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ANALYTICAL STUDY OF A GENERALISED DIRICHLET–NEUMANN OPERATOR AND

APPLICATION TO THREE-DIMENSIONAL WATER WAVES ON BELTRAMI FLOWS

M. D. GROVES, D. NILSSON, S. PASQUALI, AND E. WAHLÉN

Abstract. We consider three-dimensional doubly periodic steady water waves with vorticity, under the action
of gravity and surface tension; in particular we consider so-called Beltrami flows, for which the velocity field
and the vorticity are collinear. We adapt a recent formulation of the corresponding problem for localised waves
which involves a generalisation of the classical Dirichlet–Neumann operator. We study this operator in detail,
extending some well-known results for the classical Dirichlet–Neumann operator, such as the Taylor expansion
in homogeneous powers of the wave profile, the computation of its differential and the asymptotic expansion
of its associated symbol. A new formulation of the problem as a single equation for the wave profile is also
presented and discussed in a similar vein. As an application of these results we prove existence of doubly
periodic gravity-capillary steady waves and construct approximate doubly periodic gravity steady waves.
Keywords: Beltrami flows, vorticity, water waves
MSC2020 : 76B15, 76B45, 47G30

1. Introduction

This paper is concerned with three-dimensional doubly periodic steady water waves with vorticity, under the
action of gravity and surface tension. Irrotational water waves have been studied extensively, both in two and
three dimensions (see the survey paper by Haziot et al. [14] and references therein); fewer results are available for
non-zero vorticity, although it may be significant for modelling the interaction of three-dimensional waves with
non-uniform currents. We restrict ourselves to Beltrami fields, in which the velocity field u and the vorticity curlu
are collinear, so that curlu = αu; more precisely, we consider the so-called strong Beltrami fields, for which the
proportionality factor α is a constant (this case appears to be the most relevant, since Enciso and Peralta-Salas
[10] proved that Beltrami fields with non-constant proportionality factors are ‘rare’ in a topological sense).

The importance of Beltrami fields in the context of ideal fluids, and more precisely in the context of stationary
Euler flows, was highlighted by Arnold [3] and Arnold and Khesin [4]: indeed, Arnold’s structure theorem ensures
that, under suitable technical assumptions, a smooth stationary solution to the three-dimensional Euler equation
is either integrable or a Beltrami field. It is thus natural to expect that more complex dynamics (usually associated
to turbulent flows in physical literature) in stationary fluids are related to Beltrami fields (see Monchaux et al.
[22]). The dynamics of Beltrami fields, and in particular the dynamics of the so-called ABC flows, have been
numerically studied by Hénon [15] and Dombre et al. [9]. Such studies lead to the conjecture that Beltrami fields
should exhibit chaotic dynamics together with a positive measure set of invariant tori, much like the restriction
to an energy level of a typical mechanical system with two degrees of freedom; recently Enciso, Peralta-Salas
and Romaniega [11] proved that with probability one a random Beltrami field in R3 exhibits chaotic regions that
coexist with invariant tori of complicated topology.

There has recently been some interest in variational formulations of the three-dimensional steady water-wave
problem with relative velocities given by Beltrami fields. We mention a recent variational formulation by Lokharu
and Wahlén [20] for doubly periodic waves which is valid under general assumptions on the wave profile (including
for example the case of overhanging wave profiles). More recently, Groves and Horn [12] gave another variational
formulation for localised waves (solitary waves) under the more classical assumption that the free surface is given
by the graph of an unknown function η depending only on the horizontal directions. Their formulation, which
can be considered as a generalisation of an alternative variational framework for three-dimensional irrotational
water waves by Benjamin [5, §6.6], is not only more explicit, but it allows one to recover the classical Zakharov–
Craig–Sulem formulation of steady water waves in the irrotational case α = 0. Moreover, this formulation leads
naturally to the definition of a generalised Dirichlet–Neumann operator H(η) which reduces to the classical
Dirichlet–Neumann operator in the irrotational case.

In this paper we perform an analytical study of the generalised Dirichlet–Neumann operator (whose definition
is subtly different in the present context of doubly periodic waves) and of a related operator appearing in a
new single equation formulation of the problem, extending some well-known results for the classical Dirichlet–
Neumann operator, such as the Taylor expansion in homogeneous powers of the profile η by Craig and Sulem [8],
the computation of its differential by Lannes [18, §3.3], and the asymptotic expansion of its associated symbol
(see Alazard and Métivier [2, §2.4]).
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As an application of the above results, we prove the existence of doubly periodic gravity-capillary waves by
Lyapunov–Schmidt reduction, recovering a result recently given by Lokharu, Seth and Wahlén [19]. We also show
how the reduction can be formally carried out in the absence of surface tension and thus compute approximate
doubly periodic gravity waves in the form of formal power series. The failure of the Lyapunov–Schmidt reduction
for gravity waves is due to the presence of small divisors when attempting to invert the relevant linear operator.
This problem has been overcome for irrotational waves by Iooss and Plotnikov [16, 17] using Nash-Moser theory;
its treatment for Beltrami flows is deferred to a future article.

1.1. The hydrodynamic problem. We consider an incompressible inviscid fluid occupying a three-dimensional
domain with flat bottom, under the action of gravity and surface tension. We study steady water waves, namely
a fluid flow in which the velocity field and the free-surface profile are stationary with respect to a uniformly
translating frame. In this moving frame, the fluid domain can be parametrized by

Dη := {(x′, z) ∈ R2 × R : − h < z < η(x′)},

so that the free surface is given by the graph of an unknown function η : R2 → (−h,∞), and h > 0 is the depth of

the fluid. We consider a so-called strong Beltrami flow, in which the velocity field u : Dη → R3 and the vorticity
curlu are collinear, that is curlu = αu for some constant α. The equations describing the flow are given by

divu = 0 in Dη,(1.1)

curlu = αu in Dη,(1.2)

u · e3 = 0 at z = −h,(1.3)

u · n = 0 at z = η,(1.4)

1

2
|u|2 + gη − β

(
ηx

(1 + |∇η|2)1/2

)
x

− β

(
ηy

(1 + |∇η|2)1/2

)
y

=
1

2
|c|2 at z = η,(1.5)

where ∇η := (ηx, ηy)T , g is the acceleration due to gravity, β is the coefficient of surface tension, c := (c1, c2)T is
the wave velocity, e3 := (0, 0, 1)T and

n :=
1

1 + |∇η|2N , N := (−ηx,−ηy, 1)T

denotes the outward unit normal vector. We discuss doubly periodic solutions to (1.1)–(1.5), that is solutions
which satisfy

η(x′ + λ) = η(x′), u(x′ + λ, z) = u(x′, z)

for every λ ∈ Λ, where Λ is the lattice given by

Λ := {λ = m1λ1 + m2λ2 : m1,m2 ∈ Z}
for two linearly independent vectors λ1, λ2. The functions η and u are thefore defined on the periodic domains
R2/Λ and (with a slight abuse of notation) Dη/Λ.

A ‘trivial solution’ of (1.1)–(1.5) is given by (0,u⋆), where u⋆ is the two-parameter family of laminar flows

u⋆ := c1u
(1) + c2u

(2), c1, c2 ∈ R,

u(1) := (cos(αz),− sin(αz), 0)T ,

u(2) := (sin(αz), cos(αz), 0)T .

We consider solutions (η,u) of (1.1)–(1.5) which are small perturbations of (0,u⋆); setting v = u − u⋆ and
representing the velocity field v by a solenoidal vector potential A, we seek solutions (η,A) of the equations

divA = 0 in Dη,(1.6)

curl curlA = α curlA in Dη,(1.7)

A× e3 = 0 at z = −h,(1.8)

A · n = 0 at z = η,(1.9)

curlA · n + u⋆ · n = 0 at z = η,(1.10)

1

2
| curlA|2 + curlA · u⋆ + gη − β

(
ηx

(1 + |∇η|2)1/2

)
x

− β

(
ηy

(1 + |∇η|2)1/2

)
y

= 0 at z = η.(1.11)

Note that (1.1)–(1.3) are implied by (1.6)–(1.8), while (1.4), (1.5) are equivalent to (1.10), (1.11); furthermore
u⋆ = curlA⋆, where

A⋆ :=
c1
α
A(1) +

c2
α
A(2),
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A(1) := (cos(αz) − 1,− sin(αz), 0)T ,

A(2) := (sin(αz), cos(αz) − 1, 0)T .

Remark 1.1. In the irrotational case α = 0 we can write curlA = gradφ for a scalar potential φ, so that
(1.6)–(1.11) becomes the classical steady water-wave problem

∆φ = 0 in Dη,

∂nφ = 0 at z = −h,

(1 + |∇η|2)
1
2 ∂nφ = c · ∇η at z = η,

1

2
| gradφ|2 + c · (φx, φy)T + gη − β

(
ηx

(1 + |∇η|2)1/2

)
x

− β

(
ηy

(1 + |∇η|2)1/2

)
y

= 0 at z = η.

1.2. The formulation. Let F = (F1, F2, F3)T be a three-dimensional vector field, and denote by Fh = (F1, F2)T

its horizontal component and by F∥ = Fh + F3∇η|z=η the horizontal component of its tangential part at z = η.

Let f = (f1, f2)T be a two-dimensional vector field and write f⊥ = (f2,−f1)T . According to the Hodge–Weyl
decomposition for doubly periodic vector fields on R2 (see Majda and Bertozzi [21, Proposition 1.18]) we have

(1.12) f = γ + ∇Φ + ∇⊥Ψ,

γ := ⟨f⟩, Φ := ∆−1(∇ · f), Ψ := ∆−1(∇⊥ · f),

where ⟨f⟩ denotes the mean value of f over one periodic cell, ∇ := (∂x, ∂y)T , ∇⊥ := (∂y,−∂x)T and ∆−1 is the
two-dimensional periodic Newtonian potential.

Equations (1.6)–(1.11) can be reformulated in terms of η and the mean-value and gradient-potential parts of
(curlA)∥ using the following procedure. Fix γ and Φ, let A be the unique solution of the boundary-value problem

divA = 0 in Dη,(1.13)

curl curlA = α curlA in Dη,(1.14)

A× e3 = 0 at z = −h,(1.15)

A · n = 0 at z = η,(1.16)

(curlA)∥ = γ + ∇Φ − α∇⊥∆−1(∇ ·A⊥
∥ ) at z = η,(1.17)

and define the generalised Dirichlet–Neumann operator by the formula

H(η)(γ,Φ) := curlA ·N |z=η = ∇ ·A⊥
∥ .(1.18)

(Note that Ψ = ∆−1(∇⊥ · (curlA)∥) is necessarily given by Ψ = −α∆−1(∇ ·A⊥
∥ ) because

(1.19) Ψ = −∆−1(∇ · curlA⊥
∥ ) = −∆−1(curl curlA ·N

∣∣
z=η

) = −α∆−1(curlA ·N
∣∣
z=η

) = −α∆−1(∇ ·A⊥
∥ ),

in which the vector identity curlF ·N
∣∣
z=η

= ∇ · F⊥
∥ has been used.)

Proposition 1.2. Equations (1.10) and (1.11) are equivalent to

H(η)(γ,Φ) + u⋆ ·N |z=η = 0,(1.20)

1

2
|K(η)(γ,Φ)|2− (H(η)(γ,Φ) + K(η)(γ,Φ)·∇η)2

2(1 + |∇η|2)

+ K(η)(γ,Φ) · u⋆
h|z=η + gη − β

(
ηx

(1 + |∇η|2)1/2

)
x

− β

(
ηy

(1 + |∇η|2)1/2

)
y

= 0,(1.21)

where

K(η)(γ,Φ) := γ + ∇Φ − α∇⊥∆−1(H(η)(γ,Φ)).

This proposition, which is established by an elementary calculation, shows that the mathematical problem
reduces to solving (1.20) and (1.21) for η and Φ (with an arbitrary choice of γ); the velocity field v = curlA is
recovered by solving (1.13)–(1.17). The method was first given in the context of solitary waves (with a slightly
different Hodge–Weyl decomposition for spatially extended functions) by Groves and Horn [12]; note however the
spurious extra term in the statement of the equations in that reference.

Remark 1.3. In the irrotational case α = 0 one finds that curlA = gradφ, where φ is the unique harmonic
function such that φn|z=−h = 0 and φ|z=η = Φ, so that γ = 0 (because (gradϕ)∥ = ∇(ϕ|z=η)) and

H(η)(0,Φ) = ∇φ ·N |z=η = G(η)Φ,
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where G(η) is the classical Dirichlet–Neumann operator. Furthermore, equations (1.20), (1.21) reduce to

G(η)Φ + c · ∇η = 0,

1
2
|∇Φ|2 − (G(η)Φ + ∇η · ∇Φ)2

2(1 + |∇η|2)
− c · ∇Φ + gη − β

(
ηx

(1 + |∇η|2)
1
2

)
x

− β

(
ηz

(1 + |∇η|2)1/2 1
2

)
z

= 0,

so that we recover the Zakharov–Craig–Sulem formulation of the steady water-wave problem (see Zakharov [27]
and Craig and Sulem [8]).

We proceed by specialising to γ = 0, writing c = c0 +µ, where c0 = (c10, c20)T is a reference wave velocity to
be chosen later, so that

u⋆ = (c10 + µ1)u(1) + (c20 + µ2)u(2),

and reducing equations (1.20), (1.21) to a single equation for η (see Oliveras and Vasan [24] for a derivation of the
corresponding single-equation formulation for irrotational water waves). Eliminating Φ from (1.21) using (1.20),
we find that

J(η,µ) :=
1

2
|T (η)|2− (−u⋆ ·N + T (η) · ∇η)2

2(1 + |∇η|2)
+T (η) ·u⋆

h +gη−β

(
ηx

(1 + |∇η|2)1/2

)
x

−β

(
ηy

(1 + |∇η|2)1/2

)
y

= 0,

where

T (η) := −∇
(
H(η)(0, ·)−1(u⋆ ·N)

)
+ α∇⊥∆−1(u⋆ ·N)

and the underscore denotes evaluation at z = η.

Remark 1.4. Let S0 be the reflection

S0η(x′) := η(−x′),

and Tv′ be the translation

Tv′η(x′) := η(x′ + v′).

The mapping J is equivariant with respect to both S0 and Tv′ , that is

J(Tv′η,µ) = Tv′J(η,µ), J(S0η,µ) = S0J(η,µ).

The operator T (η) can be defined more rigorously in terms of a boundary-value problem. Noting that
u⋆ ·N = ∇ · S(η)⊥, where

S(η) :=
c1
α

(
cos(αη) − 1
− sin(αη)

)
+

c2
α

(
sin(αη)

cos(αη) − 1

)
,(1.22)

we can define

T (η) := M(η)(0,S(η)),

where

M(η)(γ, g) := −(curlB)∥,

and B solves the boundary-value problem

curl curlB = α curlB in Dη,(1.23)

divB = 0 in Dη,(1.24)

B × e3 = 0 at z = −h,(1.25)

B · n = 0 at z = η,(1.26)

∇ ·B⊥
∥ = ∇ · g⊥ at z = η,(1.27)

⟨(curlB)∥⟩ = γ.(1.28)

Any solution to this boundary-value problem satisfies

(curlB)∥ = γ + ∇Φ − α∇⊥∆−1(∇ ·B⊥
∥ )

for some Φ (see equation (1.19)), so that Φ = H(η)(γ, ·)−1∇ · g⊥ and

−(curlB)∥ = −γ −∇(H(η)(γ, ·)−1∇ · g⊥) + α∇⊥∆−1(∇ · g⊥).

A rigorous treatment of the boundary-value problems (1.13)–(1.17) and (1.23)–(1.28) is given in Section 2.1
using a traditional weak/strong-solution approach.
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1.3. Analytical results for the operators H and M . We write functions f : R2/Λ → R as Fourier series

f(x′) =
∑
k∈Λ′

f̂keik·x
′
,

where Λ′ is the dual lattice to Λ; the Fourier coefficients f̂k are given by

f̂k =
1

|Ω|

∫
Ω

f(x′)e−ik·x′
dx′,

where Ω is the parallelogram built with λ1, λ2. We write k = (k1, k2)T and work in the Sobolev spaces

Hs(R2/Λ) :=

{
f ∈ L2(R2/Λ): ∥f∥2s :=

∑
k∈Λ′

(
1 + |k|2

)s |f̂k|2 < ∞

}
, s ≥ 0,

and their subspaces

H̊s(R2/Λ) := {f ∈ Hs(R2) : f̂0 = 0}
of functions with zero mean, noting that the Hodge–Weyl decomposition (1.12) of a function f ∈ Hs(R2/Λ)2 is
given by

R2 ∋ γ = (f̂10, f̂20)T ,

H̊s+1(R2/Λ)2 ∋ Φ = −
∑
k∈Λ′
k ̸=0

(
ik1f̂1k + ik2f̂2k

|k|2

)
eik·x

′
,

H̊s+1(R2/Λ)2 ∋ Ψ = −
∑
k∈Λ′
k ̸=0

(
ik2f̂1k − ik1f̂2k

|k|2

)
eik·x

′
.

