) = D’t(D)®,  Mo(v,9) = =7+ 355 (aD* +De(D)) D -g*,
where
tan(hy/a2—|k|2) .
(IkD) Va2 — k]2 cot(hy/a2 — [k[2), if [k| < |al, w(lk)) Terar Ikl <lad,
C = =
k]2 — a2 coth(h/|k|]2 — a2), if |k| > |a], tanh(i/ kP —0%) 4 gl s |af
and
D= (D, D))" =-iv, D=|D|.
Explicit formulae for Ho, H1, Hz and My, My, Ms are are computed in Section 2.4.

Remark 1.8. This method leads to formulae involving ever more derivatives of n in the individual terms in
the formulae for Hj(n) and M;(n); the overall validity of the formulae arises from subtle cancellations between
the terms (see Nicholls and Reitich [23, §2.2] for a discussion of this phenomenon in the context of the classical
Dirichlet-Neumann operator).
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1.4. Pseudodifferential calculus for the operators H and M. In Section 3 we fix n € C°°(R?/A), prove
that H(n)(0,-) and M (n)(0,-) are smooth perturbations of properly supported pseudodifferential operators, and
compute their asymptotic expansions.

Following Alazard, Burq and Zuily [1], we begin by introducing a localising transform (which differs from the
flattening transform used in Section 2). Choose ¢ > 0 so that the fluid domain D, contains the strip

Qs = {(x',2) e R* x R: (') — 6h < z < n(x’)}
for n € U and define : Dy — Qs by
S (@, w) = (@, 0@, w),  o(@,w) = dw+n(a).
This transform converts the equation
—AU = acurlU in Qs
into
—A°U —acurl?’U =0 in Dy,
where
curl? U(z',w) = (curl U) o X(x', w), AU = (AU) o %(z',w),

which we write as

(1.31) LU =0
(the explicit formula for L is given in Section 3.1). We proceed by implementing Treves’s factorisation method
(Treves [26, Ch. 11, §3]) and examining its consequences for solutions of equation (1.31).

Lemma 1.9. There are properly supported operators M, N € \III(RQ/A) such that
(i) L — a(0wI — N)(Ouwl — M) € U°°(R?/A), where a = (14 |Vn|?)/6?,

(i) the principal symbols M(l), N of M, N take the form M = m(l)llg, N = n(l)]lg, where the scalar-valued
symbols mP, —nM € §* (R?/A) are strongly elliptic.

Lemma 1.10. Any function U € H*(Do/A)* with LU = 0 in Dy satisfies
8,U = MU + R, U atw =0,
where the symbol Roo denotes a linear function of its argument whose range lies in C°°(R?/A)3.

Let s > 2, ® € Itols_%(Rz/A) and A € H*(Do/A)? be the function defining H(n)(0, ®) (see equation (1.29)).
The variable

Az w) = Az, v), w = 6ih(h +n)v
satisfies (1.31) and hence
(1.32) OwAlw=o = MAly—o + Roc®
(see Lemma 1.10, noting that A is a linear function of ®), together with
(1.33) Az = Ay + 1y A, at w =0,
(1.34) (curlQA)” =Vd—aV AT (V- Aﬁ‘) atw = 0.

Eliminating 8,, A using (1.32), we find from (1.33), (1.34) that

(1.35) Al = Z® + Roo @,

where Z € S° (RQ/A) and Z = Op Z. Finally, inserting A|w:0 and awA\w:o from (1.32), (1.34) into
H(n)(0,®) = Azy + 1y Ase — Ary =12 Asy |,

shows that
H(n)(0,®) = Op Aa® + R,
where A, € S*(R?/A). The asymptotic expansions
2~ 29 A~ YY)
can be determined recursively by substituting
Alyeo = Z® + Roa®,  8uwAlw—o = MZ® + Rou®

into (1.33), (1.34). These calculations are performed in Section 3.2 and summarised in the following theorem.



8 M. D. GROVES, D. NILSSON, S. PASQUALI, AND E. WAHLEN

Theorem 1.11. Suppose s > 2, n € C®°(R?/A) and ® € H*"Y/2(R?/A). We have that
H(n) (v, ®) = H(n)(v,0) + H(n)(0, ),
the first term of which belongs to C=(R?/A), and
H(n)(0,®) = Op Aa® + R,
where Ao € SY(R?/A) and Roo® € C(R?/A). The symbol Ao admits the asymptotic expansion
Ao ~ AL 4O 4
in which )\g)(:c', k) is homogeneous of degree j in k. Moreover
A (@ k) = AV (' k),

2O (' k) = A (! k) Lok V(K- Vin)

|k[? ’
where
A (@' k) = /(1 + Vi) k[ = (k- V)2,
i (1)
0) (! .,1‘HV77|2 (1) . (1) o, (1) 1)/ _ik-Vn+ A
XO(@ k) = 0 (V- @® v +ivr® - va®),  m (&' k) = S o

are the principal and sub-principal symbols of the classical Dirichlet—Neumann operator.
The corresponding result for M (n) is obtained in a similar fashion in Section 3.3.
Theorem 1.12. Suppose s > 2, n € C*°(R?/A) and g € H*~'/?(R?/A)?. We have that

M(n)(v,g) = M(n)(v,0) + M(n)(0, g),
the first term of which belongs to C*(R?/A)?, and

M (n)(0,9) = Oprag + Rog,
where v, € S*(R?/A) and Reog € C°(R?/A)?. The symbol vo admits the asymptotic expansion

yawy&1)+yé0)+...7

in which l/((lj)(a:', k) is homogeneous of degree j in k. Moreover

A g = kB0 g = (200) (o),

)\(1) CQ(QI ) )
where
C1(93/7 k) = m (kf(—l + 27}5)7755 — kikany (3 + 477925) + 2k§77m(1 + 7]3) + ikl/\(l))
a
X (k%nyy - 2k1k277xy + kg"]mx) + W (k2(1 + 7]3) - klnx'r]y) 5
Go(a' k) = m <2kfny(1 +11y) = kikane (3 + dn)) + kany (=1 + 207) + ikw\(”)
x [ k3nyy — 2k1kaney + kan 42 (k1 (14 n2) + kanan )
1Myy oy 2Nzz ()2 v vy
1.5. Construction of approximate solutions. In Section 4 we construct approximate solutions of
(1.36) J(m,p) =0

for B > 0 in the form of power series and moreover prove their convergence for 8 > 0. The solutions have wave
velocity ¢ close to a reference value ¢p chosen such that the following transversality condition holds; we refer
to Lokharu, Seth and Wahlén [19] for a detailed geometrical investigation of this condition (see in particular
condition (3.7) and Proposition 3.3 in that reference).

(T) The only solutions k € A’ of the dispersion relation

«a
plk,e.B) = g+ B |k - o (e k)(k™ - o) | [k e(k]) — (e- k)* =0

are k = 0, +k1, +ko, where k1 and ks are the generators of the lattice A’. Furthermore, the vectors V. p(k1, co, 3)

and Ve p(k2, co, B) are linearly independent.
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We consider J as a locally analytic mapping X? x R? — H® (R?/A) for a sufficiently large value of s, where
8 JHTR/A), i B >0,
° HsTH(R?/A), if B=0,
and proceed to investigate the kernel and range of

Jio(n) = d1J[0,0](n) = T1(n) - co + gn — BAn.

Writing
n(z') = Z e
keA!
so that
(iom)(@') = gilo + Y p(k, co, B)ie™ ™,
keA’\{0}
we find that

ker(J10) = {Aeiklml 4 Belk2®' | fomikva’ | po—ikal A Bec)

since p(k, co,8) = 0 if and only if k = 0,+k1,Ltks. The operator Jip is formally invertible if fikl = fikz =0
with formal inverse given by

_ ’{72 2 ik-x
(Jmlf)( fO + ’;/ mﬁcek .

k#0,+k,tko

For B > 0 we find that p(k, co, 3) 2 |k|* for sufficiently large | k|, so that the above series converges in H*T2(R?/A)
for f € H*T?(R?/A); it follows that Jio: H*T?(R*/A) — H*(R?/A) is Fredholm with index 0. In contrast
p(k, co,0) is not bounded from below as |k| — oo, so that the above formula does not define a bounded operator
from H*(R?/A) to H*T1(R?/A) for any s. We therefore proceed formally, noting that the procedure is rigorously
valid for g > 0.

To apply the Lyapunov—Schmidt reduction to equation (1.36) we write n = n1 + 12, where

m = Aeikl.wl + BeikQ'z/ + Ae_ikl'w/ " Be_ikT“”/
and n2 € ker(Jw)J-. Noting that Sy and T, act on the coordinates (A, B, A, B) as
SO(A’ B’ A’ B) = (A7 B’ A7 B)v T’v’(A7 B7 A7 B) = (146“‘:1"0/7 BeikQ"L’/7 Ae*ikl"vl’ Befikz"u’)’

and that the reduced equation remains equivariant under these symmetries, we show that (1.36) is locally equiv-
alent to

Agi(|AP%,|BI*, ) = 0,
Bga(|A]%, |BI*, u) = 0,

where g1, g2 are real-valued locally analytic functions which vanish at the origin. The following result is obtained
from the analytic implicit-function theorem and the transversality condition (T).

Proposition 1.13. There exist € > 0 and analytic functions p;: B:(0,R?*) — R, i = 1,2 such that 11;(0,0) = 0
and (|A]?, |B|?, pa(|A?, |BJ?), p2(|A|?, | BJ?)) is the unique local solution of gi(|A],|B|>,u) =0, i = 1,2.

Our main result now follows by substituting p = w(|A|?, |B|?) into n = m + n2(1n1, p).

Theorem 1.14. Suppose that 8 > 0. There exist € > 0, a neighbourhood V' of the origin in X? x R? and analytic
functions p1, pz: B-(0,R?) = R and n: B.(0,C*) — X& such that

{(n.m) € XT X R*: J(n, ) =0, n#0} NV = {(n(A, B, A, B), u(|A]*,|B|")): (A, B, A, B) € B.(0,C*)};
Sfurthermore p(0,0) = 0 and
n(a') = Ae*1®’ 4 Belk2e’ o femk1e’ | ge~ikae’ L O(|(4, B, 4, B)?).
The terms in the expansions
n=Ae*1 4 Bek2® 4 Aemhie’ 4 Bemikaa’ L NN AT BT AMB!
i+j+h+1>2

and

ST wlAPIBPE, =12,
J+k>1
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can be determined recursively by substituting these expressions into (1.36) and equating monomials in (4, B, 4, B).
Note that the series can be computed to any order for 8 > 0 but their convergence has been established only for
B > 0. The coeflicients n;x; for i + j +k + ¢ =2 and p1,jk, p2,x for j + k =1 are computed in Section 4.