In Section 2.2 we show that the solutions to the boundary-value problems (1.13)–(1.17) and (1.23)–(1.28)
depend analytically upon η and use this result to deduce that the same is true of H(η) and M(η). We proceed
by ‘flattening’ the fluid domain by means of the transformation Σ: D0 → Dη given by

Σ: (x′, v) 7→ (x′, v + σ(x′, v)), σ(x′, v) := η(x′)(1 + v/h)

which transforms the boundary-value problems for A and B into equivalent problems for Ã := A◦Σ and B̃ := B◦Σ
in the fixed domain D0 (equations (2.16)–(2.20) and (2.21)–(2.26) respectively). The spatially extended version

of the boundary-value problem for Ã was studied by Groves and Horn [12, §4] under the following non-resonance
condition.

(NR) The restrictions |k| ̸= |α|,

h
√

α2 − |k|2 /∈ π
2
N, if |k| < |α|,

hold for each k ∈ Λ′.

Their analysis in the present context leads to the first statement in the following theorem; the second is deduced
from it. Condition (NR) is a blanket hypothesis in Sections 2.3, 2.4, 3 and 4, which rely upon these theorems.

Theorem 1.5. Suppose that s ≥ 2, and assume that the non-resonance condition (NR) holds. There exists an

open neighbourhood U of the origin in Hs+ 1
2 (R2/Λ) such that

(i) the boundary-value problem (2.16)–(2.20) has a unique solution Ã = Ã(η,γ,Φ) in Hs(D0/Λ)3 which depends

analytically upon η ∈ U , γ ∈ R2 and Φ ∈ H̊s− 1
2 (R2/Λ) (and linearly upon (γ,Φ));

(ii) the boundary-value problem (2.21)–(2.26) has a unique solution B̃ = B̃(η,γ, g) in Hs(D0/Λ)3 which depends

analytically upon η ∈ U and g ∈ Hs− 3
2 (R2)2 (and linearly upon (γ, g)).

The analyticity of H, M and T follows from Theorem 1.5 and the facts that

(1.29) H(η)(γ,Φ) = ∇ · Ã⊥
∥ , M(η)(γ, g) = −(curlσ B̃)∥,

and T (η) = M(η)(0,S(η)), where

curlσ B̃(x′, v) := (curl B) ◦ Σ(x′, v).
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Theorem 1.6. Suppose that s ≥ 2, and assume that the non-resonance condition (NR) holds. There exists

an open neighbourhood U of the origin in Hs+ 1
2 (R2/Λ) such that η 7→ H(η), η 7→ M(η) and η 7→ T (η) are

analytic mappings U → L(R2 × H̊s− 1
2 (R2/Λ), H̊s− 3

2 (R2/Λ)), U → L(R2 × Hs− 1
2 (R2/Λ)2, Hs− 3

2 (R2/Λ)2) and

U → Hs− 3
2 (R2/Λ)2 respectively.

In Section 2.3 we turn to the differentials of H(η) and M(η). Applying the operator d − dσ∂σ
v , where

∂σ
v = (1 + ∂vσ)−1∂v, to equations (1.29) shows that

dH[η](δη)(γ,Φ) = ∇ · C̃⊥
∥ + ∂σ

v curlσ Ã ·N |v=0δη − (curlσ Ã)h · ∇δη,

dM [η](δη)(γ, g) = −(curlσ D̃)∥ − δη(∂σ
v curlσ B̃)∥ − (curlσ B̃)3|v=0∇δη,

where C̃ = (dÃ − dσ∂σ
v Ã) and D̃ = (dB̃ − dσ∂σ

v B̃). Careful inspection of the boundary-value problems for

C̃ and D̃ (which are obtained by applying d − dσ∂σ
v to the boundary-value problems for Ã and B̃) yields the

following result. Note the increased regularity requirement due to the double application of H(η) and M(η) in
the formulae.

Theorem 1.7. Suppose that s ≥ 3.

(i) The differential of the operator H(·) : U → L(R2 × H̊s− 1
2 (R2/Λ), H̊s− 3

2 (R2/Λ)) is given by

dH[η](δη)(γ,Φ)

= H(η)
(
−α⟨(K(η)(γ,Φ) − u∇η)⊥δη⟩,−α∆−1∇ · ((K(η)(γ,Φ) − u∇η)⊥δη) − uδη + ⟨uδη⟩

)
−∇ · ((K(η)(γ,Φ) − u∇η)δη),

where

u =
K(η)(γ,Φ) · ∇η + H(η)(γ,Φ)

1 + |∇η|2 .

(ii) The differential of the operator M(·) : U → L(R2 ×Hs− 1
2 (R2/Λ)2, Hs− 3

2 (R2/Λ)2) is given by

dM [η](δη)(γ, g)

= M(η)
(
α⟨(M(η)(γ, g) + u∇η)⊥δη⟩, (M(η)(γ, g) + u∇η)⊥δη

)
−∇(uδη) + α(M(η)(γ, g) + uδη)⊥δη,

where

u =
∇ · g⊥ −M(η)(γ, g) · ∇η

1 + |∇η|2 .

In Section 2.4 we show how to use recursion formulae to compute the terms in the Taylor expansions

H(η) =

∞∑
j=0

Hj(η), M(η) =

∞∑
j=0

Mj(η)(1.30)

of H(η) and M(η) at η = 0 systematically, where Hj(η) and Mj(η) are homogeneous of degree j in η (compare with
the recursion formulae for the Taylor expansion of the Dirichlet–Neumann operator appearing in the irrotational
case given by Craig and Sulem [8]). The recursion formulae are derived by substituting the expansions (1.30)
into the expressions for dH[η](η)(γ,Φ) and dM [η](η)(γ, g) given by Theorem 1.7, and equating terms of equal
homogeneity in η. The individual terms in the series are computed as functions of H0 and M0 using the recursion
formulae, and straightforward calculations using Fourier series show that

H0(γ,Φ) = D2
t(D) Φ, M0(γ, g) = −γ +

1

D2

(
αD⊥ + D c(D)

)
D · g⊥,

where

c(|k|) :=

{√
α2 − |k|2 cot(h

√
α2 − |k|2), if |k| < |α|,√

|k|2 − α2 coth(h
√

|k|2 − α2), if |k| > |α|,
t(|k|) :=


tan(h

√
α2−|k|2)√

α2−|k|2
, if |k| < |α|,

tanh(h
√

|k|2−α2)√
|k|2−α2

, if |k| > |α|.

and
D = (D1, D2)T = −i∇, D = |D|.

Explicit formulae for H0, H1, H2 and M0, M1, M2 are are computed in Section 2.4.

Remark 1.8. This method leads to formulae involving ever more derivatives of η in the individual terms in
the formulae for Hj(η) and Mj(η); the overall validity of the formulae arises from subtle cancellations between
the terms (see Nicholls and Reitich [23, §2.2] for a discussion of this phenomenon in the context of the classical
Dirichlet–Neumann operator).
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1.4. Pseudodifferential calculus for the operators H and M . In Section 3 we fix η ∈ C∞(R2/Λ), prove
that H(η)(0, ·) and M(η)(0, ·) are smooth perturbations of properly supported pseudodifferential operators, and
compute their asymptotic expansions.

Following Alazard, Burq and Zuily [1], we begin by introducing a localising transform (which differs from the
flattening transform used in Section 2). Choose δ > 0 so that the fluid domain Dη contains the strip

Ωδ := {(x′, z) ∈ R2 × R : η(x′) − δh ≤ z < η(x′)}

for η ∈ U and define Σ̂ : D0 → Ωδ by

Σ̂ : (x′, w) 7→ (x′, ϱ(x′, w)), ϱ(x′, w) := δw + η(x′).

This transform converts the equation

−∆U = α curlU in Ωδ

into

−∆ϱÛ − α curlϱ Û = 0 in D0,

where

curlϱ Û(x′, w) = (curl U) ◦ Σ̂(x′, w), ∆ϱÛ = (∆U) ◦ Σ̂(x′, w),

which we write as

(1.31) LÛ = 0

(the explicit formula for L is given in Section 3.1). We proceed by implementing Treves’s factorisation method
(Treves [26, Ch. III, §3]) and examining its consequences for solutions of equation (1.31).

Lemma 1.9. There are properly supported operators M , N ∈ Ψ1(R2/Λ) such that

(i) L− a(∂wI −N)(∂wI −M) ∈ Ψ−∞(R2/Λ), where a = (1 + |∇η|2)/δ2,

(ii) the principal symbols M(1), N(1) of M , N take the form M(1) = m(1)I3, N(1) = n(1)I3, where the scalar-valued

symbols m(1), −n(1) ∈ S1(R2/Λ) are strongly elliptic.

Lemma 1.10. Any function Û ∈ H2(D0/Λ)3 with LÛ = 0 in D0 satisfies

∂wÛ = MÛ + R∞Û at w = 0,

where the symbol R∞ denotes a linear function of its argument whose range lies in C∞(R2/Λ)3.

Let s ≥ 2, Φ ∈ H̊s− 1
2 (R2/Λ) and Ã ∈ Hs(D0/Λ)3 be the function defining H(η)(0,Φ) (see equation (1.29)).

The variable

Â(x′, w) := Ã(x′, v), w :=
1

δh
(h + η)v

satisfies (1.31) and hence

(1.32) ∂wÂ|w=0 = MÂ|w=0 + R∞Φ

(see Lemma 1.10, noting that Â is a linear function of Φ), together with

Â3 = ηxÂ1 + ηyÂ2 at w = 0,(1.33)

(curlϱÂ)∥ = ∇Φ − α∇⊥∆−1(∇ · Â⊥
∥ ) at w = 0.(1.34)

Eliminating ∂wÂ using (1.32), we find from (1.33), (1.34) that

(1.35) Â|w=0 = ZΦ + R∞Φ,

where Z ∈ S0(R2/Λ) and Z = Op Z. Finally, inserting Â|w=0 and ∂wÂ|w=0 from (1.32), (1.34) into

H(η)(0,Φ) = Â2x + ηyÂ3x − Â1y − ηxÂ3y

∣∣
w=0

shows that

H(η)(0,Φ) = OpλαΦ + R∞Φ,

where λα ∈ S1(R2/Λ). The asymptotic expansions

Z ∼
∑
j≤0

Z
(j), λα ∼

∑
j≤1

λ(j)
α

can be determined recursively by substituting

Â|w=0 = ZΦ + R∞Φ, ∂wÂ|w=0 = MZΦ + R∞Φ

into (1.33), (1.34). These calculations are performed in Section 3.2 and summarised in the following theorem.
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Theorem 1.11. Suppose s ≥ 2, η ∈ C∞(R2/Λ) and Φ ∈ H̊s−1/2(R2/Λ). We have that

H(η)(γ,Φ) = H(η)(γ, 0) + H(η)(0,Φ),

the first term of which belongs to C∞(R2/Λ), and

H(η)(0,Φ) = OpλαΦ + R∞Φ,

where λα ∈ S1(R2/Λ) and R∞Φ ∈ C∞(R2/Λ). The symbol λα admits the asymptotic expansion

λα ∼ λ(1)
α + λ(0)

α + · · · ,

in which λ
(j)
α (x′,k) is homogeneous of degree j in k. Moreover

λ(1)
α (x′,k) = λ(1)(x′,k),

λ(0)
α (x′,k) := λ(0)(x′,k) + α

(k · ∇η)(k · ∇⊥η)

|k|2 ,

where

λ(1)(x′,k) :=
√

(1 + |∇η|2)|k|2 − (k · ∇η)2,

λ(0)(x′,k) :=
1 + |∇η|2

2λ(1)

(
∇ · (m(1) ∇η) + i∇kλ

(1) · ∇m
(1)
)
, m

(1)(x′,k) :=
ik · ∇η + λ(1)

1 + |∇η|2 ,

are the principal and sub-principal symbols of the classical Dirichlet–Neumann operator.

The corresponding result for M(η) is obtained in a similar fashion in Section 3.3.

Theorem 1.12. Suppose s ≥ 2, η ∈ C∞(R2/Λ) and g ∈ Hs−1/2(R2/Λ)2. We have that

M(η)(γ, g) = M(η)(γ,0) + M(η)(0, g),

the first term of which belongs to C∞(R2/Λ)2, and

M(η)(0, g) = Op ναg + R∞g,

where να ∈ S1(R2/Λ) and R∞g ∈ C∞(R2/Λ)2. The symbol να admits the asymptotic expansion

να ∼ ν(1)
α + ν(0)

α + · · · ,

in which ν
(j)
α (x′,k) is homogeneous of degree j in k. Moreover

ν(1)
α (x′,k)g = k

(k · g⊥)

λ(1)
, ν(0)

α (x′,k)g =

(
ζ1(x′,k)
ζ2(x′,k)

)
(k · g⊥),

where

ζ1(x′,k) =
i

2(λ(1))5

(
k2
1(−1 + 2η2

y)ηx − k1k2ηy(3 + 4η2
x) + 2k2

2ηx(1 + η2
x) + ik1λ

(1)

)
×
(
k2
1ηyy − 2k1k2ηxy + k2

2ηxx

)
+

α

(λ(1))2
(
k2(1 + η2

x) − k1ηxηy
)
,

ζ2(x′,k) =
i

2(λ(1))5

(
2k2

1ηy(1 + η2
y) − k1k2ηx(3 + 4η2

y) + k2
2ηy(−1 + 2η2

x) + ik2λ
(1)

)
×
(
k2
1ηyy − 2k1k2ηxy + k2

2ηxx

)
+

α

(λ(1))2
(
−k1(1 + η2

y) + k2ηxηy
)
.

1.5. Construction of approximate solutions. In Section 4 we construct approximate solutions of

(1.36) J(η,µ) = 0

for β ≥ 0 in the form of power series and moreover prove their convergence for β > 0. The solutions have wave
velocity c close to a reference value c0 chosen such that the following transversality condition holds; we refer
to Lokharu, Seth and Wahlén [19] for a detailed geometrical investigation of this condition (see in particular
condition (3.7) and Proposition 3.3 in that reference).

(T) The only solutions k ∈ Λ′ of the dispersion relation

ρ(k, c, β) :=

[
g + β |k|2 − α

|k|2 (c · k)(k⊥ · c)

]
|k|2t(|k|) − (c · k)2 = 0

are k = 0, ±k1, ±k2, where k1 and k2 are the generators of the lattice Λ′. Furthermore, the vectors ∇c ρ(k1, c0, β)
and ∇c ρ(k2, c0, β) are linearly independent.
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We consider J as a locally analytic mapping Xβ
s × R2 → Hs(R2/Λ) for a sufficiently large value of s, where

Xβ
s :=

{
Hs+2(R2/Λ), if β > 0,

Hs+1(R2/Λ), if β = 0,

and proceed to investigate the kernel and range of

J10(η) := d1J [0,0](η) = T1(η) · c0 + gη − β∆η.

Writing

η(x′) =
∑
k∈Λ′

η̂keik·x
′
,

so that

(J10η)(x′) = gη̂0 +
∑

k∈Λ′\{0}

c(|k|)
|k|2 ρ(k, c0, β)η̂keik·x

′
,

we find that

ker(J10) = {Aeik1·x′
+ Beik2·x′

+ Āe−ik1·x′
+ B̄e−ik2·x′

: A,B ∈ C},
since ρ(k, c0, β) = 0 if and only if k = 0,±k1,±k2. The operator J10 is formally invertible if f̂±k1 = f̂±k2 = 0
with formal inverse given by

(J−1
10 f)(x′) =

1

g
f̂0 +

∑
k∈Λ′

k ̸=0,±k1,±k2

|k|2

c(|k|)ρ(k, c0, β)
f̂keik·x

′
.

For β > 0 we find that ρ(k, c0, β) ≳ |k|3 for sufficiently large |k|, so that the above series converges in Hs+2(R2/Λ)
for f ∈ Hs+2(R2/Λ); it follows that J10 : Hs+2(R2/Λ) → Hs(R2/Λ) is Fredholm with index 0. In contrast
ρ(k, c0, 0) is not bounded from below as |k| → ∞, so that the above formula does not define a bounded operator
from Hs(R2/Λ) to Hs+1(R2/Λ) for any s. We therefore proceed formally, noting that the procedure is rigorously
valid for β > 0.

To apply the Lyapunov–Schmidt reduction to equation (1.36) we write η = η1 + η2, where

η1 = Aeik1·x′
+ Beik2·x′

+ Āe−ik1·x′
+ B̄e−ik2·x′

and η2 ∈ ker(J10)⊥. Noting that S0 and Tv′ act on the coordinates (A,B, Ā, B̄) as

S0(A,B, Ā, B̄) = (Ā, B̄, A,B), Tv′(A,B, Ā, B̄) = (Aeik1·v′
, Beik2·v′

, Āe−ik1·v′
, B̄e−ik2·v′

),

and that the reduced equation remains equivariant under these symmetries, we show that (1.36) is locally equiv-
alent to

Ag1(|A|2, |B|2,µ) = 0,

Bg2(|A|2, |B|2,µ) = 0,

where g1, g2 are real-valued locally analytic functions which vanish at the origin. The following result is obtained
from the analytic implicit-function theorem and the transversality condition (T).

Proposition 1.13. There exist ε > 0 and analytic functions µi : Bε(0,R2) → R, i = 1, 2 such that µi(0, 0) = 0
and (|A|2, |B|2, µ1(|A|2, |B|2), µ2(|A|2, |B|2)) is the unique local solution of gi(|A|2, |B|2,µ) = 0, i = 1, 2.

Our main result now follows by substituting µ = µ(|A|2, |B|2) into η = η1 + η2(η1,µ).