2. THE OPERATORS H (1) AND M (n)

In this section we study the operators H(n) and M (n) defined by

(2.1) H()(v,®) = V- A,  M(n)(v.g) == —(curl B),
where A and B are the solutions to the boundary-value problems

(2.2) curlcurl A = acurl A in Dy,
(2.3) divA=0 in Dy,
(2.4) Axe3=0 at z = —h,
(2.5) A-n=0 atz =1,
(2.6) (curl A)y =v+ Vo - avVitATH (V- Aﬁ‘) atz =17
and

(2.7) curlcurl B = acurl B in Dy,

(2.8) divB=0 in Dy,

(2.9) Bxe3s=0 at z = —h,

(2.10) B-n=0 at z =1,

(2.11) V-Bj=V-g",

(2.12) ((curl B)j) = 1.

2.1. Weak and strong solutions. We first suppose that 7 is a fixed function in W2°°(R?/A) with infn > —h

and present a traditional weak/strong-solution approach to the boundary-value problems (2.2)—(2.6) and (2.7)—

(2.12), working with the standard spaces 2(D,/A)* and 2(D, /A)* of periodic test functions, the Sobolev spaces
2(D,/A)* and H*(D,;/A)?, and the closed subspace

X,={F e H(D,/A\)?: Fxe3|.—_n=0, F-n|,—, =0}

of H (D, /A)?.
Definition 2.1.
(i) A weak solution of (2.2)—(2.6) is a function A € X, such that

(2.13) // (curlA-curlC — acurl A - C +div A divC) fa/VA (V- A) CH:/('VJ‘+VJ"1>)~CH
Q

for all C € X,,, while a strong solution has the additional reqularity requirement that A € H*(D,,/\)?, is solenoidal
and satisfies (2.2) in L*(D,/A)® and (2.6) in H%(Rz/A)Z.
(i) A weak solution of (2.7)—(2.12) is a function B € X,, which satisfies (2.11) and

n
(2.14) // (curl B - curl D — accurl B - D + div B divD):/('yl—&—aVA_l(V-gL))-DH
Q

for all D € Xf,), where
X, ={F €X,:V-Fj =0},

while a strong solution has the additional regularity requirement that B lies in H*(D, /A)?, is solenoidal, satisfies
(2.12) and satisfies (2.7) in L*(D,/A)3.

The existence of weak and strong solutions is established in Lemmata 2.5 and 2.6 below, whose proofs rely
upon the following technical results (see Groves and Horn [12, §4(b)]).
Proposition 2.2.
(i) The space X, coincides with

{F € L*(D,/A)*: carl F € L*(D,/A)®, div F € L*(D,/A), F x €3].=—y = 0, F - n|.—, = 0}

and the function F — (]| CurlF||2Lz(Dn/A)3 + || div FH2L2(D77/A))% is equivalent to its usual norm.
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(i) The spaces

{FeL?*(D,/\) (D, /A)?, div F e L*(D, /A
{FeL?(D,/\)?: curl F€L*(D,/A) (D,/A
{FeL*(D,/N)?: curl Fe€ L*(D,/A)?, div F € L*(D, /A
{FeL*(D,/\)?: curl Fe L*(D,/A) (D,/A
coincide with H'(D,/A\)3.

F X esl.en€H?(R?/A)?, F- N|.—p€ H? (R>/A)},
F x es|l.—_, € H2 (R?/A)®, Fi- € H2 (R?/A)%},
F-esl.e_n, € H*(R®/A), F - N|.—, € H? (R>/A)},
F.esl.—_ncH?(R?/A), Fi- € H2 (R?/A)%}

3. cwrl FeL*(D
3 divFelL?

- = =

JN)?, div Fe L*(D

(#i) The space
{F € L*(D,/A)*: catl F € H'(D,,/A)?, divF € H'(D,/A), F x e3|.=—n = 0, F - n|.—, = 0}
coincides with {F € H*(D,/A)*: F x e3],——, =0, F -n|,—, = 0}.
Proposition 2.3.
(i) It follows from the formula

// (F-curlG —curll F - G) /F” -G, F e 2(D,/A)?, Ge H (D,/A)? G|.e—r, =0
that the mapping F +— FH defined on P( 77/A) ertends to a continuous linear mapping

{F € L*(D,/A)?: cwrtlF € L*(D,/A)%} — Hff(R2/A) , where the former space is equipped with the norm
Fr (||F||L2(DW/A)3 + Cur1F||L2(D /a)3)7 -

m\»—A

(i) It follows from the formula
n
/ / curl F - grad ¢ = / curl F - N¢|.=, F e 9(D,/\?, ¢ € H(Dy/A), ¢|l.=—n =0
QJ-h Q

that the mapping F +— curlF - N|,—, deﬁned on 2(D,/MN)® extends to a continuous linear mapping

{F ¢ L[*(D,)?: divF ¢ L*(D,)} — H_f(]RQ) , where the former space is equipped with the norm
'

F = (|F|72(p, e + I div Fl|72(p,)) 2

Proposition 2.4. The boundary-value problem
Ap=F in Dy,

O =f at z =1,
¢=0 at z=—h

has a unique solution ¢ € H*(D,/A) for each F € L*(D,/A) and f € H%(SW/A).

Lemma 2.5.

(i) For all sufficiently small values of |a| the boundary-value problem (2.2)—(2.6) admits a unique weak solution for
each v € R? and ® ¢ I—DI%(RQ/A). The weak solution is solenoidal and satisfies (2.2) in the sense of distributions
and (2.6) in H™2 (R?/A)2.

(i) For all sufficiently small values of |a| the boundary-value problem (2.7)—(2.12) admits a unique weak solu-

tion for each v € R? and g € H%(RQ/A)2. The weak solution is solenoidal and satisfies (2.7) in the sense of
distributions.

Proof.
(i) The estimates

n
A c] <Al oy e €1 (0, o

/VA A)- CH‘ S 1AylollCyllo S [[AL=all 1 1Cl=nlly S Al 0, /22 IC 1 (D, /008

and Proposition 2.2(i) imply that for sufficiently small values of |«| the left-hand side of (2.13) is a continuous,
coercive, bilinear form &, x &, — R, while the estimate

[t +vie) ¢ £ (2119l

ICl=nlly < (VI + [ RIDNC 1 (D, /808
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shows that its right-hand side is a continuous, bilinear form (R? x H%(RQ/A)) X Xn, — R. The existence of a
unique solution A € &), now follows from the Lax-Milgram lemma.

Let ¢a € H?*(D,/A) be the unique function satisfying A¢a = divA in D, with boundary conditions
Ondaly=n =0, da|.=—r = 0 (see Proposition 2.4). It follows that C = grad ¢a € X, and hence

n
/ / (—acurl A-gradga + (divA)?) — a/ VATV - Af) - V(dalz=n) =0
QJ-n Q
(because C|| = V(¢al|==y), which is orthogonal to 4 and V*®). Since

n
// curl A - grad ¢ a :/cur1A~N¢A|Z:n :/V~AJH‘¢>A|Z:7,:—/ VAfl(V-AJ”‘)-V(ngA\z:n)
oJ-n Q Q Q

(see Proposition 2.3(ii)), one concludes that div A = 0.
Choosing C € 2(D,/A)?, one finds that A solves (2.2) in the sense of distributions and hence that

curlcurl A € L?(D,,)3. Tt follows that (curlA)ﬁ € H_%(IRQ)2 (Proposition 2.3(i)) and
n
/ / (curlcurl A — accurl A) - C + / ((curlA)ﬁ‘ —yt = Ve —avVA (V- AJH‘)) -C) =0.
QJ-n Q

One concludes that (2.6) holds in H % (R?/A)2.

(ii) Let F € H'(D,/A)? be a function such that F = g and F X e3|.—_, = 0, and let ¢r € H?*(D,/A) be the
unique function satisfying A¢r = div F' in D,, with boundary conditions 0n¢F|.—n = F - n, ¢F|.=—r = 0 (see
Proposition 2.4). It follows that G := F — grad ¢ satisfies divG =0, G- n|.—, = 0 and V- Gﬁ =V.g' because
V- (grad ¢r)jf = V- V(¢r|.=y)" = 0. We accordingly seck C € X, such that

n
// (curl C-curl D — accurl C - D + div C div D)
aJ-n

n
(2.15) :—L/h(curlG-curlD—acurlG~D)+/Q(’yl+ocVA_l(V-GL))-D”

for all D € X)), so that B = C + G is a weak solution of (2.7)-(2.12).

For sufficiently small values of |a| the left-hand side of (2.15) is a continuous, coercive, bilinear form
X,(I) X X,(]) — R, while the right-hand side is a continuous, bilinear form (R* x X,) x X,(]) — R. The existence
of a unique function C € X,? satisfying (2.15) for all D € X,? now follows from the Lax-Milgram lemma, and the
corresponding weak solution B to (2.7)—(2.12) is unique since the difference between two weak solutions satisfies
(2.15) with v = 0 and g = 0 for all D € X;) and is therefore zero.

Let ¢ € H?*(D,/A) be the unique function satisfying A¢g = divB in D, with boundary conditions
On¢B|:=n = 0, ¢B|.——n = 0 (see Proposition 2.4). Substituting D = grad¢p € A, into (2.14), we find
that

n
/ / (— acurl B - grad ¢ + (divB)z) = a/ VA~V - Bﬁ‘) -V(¢B|:=n),
QJ-n Q

and since .
7// curl B - grad ¢ = f/v-BWBp:,7 :/VA*l(v-Bﬁ)-V(qu\zzn),
QJ—h Q Q

one concludes that div B = 0.
Finally, taking D € 2(D,,/A)? in (2.14), we find that B satisfies (2.7) in the sense of distributions. O

Lemma 2.6.
(i) Suppose that v € R? and & € Jisi (R?/A). Any weak solution A of (2.2)~(2.6) is in fact a strong solution.

(ii) Suppose that v € R? and g € H? (R%/A)2. Any weak solution B of (2.7)~(2.12) is in fact a strong solution.
Proof.
(i) Recall that curlcurl A € L*(D,;/A)? and
(curl A)f =4 + V@ +aVA (V- A)
holds in H~2 (R2/A)%; hence (curl A)j € Hz(R?/A)? (because the right-hand side of this equation belongs to

H%(R2/A)2). Since 0 = diveurl A € L*(Dy/A) and curl A - e3|.—_p = 0 it follows that curl A € H'(D,/A)?
(Proposition 2.2(ii)), and furthermore curl A € H'(D,/A)? 0 = divA € H'(D,/A) with A x e3|,—_» = 0,
A - n|,—, = 0 imply that A € H?*(D,/A)?® (Proposition 2.2(iii)). Finally note that (2.2) holds in L*(D,/A)?
because it holds in the sense of distributions and A € H?*(D,,/A)3.
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(ii) Clearly 0 = divcurl B € L*(D,/A) and curlcurl B € L*(D,/A)? because (2.7) is satisfied in the sense of
distributions and curl B € L?(D,,/A)?; furthermore

curl B N|,—, =V - Bﬁ =V.g-c I—DI%(Rz/A), curl B - es|;=—n =0,

so that curl B € H'(D,/A)? by Proposition 2.2(ii). Next note that curl B € H'(D, /A)?, 0 = div B € H'(D,/A)
with B x e3|,——» = 0, B - n|,—, = 0 implies that B € H?*(D,;/A)? by Proposition 2.2(iii), and (2.7) holds in
L?(D, /A)? because it holds in the sense of distributions and B € H?(D,,/A)?. Finally

n
/ / (curlcurl B — acurl B) - D +/ ((curlB)ﬁ‘ -yt —avVA (V- BJH‘)) D=0
QJ-n Q

=0
for all D € X, which implies that (CurlB)ﬁ =4t + VIO +aVA (V- Bﬁ) for some ® € ﬁ%(RQ/A) and in

particular that (2.12) holds. O

Remark 2.7. Suppose that B € H*(D,/\)? satisfies (2.7)~(2.12). The orthogonal gradient part of (curl B) is
equal to —a VATV - Bﬁ)

Corollary 2.8. The formulae (2.1) define linear operators H(n): R? x fI%(RQ/A) — Hz (R%/A) and
M(n): R x H3(R?/A)® — Hz (R?/A)%.

2.2. Analyticity. In this section we show that improved regularity of n, ® and g leads to improved regularity
of the solution to the boundary-value problems (2.2)—(2.6) and (2.7)—(2.12) and use this result to deduce that
H(n) and M (n) depend analytically upon 7 (see Theorem 2.11(i) below for a precise statement). We proceed

by transforming (2.2)—(2.6) and (2.7)—(2.12) into equivalent boundary-value problems in the fixed domain Dy by
means of the following flattening transformation. Define ¥: Dy — D,, by

S (2, 0) = (2,0 + o(x',v)), a(z',v) = n(x)(1+v/h),
and for f: D, = R and F: D, — R® write f = fo X, F = F o X and use the notation
(@', v) = (grad f) o B(x',v),
div? f(a',v) == (div f) o B(x,v),
curl” F(z',v) = (curl F)o X(z',v),
J@',v) = (Af) o (', v)

/

grad? f(x', v

/
x v

/
x v

and more generally
 Ok0
14 0vo

 Oyo
1+ 0yo

B, 87— 0

Oy = Oz = T30

Oy, 0Oy =0y
Remark 2.9. The flattened versions of the operators curl, div, grad and A applied to F(x, y,v) = F(x,y,2) and
to f(z,y,v) = f(z,y, z) are given explicitly by

h+v

o F a1 5o B T
1° F = 1F — - vFa UF7 -
cur cur (—=0y F2,0,F1,0) T h

7 vF~‘ —MNax ’L}F7 i ’UF — vF~‘ T,
7]+h (nya 3,1 0 3,7 0 2 nya 1)

div” F = div F = Sl 007y 4, 0,70) = L0,
grad” f = grad f = S e 0.y 0.5,0)" = —15(0.0.0.)"
ATF = AF =20, by 82— T (et )00
2
2 oo+ (M) (0 + ()02 - L2t
Equations (2.2)—(2.6) are equivalent to the flattened boundary-value problem

(2.16) curl” curl” A — acurl” A =0 in Do,
(2.17) div? A=0 in Do,
(2.18) Axes=0 at v = —h,
(2.19) A-N=0 at v =0,
(2.20) (curl” A) :’erV(I)faVJ‘A*l(V-Aﬁ‘) at v =0,
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in terms of which
H(n)(v,®) =V - Ay,

while equations (2.7)—(2.12) are equivalent to the flattened boundary-value problem

(2.21) curl” curl” B — acurl” B =0 in Do,
(2.22) div° B=0 in Dy,
(2.23) Bxe;=0 at v = —h,
(2.24) B-N=0 at v =0,
(2.25) V-Bj=V-g",

(2.26) ((curl” B)y) =1,

in terms of which
M(n)(v,9) = —(curl” B)j;
note that the orthogonal gradient part of (curl” B)H is equal to —a VFATY(V - Bﬁ‘) for any solution B €

H?(Do/A)? of (2.21)-(2.25). The spatially extended version of the first of the above boundary-value problems
was studied by Groves and Horn [12, §4], whose analysis in particular leads to the following result in the present
context.

Theorem 2.10. Suppose that s > 2, and assume that the non-resonance condition (NR) holds. There ex-
ists an open neighbourhood U of the origin in Hs+%(R2/A) such that the boundary-value problem (2.16)—(2.20)
has a unique solution A = A(n,~,®) in H*(Do/A)® which depends analytically upon n € U, v € R? and
NS f]sfé(RQ/A) (and linearly upon (v, ®)).

The corresponding result for the boundary-value problem (2.21)—(2.26), together with the analyticity of the
operators H and M, is now readily deduced.

Theorem 2.11. Suppose that s > 2, and assume that the non-resonance condition (NR) holds. for each k € A’
There exists an open neighbourhood U of the origin in H" 2 (R%/A) such that

(i) n ~ H(n) and n — M(n) are analytic mappings U — L(R® x IZTS_%(RQ/A),I{IS_%(RWA)) and
U — L(R? x Hsf%(RQ/A)a HSf%(RQ/A)Z) respectively;

(ii) the boundary-value problem (2.21)~(2.26) has a unique solution B = B(n,~,g) in H*(Do/A)* which depends
analytically uponn € U and g € H“’_%(Rz)2 (and linearly upon (v,g)).

Proof. The analyticity of H(-): U — L(R*x H*"2 (R2/A), 3 (R?/A)) follows from Theorem 2.10 and equation

(2.1), and it follows that the formula
RATE vy
Vo (3) = (. )

defines an analytic function V: U — L(R? x Iflsfé(]Rg/A),]R2 X Iflsfg(RQ/A)). A straightforward calculation

shows that
Vo) (3) = (0o

and V(0) € L(R? x IEF*%(RQ/A),R2 X IEIS*%(]R2/A)) is an isomorphism because
lim L
[kl—oo [K[?t([K])

One concludes that V(n) € L(R? x 2 (R?/A),R? x o3 (R?/A)) is an isomorphism for each € U and that
V(n)~' € L(R* x IEF*%(RQ/A),R2 X ISIS*%(]R2/A)) also depends analytically upon n € U. Clearly

o = (i)

for some analytic function Wo: U — L(R? x 13157%(]1%2/1\), Iflsfé(]Rz/A)).
Observe that B(n,7,9) = A(n,v,®) with & = Wa(n)(v,V - g*) depends analytically upon 7, v and g, and
solves (2.21)—(2.26) since by construction
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The uniqueness of this solution follows by noting that any other solution B(n,’y,g) is equal to A(n,'y, ®) with
® = A"'V - (curl” B)|, so that

H(n)(v,®)=V-An,7®)] =V-B0,7.9)| =V-g,
that is ® = Wa(n)(v,V - g*). Finally, the analyticity of M follows from the calculation
M(n)(v,9) = —(cwrl” B(n,7,9))|
= —(curl” A(n,~, D))
=y -Vd+aV'AT(V.g"h)
with ® = Wa(n)(y,V - gt). d

Remark 2.12. [t follows from the proof of Theorem 2.11 that
H(0)(y,®) = D*¢(D) ®,

MO)r.9) =1~V (g V9" ) +av A" (V-g*)

=7+ 5 (aD* +De(D)) D g*

We conclude this section by recording the following flattened version of Proposition 2.4, which is established
by the methods used by Groves and Horn [12, §4(c)].

Proposition 2.13. Suppose that s > 2. There exists an open neighbourhood U of the origin in HetY/2 (R%/A)
such that the boundary-value problem
Adqﬁ =F mn Do,
grad”u- N = f atv =0,
¢=0 atv=—h
has a unique solution ¢ € H®(Do/A) which depends analytically upon n € U, F € H* *(D,/A) and
Fe HSi%(]R2/A) (and linearly upon F and f).
2.3. Differentials. In this section we derive useful formulae for the differentials dH[n](0n)(y,®) and
dM{n](6n)(~,g), where n € U, v € R?, ® € H* 3/?(R*/A) and g € H*~/?(R?/A)?, so that A, B € H*(Do/A)?
(in the notation of Section 2.2), working under the stronger condition s > 3 and again assuming the non-resonance
condition (NR). Recall the identity

(2.27) d(05 f) = 0z (df — dody f) + dody O f,
where 9, can be replaced by 9, or 9, and d can be any linearisation operator (see Castro and Lannes [0, Eq.
(3.41))); the quantity df — dody f is called Alinhac’s good unknown. 5

We proceed by finding a boundary-value problem for C' = (dA — dodJ A) € H*"'(Do/A)?, where d = 0,
observing that H(-): U — L(R? x H*"2(R2/A), H*~3(R?/A)) and A: U — L(R2 x H*"2(R2/A, H*(Do/A)?)
are analytic. Applying (2.27) with d = 9, to

H(n)(v.®) =V - A,

and to equations (2.16)—(2.20), we find that

dH[n](6n)(v, @) =V - éﬁ‘ + 87 curl” A - N|y—odn — (curl” A)y, - Vén

where

(2.28) curl’ curl” C — acurl” C = 0 in Do,
(2.29) div? C =0 in Do,
(2.30) Cxe;=0 at v = —h,
(2.31) C - N=Vén-A,—-md]A-N at v =0,
and

(curl® C’)ﬁ‘ = —6nd (curl” A)y, — 6nd (curl” A)z|,—oVn
(2.32) — (curl” A)z|p=0Vén —aV ATV - C~'||L — V- ((curl” A),)dm).
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(Equation (2.31) can be rewritten as

C-N=V- (A
because div? A|U:0 = 0 implies that
IJA-Nly—o=—-V-Ay.)
Using the relation
—(07 curl A) = —V(curl A)s|v—o — a(curl” A)y
we can rewrite equation (2.32) as
(curl? C’)ﬁ‘ = —V((curl® A)z|v=06n) — a(curl” A)idn
—aV*tATlV. C’T +aVTATIVE ((curl” A)idn)
= —a((curl” A)pdn) — aVAT'V - ((curl” A)p dn) — V((curl” A)z|,—odn) — aVAT'V. C"J‘}

and writing c=C+ grad? ¢, where ¢ € H°(Dy) is the unique solution of the boundary-value problem

A9 =0 in Do,
grad” ¢ - N = V - (A1) atv =0,
SOZO atv=—h

(see Proposition 2.13), one finds that
dH[n](én)(v,P) =V - é’ﬁJ‘ + 87 curl” A - N|,—o0n — (curl” A)y, - Vén,

where
curl’ curl’ €' —acurl’ ¢’ =0 in Do,
divo €' =0  in Do,
C' ' xes=0 at v = —h,
C' N=0 at v =0,
and

(curl” C")jf = —a{(curl” A)idn) — aVA™'V - ((curl” A)j on)
— V((curl” A)s|y—0dn) —aV* ATV C’(‘L
It follows that
dH [n](6n) (7, @)
= H(n)(~al(curl” A)iron), ~aA™V - ((curl” A)iran) — (curl” A)slu-od + ((curl” A)s|,—00n))
— V- ((curl” A)nn),

and we obtain our final theorem by setting u := (curl” A)3|y—o.