Theorem 1.14. Suppose that β > 0. There exist ε > 0, a neighbourhood V of the origin in Xβ
s ×R2 and analytic

functions µ1, µ2 : Bε(0,R2) → R and η : Bε(0,C4) → Xβ
s such that

{(η,µ) ∈ Xβ
s × R2 : J(η,µ) = 0, η ̸= 0} ∩ V = {(η(A,B, Ā, B̄),µ(|A|2, |B|2)) : (A,B, Ā, B̄) ∈ B′

ε(0,C4)};

furthermore µ(0, 0) = 0 and

η(x′) = Aeik1·x′
+ Beik2·x′

+ Āe−ik1·x′
+ B̄e−ik2·x′

+ O(|(A,B, Ā, B̄)|2).

The terms in the expansions

η = Aeik1·x′
+ Beik2·x′

+ Āe−ik1·x′
+ B̄e−ik2·x′

+
∑

i+j+k+l≥2

ηijklA
iBjĀkB̄l

and

µi =
∑

j+k≥1

µi,jk|A|2j |B|2k, i = 1, 2,
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can be determined recursively by substituting these expressions into (1.36) and equating monomials in (A,B, Ā, B̄).
Note that the series can be computed to any order for β ≥ 0 but their convergence has been established only for
β > 0. The coefficients ηijkl for i + j + k + ℓ = 2 and µ1,jk, µ2,jk for j + k = 1 are computed in Section 4.

2. The operators H(η) and M(η)

In this section we study the operators H(η) and M(η) defined by

(2.1) H(η)(γ,Φ) := ∇ ·A⊥
∥ , M(η)(γ, g) := −(curlB)∥,

where A and B are the solutions to the boundary-value problems

curl curlA = α curlA in Dη,(2.2)

divA = 0 in Dη,(2.3)

A× e3 = 0 at z = −h,(2.4)

A · n = 0 at z = η,(2.5)

(curlA)∥ = γ + ∇Φ − α∇⊥∆−1(∇ ·A⊥
∥ ) at z = η(2.6)

and

curl curlB = α curlB in Dη,(2.7)

divB = 0 in Dη,(2.8)

B × e3 = 0 at z = −h,(2.9)

B · n = 0 at z = η,(2.10)

∇ ·B⊥
∥ = ∇ · g⊥,(2.11)

⟨(curlB)∥⟩ = γ.(2.12)

2.1. Weak and strong solutions. We first suppose that η is a fixed function in W 2,∞(R2/Λ) with inf η > −h
and present a traditional weak/strong-solution approach to the boundary-value problems (2.2)–(2.6) and (2.7)–

(2.12), working with the standard spaces D(Dη/Λ)3 and D(Dη/Λ)3 of periodic test functions, the Sobolev spaces
L2(Dη/Λ)3 and H1(Dη/Λ)3, and the closed subspace

Xη = {F ∈ H1(Dη/Λ)3 : F × e3|z=−h = 0, F · n|z=η = 0}

of H1(Dη/Λ)3.

Definition 2.1.

(i) A weak solution of (2.2)–(2.6) is a function A ∈ Xη such that

(2.13)

∫
Ω

∫ η

−h

(curlA · curlC − α curlA ·C + divA divC) − α

∫
Ω

∇∆−1(∇ ·A⊥
∥ ) ·C∥ =

∫
Ω

(γ⊥ + ∇⊥Φ) ·C∥

for all C ∈ Xη, while a strong solution has the additional regularity requirement that A ∈ H2(Dη/Λ)3, is solenoidal

and satisfies (2.2) in L2(Dη/Λ)3 and (2.6) in H
1
2 (R2/Λ)2.

(ii) A weak solution of (2.7)–(2.12) is a function B ∈ Xη which satisfies (2.11) and

(2.14)

∫
Ω

∫ η

−h

(curlB · curlD − α curlB ·D + divB divD) =

∫
Ω

(γ⊥ + α∇∆−1(∇ · g⊥)) ·D∥

for all D ∈ X 0
η , where

X 0
η := {F ∈ Xη : ∇ · F⊥

∥ = 0},
while a strong solution has the additional regularity requirement that B lies in H2(Dη/Λ)3, is solenoidal, satisfies

(2.12) and satisfies (2.7) in L2(Dη/Λ)3.

The existence of weak and strong solutions is established in Lemmata 2.5 and 2.6 below, whose proofs rely
upon the following technical results (see Groves and Horn [12, §4(b)]).

Proposition 2.2.

(i) The space Xη coincides with

{F ∈ L2(Dη/Λ)3 : curlF ∈ L2(Dη/Λ)3, divF ∈ L2(Dη/Λ), F × e3|z=−h = 0, F · n|z=η = 0}

and the function F 7→ (∥ curlF ∥2L2(Dη/Λ)3 + ∥divF ∥2L2(Dη/Λ))
1
2 is equivalent to its usual norm.
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(ii) The spaces

{F ∈L2(Dη/Λ)3 : curlF ∈L2(Dη/Λ)3, divF ∈L2(Dη/Λ), F × e3|z=−h∈H
1
2 (R2/Λ)3, F ·N |z=η∈H

1
2 (R2/Λ)},

{F ∈L2(Dη/Λ)3 : curlF ∈L2(Dη/Λ)3, divF ∈L2(Dη/Λ), F × e3|z=−h∈H
1
2 (R2/Λ)3, F⊥

∥ ∈H
1
2 (R2/Λ)2},

{F ∈L2(Dη/Λ)3 : curlF ∈L2(Dη/Λ)3, divF ∈L2(Dη/Λ), F · e3|z=−h∈H
1
2 (R2/Λ), F ·N |z=η∈H

1
2 (R2/Λ)},

{F ∈L2(Dη/Λ)3 : curlF ∈L2(Dη/Λ)3, divF ∈L2(Dη/Λ), F · e3|z=−h∈H
1
2 (R2/Λ), F⊥

∥ ∈H
1
2 (R2/Λ)2}

coincide with H1(Dη/Λ)3.

(iii) The space

{F ∈ L2(Dη/Λ)3 : curlF ∈ H1(Dη/Λ)3, divF ∈ H1(Dη/Λ), F × e3|z=−h = 0, F · n|z=η = 0}

coincides with {F ∈ H2(Dη/Λ)3 : F × e3|z=−h = 0, F · n|z=η = 0}.

Proposition 2.3.

(i) It follows from the formula∫
Ω

∫ η

−h

(F · curlG− curlF ·G) =

∫
Ω

F⊥
∥ ·G∥, F ∈ D(Dη/Λ)3, G ∈ H1(Dη/Λ)3,G|z=−h = 0

that the mapping F 7→ F⊥
∥ defined on D(Dη/Λ)3 extends to a continuous linear mapping

{F ∈ L2(Dη/Λ)3 : curlF ∈ L2(Dη/Λ)3} → H− 1
2 (R2/Λ)2, where the former space is equipped with the norm

F 7→ (∥F ∥2L2(Dη/Λ)3 + ∥ curlF ∥2L2(Dη/Λ)3)
1
2 .

(ii) It follows from the formula∫
Ω

∫ η

−h

curlF · gradϕ =

∫
Ω

curlF ·Nϕ|z=η, F ∈ D(Dη/Λ)3, ϕ ∈ H1(Dη/Λ), ϕ|z=−h = 0

that the mapping F 7→ curlF · N |z=η defined on D(Dη/Λ)3 extends to a continuous linear mapping

{F ∈ L2(Dη)3 : divF ∈ L2(Dη)} → H− 1
2 (R2)2, where the former space is equipped with the norm

F 7→ (∥F ∥2L2(Dη)3 + ∥divF ∥2L2(Dη))
1
2 .

Proposition 2.4. The boundary-value problem

∆ϕ = F in Dη,

∂nϕ = f at z = η,

ϕ = 0 at z = −h

has a unique solution ϕ ∈ H2(Dη/Λ) for each F ∈ L2(Dη/Λ) and f ∈ H
1
2 (Sη/Λ).

Lemma 2.5.

(i) For all sufficiently small values of |α| the boundary-value problem (2.2)–(2.6) admits a unique weak solution for

each γ ∈ R2 and Φ ∈ H̊
1
2 (R2/Λ). The weak solution is solenoidal and satisfies (2.2) in the sense of distributions

and (2.6) in H− 1
2 (R2/Λ)2.

(ii) For all sufficiently small values of |α| the boundary-value problem (2.7)–(2.12) admits a unique weak solu-

tion for each γ ∈ R2 and g ∈ H
1
2 (R2/Λ)2. The weak solution is solenoidal and satisfies (2.7) in the sense of

distributions.

Proof.

(i) The estimates∣∣∣∣∫
Ω

∫ η

−h

curlA ·C
∣∣∣∣ ≲ ∥A∥H1(Dη/Λ)3∥C∥H1(Dη/Λ)3 ,∣∣∣∣∫

Ω

∇∆−1(∇ ·A⊥
∥ ) ·C∥

∣∣∣∣ ≲ ∥A∥∥0∥C∥∥0 ≲ ∥A|z=η∥ 1
2
∥C|z=η∥ 1

2
≲ ∥A∥H1(Dη/Λ)3∥C∥H1(Dη/Λ)3

and Proposition 2.2(i) imply that for sufficiently small values of |α| the left-hand side of (2.13) is a continuous,
coercive, bilinear form Xη ×Xη → R, while the estimate∣∣∣∣∫

Ω

(γ⊥ + ∇⊥Φ) ·C∥

∣∣∣∣ ≲ (|γ⊥| + ∥∇⊥Φ∥− 1
2
)∥C|z=η∥ 1

2
≲ (|γ| + ∥Φ∥ 1

2
)∥C∥H1(Dη/Λ)3
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shows that its right-hand side is a continuous, bilinear form (R2 × H̊
1
2 (R2/Λ)) × Xη → R. The existence of a

unique solution A ∈ Xη now follows from the Lax-Milgram lemma.
Let ϕA ∈ H2(Dη/Λ) be the unique function satisfying ∆ϕA = divA in Dη with boundary conditions

∂nϕA|y=η = 0, ϕA|z=−h = 0 (see Proposition 2.4). It follows that C = gradϕA ∈ Xη and hence∫
Ω

∫ η

−h

(
− α curlA · gradϕA + (divA)2

)
− α

∫
Ω

∇∆−1(∇ ·A⊥
∥ ) · ∇(ϕA|z=η) = 0

(because C∥ = ∇(ϕA|z=η), which is orthogonal to γ⊥ and ∇⊥Φ). Since∫
Ω

∫ η

−h

curlA · gradϕA =

∫
Ω

curlA ·N ϕA|z=η =

∫
Ω

∇ ·A⊥
∥ ϕA|z=η = −

∫
Ω

∇∆−1(∇ ·A⊥
∥ ) · ∇(ϕA|z=η)

(see Proposition 2.3(ii)), one concludes that divA = 0.
Choosing C ∈ D(Dη/Λ)3, one finds that A solves (2.2) in the sense of distributions and hence that

curl curlA ∈ L2(Dη)3. It follows that (curlA)⊥∥ ∈ H− 1
2 (R2)2 (Proposition 2.3(i)) and∫

Ω

∫ η

−h

(curl curlA− α curlA) ·C +

∫
Ω

(
(curlA)⊥∥ − γ⊥ −∇⊥Φ − α∇∆−1(∇ ·A⊥

∥ )
)
·C∥ = 0.

One concludes that (2.6) holds in H− 1
2 (R2/Λ)2.

(ii) Let F ∈ H1(Dη/Λ)3 be a function such that F∥ = g and F × e3|z=−h = 0, and let ϕF ∈ H2(Dη/Λ) be the
unique function satisfying ∆ϕF = divF in Dη with boundary conditions ∂nϕF |z=η = F · n, ϕF |z=−h = 0 (see
Proposition 2.4). It follows that G := F −gradϕF satisfies divG = 0, G ·n|z=η = 0 and ∇·G⊥

∥ = ∇·g⊥ because

∇ · (gradϕF )⊥∥ = ∇ · ∇(ϕF |z=η)⊥ = 0. We accordingly seek C ∈ X 0
η such that∫

Ω

∫ η

−h

(curlC· curlD − α curlC ·D + divC divD)

= −
∫
Ω

∫ η

−h

(curlG · curlD − α curlG ·D) +

∫
Ω

(γ⊥ + α∇∆−1(∇ ·G⊥)) ·D∥(2.15)

for all D ∈ X 0
η , so that B = C + G is a weak solution of (2.7)–(2.12).

For sufficiently small values of |α| the left-hand side of (2.15) is a continuous, coercive, bilinear form
X 0

η × X 0
η → R, while the right-hand side is a continuous, bilinear form (R2 × Xη) × X 0

η → R. The existence

of a unique function C ∈ X 0
η satisfying (2.15) for all D ∈ X 0

η now follows from the Lax-Milgram lemma, and the
corresponding weak solution B to (2.7)–(2.12) is unique since the difference between two weak solutions satisfies
(2.15) with γ = 0 and g = 0 for all D ∈ X 0

η and is therefore zero.

Let ϕB ∈ H2(Dη/Λ) be the unique function satisfying ∆ϕB = divB in Dη with boundary conditions
∂nϕB |z=η = 0, ϕB |z=−h = 0 (see Proposition 2.4). Substituting D = gradϕB ∈ X 0

η into (2.14), we find
that ∫

Ω

∫ η

−h

(
− α curlB · gradϕB + (divB)2

)
= α

∫
Ω

∇∆−1(∇ ·B⊥
∥ ) · ∇(ϕB |z=η),

and since

−
∫
Ω

∫ η

−h

curlB · gradϕB = −
∫
Ω

∇ ·B⊥
∥ ϕB |z=η =

∫
Ω

∇∆−1(∇ ·B⊥
∥ ) · ∇(ϕB |z=η),

one concludes that divB = 0.
Finally, taking D ∈ D(Dη/Λ)3 in (2.14), we find that B satisfies (2.7) in the sense of distributions. □

Lemma 2.6.

(i) Suppose that γ ∈ R2 and Φ ∈ H̊
3
2 (R2/Λ). Any weak solution A of (2.2)–(2.6) is in fact a strong solution.

(ii) Suppose that γ ∈ R2 and g ∈ H
3
2 (R2/Λ)2. Any weak solution B of (2.7)–(2.12) is in fact a strong solution.

Proof.

(i) Recall that curl curlA ∈ L2(Dη/Λ)3 and

(curlA)⊥∥ = γ⊥ + ∇⊥Φ + α∇∆−1(∇ ·A⊥
∥ )

holds in H− 1
2 (R2/Λ)2; hence (curlA)⊥∥ ∈ H

1
2 (R2/Λ)2 (because the right-hand side of this equation belongs to

H
1
2 (R2/Λ)2). Since 0 = div curlA ∈ L2(Dη/Λ) and curlA · e3|z=−h = 0 it follows that curlA ∈ H1(Dη/Λ)3

(Proposition 2.2(ii)), and furthermore curlA ∈ H1(Dη/Λ)3, 0 = divA ∈ H1(Dη/Λ) with A × e3|z=−h = 0,
A · n|z=η = 0 imply that A ∈ H2(Dη/Λ)3 (Proposition 2.2(iii)). Finally note that (2.2) holds in L2(Dη/Λ)3

because it holds in the sense of distributions and A ∈ H2(Dη/Λ)3.
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(ii) Clearly 0 = div curlB ∈ L2(Dη/Λ) and curl curlB ∈ L2(Dη/Λ)3 because (2.7) is satisfied in the sense of
distributions and curlB ∈ L2(Dη/Λ)3; furthermore

curlB ·N |z=η = ∇ ·B⊥
∥ = ∇ · g⊥ ∈ H̊

1
2 (R2/Λ), curlB · e3|z=−h = 0,

so that curlB ∈ H1(Dη/Λ)3 by Proposition 2.2(ii). Next note that curlB ∈ H1(Dη/Λ)3, 0 = divB ∈ H1(Dη/Λ)
with B × e3|z=−h = 0, B · n|z=η = 0 implies that B ∈ H2(Dη/Λ)3 by Proposition 2.2(iii), and (2.7) holds in
L2(Dη/Λ)3 because it holds in the sense of distributions and B ∈ H2(Dη/Λ)3. Finally∫

Ω

∫ η

−h

(curl curlB − α curlB) ·D︸ ︷︷ ︸
= 0

+

∫
Ω

(
(curlB)⊥∥ − γ⊥ − α∇∆−1(∇ ·B⊥

∥ )
)
·D∥ = 0

for all D ∈ X 0
η , which implies that (curlB)⊥∥ = γ⊥ + ∇⊥Φ + α∇∆−1(∇ · B⊥

∥ ) for some Φ ∈ H̊
3
2 (R2/Λ) and in

particular that (2.12) holds. □

Remark 2.7. Suppose that B ∈ H2(Dη/Λ)3 satisfies (2.7)–(2.12). The orthogonal gradient part of (curlB)∥ is

equal to −α∇⊥∆−1(∇ ·B⊥
∥ ).

Corollary 2.8. The formulae (2.1) define linear operators H(η) : R2 × H̊
3
2 (R2/Λ) → H̊

1
2 (R2/Λ) and

M(η) : R2 ×H
3
2 (R2/Λ)2 → H

1
2 (R2/Λ)2.

2.2. Analyticity. In this section we show that improved regularity of η, Φ and g leads to improved regularity
of the solution to the boundary-value problems (2.2)–(2.6) and (2.7)–(2.12) and use this result to deduce that
H(η) and M(η) depend analytically upon η (see Theorem 2.11(i) below for a precise statement). We proceed
by transforming (2.2)–(2.6) and (2.7)–(2.12) into equivalent boundary-value problems in the fixed domain D0 by
means of the following flattening transformation. Define Σ: D0 → Dη by

Σ: (x′, v) 7→ (x′, v + σ(x′, v)), σ(x′, v) := η(x′)(1 + v/h),

and for f : Dη → R and F : Dη → R3 write f̃ = f ◦ Σ, F̃ = F ◦ Σ and use the notation

gradσ f̃(x′, v) := (grad f) ◦ Σ(x′, v),

divσ f̃(x′, v) := (div f) ◦ Σ(x′, v),

curlσ F̃ (x′, v) := (curl F ) ◦ Σ(x′, v),

∆σ f̃(x′, v) := (∆ f) ◦ Σ(x′, v)

and more generally

∂σ
x := ∂x − ∂xσ

1 + ∂vσ
∂v, ∂σ

y := ∂y − ∂yσ

1 + ∂vσ
∂v, ∂σ

v :=
∂v

1 + ∂vσ
.

Remark 2.9. The flattened versions of the operators curl, div, grad and ∆ applied to F̃ (x, y, v) = F (x, y, z) and

to f̃(x, y, v) = f(x, y, z) are given explicitly by

curlσ F̃ = curl F̃ − η

η + h
(−∂vF̃2, ∂vF̃1, 0)T − h + v

η + h
(ηy ∂vF̃3,−ηx ∂vF̃3, ηx ∂vF̃2 − ηy ∂vF̃1)T ,

divσ F̃ = div F̃ − h + v

η + h
(ηx ∂vF̃1 + ηy ∂vF̃2) − η

η + h
∂vF̃3,

gradσ f̃ = grad f̃ − h + v

η + h
(ηx ∂v f̃ , ηy ∂v f̃ , 0)T − η

η + h
(0, 0, ∂v f̃)T ,

∆σ f̃ = ∆f̃ − 2
h + v

η + h
(ηx ∂2

vxf̃ + ηy ∂2
vy f̃) − h + v

η + h
(ηxx + ηyy)∂v f̃

+ 2
h + v

(η + h)2
( (ηx)2 + (ηy)2 )∂v f̃ +

(
h + v

η + h

)2

( (ηx)2 + (ηy)2 )∂2
v f̃ − η2 + 2hη

(η + h)2
∂2
v f̃ .

Equations (2.2)–(2.6) are equivalent to the flattened boundary-value problem

curlσ curlσ Ã− α curlσ Ã = 0 in D0,(2.16)

divσ A = 0 in D0,(2.17)

Ã× e3 = 0 at v = −h,(2.18)

Ã ·N = 0 at v = 0,(2.19)

(curlσ Ã)∥ = γ + ∇Φ − α∇⊥∆−1(∇ · Ã⊥
∥ ) at v = 0,(2.20)
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in terms of which

H(η)(γ,Φ) = ∇ · Ã⊥
∥ ,

while equations (2.7)–(2.12) are equivalent to the flattened boundary-value problem

curlσ curlσ B̃ − α curlσ B̃ = 0 in D0,(2.21)

divσ B = 0 in D0,(2.22)

B̃ × e3 = 0 at v = −h,(2.23)

B̃ ·N = 0 at v = 0,(2.24)

∇ · B̃⊥
∥ = ∇ · g⊥,(2.25)

⟨(curlσ B̃)∥⟩ = γ,(2.26)

in terms of which

M(η)(γ, g) = −(curlσ B̃)∥;

note that the orthogonal gradient part of (curlσ B̃)∥ is equal to −α∇⊥∆−1(∇ · B̃⊥
∥ ) for any solution B̃ ∈

H2(D0/Λ)3 of (2.21)–(2.25). The spatially extended version of the first of the above boundary-value problems
was studied by Groves and Horn [12, §4], whose analysis in particular leads to the following result in the present
context.

Theorem 2.10. Suppose that s ≥ 2, and assume that the non-resonance condition (NR) holds. There ex-

ists an open neighbourhood U of the origin in Hs+ 1
2 (R2/Λ) such that the boundary-value problem (2.16)–(2.20)

has a unique solution Ã = Ã(η,γ,Φ) in Hs(D0/Λ)3 which depends analytically upon η ∈ U , γ ∈ R2 and

Φ ∈ H̊s− 1
2 (R2/Λ) (and linearly upon (γ,Φ)).

The corresponding result for the boundary-value problem (2.21)–(2.26), together with the analyticity of the
operators H and M , is now readily deduced.

Theorem 2.11. Suppose that s ≥ 2, and assume that the non-resonance condition (NR) holds. for each k ∈ Λ′.

There exists an open neighbourhood U of the origin in Hs+ 1
2 (R2/Λ) such that

(i) η 7→ H(η) and η 7→ M(η) are analytic mappings U → L(R2 × H̊s− 1
2 (R2/Λ), H̊s− 3

2 (R2/Λ)) and

U → L(R2 ×Hs− 1
2 (R2/Λ)2, Hs− 3

2 (R2/Λ)2) respectively;

(ii) the boundary-value problem (2.21)–(2.26) has a unique solution B̃ = B̃(η,γ, g) in Hs(D0/Λ)3 which depends

analytically upon η ∈ U and g ∈ Hs− 3
2 (R2)2 (and linearly upon (γ, g)).

Proof. The analyticity of H(·) : U → L(R2×H̊s− 1
2 (R2/Λ), H̊s− 3

2 (R2/Λ)) follows from Theorem 2.10 and equation
(2.1), and it follows that the formula

V (η)

(
γ
Φ

)
=

(
γ

H(η)(γ,Φ)

)
defines an analytic function V : U → L(R2 × H̊s− 1

2 (R2/Λ),R2 × H̊s− 3
2 (R2/Λ)). A straightforward calculation

shows that

V (0)

(
γ
Φ

)
=

(
γ

D2t(D)

)
,

and V (0) ∈ L(R2 × H̊s− 1
2 (R2/Λ),R2 × H̊s− 3

2 (R2/Λ)) is an isomorphism because

lim
|k|→∞

|k|
|k|2t(|k|) = 1.

One concludes that V (η) ∈ L(R2 × H̊s− 1
2 (R2/Λ),R2 × H̊s− 3

2 (R2/Λ)) is an isomorphism for each η ∈ U and that

V (η)−1 ∈ L(R2 × H̊s− 3
2 (R2/Λ),R2 × H̊s− 1

2 (R2/Λ)) also depends analytically upon η ∈ U . Clearly

V (η)−1 =

(
I2

W2(η)

)
for some analytic function W2 : U → L(R2 × H̊s− 3

2 (R2/Λ), H̊s− 1
2 (R2/Λ)).

Observe that B̃(η,γ, g) := Ã(η,γ,Φ) with Φ = W2(η)(γ,∇ · g⊥) depends analytically upon η, γ and g, and
solves (2.21)–(2.26) since by construction

∇ · g⊥ = H(η)(γ,Φ) = ∇ · Ã(η,γ,Φ)⊥∥ = ∇ · B̃(η,γ,Φ)⊥∥ .
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The uniqueness of this solution follows by noting that any other solution B̃(η,γ, g) is equal to Ã(η,γ,Φ) with
Φ = ∆−1∇ · (curlσ B)∥, so that

H(η)(γ,Φ) = ∇ · Ã(η,γ,Φ)⊥∥ = ∇ · B̃(η,γ, g)⊥∥ = ∇ · g⊥,

that is Φ = W2(η)(γ,∇ · g⊥). Finally, the analyticity of M follows from the calculation

M(η)(γ, g) = −(curlσ B̃(η,γ, g))∥

= −(curlσ Ã(η,γ,Φ))∥

= −γ −∇Φ + α∇⊥∆−1(∇ · g⊥)

with Φ = W2(η)(γ,∇ · g⊥). □

Remark 2.12. It follows from the proof of Theorem 2.11 that

H(0)(γ,Φ) = D2
t(D) Φ,

M(0)(γ, g) = −γ −∇
(

1

D2t(D)
∇ · g⊥

)
+ α∇⊥∆−1

(
∇ · g⊥

)
= −γ +

1

D2

(
αD⊥ + D c(D)

)
D · g⊥.

We conclude this section by recording the following flattened version of Proposition 2.4, which is established
by the methods used by Groves and Horn [12, §4(c)].

Proposition 2.13. Suppose that s ≥ 2. There exists an open neighbourhood U of the origin in Hs+1/2(R2/Λ)
such that the boundary-value problem

∆σϕ = F in D0,

gradσ u ·N = f at v = 0,

ϕ = 0 at v = −h

has a unique solution ϕ ∈ Hs(D0/Λ) which depends analytically upon η ∈ U , F ∈ Hs−2(Dη/Λ) and

F ∈ Hs− 3
2 (R2/Λ) (and linearly upon F and f).

2.3. Differentials. In this section we derive useful formulae for the differentials dH[η](δη)(γ,Φ) and

dM [η](δη)(γ, g), where η ∈ U , γ ∈ R2, Φ ∈ Hs−3/2(R2/Λ) and g ∈ Hs−1/2(R2/Λ)2, so that Ã, B̃ ∈ Hs(D0/Λ)3

(in the notation of Section 2.2), working under the stronger condition s ≥ 3 and again assuming the non-resonance
condition (NR). Recall the identity

(2.27) d(∂σ
xf) = ∂σ

x (df − dσ∂σ
v f) + dσ∂σ

v ∂
σ
xf,

where ∂x can be replaced by ∂y or ∂v and d can be any linearisation operator (see Castro and Lannes [6, Eq.
(3.41)]); the quantity df − dσ∂σ

v f is called Alinhac’s good unknown.

We proceed by finding a boundary-value problem for C̃ := (dÃ − dσ∂σ
v Ã) ∈ Hs−1(D0/Λ)3, where d = ∂η,

observing that H(·) : U → L(R2 × H̊s− 1
2 (R2/Λ), H̊s− 3

2 (R2/Λ)) and Ã : U → L(R2 × H̊s− 1
2 (R2/Λ, Hs(D0/Λ)3)

are analytic. Applying (2.27) with d = ∂η to

H(η)(γ,Φ) = ∇ · Ã⊥
∥ ,

and to equations (2.16)–(2.20), we find that

dH[η](δη)(γ,Φ) = ∇ · C̃⊥
∥ + ∂σ

v curlσ Ã ·N |v=0δη − (curlσ Ã)h · ∇δη

where

curlσ curlσ C̃ − α curlσ C̃ = 0 in D0,(2.28)

divσ C̃ = 0 in D0,(2.29)

C̃ × e3 = 0 at v = −h,(2.30)

C̃ ·N = ∇δη · Ãh − δη ∂σ
v Ã ·N at v = 0,(2.31)

and

(curlσ C̃)⊥∥ = −δη∂σ
v (curlσ Ã)h − δη∂σ

v (curlσ Ã)3|v=0∇η

− (curlσ Ã)3|v=0∇δη − α∇⊥∆−1(∇ · C̃⊥
∥ −∇ · ((curlσ Ã)h)δη).(2.32)
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(Equation (2.31) can be rewritten as

C̃ ·N = ∇ · (Ãhδη)

because divσ Ã|v=0 = 0 implies that

∂σ
v Ã ·N |v=0 = −∇ · Ãh. )

Using the relation

−(∂σ
v curl Ã)∥ = −∇(curl Ã)3|v=0 − α(curlσ Ã)⊥h

we can rewrite equation (2.32) as

(curlσ C̃)⊥∥ = −∇((curlσ Ã)3|v=0δη) − α(curlσ Ã)⊥h δη

− α∇⊥∆−1∇ · C̃⊥
∥ + α∇⊥∆−1∇⊥ · ((curlσ Ã)⊥h δη)

= −α⟨(curlσ Ã)⊥h δη⟩ − α∇∆−1∇ · ((curlσ Ã)⊥h δη) −∇((curlσ Ã)3|v=0δη) − α∇⊥∆−1∇ · C̃⊥
∥ ,

and writing C̃ = C̃′ + gradσ φ, where φ ∈ Hs(D0) is the unique solution of the boundary-value problem

∆σφ = 0 in D0,

gradσ φ ·N = ∇ · (Ãhδη) at v = 0,

φ = 0 at v = −h

(see Proposition 2.13), one finds that

dH[η](δη)(γ,Φ) = ∇ · C̃′⊥
∥ + ∂σ

v curlσ Ã ·N |v=0δη − (curlσ Ã)h · ∇δη,

where

curlσ curlσ C̃′ − α curlσ C̃′ = 0 in D0,

divσ C̃′ = 0 in D0,

C̃′ × e3 = 0 at v = −h,

C̃′ ·N = 0 at v = 0,

and

(curlσ C̃′)⊥∥ = −α⟨(curlσ Ã)⊥h δη⟩ − α∇∆−1∇ · ((curlσ Ã)⊥h δη)

−∇((curlσ Ã)3|v=0δη) − α∇⊥∆−1∇ · C̃′⊥
∥ .

It follows that

dH[η](δη)(γ,Φ)

= H(η)
(
−α⟨(curlσ Ã)⊥h δη⟩,−α∆−1∇ · ((curlσ Ã)⊥h δη) − (curlσ Ã)3|v=0δη + ⟨(curlσ Ã)3|v=0δη⟩

)
−∇ · ((curlσ Ã)hδη),

and we obtain our final theorem by setting u := (curlσ Ã)3|v=0.

Theorem 2.14. Suppose that s ≥ 3 and that the non-resonance condition (NR) holds. The differential of the

operator H(·) : U → L(R2 × H̊s− 1
2 (R2/Λ), H̊s− 3

2 (R2/Λ)) is given by

dH[η](δη)(γ,Φ)

= H(η)
(
−α⟨(K(η)(γ,Φ) − u∇η)⊥δη⟩,−α∆−1∇ · ((K(η)(γ,Φ) − u∇η)⊥δη) − uδη + ⟨uδη⟩

)
−∇ · ((K(η)(γ,Φ) − u∇η)δη),

where

K(η)(γ,Φ) = γ + ∇Φ − α∇⊥∆−1H(η)(γ,Φ), u =
K(η)(γ,Φ) · ∇η + H(η)(γ,Φ)

1 + |∇η|2 .

The corresponding result for M(η) is obtained in a similar fashion.

Theorem 2.15. Suppose that s ≥ 3 and that the non-resonance condition (NR) holds. The differential of the

operator M(·) : U → L(R2 ×Hs− 1
2 (R2/Λ)2, Hs− 3

2 (R2/Λ)2) is given by

dM [η](δη)(γ, g)

= M(η)
(
α⟨(M(η)(γ, g) + u∇η)⊥δη⟩, (M(η)(γ, g) + u∇η)⊥δη

)
−∇(uδη) + α(M(η)(γ, g) + uδη)⊥δη,
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where

u =
∇ · g⊥ −M(η)(γ, g) · ∇η

1 + |∇η|2 .

2.4. Taylor expansions. The terms in the expansion

(2.33) H(η) =

∞∑
k=0

Hk(η),

where Hk(η) is homogeneous of degree k in η, can be calculated recursively from the equation

dH[η](η)(γ,Φ) = H(η)

(
− α ⟨(K(η)(γ,Φ) − u∇η)⊥ η⟩,−α∆−1∇ · (K(η)(γ,Φ) − u∇η)⊥ η − u η + ⟨u η⟩

)
−∇ · ((K(η)(γ,Φ) − u∇η) η) ,

(see Theorem 2.14), and the explicit formula

H0(γ,Φ) = D2
t(D) Φ

(see Remark 2.12); these results hold under the non-resonance condition (NR). (Note that we suppress the
argument in the η-independent terms in Taylor series of this kind).