Theorem 2.14. Suppose that s > 3 and that the non-resonance condition (NR) holds. The differential of the

operator H(-): U — L(R? x Iflsfé(RQ/A),IfIS*%(RQ/A)) 1s given by

dH [n](6n) (v, @)
= H(n) (—al(K(n)(y, ®) = uVn)*dn), —aA ™'V - (K (1)(v, ®) — u¥n)*5n) — udy + (udn) )
= V- ((K(n)(v, ®) — uVn)dn),

where

K(n)(v,®) - Vn+ Hn)(v,?)
L+ [Vnl? '

K(n)(y,®) =7+ Ve —aV AT H()(v,®), u=

The corresponding result for M (n) is obtained in a similar fashion.

Theorem 2.15. Suppose that s > 3 and that the non-resonance condition (NR) holds. The differential of the
operator M(-): U — L(R? x HS_%(RQ/A)Q,HS_%(]RZ/A)Q) is given by

dM(n](dn) (7, 9)
= M(n) (a<(M(n)(%g) +uVn)*on), (M(n)(v,g) + ’Wn)l@n) — V(udn) + a(M(n)(v, g) + udn) ™ on,
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where

_ Vg —M()(v,9) Vn
1+ [Vn[? '

2.4. Taylor expansions. The terms in the expansion

(2.33) H(n) = Hi(n),
where Hy(n) is homogeneous of degree k in 7, can be calculated recursively from the equation

A0 (3, ®) = HO) (0 (R () ) = w ) )~ A5 - (K)o ) = V) = wn + ) )
=V (K®m)(v,®) —uVn)n),
(see Theorem 2.14), and the explicit formula
Ho(v,®) = D*t(D) ®

(see Remark 2.12); these results hold under the non-resonance condition (NR). (Note that we suppress the
argument in the 7-independent terms in Taylor series of this kind).

Expanding
k=0 k=0
we find that

Ko(v,®) =~ +V® —aV' A " Hy(v,®),
uo (v, ) = Ho(~, ),

and

Ki(n)(v,®) = —a V= AT Hi(n)(v, @),

(=) |Vn|* Ho(~, @) + > (K ¥, ®) - Vn+ Hi(n)(v, ®)) (—=1)’|Vn*, if k € 2N,
u(n) (v, ) = e Jro 2 :

ST (Kioa(n)(v, ®) - Vi + Hi(n)(v, @) (~1)[V[*, if k ¢ 2N,

i+2j=k

for k > 1, and inserting the expansions (2.33) and (2.34) into the formula for dH [n](n) yields

Zka(n)(v )

=2 Al ) (o (Ko(v. @) ), —a ATV - (Ko, ®) 1) — Ho(y, @)n + (Ho(y, @)n))
D D) Py 0 (f o (B (1) (4, @) — 51 (), ®) V) ),
—a ATV (K (m)(7, @) = uj—1(n) (v, ®)Vn) " 1) — u;(n) (v, ®)n + (u;(n) (v, <1>)'f7>)
— V- (Ko(v,®)m) =Y V- ¥, ®) = ur—1(n) (v, ®) V) ),
k>1
so that
Hi(1)(v, ®)

— H ( 0 Koy, ®) ), —a AU - Ko(y, )1y — Ho(y, @)y + (Ho(y, @) n>) LV (Ko(v. @),

and
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Hi(n) (v, ®)
= % {HH(n) (—a (Ko(v,®) ), —a A"V - (Ko(v, )" ) — Ho(v, ®)n + (Ho(7, cp)m)
+ 3 10 (- o (K5 ()0 ®) — w2y (3, D) V) ),

—a ATV (Kro1 () (7, ®) — uk—2;(n) (v, @) V)" n)
s () (7 B+ (ks (), <I>>n>)

V(K () (1, ®) — (1) (v, ®) Vi) ) }

for k > 2.
In particular, we find that

Ho(~,®) = Ho®,
Hi(n)(v,®) = —a HoA™'V - Ko(, )"0 — Ho(n Ho®) — V - (Ko(v, ®)n) ,
where Hy = D*t(D) and Ko(v,®) =~ + V® —a VTA~! Hy®, and that
Hz(n)(, ®)

= % {Hl(n) (o (Ko(y, ®)"n), ~a A7V - [Ko(y, @) n] — nHo® + (nHo®))

T H, ( —a AT (K () (7, ®) — Ho®Vn)* 1) — ua (n) (v, <I>)"7>
— V- ((K1(n)(v, @) — Ho® V) n)}
_ %{_ a HoA™'V - (KO < o (Ko, @) 1), ~a ATV - (Ko, ®)"n) —n Ho® + (n H0<I>>> l")
+aHo (1 HoA™'V - (Ko(v, ®) 1)) + Ho(n Ho(n Ho®))
— aHyAT'Y. (’7 (~av AT (~aHoAT'Y - Ko(y, @) n—Ho(nHo®)~ V- (Ko(y, ®)n)) *HO(W”)L)
— Ho (n Ko7, ®) - Vi — an HoA™'V - (Ko(v,®) ) = n Ho(n Ho®) — 0V - (Ko(, ®)n))
+ V- ((ava™ (~a HoA™'V - Kol,®) "0 — Holn Ho®) = V - (Ko(v,®)n) ) + Ho® Vi) 1) }

Remark 2.16. For a = 0 we recover the formulae for the classical Dirichlet—Neumann operator, in particular
HU(‘% q:') = HUq):
Hi(n)(v, ®) = —Ho(n Ho®) — V- (n V®),

1 1
Hy(n)(y,®) = Ho(n Ho(n Ho®)) + 5 Ho(n” A®) + 3 A(n? Ho®),
where Ho = D tanh(hD).

Similarly, the terms in the expansion

(2.35) M(n) = Mi(n),
k=0
where My, (n) is homogeneous of degree k in 7, can be calculated recursively from the equation

dMn](m)(v,g) = M(n) (a (M(n)(v,9) +uVn)* n), (M®)(v,9) +uVn)* 17>

—V(un)+a (Mn)(v,9) +uVn)* n
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(see Theorem 2.15) and the explicit formula

1
Mi(v,9) = =7+ 55 (a D" +De(D)) D-g*

(see Remark 2.12).

Expanding
(2.36) u(v,9) =Y ur(n)(7,9),
k=0
we find that

uw(y,9)=V-g*

and
D2V (V-gh) = DY (Mi(m)(v.9) - Vi) (=1’ [Vnf*, if k € 2N,
Uk(n)(’ﬁg) = =k j 2; .
- > (Mi(m)(~.9) - V) (—1) |V, if k ¢ 2N,
it2j=k—1

for k > 1, and inserting the expansions (2.35) and (2.36) into the formula for dM[n](n) yields
>k Mi(n)(v.9)

= Mu(n) (a <Mo(’7,g)L77>7Mo(%g)Ln)

k

+Y > M () (a ((M;(n)(7,9) + ui—1 () (v, 9) V) ), (M;(0)(, 9) + w1 (n)(v, 9) V) * n)

k>1 j=1

so that . )
M () (v 9) = My (a (Mo (v.9)* ), Mo(v.9)* n) V(Y g4)m) + a Mo(v.g)
and
Mi(n)(v,9)
= 3 { M) (0 (Mo, 1), Mo (.9 0)
k—2
+ Z M;(n) (04 (Mi—1—5(0) (7, 9) + un—2-; () (7, 9) V)" 0), (Mi—1-5(0)(~, @) + ur—2—;3(n) (v, g) V)" 77)

=V e ()1 ) + 0 (Mcr (),) + w20, 9) V) ).
In particular, we find that

M:(n)(v; 9)
= %{Mo (a{Mo(a (Mo (v, 9) ), Mo(y, 9)" 1) n), Mo(a{Mo(,g) " 1), Mo(v,g)"n) ")
£V - (Mo, )n) + Mo (o(Mo(v,9) ), Mo(v. 9) 1)
+ M, <a <nMo (a(Mo(v, )" ), Mo (v, g)Ln)L— NV (V- g7 )n) — aMo(y, g)n” +n(V - gL)VLn>,
Mo (a{Mo(y,9)"n), Mo, g)ln)L— NV (V- g7 )n) — aMo(y,g)n* +n(V - gl)VLn>
+ V(nMo(v,9) - V)

+ anMo (a<Mo (v.9)"n), Mo (%g)Ln)L— anV*((V-gh)n) — o> Mo(v, g)n* + an(V - gL)VLn}
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Finally, the terms in the Taylor expansion

T(n) =Y Ti(n),
k=0

where T (n) is homogeneous of degree k in 7, can be computed from the formula T'(n) = M (n)(0,S(n)) using
the expansion of M (n) derived above and the corresponding expansion

Stn) =" Sk(n)
k=1

of S(n), where

Sk(n) = 1k
k=1 ¢ n 1 .
(17 Shet, kg 2N,

k
Clearly To = 0, Tx(n) = >, My—;(n)(0,S;(n)) for k > 1, and because
j=1

2

Si(n) =nct, Sa(n) = —%7726, Ss(n) = —%n‘“’cL,
and
My (0,g9) = L g,
M (n)(0,9) = —a (n L2) + L1(n (L2g)) —nLg —VnV-g",
M:(n)(0,g) = %{zaLl ((nL1g)n) + 2a°(nL1g)n + 2L1 (nL2(nL2g))
—nL(nLag) + VnV - (nL1g) — L1 (n*(Lg)™)
+V(nLig - Vn) + an (L2(ang) - n(Lg)L)
- o (20181 ) + 2La(1Lag) - n(29)* ) }.
where

1
Lg = o ((a2 ~ DD - ac(D)Dl) D -g*,

L.g = Di (aDL + Dc(D)) D-g*,

2
Lyg = % (faD + DLC(D)) D.-g*,
we find in particular that
T (n) = Mo(0, S1(n))
=Li(ne"),

T (n) = Mi1(n)(0, So(n)) + Mo(n)(0, S1(n))
= —%aLi(n*¢) + L1 (n La(nct)) —nL(nc™) + Vn V - (ne) — a(n La(ne ™)),

T (n) = M2(n)(0, S1(n)) + Mi(n)(0, S2(n)) + Mo (0, S3(n))

_ %{QaLl ((nLr(net))m) +20°(nLi(net))n + 2L (nLa(nLz(nct)))

—nL(nL2(ne”)) + ViV - (nLi(net)) — Li(n*(L(ne™)) ™)
+ ¥ (nLi(ne™) - V) + an(La(nLa(ne™)) = (L e))*

)
- o (2000 () + 2Ea(aEa(ne) ~ (L) )}

o? 2 (e 2 (e 2 (e} 2 \L o? 3 1
+ 5 L2(n”€)) = 5 Li(nL2(n”¢)) + 5nL(n"e) + 5 ViV - (n°e)™ — ng(n c).
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3. DESCRIPTION OF H(n) AND M (n) AS PSEUDODIFFERENTIAL OPERATORS

3.1. Flattening and factorisation. Choose € C*°(R?/A). In this section we prove that H(n) and M(n) are
smooth perturbations of properly supported pseudodifferential operators and compute their asymptotic expan-
sions, working under the non-resonance condition (NR). We begin by introducing a flattening transform (which
differs from that used in Section 2). Choose § > 0 so that the fluid domain D, contains the strip

Qs = {(x',2) e R* xR: (') — 6h < z < n(x’)}
for n € U and define s Do — Qs by
S (2, w) (2, oz, w)), o(@,w) = dw+n(z).
For f: D, - Rand F: D, — R? we write f: fof]7 F = F oY and use the notation
grad? f(a',w) = (grad f) o 3(a’, w),
div® f(x',w) == (div f) o S(a’, w),
curl? F(z',w) == (curl F)oS(z,w),
A%f = (Af)oS(x,w)
and more generally
O Oy

o ._ _ O=zn o._ g _ 9N o._ Yuw
02 == 0, 6&,,, 0y = 9y 6&,,, 02 - 5

Remark 3.1. The flattened versions of the operators curl, div and A applied to F(x,y, w) = F(z,y,2) and to

flz,y,w) = f(z,y,2) are given explicitly by
curl® F = (00Fs — 0%, Fy, —02F5 + 0% F1, 04 F, — 92Fy)"
—curl B — %(ny O Fs, —na D Fy, 1 O By — my 0w E1)T — (% - 1) (O b, —0u F1,0)7,
div? F = 02F1 + 00F> + 95 Fs
= 0, F1 + 0,F5 + % (7171 w1 — 1y 0w Fe + awﬁ3) ,
—ACf = —(02)*f - (99)°f — (92)*f
—-af 5 (1 0uf o Guf) — (G5 = 1) B+ e b ) 0] = G (a2 )3

The flattening transform converts the equation

—AF = aqcurl F in Qs

into
—A°F —qcurlP F =0 in Dy,

which is equivalent to the system

(3.1) LF =0,
where L = aI@i + L10y + Lo with
b-V—c -5 — 5Ny A 0 aldy
Ly = s b-V-—-c SN , Lo = 0 A —al:
SNy — SN b-V-—c —aldy aly A
and
Lt|val> 2V An
- 62 ’ - 6’ 6

Lemma 3.2. There are properly supported operators M, N € W' (R?/A) such that

(i) L — a(0wI — N)(0wl — M) € T™°°(R?/A),

(i) the principal symbols M(l), N of M, N take the form M = m(l)llg, N = n(l)]lg, where the scalar-valued
symbols m™P, —n™ € §* (R?/A) are strongly elliptic.
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Proof. Because
L — a(8uI — N)(8I — M) = (L1 4+ a(M + N))8y + (Lo — aNM)
we set
(3.2) N=—-a"'Li-M
and seek M with
Lo+ LiM+aM® =0
by constructing a symbol M € S*(R?/A) such that

~k* 0 aik ib-k—c -2 —ap,
0 —lk® —aiki |+ | & ibk—c $ne M4 (b-VMta Y ORNOMDT DIPM A0
—aiky  aik;  —|k|? an, —%n,  ib-k—c o
and
M~ SO MO,
Jj<1

where M) € §7(R?/A).
We proceed by computing the terms in the aysmptotic expansion of M inductively.
e Obviously
— k|3 +ib - kMY 4 ()2 =0,
so that
M = sV,

where

ik - Vi + AW

14 (VP AV (@' k) = /(L4 [VnP)[kP = (k- Vn)2.

nV (z', k) =

Note that A is the leading order symbol of the classical Dirichlet—Neumann operator.

e The subprincipal symbol of M is found from the equation

0 0 ke o 0 1y
al 0 0 —iky|—|ds+5| -1 0 —n u®
7ik2 ikl 0 —MNy Nz 0

+ lb . kM(O) + aM<0)M(1) + aM<1)M(0)
+ (b VMY —iady, M 9, — iady,mM oMM = 0,

which yields
M = on @1 + om(”,

where
1 .
m<0)(a:,7k:) = m (V . (m(l)vn) + IVkA(l) . Vm(l)) 5
o 0 n® —iko —|—m(1)77y
M§0)(w/7k) = 2)\(1) —m(l) 0 lkl — m(l)r]z
ik —mWp,  —iki + Wy, 0
e Suppose that MY has been calculated for 7 =1,0,... — jo for some jo > 0. The term M(=90=1 can be found

from the equation
(2a5m(1) +1ib - I~c)M(7j°71> = 1‘71(7j°),
where M(770) ¢ §(=30)(R2 /A) is given by

) a 0 1 Ty ) )
M(*Jo)(m” k)= | s+ 5 -1 0 -n m(=do) _ g . ym(—io)
Ny Nz 0
—a Z 81?118:22M(7j1)D1a1 DgzM(ﬂé) —a Z Bgllast(l)D‘fl D?zM(l)
71,3250 la|=370+2

led|+i1+i2=io
—a Z 8,(:11 a;:;M(l)D?l D‘;QM(O) —a Z 8,?11 3Z;M<O)D?1 D32M<1),

la|=jo+1 |a|=jo+1
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so that 5
(=jo—1) _ i(—3do)

" “amt

The construction is completed by noting that there exists a symbol M € S* (]R2/A) such that
M~ Z M)
J<1
(see Shubin [25, §3.3]).
Defining M = OpM and N by equation (3.2), we find that M, N € U'(R?/A). The terms in the asymptotic

expansion
N~ Z N
j<1

of N are readily computed using (3.2); in particular we find that

i (1)
1) _ 5™ W (0 1y . K-V —A
NV =én' I3, n(x k)= ————"—
: 0= e
Finally, note that
o™ S|k
RenV(2', k) = —Ren'" (2, k) = > > (k
em (', k) en (@, k) 1+|V17|2_1+max|V77\2N< )
for sufficiently large |k|, so that m"), —n*) are strongly elliptic. O

Theorem 3.5 below gives information on the Neumann boundary data of a solution to (3.1). It is proved using
Lemmata 3.3 and 3.4 below, the former of which is an existence result for an abstract heat equation (see Treves
[26, Ch. III §1] for a more general theory).

Lemma 3.3. Suppose that T > 0, T is a full rank lattice in R"™' and A € U™ (R"'/T") for some m € N is a
properly supported pseudodifferential operator whose principal symbol A takes the form A(™ = al™1,,, where
the scalar-valued symbol al™ € S™(R™1/T) is strongly elliptic.
There is a properly supported pseudodifferential operator P € W™ ([Ty, To 4 T]; R™™*/T) which satisfies
P+ AP € U >°([To, To + T); R" /1),
Pli=p, = I.
In particular, any solution of the initial-value problem
8,U + AU = F, t € [To, To + T,
0|t:TO = UOa
where B € C=([Ty, To+T); C®(R"/T)") and Uy € C=(R" ™1 /T)", belongs to C=([To, To+T); C=(R"~*/T)™).

Lemma 3.4. Suppose that T > 0, T' is a full rank lattice in R™™' and P is a linear differential operator of order
m in the variables (z,t) € R™ of the form

P=1.07"+ Y Aa(2)0%

loe| <m
ap<m-—1

where ¢ € Ny, 0% = 8?117...,8?;”:118?" and the coefficients of the matriz Aa(z) are functions of z of class
C® (R T). Any solution U € H™ Y (R /T x (To, To+T))" of PU = 0 lies in C*=([To, To+T); 2'(R"~1/T)").
Proof. Suppose that PU = 0. A straightforward argument using Fubini’s theorem shows that U lies in
H™ Y ((To, To + T); L*(R""*/T)"), and the next step is to show inductively that U in fact lies in
H™ YR (Ty, To + T); H-*™(R™ /T)™) for every k € No.

To this end let ¢1 € Ny, £2 € Z and a € C°°(R"™!/T), and observe that the mappings w + 0;w and w > 0z;w
induce continuous linear operators H® ((To, To + T); H*2(R"™*/T)) — H~Y((To,To + T); H*2(R™~*/T)) and
H((To, To + T); H2(R"/T)) — H((To, To + T); H27(R"~*/T")) respectively, while the mapping w — aw
induces a continuous linear operator H'((To, To + T); H*2(R"™'/T")) — H“((To,To + T); H*2(R""!/T)). Tt
follows that the formula

QU =- > Aa(2)0°U

lo|<m
ap<m-—1

defines a continuous linear operator H™ 145 ((Ty, To+T); H*™ (R YT)") = H* ((To, To+T); H~ kY™ (R~Y/)")
for each k € Np.
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Returning to the induction, let k € Ny and suppose that U € H™ Y5 ((Ty, Ty +T); H~ "™ (R" ™1 /T)") satisfies
PU = 0, so that 8]*U = QU in 2'((To,To + T); H~*TY™(R"~1/T)). The above argument implies that
athEHk((To,To+T) H~F=Dm(R=1 /7)) and since

UeH" "(To, To +T); H ¥ (R*1/T)") € H™ ¥ (To, To + T); H- *FO™ (@R /T)™),

we conclude that U € H™ 5 ((Ty, Ty 4+ T); H~F+Dm(R1 /1)),
Finally, choose ¢ € N with ¢ > m — 2 and set k = ¢ —m + 2, so that

U e H ' ((To, To + T); H ™R /1))
C CY([To, To + T); H™ 72 (R /1))
C CY[To, To + T); 7' (R /T)™).
However this result holds for arbitrarily large £ € N, so that U € C*([To, To + T]; 2'(R"~!/T)™). O
Theorem 3.5. Any function U € H?*(Do/A)® with LU = 0 in Dy satisfies
8,U = MU + R, U atw =0,
where the symbol Roo denotes a linear function of its argument whose range lies in C°°(R?/A)3.