Expanding

(2.34) K(η)(γ,Φ) =

∞∑
k=0

Kk(η)(γ,Φ), u(η)(γ,Φ) =

∞∑
k=0

uk(η)(γ,Φ),

we find that

K0(γ,Φ) = γ + ∇Φ − α∇⊥ ∆−1H0(γ,Φ),

u0(γ,Φ) = H0(γ,Φ),

and

Kk(η)(γ,Φ) = −α∇⊥ ∆−1Hk(η)(γ,Φ),

uk(η)(γ,Φ)=


(−1)k/2|∇η|k H0(γ,Φ) +

∑
i+2j=k

(Ki−1(η)(γ,Φ) · ∇η + Hi(η)(γ,Φ)) (−1)j |∇η|2j , if k ∈ 2N,∑
i+2j=k

(Ki−1(η)(γ,Φ) · ∇η + Hi(η)(γ,Φ)) (−1)j |∇η|2j , if k ̸∈ 2N,

for k ≥ 1, and inserting the expansions (2.33) and (2.34) into the formula for dH[η](η) yields∑
k≥0

kHk(η)(γ,Φ)

=
∑
k≥0

Hk(η)
(
−α ⟨K0(γ,Φ)⊥η⟩,−α∆−1∇ ·

(
K0(γ,Φ)⊥η

)
−H0(γ,Φ)η + ⟨H0(γ,Φ)η⟩

)

+
∑
k≥1

k∑
j=1

Hk−j(η)

(
− α ⟨(Kj(η)(γ,Φ) − uj−1(η)(γ,Φ)∇η)⊥ η⟩,

− α∆−1∇ ·
(

(Kj(η)(γ,Φ) − uj−1(η)(γ,Φ)∇η)⊥ η
)
− uj(η)(γ,Φ)η + ⟨uj(η)(γ,Φ)η⟩

)
−∇ ·

(
K0(γ,Φ)η

)
−
∑
k≥1

∇ ·
(

(Kk(η)(γ,Φ) − uk−1(η)(γ,Φ)∇η) η
)
,

so that

H1(η)(γ,Φ)

= H0

(
− α ⟨K0(γ,Φ)⊥η⟩,−α∆−1∇ ·K0(γ,Φ)⊥η −H0(γ,Φ) η + ⟨H0(γ,Φ) η⟩

)
−∇ · (K0(γ,Φ)η) ,

and
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Hk(η)(γ,Φ)

=
1

k

{
Hk−1(η)

(
−α ⟨K0(γ,Φ)⊥η⟩,−α∆−1∇ ·

(
K0(γ,Φ)⊥η

)
−H0(γ,Φ)η + ⟨H0(γ,Φ)η⟩

)
+

k−2∑
j=0

Hj(η)

(
− α ⟨(Kk−1−j(η)(γ,Φ) − uk−2−j(η)(γ,Φ)∇η)⊥ η⟩,

− α∆−1∇ ·
(

(Kk−1−j(η)(γ,Φ) − uk−2−j(η)(γ,Φ)∇η)⊥ η
)

− uk−1−j(η)(γ,Φ)η + ⟨uk−1−j(η)(γ,Φ)η⟩
)

−∇ ·
(

(Kk−1(η)(γ,Φ) − uk−2(η)(γ,Φ)∇η) η
) }

.

for k ≥ 2.
In particular, we find that

H0(γ,Φ) = H0Φ,

H1(η)(γ,Φ) = −αH0∆−1∇ ·K0(γ,Φ)⊥η −H0(η H0Φ) −∇ · (K0(γ,Φ)η) ,

where H0 = D2t(D) and K0(γ,Φ) = γ + ∇Φ − α∇⊥∆−1 H0Φ, and that

H2(η)(γ,Φ)

=
1

2

{
H1(η)

(
−α ⟨K0(γ,Φ)⊥η⟩,−α∆−1∇ ·

[
K0(γ,Φ)⊥η

]
− ηH0Φ + ⟨ηH0Φ⟩

)
+ H0

(
− α∆−1∇ ·

(
(K1(η)(γ,Φ) −H0Φ∇η)⊥ η

)
− u1(η)(γ,Φ)η

)
−∇ ·

(
(K1(η)(γ,Φ) −H0Φ∇η) η

)}
=

1

2

{
− αH0∆−1∇ ·

(
K0

(
− α ⟨K0(γ,Φ)⊥η⟩,−α∆−1∇ ·

(
K0(γ,Φ)⊥η

)
− η H0Φ + ⟨η H0Φ⟩

)⊥

η

)
+ αH0

(
η H0∆−1∇ · (K0(γ,Φ)⊥η)

)
+ H0(η H0(η H0Φ))

−∇ ·
(
K0

(
−α ⟨K0(γ,Φ)⊥η⟩,−α∆−1∇ ·

(
K0(γ,Φ)⊥η

)
−H0(γ,Φ)η

)
η

)
− αH0∆−1∇·

(
η
(
−α∇⊥∆−1

(
−αH0∆−1∇ ·K0(γ,Φ)⊥η−H0(ηH0Φ)−∇·(K0(γ,Φ)η)

)
−H0Φ∇η

)⊥)
−H0

(
ηK0(γ,Φ) · ∇η − αηH0∆−1∇ ·

(
K0(γ,Φ)⊥η

)
− η H0(η H0Φ) − η∇ · (K0(γ,Φ)η)

)
+ ∇ ·

((
α∇⊥∆−1

(
−αH0∆−1∇ ·K0(γ,Φ)⊥η −H0(η H0Φ) −∇ · (K0(γ,Φ)η)

)
+ H0Φ∇η

)
η
)}

.

Remark 2.16. For α = 0 we recover the formulae for the classical Dirichlet–Neumann operator, in particular

H0(γ,Φ) = H0Φ,

H1(η)(γ,Φ) = −H0(η H0Φ) −∇ · (η∇Φ),

H2(η)(γ,Φ) = H0(η H0(η H0Φ)) +
1

2
H0(η2 ∆Φ) +

1

2
∆(η2 H0Φ),

where H0 = D tanh(hD).

Similarly, the terms in the expansion

(2.35) M(η) =

∞∑
k=0

Mk(η),

where Mk(η) is homogeneous of degree k in η, can be calculated recursively from the equation

dM [η](η)(γ, g) = M(η)

(
α ⟨(M(η)(γ, g) + u∇η)⊥ η⟩, (M(η)(γ, g) + u∇η)⊥ η

)
−∇(u η) + α (M(η)(γ, g) + u∇η)⊥ η
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(see Theorem 2.15) and the explicit formula

M0(γ, g) = −γ +
1

D2

(
αD⊥ + D c(D)

)
D · g⊥

(see Remark 2.12).
Expanding

(2.36) u(γ, g) =

∞∑
k=0

uk(η)(γ, g),

we find that

u0(γ, g) = ∇ · g⊥

and

uk(η)(γ, g) =


(−1)k/2|∇η|k (∇ · g⊥) −

∑
i+2j=k−1

(Mi(η)(γ, g) · ∇η) (−1)j |∇η|2j , if k ∈ 2N,

−
∑

i+2j=k−1

(Mi(η)(γ, g) · ∇η) (−1)j |∇η|2j , if k ̸∈ 2N,

for k ≥ 1, and inserting the expansions (2.35) and (2.36) into the formula for dM [η](η) yields∑
k≥0

kMk(η)(γ, g)

=
∑
k≥0

Mk(η)
(
α ⟨M0(γ, g)⊥η⟩,M0(γ, g)⊥η

)

+
∑
k≥1

k∑
j=1

Mk−j(η)

(
α ⟨(Mj(η)(γ, g) + uj−1(η)(γ, g)∇η)⊥ η⟩, (Mj(η)(γ, g) + uj−1(η)(γ, g)∇η)⊥ η

)
−
∑
k≥0

∇ (uk(η)(γ, g)η) + αM0(γ, g)⊥η + α
∑
k≥1

(Mk(η)(γ, g) + uk−1(η)(γ, g)∇η)⊥ η,

so that

M1(η)(γ, g) = M0

(
α ⟨M0(γ, g)⊥ η⟩,M0(γ, g)⊥ η

)
−∇((∇ · g⊥) η) + αM0(γ, g)⊥ η,

and

Mk(η)(γ, g)

=
1

k

{
Mk−1(η)

(
α ⟨M0(γ, g)⊥η⟩,M0(γ, g)⊥η

)
+

k−2∑
j=0

Mj(η)

(
α ⟨(Mk−1−j(η)(γ, g) + uk−2−j(η)(γ, g)∇η)⊥ η⟩, (Mk−1−j(η)(γ, g) + uk−2−j(η)(γ, g)∇η)⊥ η

)

−∇ (uk−1(η)(γ, g)η) + α (Mk−1(η)(γ, g) + uk−2(η)(γ, g)∇η)⊥ η

}
.

In particular, we find that

M2(η)(γ, g)

=
1

2

{
M0

(
α⟨M0(α⟨M0(γ, g)⊥η⟩,M0(γ, g)⊥η)⊥η⟩,M0(α⟨M0(γ, g)⊥η⟩,M0(γ, g)⊥η)⊥η

)
+ ∇(η∇ · (M0(γ, g)η)) + αM0

(
α⟨M0(γ, g)⊥η⟩,M0(γ, g)⊥η

)⊥
η

+ M0

(
α

〈
ηM0

(
α⟨M0(γ, g)⊥η⟩,M0(γ, g)⊥η

)⊥
− η∇⊥((∇ · g⊥)η) − αM0(γ, g)η2 + η(∇ · g⊥)∇⊥η

〉
,

ηM0

(
α⟨M0(γ, g)⊥η⟩,M0(γ, g)⊥η

)⊥
− η∇⊥((∇ · g⊥)η) − αM0(γ, g)η2 + η(∇ · g⊥)∇⊥η

)
+ ∇(ηM0(γ, g) · ∇η)

+ αηM0

(
α⟨M0(γ, g)⊥η⟩,M0(γ, g)⊥η

)⊥
− αη∇⊥((∇ · g⊥)η) − α2M0(γ, g)η2 + αη(∇ · g⊥)∇⊥η

}
.
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Finally, the terms in the Taylor expansion

T (η) =

∞∑
k=0

Tk(η),

where Tk(η) is homogeneous of degree k in η, can be computed from the formula T (η) = M(η)(0,S(η)) using
the expansion of M(η) derived above and the corresponding expansion

S(η) =

∞∑
k=1

Sk(η)

of S(η), where

Sk(η) :=


(−1)

k
2
αk−1 ηk

k!
c, if k ∈ 2N,

(−1)
k−1
2

αk−1 ηk

k!
c⊥, if k ̸∈ 2N.

Clearly T0 = 0, Tk(η) =
k∑

j=1

Mk−j(η)(0,Sj(η)) for k ≥ 1, and because

S1(η) = ηc⊥, S2(η) = −α

2
η2c, S3(η) = −α2

6
η3c⊥,

and

M0(0, g) = L1g,

M1(η)(0, g) = −α ⟨ηL2⟩ + L1

(
η (L2g)

)
− ηLg −∇η∇ · g⊥,

M2(η)(0, g) =
1

2

{
2αL1

(
⟨ηL1g⟩η

)
+ 2α2⟨ηL1g⟩η + 2L1

(
ηL2(ηL2g)

)
− ηL(ηL2g) + ∇η∇ · (ηL1g) −L1

(
η2(Lg)⊥

)
+ ∇

(
ηL1g · ∇η

)
+ αη

(
L2(ηL2g) − η(Lg)⊥

)
− α

〈(
2α⟨ηL1 g⟩ + 2L2(ηL2g) − η(Lg)⊥

)
η
〉}

,

where

Lg :=
1

D2

(
(α2 −D2)D − α c(D)D⊥

)
D · g⊥,

L1g :=
1

D2

(
αD⊥ + D c(D)

)
D · g⊥,

L2g :=
1

D2

(
−αD + D⊥

c(D)
)
D · g⊥,

we find in particular that

T1(η) = M0(0,S1(η))

= L1(η c⊥),

T2(η) = M1(η)(0,S0(η)) + M0(η)(0,S1(η))

= − 1
2
αL1(η2 c) + L1

(
ηL2(ηc⊥)

)
− ηL(ηc⊥) + ∇η∇ · (ηc) − α

〈
ηL2(ηc⊥)

〉
,

T3(η) = M2(η)(0,S1(η)) + M1(η)(0,S2(η)) + M0(0,S3(η))

=
1

2

{
2αL1

(
⟨ηL1(η c⊥)⟩η

)
+ 2α2⟨ηL1(η c⊥)⟩η + 2L1

(
ηL2(ηL2(η c⊥))

)
− ηL(ηL2(η c⊥)) + ∇η∇ · (ηL1(η c⊥)) −L1

(
η2(L(η c⊥))⊥

)
+ ∇

(
ηL1(η c⊥) · ∇η

)
+ αη

(
L2(ηL2(η c⊥)) − η(L(η c⊥))⊥

)
− α

〈(
2α⟨ηL1 (η c⊥)⟩ + 2L2(ηL2(η c⊥)) − η(L(η c⊥))⊥

)
η
〉}

+
α2

2
⟨ηL2(η2 c)⟩ − α

2
L1(ηL2(η2 c)) +

α

2
ηL(η2c) +

α

2
∇η∇ · (η2c)⊥ − α2

6
L1(η3c⊥).



A GENERALISED DIRICHLET–NEUMANN OPERATOR 21

3. Description of H(η) and M(η) as pseudodifferential operators

3.1. Flattening and factorisation. Choose η ∈ C∞(R2/Λ). In this section we prove that H(η) and M(η) are
smooth perturbations of properly supported pseudodifferential operators and compute their asymptotic expan-
sions, working under the non-resonance condition (NR). We begin by introducing a flattening transform (which
differs from that used in Section 2). Choose δ > 0 so that the fluid domain Dη contains the strip

Ωδ := {(x′, z) ∈ R2 × R : η(x′) − δh ≤ z < η(x′)}

for η ∈ U and define Σ̂ : D0 → Ωδ by

Σ̂ : (x′, w) 7→ (x′, ϱ(x′, w)), ϱ(x′, w) := δw + η(x′).

For f : Dη → R and F : Dη → R3 we write f̂ = f ◦ Σ̂, F̂ = F ◦ Σ̂ and use the notation

gradϱf̂(x′, w) := (grad f) ◦ Σ̂(x′, w),

divϱ f̂(x′, w) := (div f) ◦ Σ̂(x′, w),

curlϱ F̂ (x′, w) := (curl F ) ◦ Σ̂(x′, w),

∆ϱf̂ := (∆ f) ◦ Σ̂(x′, w)

and more generally

∂ϱ
x := ∂x − ∂xη

δ
∂w, ∂ϱ

y := ∂y − ∂yη

δ
∂w, ∂ϱ

w :=
∂w

δ
.

Remark 3.1. The flattened versions of the operators curl, div and ∆ applied to F̂ (x, y, w) = F (x, y, z) and to

f̂(x, y, w) = f(x, y, z) are given explicitly by

curlϱ F̂ = (∂ϱ
y F̂3 − ∂ϱ

wF̂2,−∂ϱ
xF̂3 + ∂ϱ

wF̂1, ∂
ϱ
xF̂2 − ∂ϱ

y F̂1)T

= curl F̂ − 1

δ
(ηy ∂wF̂3,−ηx ∂wF̂3, ηx ∂wF̂2 − ηy ∂wF̂1)T −

(
1

δ
− 1

)
(∂wF̂2,−∂wF̂1, 0)T ,

divϱ F̂ = ∂ϱ
xF̂1 + ∂ϱ

y F̂2 + ∂ϱ
wF̂3

= ∂xF̂1 + ∂yF̂2 +
1

δ

(
−ηx ∂wF̂1 − ηy ∂wF̂2 + ∂wF̂3

)
,

−∆ϱf̂ = −(∂ϱ
x)2f̂ − (∂ϱ

y)2f̂ − (∂ϱ
w)2f̂

= −∆f̂ +
2

δ

(
ηx ∂2

xwf̂ + ηy ∂2
ywf̂

)
−
(

1

δ2
− 1

)
∂2
wf̂ +

1

δ
(ηxx + ηyy) ∂wf̂ − 1

δ2
(η2

x + η2
y) ∂2

wf̂ .

The flattening transform converts the equation

−∆F = α curlF in Ωδ

into

−∆ϱF̂ − α curlϱ F̂ = 0 in D0,

which is equivalent to the system

LF̂ = 0,(3.1)

where L := aI∂2
w + L1∂w + L0 with

L1 :=

b · ∇ − c −α
δ

−α
δ
ηy

α
δ

b · ∇ − c α
δ
ηx

α
δ
ηy −α

δ
ηx b · ∇ − c

 , L0 :=

 ∆ 0 α∂y

0 ∆ −α∂x

−α∂y α∂x ∆


and

a :=
1 + |∇η|2

δ2
, b := −2∇η

δ
, c :=

∆η

δ
.

Lemma 3.2. There are properly supported operators M , N ∈ Ψ1(R2/Λ) such that

(i) L− a(∂wI −N)(∂wI −M) ∈ Ψ−∞(R2/Λ),

(ii) the principal symbols M(1), N(1) of M , N take the form M(1) = m(1)I3, N(1) = n(1)I3, where the scalar-valued

symbols m(1), −n(1) ∈ S1(R2/Λ) are strongly elliptic.
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Proof. Because

L− a(∂wI −N)(∂wI −M) = (L1 + a(M + N))∂w + (L0 − aNM)

we set

(3.2) N = −a−1L1 −M

and seek M with

L0 + L1M + aM2 = 0

by constructing a symbol M ∈ S1(R2/Λ) such that−|k|2 0 αik2
0 −|k|2 −αik1

−αik2 αik1 −|k|2

+

ib · k − c −α
δ

−α
δ
ηy

α
δ

ib · k − c α
δ
ηx

α
δ
ηy −α

δ
ηx ib · k − c

 M + (b · ∇)M + a
∑
α∈N2

0

∂α1
k1

∂α2
k2

MDα1
1 Dα2

2 M ∼ 0

and

M ∼
∑
j≤1

M
(j),

where M(j) ∈ Sj(R2/Λ).
We proceed by computing the terms in the aysmptotic expansion of M inductively.

• Obviously

−|k|2I3 + ib · kM(1) + a(M(1))2 = 0,

so that

M
(1) = δm(1)I3,

where

m
(1)(x′,k) :=

ik · ∇η + λ(1)

1 + |∇η|2 , λ(1)(x′,k) :=
√

(1 + |∇η|2)|k|2 − (k · ∇η)2.

Note that λ(1) is the leading order symbol of the classical Dirichlet–Neumann operator.