Proof. The equation

(3.3) LU =0

is equivalent to the coupled equations

(3.4) (8] — MU = U,
(3.5) (8wl — N)U; = —RoU

(the smoothing operator in equation (3.5) in fact lies in ¥ ~°°(R?/A)).

By elliptic regularity theory U € C°°(Do/A)? 2 C*°((—h,0); C>=(R?/A)?), and it follows from equation (3.4)
that U; € C*((—h,0); C=(R?/A)®); in particular 01‘w——1h € C>(R?/A)®. Furthermore, applying Lemma 3.4
o0 (3.3) shows that U € C*([—h,0]; 2'(R?/A)?), so that ReU € C=([—h,0]; C=(R?/A)%). Applying Lemma
3.3 to equation (3.5) for w € [—1h,0], we thus find that U, € C=([— 1h,0]; C=(R?*/A)?). Finally, equation (3.4)
shows that A A A

OwU = MU + U, atw =0

because Uy is a linear function of U. O

3.2. The operator H(n). Let s > 2, ® € flsfé(]l@//\) and A € H*(Do/A)® be the unique solution of the
boundary-value problem (2.16)—(2.20) with 4 = 0. The variable

Az, w) = Az, v), w = h+n)v

6h(
satisfies
LA=0 in Do,
and
A N=0 at w =0,
(curlQA)” :V<I>—aVJ‘A71(V-Aﬁ‘) atw =0,

which can be written explicitly as

(3.6) NeAr +nyAy — Az =0 at w =0,
(7 Awy - ouds— touds . (A Ay DA %nyawAl)

+ aA™ (Agey + nyyAse + 1y Asey — A1y — NayAsy — 12 Asyy) = s at w =0,
(3.8) — Ase + %””&UAg + %aw[h 1y (Agz — Ay, — %nzawAz + %nyaw,fh)

+ aA—l(_AQCCQB - nwyASJC - nyASxac + Alxy + nxacASy + 7]1143951/) =o, at w = 0.
Substituting
(39) A3 = 17351211 + nyzzlg
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(see equation (3.6)) and
(3.10) OwAlw=0 = MA|y—0 + Rec®
(see Lemma 3.5, noting that A is a linear function of ®) into equations (3.7), (3.8), we find that

Al'w:O) <¢'x>
3.11 P = + R ®,
( ) <A2|w:0 (I)y

where P € \Ifl(Rz/A) is a properly supported pseudodifferential operator with principal symbol

W)y 0 1+ |VyHn® +ik - vy
P k) = .
(@, k) ((1+\vn|2)m<1>—ik-vn 0

Observe that P is invertible for |k| # 0, so that P is elliptic and hence admits a parametrix Q € ¥~(R?/A)
such that PQ — I € U~=°°(R?/A) (see Grubb [13, Theorem 7.18]). We thus find from equation (3.11) that

Al |w:0) ((I)x>
- = + Roo®,
(A2|w:0 Q (I)y
and appending (3.9) to this equation yields

(3.12) Aly—o = ZP + Rou®,

where Z € S°(R?/A) and Z = OpZ.
We have that
H(n)(v,®) = H(n)(v,0) +H(n)(0,P),
—_——
e C™ (]RZ/A)

and in the new coordinates
(3.13) H(n)(0,®) = Az, + 77y14390 - Aly - nxASy’w=0~
Inserting A\wzo and awA|w:0 from (3.10), (3.12) into this formula shows that

H(n)(0,2) =OpAa® + R,
where Ao € S*(R?/A). The asymptotic expansions

I S CS ol

j<0 j<1
can be determined recursively by substituting
Alyeo = Z® 4+ Roo®,  0uwA|y—o = MZ® + Rou®

into (3.6)—(3.8).

3.2.1. Principal symbol. Equating the order 0 terms in (3.6) and order 1 terms in (3.7), (3.8) yields the equations

(3.14) 12 +ny 2y — 2 =0,
(3.15) (ik2 — pym™)Z8” + (0 + k1 — 720 M)28 + (=ikane + nanyn™)ZO = ik,
(3.16) (—ikr + 702 + @ — ikany +pm™)ZE + (ki — nanyn™)28 = iks.

Substituting for z{" from (3.14) into (3.15), one finds that

(ikz — 1) (1.2 + 0,28 + (- + ikame — n2n)Z + (=ikene + nemm )2 = iky,

so that
(-0 (1 + |Vn?) + ik - Vi) 28 = ik
TS
and hence
20 k) = — b
Similarly, substituting for Zgo) from (3.14) into (3.16) yields
ika

0) (. _ 1F2
Zl (ill,k)— )\(1)7
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and it follows from (3.14) that

i(k-V'n)

Zgo) (:E/,k) = — D

Equating terms of order 1 in equation (3.13), we find that
AV (@' k) = k128 + nyik128) — ka2l — naikaz
=i(k- Vi n)z + ik 2" — ikyz(”

1

=50 ((k-V'n)* + k)
= (")

— )\(1);

the principal symbol of the generalised Dirichlet-Neumann operator is thus the same as the principal symbol of
the classical Dirichlet—Neumann operator.

3.2.2. Sub-principal symbol. Equating the order —1 terms in (3.6) and the order 0 terms in (3.7), (3.8) yields the
equations

(3.17) eV 4,26 — 24V g,

(3.18) (iky — nym)zE 4 (0D 4 ikyne — 228 4 (“ikone + nenym™)ZTY = —Fy — oFs,
(3.19) (—iky + 77;Cm<1))2é71) + Y —ikon, + nfjm(”)zi*” + (ik1ny — nxnym“))zgl) = —Fy — oF4,
where

Fi(2', k) = 10y 2" + 1y 2 + V2L - Vi + [0, (2 Ve + 2Vy) + (1 + |[V[*)VZE] - iVen ™
— (1 +|Vn)zEm®,

Fo(@', k) = —1axZt” — 0ay2y) — V- V2 — [12(280 Ve + 20 Vi,) + (1 + Vi) VZ{"] - iVien™
+ @+ |V*)zm®,

Fs(z', k) = % ((1 + )z + nmnyzém) - “ﬁ% ((k2 — (k- an)) 2~ (k1 + (k- VnL)) Zéo)) ,

Fi(z' k) = % (nznyz?) +(1 +n§)z§0)) - III% ((—kg + (k- an)) 7@ + (k1 + 1y (k - an)) ng)) .

Substituting for z{™" from (3.17) into (3.18)—(3.19), we obtain

(=) 7 _ Fa+oaFy ES ~ Fi+aFs
z; (x k)= om0 Zy (x' k) = =T
and hence
_ 1
Zg 1)(‘”/7 k)= WVﬁl - (F1 + aF3,F2 + aF4)T.

Equating terms of order 1 in equation (3.13), we find that

MO (@' k) = 0,2 + ik 28 + 0y 0,2 + ikany 28 — 9,28 — ko2 — 1,0,28" — ikon, 2

. . 1 . . ol
— 9,20 — 9,2 4 1,0,2% — 0,0,z + FLE ”7;‘((1]? Vg, _ Zihe IZT1(>k Vo),
ik1 +iny (k- V*n) —iko + in. (k- V')
ta D Fa = A Fa
€1
_\© k) (k- V)
=\ 4+ B ,
where
/ 1 2 .
A0 (o ) = % (V- @ i) +ivex® - va®)

is the sub-principal symbol of the classical Dirichlet—~Neumann operator (see Alazard, Burq and Zuily [1, Eq.

(3.11))).
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3.3. The operator M (n). Let s > 2, g € H57%(1R2/A)2 and B € H*(Do/A)? be the unique solution of the
boundary-value problem (2.21)—(2.26) with v = 0. The variable

B@ w)=B@,v), w=t(htnp
satisfies
LB = in Dy,
and
(3.20) dive B =0 at w =0
(3.21) B N=0 at w =0
(3.22) V-Bj=V-g& atw=0
(3.23) {(curl® B))) = 0.
(equation (3.20) actually holds in Do). The boundary conditions (3.20)—(3.22) can be written more explicitly as
. . 1 . . .
(3 24) Blz + BQy + S(fnzBlw - 77yB2w + ng) =0 at w = 0,
(3 25) 7]9531 —+ T]yBQ — Bg =0 at w =0,
(3 26) (BQ + B3"7y)z - (Bl + Bdnz)y = g2z — Jiy at w = O,
Substituting
(3.27) Bs =n,B1 +1,B>
(see equation (3.25)) and
(3.28) OwB|w=0 = MB|uw—0 + Reog
(see Lemma 3.5, noting that B is a linear function of g) into equations (3.24), (3.26), we find that
w2 = (o)
3.29 P72 = + Reog,
( ) (Bz|w:0 g2¢ — g1y g
where P € W!(R?/A) is a properly supported pseudodifferential operator with principal symbol
), 1 . iky iko
P k)=1|. . . . .
@, k) (mznykl =il m)ke i1+ m)k — lnznyk’2>

Observe that P (2, k) is invertible for |k| # 0, so that P is elliptic and hence admits a parametrix Q € ¥~(R?/A)
such that PQ — I € U=°°(R?/A). We thus find from equation (3.29) that

ph) =)
S - + Roo )
<B2|w=0 @ 92z — gy g

and appending (3.27) to this equation yields
(3.30) Blu—0 = Zg + Roog,

where z € S°(R?/A) and Z = OpZ.
We have that
M(n)(v.9) = M(n)(v,0) +M(n)(0,g),
~—_—

Coo (R2/A)2
and in the new coordinates
Bs, 1~ <1 1 (B - . 1, = ~
(331) M(n)(oag) = - H + 7B3'UJV /'7+ < B - (BQCL‘ 7B1y) V7]+ = (nz BQ'LU — Ny Blw) vn
—Bs, 1 6 \—Biw 1) we0

Inserting Blw—o and 9y Blw=o from (3.28), (3.30) into this formula shows that

M(n)(0,9) = Oprag + Reeg,
where v, € S*(R?/A). The asymptotic expansions

20329, s )

J<0 j<1
can be determined recursively by substituting
B'w:O = Zg+Roog, a’wBlw:O :MZg+Roog

into (3.24)~(3.26).
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Remark 3.6. The asymptotic expansion of va can also be determined from the formula

M (n)(0,g) == -V (H(n)(0,

H(V-gh)+aViATH(V gT)

and the asymptotic expansion of the symbol Ao of H(n)(0,-).

3.3.1. Principal symbol. Equating terms of order 1 in equations (3.24), (3.26) and order 0 in equation (3.25
ik 29 4 k228 — nem®z(Y —p

(0)

270 4y Wz®

o 29 4 822 — 1en V2D — 2 + 02 = 0
28y +my250 — 287 =0,
L o> o,
ik 28 — ikoZ() +i(k - VEn)ZL) = —iks,
iklz;; — ko2l +i(k - VEN)ZY = ik,
whose unique solution is
2
©, 1 1y k2 /0 1 kike
le (w ak) - ()\(1))27 212 (mvk)_f()\(l))zy
2
) /.7 _ k1ks 0) /.1 _ kl
Zy1 (wak)——m» Z39 (CUJ“)—Wv
©) (7 oy K2(k-Vin) © ) 1 oo ki(k- V)
z{0 (w’k)__W’ Zs (m,k)—w

Equating terms of order 1 in equation (3.31), we find that

—ika (28 g1 + 23
v (@' k)g = < halZot 1 2292)) 4 0 (20 gy + 29 g0) v +

m (Z(0>g1 +289g)
1k1(Z(0)g1 +2 o) )

- [lkl (221 g1+ 222)92) iko (251 g1+ 253)92)} Vn
+ {n n (287 g1 + 257 g2) — nym® (20 g1 + 232)92)] .
The first component of Vél)
ne(ike =0y n ) (@991 + 29 g2) + (=ikime + L+ n2)n®) @01 +28g2)
+ (—ika + mym™) (257 91 + 289 g2)

= [na(ikz = ™) + (=ikume + (14 n2)n )28 + (=it + )2 ] g1

g can be rewritten as

+ [meike = mm®™)2) + (—ikme + (1 +m2)n )28 + (<ike +7,)2 ] g2

_ kiko k7
—*WWW
k

g2

ko
and in the same way we find that the second component of V,g})(:c', k)g is ol

k-g*
WO (' k)g = k' N ).

) yields

(k- gh); altogether we obtain

3.3.2. Sub-principal symbol. Equating terms of order 0 in equations (3.24), (3.26) and order —1 in equation (3.25)

yields
k12370 4 ikoZ8TY + kaGr =0,
k125" + ikaZ85 Y + k1Go = 0,
25 = 020 128,
2GY = 025V + 0,250,
(—ike + (ke - VEm)na)ziy Y + (i +ilk - VEin)ny )28 Y + kaGs = 0,

(—ike +i(k - vLmnz)zig” + (ik1 + ik - Vi n)ny)z5, Y + kiGa =0,
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where
(o) = 28T s (W V)~ (e W)+ 2
e k) = 72(1:(.;;)?(1)) " ()\<il>)2 [a(Vin® - 90.) =~ n (Vin® - V)] - S,
ole k) = ﬁ :2(1 + )0 Ak + 21+ 02)0 A ke — 202y (020 ko + 0,V k)
+ (Myee — Noay) AN V2 = (nynay — nznyy))\(l)kl— ,
(oK) = ﬁ :_ 21+ = y*)0A ki = 21+ 02)0, AV ko + 20y (022 k2 + 9,0V ka)
— (yies — o)Ak + (T — e AV,

whose unique solution is

2 (@ k) = (;(’jf)z (ks + (6 T4 mymy) — kaGs)

28,V (@ k) = (;g?)Z (D)2 = kalhe = - V) — 1(’“;("7%;;24
- B (07— 5+ S
25V (@ k) = (;(kf;y ((k:z — (k- V' 0)me)Ga + klc4) ,

-1 —1 -1
Zg1 )(wl»k) = 77:EZ§1 )+77yZ;1 )7
—1 —1 —1
Zgz )(w/,k:) = 771252 )+77ng2 ).

Inserting these formulae into the zeroth order part of (3.31), we find after a lengthy but straighforward

computation that
(0) (! _( G k) g
A R = gnk) ) g,
where
/ i .
G2 k) = 5y (kf(—l + 2000 — Kikany (3 + 402) + 2k5ne (14 0) + lkm“))

1Y
X (k%%y — 2k1kanzy + kgnm) + W (k2(1 + TIan) - kmwy) )

Co(a k) = m (%%ny(l +m2) — kikana(3 4 4n2) + kany (=1 + 2n2) + ikz)\“))
(0%
X (k%nyy — 2k1]€277xy + k%nm> + W (—k‘l(l + 7]5) + k‘277x77y) .

4. APPROXIMATE SOLUTIONS

In this section we construct approximate solutions of

(4.1) ) =0

for 8 > 0 in the form of power series and moreover prove their convergence for 5 > 0; the solutions have wave
velocity ¢ close to a reference value cg chosen such that the transversality condition (T) holds. Assuming that
the non-resonance condition (NR) also holds, we consider J as a locally analytic mapping X£ x R? — H®(R?/A)
for a sufficiently large value of s, where

o JHTE®N), i8>0,
° H* Y (R?/A), if 8=0.
Our strategy is to perform a Lyapunov—Schmidt reduction, and we therefore proceed to investigate the kernel and

range of
Jio(n) = d1J[0,0](n) = T1(n) - co + gn — BAn.
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Write o
n(@) =" e,
keA’
so that m
~ c ~  ik-x!
(Jiom)(x") = grio + Z B p(k, co, B)ie™ ™ .

keA\{0}
The equation Jign = 0 is equivalent to
p(k, co, B)ie =0
for k € A"\ {0}, which by assumption has non-trivial solutions if and only if k = +k1, t+ko; it follows that
ker(Jlo) _ {Aeiqu:l + BeikZ-m/ + Aefikl-z/ + Befiktz-z/: AyB c (C}

We next consider the range of Jig. Let

f@) =37 fue™® € HY(R?/A).

ke
The equation Jign = f is equivalent to
970 = fo

and

c(|k . 2
(4.2) |(,L‘2|)p(k, co, B)ik = fr
for k € A"\ {0}. Obviously

1.

4.3 flo = — fo,
(4.3) o=Jo
while for k # tk1, k2 equation (4.2) has the unique solution

" || ;
(4.4) e = Tk,

~ c(lkl)p(k, eo, B)

and for k = k4, £ko it is solvable if and only if fikl = fikz = 0. For 8 > 0 we find that p(k,co,3) > |k|?® for
sufficiently large |k|, so that the series
S e

k;éflflj\,/ikz

where 7y, is given by (4.3), (4.4), converges in H*T?(R?/A). Tt follows that Jio: H*T3(R*/A) — H*(R?/A) is
Fredholm with index 0, where

ran(Jio) = {f € H*(R*/A): fin, = fir, =0}
and Jyg': ran(Jio) — H*T2(R?/A) is given by (4.3), (4.4). In contrast p(k,co,0) is not bounded from below as
|k| — oo, so that (4.3), (4.4) does not define a bounded operator from H*(R?*/A) to H*T'(R?/A) for any s. We
therefore proceed formally, noting that the procedure is rigorously valid for 8 > 0.

To apply the Lyapunov-Schmidt reduction let TT be the orthogonal projection of H*(R?/A) onto ker(Jio) with
respect to the L?(R?/A) inner product (-,-). Write n = n1 + 12, where
n = Aeikl-m/ + Beik2~m’ + Ae—iklm’ + Be—ikzm”

and 72 € ker(Ji9)* = (I — IN) X%, and decompose (4.1) as
(4.5) ILJ(n1 + 72, p) = 0,
(4.6) (I —IDJ(m + m2, p) = 0.
The linearisation of (I —II)J at 0 is

(I —T)Jio: (I —T)XE — (I — ) H*(R?/A).
For 8 > 0 this operator is an isomorphism (see above) and we can solve (4.6) to determine 72 as a locally analytic
function of 71 and p; substituting n2 = n2(n1, 1) into (4.5) yields the reduced equation
(4.7) ILJ (1 + m2(n1, ), ) = 0.

Note that 72 = O(|(m, p)||m|) and the left-hand side of equation (4.7) is also O(|(m1, p)||n1|) because
ITJ10(m + n2(m, pm)) = 0. For B = 0 we can only formally solve (4.6) for 12 as a function of n; and p.
We proceed to solve equation (4.7), which can be written as

(T +m2(m, ), p), ey =0, i=1,2,
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because J is real-valued. We write these equations as

fi(A,B,A, B
f2(A,B,A,B

p) =0,
p) =0,
and note that
fj(Aan‘l,B,M) = O('(A,B7u)||(A7 B)')
Recall that J is equivariant with respect to the symmetries So and T, (see Remark 1.4), which act on the
coordinates (A, B, A, B) as
So(A,B,A,B) = (A,B,A,B), Tuy(A B,A B)=(Ae*" Be*>?' Ao~k peikav’y
so that the reduced equation remains equivariant under these symmetries, that is
fl(Aeikl‘v,,BeikZ‘U, Aefikl.vf B —iko- v’ 1k:1 v’ fl( ,A,B,M),

B =

fQ(AeiklAv/, Belkzg v’ Ae—lk‘,l v’ Be ikg-v' ,[,L) elkz v’ ( A B’ /11)7
)=
) =

fi(A, B, A B, ) = fi(4, W),
f2(A,B,A, B, Q(ABAB w.
It follows that
(4.8) f1(A, B, A, B, p) = Agi(|A]%,|BI*, ),
(4.9) f2(A, B, A, B, p) = Bg2(|AP%, |BI*, n)

where g1, g2 are real-valued locally analytic functions which vanish at the origin.
Solutions to equations (4.8), (4.9) with A # 0, B = 0, such that

g1(JA*,0,p) =0,

lead to solutions of (4.1) of the form n = m1 + n2(n1, ) with n1 = Ae*1®’ | Ae—ik1® o that 7 depends on the
single variable ¥ := k1 - ©’. Such waves are often called 2%-dimen5ional waves since they only depend upon one
horizontal variable . Similarly, solutions to (4.8), (4.9) with A = 0, B # 0 give rise to 2%-dimensional waves
depending on the single horizontal variable ko - @’. We refer to Lokharu, Seth and Wahlén [20, Section 1.2.2] for
a more detailed discussion on 2%—dimensional waves. Fully three-dimensional waves are found by assuming that

A # 0 and B # 0, in which case (4.8), (4.9) are equivalent to
(4.10) g1(|A% | B, p) = 0,
(4.11) g2(JA[%, | BI*, ) = 0.