• The subprincipal symbol of M is found from the equation

α

 0 0 ik2
0 0 −ik1

−ik2 ik1 0

−

cI3 +
α

δ

 0 1 ηy
−1 0 −ηx
−ηy ηx 0

 M
(1)

+ ib · kM(0) + aM(0)M(1) + aM(1)M(0)

+ (b · ∇)M(1) − ia∂k1M
(1)∂xM

(1) − ia∂k2M
(1)∂yM

(1) = 0,

which yields

M
(0) = δm(0)I3 + δM

(0)
1 ,

where

m
(0)(x′,k) :=

1

2λ(1)

(
∇ · (m(1)∇η) + i∇kλ

(1) · ∇m
(1)
)
,

M
(0)
1 (x′,k) :=

α

2λ(1)

 0 m(1) −ik2 + m(1)ηy
−m(1) 0 ik1 − m(1)ηx

ik2 − m(1)ηy −ik1 + m(1)ηx 0

 .

• Suppose that M(j) has been calculated for j = 1, 0, . . . − j0 for some j0 ≥ 0. The term M(−j0−1) can be found
from the equation

(2aδm(1) + ib · k)M(−j0−1) = M̃
(−j0),

where M̃(−j0) ∈ S(−j0)(R2/Λ) is given by

M̃
(−j0)(x′,k) =

cI3 +
α

δ

 0 1 ηy
−1 0 −ηx
−ηy ηx 0

 M
(−j0) − b · ∇M

(−j0)

− a
∑

j1,j2≤0
|α|+j1+j2=j0

∂α1
k1

∂α2
k2

M
(−j1)Dα1

1 Dα2
2 M

(−j2) − a
∑

|α|=j0+2

∂α1
k1

∂α2
k2

M
(1)Dα1

1 Dα2
2 M

(1)

− a
∑

|α|=j0+1

∂α1
k1

∂α2
k2

M
(1)Dα1

1 Dα2
2 M

(0) − a
∑

|α|=j0+1

∂α1
k1

∂α2
k2

M
(0)Dα1

1 Dα2
2 M

(1),
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so that

M
(−j0−1) =

δ

2λ(1)
M̃
(−j0).

The construction is completed by noting that there exists a symbol M ∈ S1(R2/Λ) such that

M ∼
∑
j≤1

M
(j)

(see Shubin [25, §3.3]).
Defining M = Op M and N by equation (3.2), we find that M , N ∈ Ψ1(R2/Λ). The terms in the asymptotic

expansion

N ∼
∑
j≤1

N
(j)

of N are readily computed using (3.2); in particular we find that

N
(1) = δn(1)I3, n

(1)(x′,k) :=
ik · ∇η − λ(1)

1 + |∇η|2 .

Finally, note that

Re m(1)(x′,k) = −Re n(1)(x′,k) =
δλ(1)

1 + |∇η|2 ≥ δ|k|
1 + max |∇η|2 ≳ ⟨k⟩

for sufficiently large |k|, so that m(1), −n(1) are strongly elliptic. □

Theorem 3.5 below gives information on the Neumann boundary data of a solution to (3.1). It is proved using
Lemmata 3.3 and 3.4 below, the former of which is an existence result for an abstract heat equation (see Treves
[26, Ch. III §1] for a more general theory).

Lemma 3.3. Suppose that T > 0, Γ is a full rank lattice in Rn−1 and A ∈ Ψm(Rn−1/Γ) for some m ∈ N is a

properly supported pseudodifferential operator whose principal symbol A(m) takes the form A(m) = a(m)In, where
the scalar-valued symbol a(m) ∈ Sm(Rn−1/Γ) is strongly elliptic.

There is a properly supported pseudodifferential operator P ∈ Ψ0,m([T0, T0 + T ];Rn−1/Γ) which satisfies

∂tP + AP ∈ Ψ−∞([T0, T0 + T ];Rn−1/Γ),

P |t=T0 = I.

In particular, any solution of the initial-value problem

∂tÛ + AÛ = F̂ , t ∈ [T0, T0 + T ],

Û |t=T0 = Û0,

where F̂ ∈ C∞([T0, T0+T ];C∞(Rn−1/Γ)n) and Û0 ∈ C∞(Rn−1/Γ)n, belongs to C∞([T0, T0+T ];C∞(Rn−1/Γ)n).

Lemma 3.4. Suppose that T > 0, Γ is a full rank lattice in Rn−1 and P is a linear differential operator of order
m in the variables (z, t) ∈ Rn of the form

P = In∂m
t +

∑
|α|≤m

αn≤m−1

Aα(z)∂α,

where α ∈ Nn
0 , ∂α = ∂α1

z1 , . . . , ∂
αn−1
zn−1 ∂

αn
t and the coefficients of the matrix Aα(z) are functions of z of class

C∞(Rn−1/Γ). Any solution Û ∈ Hm−1(Rn−1/Γ×(T0, T0+T ))n of PÛ = 0 lies in C∞([T0, T0+T ]; D ′(Rn−1/Γ)n).

Proof. Suppose that PÛ = 0. A straightforward argument using Fubini’s theorem shows that Û lies in

Hm−1((T0, T0 + T );L2(Rn−1/Γ)n), and the next step is to show inductively that Û in fact lies in
Hm−1+k((T0, T0 + T );H−km(Rn−1/Γ)n) for every k ∈ N0.

To this end let ℓ1 ∈ N0, ℓ2 ∈ Z and a ∈ C∞(Rn−1/Γ), and observe that the mappings w 7→ ∂tw and w 7→ ∂zjw

induce continuous linear operators Hℓ1((T0, T0 + T );Hℓ2(Rn−1/Γ)) → Hℓ1−1((T0, T0 + T );Hℓ2(Rn−1/Γ)) and
Hℓ1((T0, T0 + T );Hℓ2(Rn−1/Γ)) → Hℓ1((T0, T0 + T );Hℓ2−1(Rn−1/Γ)) respectively, while the mapping w 7→ aw
induces a continuous linear operator Hℓ1((T0, T0 + T );Hℓ2(Rn−1/Γ)) → Hℓ1((T0, T0 + T );Hℓ2(Rn−1/Γ)). It
follows that the formula

QÛ = −
∑

|α|≤m
αn≤m−1

Aα(z)∂αÛ

defines a continuous linear operator Hm−1+k((T0, T0+T );H−km(Rn−1/Γ)n)→Hk((T0, T0+T );H−(k+1)m(Rn−1/Γ)n)
for each k ∈ N0.
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Returning to the induction, let k ∈ N0 and suppose that Û ∈ Hm−1+k((T0, T0 +T );H−km(Rn−1/Γ)n) satisfies

P Û = 0, so that ∂m
t Û = QÛ in D ′((T0, T0 + T );H−(k+1)m(Rn−1/Γ)n). The above argument implies that

∂m
t Û ∈ Hk((T0, T0 + T );H−(k−1)m(Rn−1/Γ)n), and since

Û ∈ Hm−1+k((T0, T0 + T );H−km(Rn−1/Γ)n) ⊆ Hm−1+k((T0, T0 + T );H−(k+1)m(Rn−1/Γ)n),

we conclude that Û ∈ Hm+k((T0, T0 + T );H−(k+1)m(Rn−1/Γ)n).
Finally, choose ℓ ∈ N with ℓ ≥ m− 2 and set k = ℓ−m + 2, so that

Û ∈ Hℓ+1((T0, T0 + T );H−(ℓ−m+2)m(Rn−1/Γ)n)

⊆ Cℓ([T0, T0 + T ];H−(ℓ−m+2)m(Rn−1/Γ)n)

⊆ Cℓ([T0, T0 + T ]; D ′(Rn−1/Γ)n).

However this result holds for arbitrarily large ℓ ∈ N, so that Û ∈ C∞([T0, T0 + T ]; D ′(Rn−1/Γ)n). □

Theorem 3.5. Any function Û ∈ H2(D0/Λ)3 with LÛ = 0 in D0 satisfies

∂wÛ = MÛ + R∞Û at w = 0,

where the symbol R∞ denotes a linear function of its argument whose range lies in C∞(R2/Λ)3.

Proof. The equation

(3.3) LÛ = 0

is equivalent to the coupled equations

(∂wI −M)Û = Û1,(3.4)

(∂wI −N)Û1 = −R∞Û(3.5)

(the smoothing operator in equation (3.5) in fact lies in Ψ−∞(R2/Λ)).

By elliptic regularity theory Û ∈ C∞(D0/Λ)3 ∼= C∞((−h, 0);C∞(R2/Λ)3), and it follows from equation (3.4)

that Û1 ∈ C∞((−h, 0);C∞(R2/Λ)3); in particular Û1|w=− 1
2
h ∈ C∞(R2/Λ)3. Furthermore, applying Lemma 3.4

to (3.3) shows that Û ∈ C∞([−h, 0]; D ′(R2/Λ)3), so that R∞Û ∈ C∞([−h, 0];C∞(R2/Λ)3). Applying Lemma

3.3 to equation (3.5) for w ∈ [− 1
2
h, 0], we thus find that Û1 ∈ C∞([− 1

2
h, 0];C∞(R2/Λ)3). Finally, equation (3.4)

shows that

∂wÛ = MÛ + Û1 at w = 0

because Û1 is a linear function of Û . □

3.2. The operator H(η). Let s ≥ 2, Φ ∈ H̊s− 1
2 (R2/Λ) and Ã ∈ Hs(D0/Λ)3 be the unique solution of the

boundary-value problem (2.16)–(2.20) with γ = 0. The variable

Â(x′, w) := Ã(x′, v), w :=
1

δh
(h + η)v

satisfies

LÂ = 0 in D0,

and

Â ·N = 0 at w = 0,

(curlϱÂ)∥ = ∇Φ − α∇⊥∆−1(∇ · Â⊥
∥ ) at w = 0,

which can be written explicitly as

ηxÂ1 + ηyÂ2 − Â3 = 0 at w = 0,(3.6)

Â3y − ηy
δ
∂wÂ3 −

1

δ
∂wÂ2 + ηx

(
Â2x − Â1y − 1

δ
ηx∂wÂ2 +

1

δ
ηy∂wÂ1

)
(3.7)

+ α∆−1(Â2xy + ηyyÂ3x + ηyÂ3xy − Â1yy − ηxyÂ3y − ηxÂ3yy) = Φx at w = 0,

− Â3x +
ηx
δ
∂wÂ3 +

1

δ
∂wÂ1 + ηy

(
Â2x − Â1y − 1

δ
ηx∂wÂ2 +

1

δ
ηy∂wÂ1

)
(3.8)

+ α∆−1(−Â2xx − ηxyÂ3x − ηyÂ3xx + Â1xy + ηxxÂ3y + ηxÂ3xy) = Φy at w = 0.

Substituting

(3.9) Â3 = ηxÂ1 + ηyÂ2
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(see equation (3.6)) and

(3.10) ∂wÂ|w=0 = MÂ|w=0 + R∞Φ

(see Lemma 3.5, noting that Â is a linear function of Φ) into equations (3.7), (3.8), we find that

(3.11) P

(
Â1|w=0

Â2|w=0

)
=

(
Φx

Φy

)
+ R∞Φ,

where P ∈ Ψ1(R2/Λ) is a properly supported pseudodifferential operator with principal symbol

P
(1)(x′,k) =

(
0 −(1 + |∇η|2)m(1) + ik · ∇η

(1 + |∇η|2)m(1) − ik · ∇η 0

)
.

Observe that P(1) is invertible for |k| ≠ 0, so that P is elliptic and hence admits a parametrix Q ∈ Ψ−1(R2/Λ)
such that PQ− I ∈ Ψ−∞(R2/Λ) (see Grubb [13, Theorem 7.18]). We thus find from equation (3.11) that(

Â1|w=0

Â2|w=0

)
= Q

(
Φx

Φy

)
+ R∞Φ,

and appending (3.9) to this equation yields

(3.12) Â|w=0 = ZΦ + R∞Φ,

where Z ∈ S0(R2/Λ) and Z = Op Z.
We have that

H(η)(γ,Φ) = H(η)(γ, 0)︸ ︷︷ ︸
∈ C∞(R2/Λ)

+H(η)(0,Φ),

and in the new coordinates

(3.13) H(η)(0,Φ) = Â2x + ηyÂ3x − Â1y − ηxÂ3y

∣∣
w=0

.

Inserting Â|w=0 and ∂wÂ|w=0 from (3.10), (3.12) into this formula shows that

H(η)(0,Φ) = OpλαΦ + R∞Φ,

where λα ∈ S1(R2/Λ). The asymptotic expansions

Z ∼
∑
j≤0

Z
(j), λα ∼

∑
j≤1

λ(j)
α

can be determined recursively by substituting

Â|w=0 = ZΦ + R∞Φ, ∂wÂ|w=0 = MZΦ + R∞Φ

into (3.6)–(3.8).

3.2.1. Principal symbol. Equating the order 0 terms in (3.6) and order 1 terms in (3.7), (3.8) yields the equations

ηxZ
(0)
1 + ηyZ

(0)
2 − Z

(0)
3 = 0,(3.14)

(ik2 − ηym
(1))Z

(0)
3 + (−m

(1) + ik1ηx − η2
xm

(1))Z
(0)
2 + (−ik2ηx + ηxηym

(1))Z
(0)
1 = ik1,(3.15)

(−ik1 + ηxm
(1))Z

(0)
3 + (m(1) − ik2ηy + η2

ym
(1))Z

(0)
1 + (ik1ηy − ηxηym

(1))Z
(0)
2 = ik2.(3.16)

Substituting for Z
(0)
3 from (3.14) into (3.15), one finds that

(ik2 − ηym
(1))(ηxZ

(0)
1 + ηyZ

(0)
2 ) + (−m

(1) + ik1ηx − η2
xm

(1))Z
(0)
2 + (−ik2ηx + ηxηym

(1))Z
(0)
1 = ik1,

so that

(−m
(1)(1 + |∇η|2) + ik · ∇η)︸ ︷︷ ︸

= −λ(1)

Z
(0)
2 = ik1

and hence

Z
(0)
2 (x′,k) = − ik1

λ(1)
.

Similarly, substituting for Z
(0)
3 from (3.14) into (3.16) yields

Z
(0)
1 (x′,k) =

ik2
λ(1)

,
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and it follows from (3.14) that

Z
(0)
3 (x′,k) = − i(k · ∇⊥η)

λ(1)
.

Equating terms of order 1 in equation (3.13), we find that

λ(1)
α (x′,k) = ik1Z

(0)
2 + ηyik1Z

(0)
3 − ik2Z

(0)
1 − ηxik2Z

(0)
3

= i(k · ∇⊥η)Z
(0)
3 + ik1Z

(0)
2 − ik2Z

(0)
1

=
1

λ(1)
((k · ∇⊥η)2 + |k|2)︸ ︷︷ ︸

= (λ(1))2

= λ(1);

the principal symbol of the generalised Dirichlet–Neumann operator is thus the same as the principal symbol of
the classical Dirichlet–Neumann operator.

3.2.2. Sub-principal symbol. Equating the order −1 terms in (3.6) and the order 0 terms in (3.7), (3.8) yields the
equations

ηxZ
(−1)
1 + ηyZ

(−1)
2 − Z

(−1)
3 = 0,(3.17)

(ik2 − ηym
(1))Z

(−1)
3 + (−m

(1) + ik1ηx − η2
xm

(1))Z
(−1)
2 + (−ik2ηx + ηxηym

(1))Z
(−1)
1 = −F1 − αF3,(3.18)

(−ik1 + ηxm
(1))Z

(−1)
3 + (m(1) − ik2ηy + η2

ym
(1))Z

(−1)
1 + (ik1ηy − ηxηym

(1))Z
(−1)
2 = −F2 − αF4,(3.19)

where

F1(x′,k) = ηxyZ
(0)
1 + ηyyZ

(0)
2 + ∇Z

(0)
2 · ∇η + [ηy(Z

(0)
1 ∇ηx + Z

(0)
2 ∇ηy) + (1 + |∇η|2)∇Z

(0)
2 ] · i∇km

(1)

− (1 + |∇η|2)Z
(0)
2 m(0),

F2(x′,k) = −ηxxZ
(0)
1 − ηxyZ

(0)
2 −∇η · ∇Z

(0)
1 − [ηx(Z

(0)
1 ∇ηx + Z

(0)
2 ∇ηy) + (1 + |∇η|2)∇Z

(0)
1 ] · i∇km

(1)

+ (1 + |∇η|2)Z
(0)
1 m(0),

F3(x′,k) =
1

2

(
(1 + η2

x)Z
(0)
1 + ηxηyZ

(0)
2

)
− k2

|k|2
((

k2 − ηx(k · ∇η⊥)
)
Z
(0)
1 −

(
k1 + ηy(k · ∇η⊥)

)
Z
(0)
2

)
,

F4(x′,k) =
1

2

(
ηxηyZ

(0)
1 + (1 + η2

y)Z
(0)
2

)
− k1

|k|2
((

−k2 + ηx(k · ∇η⊥)
)
Z
(0)
1 +

(
k1 + ηy(k · ∇η⊥)

)
Z
(0)
2

)
.

Substituting for Z
(−1)
3 from (3.17) into (3.18)–(3.19), we obtain

Z
(−1)
1 (x′,k) = −F2 + αF4

λ(1)
, Z

(−1)
2 (x′,k) =

F1 + αF3
λ(1)

and hence

Z
(−1)
3 (x′,k) =

1

λ(1)
∇η⊥ · (F1 + αF3, F2 + αF4)T .

Equating terms of order 1 in equation (3.13), we find that

λ(0)
α (x′,k) = ∂xZ

(0)
2 + ik1Z

(−1)
2 + ηy∂xZ

(0)
3 + ik1ηyZ

(−1)
3 − ∂yZ

(0)
1 − ik2Z

(−1)
1 − ηx∂yZ

(0)
3 − ik2ηxZ

(−1)
3

= ∂xZ
(0)
2 − ∂yZ

(0)
1 + ηy∂xZ

(0)
3 − ηx∂yZ

(0)
3 +

ik1 + iηy(k · ∇⊥η)

λ(1)
F1 −

−ik2 + iηx(k · ∇⊥η)

λ(1)
F2

+ α

[
ik1 + iηy(k · ∇⊥η)

λ(1)
F3 −

−ik2 + iηx(k · ∇⊥η)

λ(1)
F4

]
= λ(0) + α

(k · ∇η)(k · ∇⊥η)

|k|2 ,

where

λ(0)(x′,k) :=
1 + |∇η|2

2λ(1)

(
∇ · (m(1) ∇η) + i∇kλ

(1) · ∇m
(1)
)

is the sub-principal symbol of the classical Dirichlet–Neumann operator (see Alazard, Burq and Zuily [1, Eq.
(3.11)]).
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3.3. The operator M(η). Let s ≥ 2, g ∈ Hs− 1
2 (R2/Λ)2 and B̂ ∈ Hs(D0/Λ)3 be the unique solution of the

boundary-value problem (2.21)–(2.26) with γ = 0. The variable

B̂(x′, w) := B̃(x′, v), w :=
1

δh
(h + η)v

satisfies
LB̂ = 0 in D0,

and

divϱ B̂ = 0 at w = 0,(3.20)

B̂ ·N = 0 at w = 0,(3.21)

∇ · B̂⊥
|| = ∇ · g⊥ at w = 0,(3.22)

⟨(curlϱ B̂)∥⟩ = 0.(3.23)

(equation (3.20) actually holds in D̄0). The boundary conditions (3.20)–(3.22) can be written more explicitly as

B̂1x + B̂2y +
1

δ
(−ηxB̂1w − ηyB̂2w + B̂3w) = 0 at w = 0,(3.24)

ηxB̂1 + ηyB̂2 − B̂3 = 0 at w = 0,(3.25)

(B̂2 + B̂3ηy)x − (B̂1 + B̂3ηx)y = g2x − g1y at w = 0,(3.26)

Substituting

(3.27) B̂3 = ηxB̂1 + ηyB̂2

(see equation (3.25)) and

(3.28) ∂wB̂|w=0 = MB̂|w=0 + R∞g

(see Lemma 3.5, noting that B is a linear function of g) into equations (3.24), (3.26), we find that

(3.29) P

(
B̂1|w=0

B̂2|w=0

)
=

(
0

g2x − g1y

)
+ R∞g,

where P ∈ Ψ1(R2/Λ) is a properly supported pseudodifferential operator with principal symbol

P
(1)(x′,k) =

(
ik1 ik2

iηxηyk1 − i(1 + η2
x)k2 i(1 + η2

y)k1 − iηxηyk2

)
.

Observe that P(1)(x′,k) is invertible for |k| ̸= 0, so that P is elliptic and hence admits a parametrix Q ∈ Ψ−1(R2/Λ)
such that PQ− I ∈ Ψ−∞(R2/Λ). We thus find from equation (3.29) that(

B̂1|w=0

B̂2|w=0

)
= Q

(
0

g2x − g1y

)
+ R∞g,

and appending (3.27) to this equation yields

(3.30) B̂|w=0 = Zg + R∞g,

where Z ∈ S0(R2/Λ) and Z = Op Z.
We have that

M(η)(γ, g) = M(η)(γ,0)︸ ︷︷ ︸
∈ C∞(R2/Λ)2

+M(η)(0, g),

and in the new coordinates

M(η)(0, g) = −
(

B̃3y

−B̃3x

)
+

1

δ
B̃3w ∇⊥η +

1

δ

(
B̃2w

−B̃1w

)
− (B̃2x − B̃1y)∇η +

1

δ
(ηx B̃2w − ηy B̃1w)∇η

∣∣∣∣
w=0

.(3.31)

Inserting B̂|w=0 and ∂wB̂|w=0 from (3.28), (3.30) into this formula shows that

M(η)(0, g) = Op ναg + R∞g,

where να ∈ S1(R2/Λ). The asymptotic expansions

Z ∼
∑
j≤0

Z
(j), να ∼

∑
j≤1

ν(j)
α

can be determined recursively by substituting

B̂|w=0 = Zg + R∞g, ∂wB̂|w=0 = MZg + R∞g

into (3.24)–(3.26).
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Remark 3.6. The asymptotic expansion of να can also be determined from the formula

M(η)(0, g) := −∇
(
H(η)(0, ·)−1(∇ · g⊥)

)
+ α∇⊥∆−1(∇ · g⊥)

and the asymptotic expansion of the symbol λα of H(η)(0, ·).

3.3.1. Principal symbol. Equating terms of order 1 in equations (3.24), (3.26) and order 0 in equation (3.25) yields

ik1 Z
(0)
11 + ik2Z

(0)
21 − ηx m

(1)
Z
(0)
11 − ηy m

(1)
Z
(0)
21 + m

(1)
Z
(0)
31 = 0,

ik1 Z
(0)
12 + ik2Z

(0)
22 − ηx m

(1)
Z
(0)
12 − ηy m

(1)
Z
(0)
22 + m

(1)
Z
(0)
32 = 0,

ηxZ
(0)
11 + ηyZ

(0)
21 − Z

(0)
31 = 0,

ηxZ
(0)
12 + ηyZ

(0)
22 − Z

(0)
32 = 0,

ik1Z
(0)
21 − ik2Z

(0)
11 + i(k · ∇⊥η)Z

(0)
31 = −ik2,

ik1Z
(0)
22 − ik2Z

(0)
12 + i(k · ∇⊥η)Z

(0)
32 = ik1,

whose unique solution is

Z
(0)
11 (x′,k) =

k2
2

(λ(1))2
, Z

(0)
12 (x′,k) = − k1k2

(λ(1))2
,

Z
(0)
21 (x′,k) = − k1k2

(λ(1))2
, Z

(0)
22 (x′,k) =

k2
1

(λ(1))2
,

Z
(0)
31 (x′,k) = −k2(k · ∇⊥η)

(λ(1))2
, Z

(0)
32 (x′,k) =

k1(k · ∇⊥η)

(λ(1))2
.

Equating terms of order 1 in equation (3.31), we find that

ν(1)
α (x′,k)g =

(
−ik2(Z

(0)
31 g1 + Z

(0)
32 g2)

ik1(Z
(0)
31 g1 + Z

(0)
32 g2)

)
+ m

(1) (Z
(0)
31 g1 + Z

(0)
32 g2)∇⊥η +

(
m(1) (Z

(0)
21 g1 + Z

(0)
22 g2)

−m(1) (Z
(0)
11 g1 + Z

(0)
12 g2)

)
−
[
ik1 (Z

(0)
21 g1 + Z

(0)
22 g2) − ik2 (Z

(0)
11 g1 + Z

(0)
12 g2)

]
∇η

+

[
ηxm

(1) (Z
(0)
21 g1 + Z

(0)
22 g2) − ηy m

(1) (Z
(0)
11 g1 + Z

(0)
12 g2)

]
∇η.

The first component of ν
(1)
α g can be rewritten as

ηx(ik2 − ηy m
(1)) (Z

(0)
11 g1 + Z

(0)
12 g2) +

(
−ik1 ηx + (1 + η2

x)m(1)
)

(Z
(0)
21 g1 + Z

(0)
22 g2)

+ (−ik2 + ηym
(1)) (Z

(0)
31 g1 + Z

(0)
32 g2)

=
[
ηx(ik2 − ηym

(1))Z
(0)
11 + (−ik1ηx + (1 + η2

x)m(1))Z
(0)
21 + (−ik2 + ηym

(1))Z
(0)
31

]
g1

+
[
ηx(ik2 − ηym

(1))Z
(0)
12 + (−ik1ηx + (1 + η2

x)m(1))Z
(0)
22 + (−ik2 + ηym

(1))Z
(0)
32

]
g2

= − k1k2
λ(1)

g1 +
k2
1

λ(1)
g2

=
k1
λ(1)

(k · g⊥),

and in the same way we find that the second component of ν
(1)
α (x′,k)g is

k2
λ(1)

(k · g⊥); altogether we obtain

ν(1)
α (x′,k)g = k

(k · g⊥)

λ(1)
.

3.3.2. Sub-principal symbol. Equating terms of order 0 in equations (3.24), (3.26) and order −1 in equation (3.25)
yields

ik1Z
(−1)
11 + ik2Z

(−1)
21 + k2G1 = 0,

ik1Z
(−1)
12 + ik2Z

(−1)
22 + k1G2 = 0,

Z
(−1)
31 = ηxZ

(−1)
11 + ηyZ

(−1)
21 ,

Z
(−1)
32 = ηxZ

(−1)
12 + ηyZ

(−1)
22 ,

(−ik2 + i(k · ∇⊥η)ηx)Z
(−1)
11 + (ik1 + i(k · ∇⊥η)ηy)Z

(−1)
21 + k2G3 = 0,

(−ik2 + i(k · ∇⊥η)ηx)Z
(−1)
12 + (ik1 + i(k · ∇⊥η)ηy)Z

(−1)
22 + k1G4 = 0,
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where

G1(x′,k) =
2(k · ∇⊥λ(1))

(λ(1))3
− i

(λ(1))2

[
k2(∇k · ∇ηx) − k1(∇km

(1) · ∇ηy)
]

+
iα

2λ(1)
,

G2(x′,k) = −2(k · ∇⊥λ(1))

(λ(1))3
+

i

(λ(1))2

[
k2(∇km

(1) · ∇ηx) − k1(∇km
(1) · ∇ηy)

]
− iα

2λ(1)
,

G3(x′,k) =
1

(λ(1))3

[
2(1 + η2

y)∂xλ
(1)k1 + 2(1 + η2

x)∂yλ
(1)k2 − 2ηxηy(∂xλ

(1)k2 + ∂yλ
(1)k1)

+ (ηyηxx − ηxηxy)λ(1)k2 − (ηyηxy − ηxηyy)λ(1)k1

]
,

G4(x′,k) =
1

(λ(1))3

[
− 2(1 + η − y2)∂xλ

(1)k1 − 2(1 + η2
x)∂yλ

(1)k2 + 2ηxηy(∂xλ
(1)k2 + ∂yλ

(1)k1)

− (ηyηxx − ηxηxy)λ(1)k2 + (ηyηxy − ηxηyy)λ(1)k1

]
,

whose unique solution is

Z
(−1)
11 (x′,k) =

ik2
(λ(1))2

(
(k1 + (k · ∇⊥η)ηy) − k2G3

)
,

Z
(−1)
12 (x′,k) =

iG2
(λ(1))2

(
(λ(1))2 − k2(k2 − (k · ∇⊥η)ηx)

)
− ik1k2G4

(λ(1))2
,

Z
(−1)
21 (x′,k) =

iG1
(λ(1))2

(
(λ(1))2 − k1(k1 + (k · ∇⊥η)ηy)

)
+

ik1k2G3
(λ(1))2

,

Z
(−1)
22 (x′,k) =

ik1
(λ(1))2

(
(k2 − (k · ∇⊥η)ηx)G2 + k1G4

)
,

Z
(−1)
31 (x′,k) = ηxZ

(−1)
11 + ηyZ

(−1)
21 ,

Z
(−1)
32 (x′,k) = ηxZ

(−1)
12 + ηyZ

(−1)
22 .

Inserting these formulae into the zeroth order part of (3.31), we find after a lengthy but straighforward
computation that

ν(0)
α (x′,k)g =

(
ζ1(x′,k)
ζ2(x′,k)

)
(k · g⊥),

where

ζ1(x′,k) =
i

2(λ(1))5

(
k2
1(−1 + 2η2

y)ηx − k1k2ηy(3 + 4η2
x) + 2k2

2ηx(1 + η2
x) + ik1λ

(1)

)
×
(
k2
1ηyy − 2k1k2ηxy + k2

2ηxx

)
+

α

(λ(1))2
(
k2(1 + η2

x) − k1ηxηy
)
,

ζ2(x′,k) =
i

2(λ(1))5

(
2k2

1ηy(1 + η2
y) − k1k2ηx(3 + 4η2

y) + k2
2ηy(−1 + 2η2

x) + ik2λ
(1)

)
×
(
k2
1ηyy − 2k1k2ηxy + k2

2ηxx

)
+

α

(λ(1))2
(
−k1(1 + η2

y) + k2ηxηy
)
.

4. Approximate solutions

In this section we construct approximate solutions of

(4.1) J(η,µ) = 0

for β ≥ 0 in the form of power series and moreover prove their convergence for β > 0; the solutions have wave
velocity c close to a reference value c0 chosen such that the transversality condition (T) holds. Assuming that
the non-resonance condition (NR) also holds, we consider J as a locally analytic mapping Xβ

s ×R2 → Hs(R2/Λ)
for a sufficiently large value of s, where

Xβ
s :=

{
Hs+2(R2/Λ), if β > 0,

Hs+1(R2/Λ), if β = 0.

Our strategy is to perform a Lyapunov–Schmidt reduction, and we therefore proceed to investigate the kernel and
range of

J10(η) := d1J [0,0](η) = T1(η) · c0 + gη − β∆η.
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Write

η(x′) =
∑
k∈Λ′

η̂keik·x
′
,

so that

(J10η)(x′) = gη̂0 +
∑

k∈Λ′\{0}

c(|k|)
|k|2 ρ(k, c0, β)η̂keik·x

′
.

The equation J10η = 0 is equivalent to

ρ(k, c0, β)η̂k = 0

for k ∈ Λ′ \ {0}, which by assumption has non-trivial solutions if and only if k = ±k1,±k2; it follows that

ker(J10) = {Aeik1·x′
+ Beik2·x′

+ Āe−ik1·x′
+ B̄e−ik2·x′

: A,B ∈ C}.
We next consider the range of J10. Let

f(x′) =
∑
k∈Λ′

f̂keik·x
′
∈ Hs(R2/Λ).

The equation J10η = f is equivalent to

gη̂0 = f̂0

and

(4.2)
c(|k|)
|k|2 ρ(k, c0, β)η̂k = f̂k

for k ∈ Λ′ \ {0}. Obviously

(4.3) η̂0 =
1

g
f̂0,

while for k ̸= ±k1,±k2 equation (4.2) has the unique solution

(4.4) η̂k =
|k|2

c(|k|)ρ(k, c0, β)
f̂k,

and for k = ±k1,±k2 it is solvable if and only if f̂±k1 = f̂±k2 = 0. For β > 0 we find that ρ(k, c0, β) ≳ |k|3 for
sufficiently large |k|, so that the series ∑

k∈Λ′
k ̸=±k1,±k2

η̂keik·x
′
,

where η̂k is given by (4.3), (4.4), converges in Hs+2(R2/Λ). It follows that J10 : Hs+2(R2/Λ) → Hs(R2/Λ) is
Fredholm with index 0, where

ran(J10) = {f ∈ Hs(R2/Λ): f̂±k1 = f̂±k2 = 0}
and J−1

10 : ran(J10) → Hs+2(R2/Λ) is given by (4.3), (4.4). In contrast ρ(k, c0, 0) is not bounded from below as
|k| → ∞, so that (4.3), (4.4) does not define a bounded operator from Hs(R2/Λ) to Hs+1(R2/Λ) for any s. We
therefore proceed formally, noting that the procedure is rigorously valid for β > 0.

To apply the Lyapunov–Schmidt reduction let Π be the orthogonal projection of Hs(R2/Λ) onto ker(J10) with
respect to the L2(R2/Λ) inner product ⟨· , ·⟩. Write η = η1 + η2, where

η1 = Aeik1·x′
+ Beik2·x′

+ Āe−ik1·x′
+ B̄e−ik2·x′

,

and η2 ∈ ker(J10)⊥ = (I − Π)Xβ
s , and decompose (4.1) as

ΠJ(η1 + η2,µ) = 0,(4.5)

(I − Π)J(η1 + η2,µ) = 0.(4.6)

The linearisation of (I − Π)J at 0 is

(I − Π)J10 : (I − Π)Xβ
s → (I − Π)Hs(R2/Λ).

For β > 0 this operator is an isomorphism (see above) and we can solve (4.6) to determine η2 as a locally analytic
function of η1 and µ; substituting η2 = η2(η1, µ) into (4.5) yields the reduced equation

(4.7) ΠJ(η1 + η2(η1,µ),µ) = 0.

Note that η2 = O(|(η1,µ)||η1|) and the left-hand side of equation (4.7) is also O(|(η1,µ)||η1|) because
ΠJ10(η1 + η2(η1,µ)) = 0. For β = 0 we can only formally solve (4.6) for η2 as a function of η1 and µ.