Proposition 4.1. There exist ¢ > 0 and analytic functions p;: B-(0,R?*) — R, i = 1,2 such that 1;(0,0) = 0
and (|A],|B)?, p(|A]2, | B?), p2(|A]%, | BI?)) is the unique local solution of (4.10), (4.11).

n
n

Proof. Write equations (4.10), (4.11) as

(4.12) avpn + azpz + O(|(JAP, [ BI))| + (AP, |BI*, w)*) = 0,

(4.13) bipus + bapiz + O((|AI%, |B*)| + [(|AI%, |BI*, w)]*) = 0,

where
a1 = (Jueikl'z,,eikl‘m,), b = (Jlleik?z/,eikz'z,%
az = <J12€ik1‘m/,eiklm/>, by = (leeik?m/,eik?m,),

and Ji1 = 9, d1J[0, ]| p=0, J12 = Oy d1J[0, pt]|p=0. A short calculation shows that

9 L ikea! ik’ 9 || ik ikea
k = 9 (e _
aclp( 7(307/8) C(|I€D<J11e ;€ >7 802p( ,Co,ﬁ) c(‘k|)<J12e ,e >7
and hence
c(|k1]) O c(ks)
al |k1‘2 aclp( 170075)7 1 ‘kQ‘Q aCIP( Q,C(),ﬂ)7
C(kl) 0 C(kg) b
= = ok _ k .
as PAE 30219( 1,0, 3), ba TNE fa@p( 2,¢o, 3)
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Equations (4.12), (4.13) can be locally solved for p1, po as functions of |A|?, | B|? by the implicit function theorem

provided that
al a2
det( b1 by ) # 0.

The above formulae show that this condition holds if and only if V. p(k1,co,8) and Ve p(k2, co, ) are linearly
independent. O

Our main result now follows by substituting p = p(|A|?, |B|?) into n = m + n2(1m1, p).
Theorem 4.2. Suppose that 8 > 0. There exist € > 0, a neighbourhood V of the origin in XZ x R? and analytic
functions p1, o : BE(O,RQ) — R and n: BG(O,C4) — X7 such that
{(n,p) € XI X R*: J(n,p) =0, n# 0}V = {(n(A, B, A, B), u(|A, |B|)): (A, B, A, B) € B/(0,C")};
furthermore p(0,0) = 0 and
n(a') = Ae*1® 4 Belk2®’ . Aere’ | BeT*2®’ L O(|(A, B, 4, B)).

Remarks 4.3.

(i) Elements of the solution set {(n(A, B, A, B), w(|A]*,|B|*)): (A,B,A,B) € BL(0,C")} with A=0 or B=0
are 21 -dimensional waves (see above).

(ii) Elements of the solution set {(n(A, B, A, B), u(|A]?,|B|*)): (A,B, A, B) € B.(0,C")} with A, B € R are
waves which are invariant under the reflection So. Note that it is possible to restrict to such solutions before

performing the Lyapunov—Schmidt reduction; this approach was taken by Craig and Nicholls [7] in a similar study
of irrotational travelling waves.

The terms in the series
n= Atk + Be'k2®' + Ae k1’ + Be k2@’ + Z nijklAiBjAkBl
i+jtk+HI>2

and
wi= S sl APBEE, =12,

J+k>1
can be determined recursively by substituting these expressions into (4.1) and equating monomials in (4, B, 4, B).
Note that the series can be computed to any order for 8 > 0 but their convergence has been established only for
B >0.
e We find that
M2,2(m) = Z N2,ijm A B’ A* B!
i+j+hk41=2
satisfies the equation
Jionz,2 = —J20(n1,m),
where Jog = %d%J[O, 0], so that

J20(7717771) _ A2J2O(eik1-m"eik1m') + ZABJ20(eik1»m”eik2»;p’) + 2\A|2Jgo(eik1'z/,e*ikl‘m')
T 2AB (e o) B2 (e ) AR (e e )
+ 2|B|2Jzo(eikz'°”/7 e_ik?w/) + AQJzo(e_ikl'w/, e_ikl'w/) + 2/1BJ20(6—”“'1'15/7e—ikg-w’)
+ B Jao (efik""m/7efik2'w/).
For £,k with k # —£ we find that

«

5 (Tlo(k) + Tl()(z)) . Cé ei(k+£)<m/7

ik-x’ il-x’ 1 1
Joo(e*® T = §T1o(k) - T10(£) + i(k -co)(£-co) + T20,2(k, £) - co +

=: p20,2(k, £)

while

ik-a’ —ik-x’ 1 1
Jao(e*® e = §|T10(k)\2 — 5k o)’ + T20,1(k) - co + aTio(k) - €7,

= p20,1(k)
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where
Tio(k) = — (a k*+ kc(lkl)) cﬁcpk
Taon(k, £) = ﬁ (a(k: )t (k+e)c(|k;+£|)) {a(k +8)-co+a(k-£) <C|oq.2£ _ %)
+(k+20)- <C|(3,T'fc(|£|)£ + c|‘}c'|2kC(|kl)k) }
+ (0 - 1)~ acene®) S + (0 - )k — ac(iit) G

— %kz(co -0) — %l(co - k),
Too,1(k) = a(ak — c(|k|)k™).
The solution of the equation
Jlofei(£+k)-z’ _ pQO,Q(k,E)ei([+k)‘m,, k4 e
is
. |k + £
c(lk +£))p(k + £, co, B)

=t q20,2(4, k)

p20,2(k, £),

while the solution of
Jiof = p20,1(k)

is simply
1
= =p20,1(k).
g
Altogether we find that
12,2000 = —a20,2(k1, kl)emkl'm , 12,0020 = 7]2,20005
i(k1+ko) _

72,1100 = —2q20,2(k1,k2)e 72,0011 = 7]2,1100,

2
72,1010 = —§P20,1 (kl)v

ei(klfk:g)a:"

M2,1001 = —2920,2(k1, —k2) 12,0110 = 72,1001,

N2.0200 = —q20.2 (K2, k2)e** 2™ 72,0002 = 7]2,0200,
2
72,0101 = —§P20,1(k2)'
e Expanding (4.10), (4.11) further as

avpu + azpiz + asl Al + aa| BI* + O(|(|A]%, |BI*, w)[*)
bipr + bapuz + bs|A]” + ba| BI* + O(|(|A]%, |BI*, p)[*)

)

0
0

)

we find that

ba —agbs, o asba —a2bs, 2 2 242
A% |B)?) = -2 AP - B> + O(|(|A*,|B
(AP, [BP?) = - S0t p_ 0sbe —0bs sy o) a2, )P
a1bs —asbi, , o aibs —asbr, 2 2 2\(2
— — B O(|(|Al%, |B .
AP~ BB g o 1P, 1BP)P)

A% |BI?) =
p2(]Al%, |B]7) P ——

The coefficients a3, a4, bs, ba are given by

ik @’ —ika’ iky-®’ iky-x’ —iki-a’ iky-x
a3z = <2J20(e % m2,1010) + 2J20(e7 T m2,2000) + 3J30(e ,€e ,€ ), e

4
—§p20,1(k1)p20,2(k¢17 0) — 2920,2(k1, k1)p20,2(—k1, 2k1) + 3ps0,1(k1),
a4 = <2J20(eik1m/, M2,0101) + 2J20(eik2'm,, 72,1001) + 2J20(871k2'm/,772,1100) + 6J30(eikl‘m,,eik2m,, eiikzml)a eikl‘m/>

4
= *§p20,1(k2)p20,2(k1, 0) — 4920,2(k1, —k2)p20,2(k2, k1 — k2) — 4q20,2(k1, k2)p20,2(—k2, k1 + k2) + 6pso,2(k1, k2),
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bz = <2J20(eik24w 77]2,1010) + 2J20(eik1'w ,7]2,0110) + 2(]20(6_”61':‘c ,772,1100) + 6J30(eik2'w 7€ik1'w 7e_ik1'w )ﬁik?w >

4
= —§p20,1(k1)p20,2(k2, 0) -

4920,2(—k1, k2)p20,2(k1, k2 — k1) — 4920,2(k1, k2)p20,2(—k1, k1 + k2) + 6pso,2(kz, k1),

ikg-a’ —iko-x’ ik’ iko-@! —iko-x’ iko-x’
b4:<2J20(e 2% m20101) + 2J20(e7 % [ m2,0200) + 3J30(e7 T T [ eTFT ) 2

4
= —5p20,1(’<¢2)p20,2(’<¢27 0) — 2q20,2(k2, k2)p20,2(—k2, 2k2) + 3pao,1(k2),

where J3p = %d?J[0,0}.
One finds that

’ . ’

Jgo(eik-z”eikm ’eﬂkm ) _ p3071(k)eik<m'7 k 7& 0,
J3 (elkz7 1£ml, —122):p302(k,£) 1kz’ k#—f,
where
2 1 1
pso.1(k) = 3T10(k) - T20,1(k) + 3T10(k) - T20.2(k, k) — ga(co - k)(co - k) — 3(co-k)(To(k) - k)
052 (6] 1 ﬂ 4
5 Tlo(k) -co + 3 (260 - Too,1(k) + co - Tao 2(k, k‘)) + T30,1(k) - co — §|k‘| ,
1
Ts0,1(k) = — Tl(k) |k|2 c(lkl)c(2/k]) — 57 ra(2k) T |k\2 (|k|)*gk(00 k)c(|k|)
1 2C-k  «a 1cok
— (k) — |k k)L e ®
S = K S+ Sl S
a 1co-k a 1co-k g C(J)' k
4D (2 S () + Dol S 1))
a cL k a? co- k
2o (2 . =
+ 127'2( k) |k|2 + kl(CO k)+ 6 Tl(k) |k|2
and
1
ps0.2(k, €) = 5 (Tro(k) - T20.1 (k) + T10(€) - T20.2(k, =€) + T10(£) - T20.2(k, £)) — %(Co 0)(cy - £)

1

- g(co - £)(T10(k) - €) —

Jr

1

with

Cd_ . TQ(),Q(k, 7@) + Cd_ . Tgoyg(k,e)) + T30,2(k,e) - co — g (|k|2‘£|2 + 2(’6

Tina(l ) =~ gra(h) s - (ralk = 0)|

=0

2

(Tio(k) - co + 2T10(€) - co) + %(CS‘ - T20,1(£)

6
£)?),

. )| )
k+¢

%1«2(1@ ) [‘k e -rg(k,l)]

Co - k
|k|?

k—t
[k —£[?

k+2

rg(k,é)] bk + €) {m .

ralie )] -

Co'e

T1(k)%~ |:27°2(£) |£‘2
Y

+r2(k)

— . r3(k, e)} + 7o (E)L%"f +r2(k)Lc|(;c"2k)

1 co- k co- b
s 0]+ ) i+ 0§ )
o (k—2 k+e
Cy ( )+T1(k5+E) ‘kiz'_z ))
Co-(k—l—E)

(k- a
o WF—L X (ke \ETY)
+ —ra(k+€) |k + £

co-£ o

k L
| @ G - S0

a? co~k_g
|k|> 6
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ri(k) = ak™ + kc(|k|),
ra(k) = k(a® — |k|*) — ok c(|k]),

Co k Co * £
7'3(’{3,[) = rl(k)W =+ rl(é)w
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