We proceed to solve equation (4.7), which can be written as

⟨J(η1 + η2(η1,µ),µ), eiki·x′
⟩ = 0, i = 1, 2,
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because J is real-valued. We write these equations as

f1(A,B, Ā, B̄,µ) = 0,

f2(A,B, Ā, B̄,µ) = 0,

and note that

fj(A,B, Ā, B̄,µ) = O(|(A,B,µ)||(A,B)|).
Recall that J is equivariant with respect to the symmetries S0 and Tv′ (see Remark 1.4), which act on the
coordinates (A,B, Ā, B̄) as

S0(A,B, Ā, B̄) = (Ā, B̄, A,B), Tv′(A,B, Ā, B̄) = (Aeik1·v′
, Beik2·v′

, Āe−ik1·v′
, B̄e−ik2·v′

),

so that the reduced equation remains equivariant under these symmetries, that is

f1(Aeik1·v′
, Beik2·v′

, Āe−ik1·v′
, B̄e−ik2·v′

,µ) = eik1·v′
f1(A,B, Ā, B̄,µ),

f2(Aeik1·v′
, Beik2·v′

, Āe−ik1·v′
, B̄e−ik2·v′

,µ) = eik2·v′
f2(A,B, Ā, B̄,µ),

f1(Ā, B̄, A,B,µ) = f̄1(A,B, Ā, B̄,µ),

f2(Ā, B̄, A,B,µ) = f̄2(A,B, Ā, B̄,µ).

It follows that

f1(A,B, Ā, B̄,µ) = Ag1(|A|2, |B|2,µ),(4.8)

f2(A,B, Ā, B̄,µ) = Bg2(|A|2, |B|2,µ),(4.9)

where g1, g2 are real-valued locally analytic functions which vanish at the origin.
Solutions to equations (4.8), (4.9) with A ̸= 0, B = 0, such that

g1(|A|2, 0,µ) = 0,

lead to solutions of (4.1) of the form η = η1 + η2(η1,µ) with η1 = Aeik1·x′
+ Ae−ik1·x′

, so that η depends on the
single variable x̃ := k1 · x′. Such waves are often called 2 1

2
-dimensional waves since they only depend upon one

horizontal variable x̃. Similarly, solutions to (4.8), (4.9) with A = 0, B ̸= 0 give rise to 2 1
2
-dimensional waves

depending on the single horizontal variable k2 · x′. We refer to Lokharu, Seth and Wahlén [20, Section 1.2.2] for
a more detailed discussion on 2 1

2
-dimensional waves. Fully three-dimensional waves are found by assuming that

A ̸= 0 and B ̸= 0, in which case (4.8), (4.9) are equivalent to

g1(|A|2, |B|2,µ) = 0,(4.10)

g2(|A|2, |B|2,µ) = 0.(4.11)

Proposition 4.1. There exist ε > 0 and analytic functions µi : Bε(0,R2) → R, i = 1, 2 such that µi(0, 0) = 0
and (|A|2, |B|2, µ1(|A|2, |B|2), µ2(|A|2, |B|2)) is the unique local solution of (4.10), (4.11).

Proof. Write equations (4.10), (4.11) as

a1µ1 + a2µ2 + O(|(|A|2, |B|2)| + |(|A|2, |B|2,µ)|2) = 0,(4.12)

b1µ1 + b2µ2 + O(|(|A|2, |B|2)| + |(|A|2, |B|2,µ)|2) = 0,(4.13)

where

a1 = ⟨J11eik1·x′
, eik1·x′

⟩, b1 = ⟨J11eik2·x′
, eik2·x′

⟩,

a2 = ⟨J12eik1·x′
, eik1·x′

⟩, b2 = ⟨J12eik2·x′
, eik2·x′

⟩,

and J11 = ∂µ1d1J [0,µ]|µ=0, J12 = ∂µ2d1J [0,µ]|µ=0. A short calculation shows that

∂

∂c1
ρ(k, c0, β) =

|k|2

c(|k|) ⟨J11eik·x
′
, eik·x

′
⟩, ∂

∂c2
ρ(k, c0, β) =

|k|2

c(|k|) ⟨J12eik·x
′
, eik·x

′
⟩,

and hence

a1 =
c(|k1|)
|k1|2

∂

∂c1
ρ(k1, c0, β), b1 =

c(k2)

|k2|2
∂

∂c1
ρ(k2, c0, β),

a2 =
c(k1)

|k1|2
∂

∂c2
ρ(k1, c0, β), b2 =

c(k2)

|k2|2
∂

∂c2
ρ(k2, c0, β).
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Equations (4.12), (4.13) can be locally solved for µ1, µ2 as functions of |A|2, |B|2 by the implicit function theorem
provided that

det

(
a1 a2

b1 b2

)
̸= 0.

The above formulae show that this condition holds if and only if ∇c ρ(k1, c0, β) and ∇c ρ(k2, c0, β) are linearly
independent. □

Our main result now follows by substituting µ = µ(|A|2, |B|2) into η = η1 + η2(η1,µ).

Theorem 4.2. Suppose that β > 0. There exist ε > 0, a neighbourhood V of the origin in Xβ
s ×R2 and analytic

functions µ1, µ2 : Bε(0,R2) → R and η : Bε(0,C4) → Xβ
s such that

{(η,µ) ∈ Xβ
s × R2 : J(η,µ) = 0, η ̸= 0} ∩ V = {(η(A,B, Ā, B̄),µ(|A|2, |B|2)) : (A,B, Ā, B̄) ∈ B′

ε(0,C4)};

furthermore µ(0, 0) = 0 and

η(x′) = Aeik1·x′
+ Beik2·x′

+ Āe−ik1·x′
+ B̄e−ik2·x′

+ O(|(A,B, Ā, B̄)|2).

Remarks 4.3.

(i) Elements of the solution set {(η(A,B, Ā, B̄),µ(|A|2, |B|2)) : (A,B, Ā, B̄) ∈ B′
ε(0,C4)} with A = 0 or B = 0

are 2 1
2
-dimensional waves (see above).

(ii) Elements of the solution set {(η(A,B, Ā, B̄),µ(|A|2, |B|2)) : (A,B, Ā, B̄) ∈ B′
ε(0,C4)} with A, B ∈ R are

waves which are invariant under the reflection S0. Note that it is possible to restrict to such solutions before
performing the Lyapunov–Schmidt reduction; this approach was taken by Craig and Nicholls [7] in a similar study
of irrotational travelling waves.

The terms in the series

η = Aeik1·x′
+ Beik2·x′

+ Āe−ik1·x′
+ B̄e−ik2·x′

+
∑

i+j+k+l≥2

ηijklA
iBjĀkB̄l

and

µi =
∑

j+k≥1

µi,jk|A|2j |B|2k, i = 1, 2,

can be determined recursively by substituting these expressions into (4.1) and equating monomials in (A,B, Ā, B̄).
Note that the series can be computed to any order for β ≥ 0 but their convergence has been established only for
β > 0.

• We find that

η2,2(η1) =
∑

i+j+k+l=2

η2,ijklA
iBjĀkB̄l

satisfies the equation

J10η2,2 = −J20(η1, η1),

where J20 := 1
2
d2
1J [0,0], so that

J20(η1, η1) = A2J20(eik1·x′
, eik1·x′

) + 2ABJ20(eik1·x′
, eik2·x′

) + 2|A|2J20(eik1·x′
, e−ik1·x′

)

+ 2AB̄J20(eik1·x′
, e−ik2·x′

) + B2J20(eik2·x′
, eik2·x′

) + 2ĀBJ20(e−ik1·x′
, eik2·x′

)

+ 2|B|2J20(eik2·x′
, e−ik2·x′

) + Ā2J20(e−ik1·x′
, e−ik1·x′

) + 2ĀB̄J20(e−ik1·x′
, e−ik2·x′

)

+ B̄2J20(e−ik2·x′
, e−ik2·x′

).

For ℓ,k with k ̸= −ℓ we find that

J20(eik·x
′
, eiℓ·x

′
) =

[
1

2
T10(k) · T10(ℓ) +

1

2
(k · c0)(ℓ · c0) + T20,2(k, ℓ) · c0 +

α

2
(T10(k) + T10(ℓ)) · c⊥0

]
︸ ︷︷ ︸

=: p20,2(k, ℓ)

ei(k+ℓ)·x′
,

while

J20(eik·x
′
, e−ik·x′

) =
1

2
|T10(k)|2 − 1

2
(k · c0)2 + T20,1(k) · c0 + αT10(k) · c⊥0︸ ︷︷ ︸

=: p20,1(k)

,
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where

T10(k) = −
(
αk⊥ + k c(|k|)

) c0 · k
|k|2 ,

T20,2(k, ℓ) =
1

2|k + ℓ|2
(
α(k + ℓ)⊥ + (k + ℓ)c(|k + ℓ|)

)[
α(k + ℓ) · c0 + α(k · ℓ⊥)

(
c0 · ℓ
|ℓ|2 − c0k

|k|2

)
+ (k + ℓ) ·

(
c0 · ℓ
|ℓ|2 c(|ℓ|)ℓ +

c0 · k
|k|2 c(|k|)k

)]
+
(

(α2 − |ℓ|2)ℓ− αc(|ℓ|)ℓ⊥
) c0 · ℓ

2|ℓ|2 +
(

(α2 − |k|2)k − αc(|k|)k⊥
) c0 · k

2|k|2

− 1

2
k(c0 · ℓ) − 1

2
ℓ(c0 · k),

T20,1(k) = α(αk − c(|k|)k⊥).

The solution of the equation

J10fei(ℓ+k)·x′
= p20,2(k, ℓ)ei(ℓ+k)·x′

, k ̸= −ℓ,

is

f =
|k + ℓ|2

c(|k + ℓ|)ρ(k + ℓ, c0, β)
p20,2(k, ℓ)︸ ︷︷ ︸

=: q20,2(ℓ,k)

,

while the solution of

J10f = p20,1(k)

is simply

f =
1

g
p20,1(k).

Altogether we find that

η2,2000 = −q20,2(k1,k1)e2ik1·x′
, η2,0020 = η2,2000,

η2,1100 = −2q20,2(k1,k2)ei(k1+k2)·x′
, η2,0011 = η2,1100,

η2,1010 = −2

g
p20,1(k1),

η2,1001 = −2q20,2(k1,−k2)ei(k1−k2)·x′
, η2,0110 = η2,1001,

η2,0200 = −q20,2(k2,k2)e2ik2·x′
, η2,0002 = η2,0200,

η2,0101 = −2

g
p20,1(k2).

• Expanding (4.10), (4.11) further as

a1µ1 + a2µ2 + a3|A|2 + a4|B|2 + O(|(|A|2, |B|2,µ)|2) = 0,

b1µ1 + b2µ2 + b3|A|2 + b4|B|2 + O(|(|A|2, |B|2,µ)|2) = 0,

we find that

µ1(|A|2, |B|2) = −a3b2 − a2b3
a1b2 − b1a2

|A|2 − a4b2 − a2b4
a1b2 − b1a2

|B|2 + O(|(|A|2, |B|2)|2),

µ2(|A|2, |B|2) = −a1b3 − a3b1
a1b2 − b1a2

|A|2 − a1b4 − a4b1
a1b2 − b1a2

|B|2 + O(|(|A|2, |B|2)|2).

The coefficients a3, a4, b3, b4 are given by

a3 =
〈

2J20(eik1·x′
, η2,1010) + 2J20(e−ik1x

′
, η2,2000) + 3J30(eik1·x′

, eik1·x′
, e−ik1·x′

), eik1·x′〉
= −4

g
p20,1(k1)p20,2(k1,0) − 2q20,2(k1,k1)p20,2(−k1, 2k1) + 3p30,1(k1),

a4 =
〈

2J20(eik1·x′
, η2,0101) + 2J20(eik2·x′

, η2,1001) + 2J20(e−ik2·x′
, η2,1100) + 6J30(eik1·x′

, eik2·x′
, e−ik2·x′

), eik1·x′〉
= −4

g
p20,1(k2)p20,2(k1,0) − 4q20,2(k1,−k2)p20,2(k2,k1 − k2) − 4q20,2(k1,k2)p20,2(−k2,k1 + k2) + 6p30,2(k1,k2),
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b3 =
〈

2J20(eik2·x′
, η2,1010) + 2J20(eik1·x′

, η2,0110) + 2J20(e−ik1·x′
, η2,1100) + 6J30(eik2·x′

, eik1·x′
, e−ik1·x′

), eik2·x′〉
= −4

g
p20,1(k1)p20,2(k2,0) − 4q20,2(−k1,k2)p20,2(k1,k2 − k1) − 4q20,2(k1,k2)p20,2(−k1,k1 + k2) + 6p30,2(k2,k1),

b4 =
〈

2J20(eik2·x′
, η2,0101) + 2J20(e−ik2·x′

, η2,0200) + 3J30(eik2·x′
, eik2·x′

, e−ik2·x′
), eik2·x′〉

= −4

g
p20,1(k2)p20,2(k2,0) − 2q20,2(k2,k2)p20,2(−k2, 2k2) + 3p30,1(k2),

where J30 = 1
3!

d3
1J [0,0].

One finds that

J30(eik·x
′
, eik·x

′
, e−ik·x′

) = p30,1(k)eik·x
′
, k ̸= 0,

J30(eik·x
′
, eiℓ·x

′
, e−iℓ·x′

) = p30,2(k, ℓ)eik·x
′
, k ̸= −ℓ,

where

p30,1(k) =
2

3
T10(k) · T20,1(k) +

1

3
T10(k) · T20,2(k,k) − 1

3
α(c0 · k)(c⊥0 · k) − 1

3
(c0 · k)(T10(k) · k)

− α2

2
T10(k) · c0 +

α

3

(
2c⊥0 · T20,1(k) + c⊥0 · T20,2(k,k)

)
+ T30,1(k) · c0 −

β

2
|k|4,

T30,1(k) = −1

3
r1(k)

c0 · k
|k|2 c(|k|)c(2|k|) − 1

12
r2(2k)

c · k
|k|2 c(|k|) − 1

6
k(c0 · k)c(|k|)

− 1

2
r1(k)(α2 − |k|2)

c0 · k
|k|2 +

α

3
r2(k)⊥

c0 · k
|k|2

+
α

12
r1(2k)⊥

c0 · k
|k|2 c(|k|) +

α

6
r2(k)⊥

c0 · k
|k|2 +

α

6
r1(k)

c⊥0 · k
|k|2 c(|k|)

+
α

12
r2(2k)

c⊥0 · k
|k|2 +

α

6
k1(c⊥0 · k) +

α2

6
r1(k)

c0 · k
|k|2

and

p30,2(k, ℓ) =
1

3
(T10(k) · T20,1(k) + T10(ℓ) · T20,2(k,−ℓ) + T10(ℓ) · T20,2(k, ℓ)) − α

3
(c0 · ℓ)(c⊥0 · ℓ)

− 1

3
(c0 · ℓ)(T10(k) · ℓ) − α2

6
(T10(k) · c0 + 2T10(ℓ) · c0) +

α

3

(
c⊥0 · T20,1(ℓ)

+ c⊥0 · T20,2(k,−ℓ) + c⊥0 · T20,2(k, ℓ)
)

+ T30,2(k, ℓ) · c0 −
β

6

(
|k|2|ℓ|2 + 2(k · ℓ)2

)
,

T30,2(k, ℓ) = −1

6
r1(k)

k

|k|2 ·
(
r1(k − ℓ)

[
k − ℓ

|k − ℓ|2 · r3(k, ℓ)

]
+ r1(k + ℓ)

[
k + ℓ

|k + ℓ|2 · r3(k, ℓ)

])
− 1

12
r2(k − ℓ)

[
k − ℓ

|k − ℓ|2 · r3(k, ℓ)

]
− 1

12
r2(k + ℓ)

[
k + ℓ

|k + ℓ|2 · r3(k, ℓ)

]
− 1

6
ℓ

[
ℓ · r3(k, ℓ)

]
− 1

6
r1(k)

k

|k|2 ·
[
2r2(ℓ)

c0 · ℓ
|ℓ|2 + r2(k)

c0 · k
|k|2

]
+

1

6
k

[
k · r1(ℓ)

c0 · ℓ
|ℓ|2

]
+

α

6
r2(ℓ)⊥

c0 · ℓ
|ℓ|2

+
α

12

(
r1(k − ℓ)⊥

[
k − ℓ

|k − ℓ|2 · r3(k, ℓ)

]
+ r2(ℓ)⊥

c0 · ℓ
|ℓ|2 + r2(k)⊥

c0 · k
|k|2

)
+

α

12

(
r1(k + ℓ)⊥

[
k + ℓ

|k + ℓ|2 · r3(k, ℓ)

]
+

1

|k|2 r2(k)⊥
c0 · k
|k|2 + r2(ℓ)⊥

c0 · ℓ
|ℓ|2

)
+

α

6
r1(k)

k

|k|2 ·
(
r1(k − ℓ)

c⊥0 · (k − ℓ)

|k − ℓ|2 + r1(k + ℓ)
c⊥0 · (k + ℓ)

|k + ℓ|2

)
+

α

6
r2(k − ℓ)

c0 · (k − ℓ)

|k − ℓ|2 +
α

6
r2(k + ℓ)

c0 · (k + ℓ)

|k + ℓ|2

+
α

3
ℓ(c⊥0 · ℓ) +

α2

6
r1(k)

c0 · k
|k|2 − α

6
r1(k)

[
k

|k|2 · r1(ℓ)⊥
]
c0 · ℓ
|ℓ|2 − α2

6
r1(ℓ)

c0 · ℓ
|ℓ|2 ,

with
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r1(k) = αk⊥ + kc(|k|),

r2(k) = k(α2 − |k|2) − αk⊥
c(|k|),

r3(k, ℓ) = r1(k)
c0 · k
|k|2 + r1(ℓ)

c0 · ℓ
|ℓ|2 .
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