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A B S T R A C T

Flood crises are the consequence of climate change and global warming, which lead to an
increase in the frequency and intensity of heavy rainfall. Floods are, and remain, natural
disasters that result in huge loss of lives and material damage. Flood risks threaten all countries
of the globe in general. The Far-North region of Cameroon has suffered of flood crises on
several occasions, resulting in significant loss of human lives, infrastructural and socio-economic
damage, with the destruction of homes, crops and grazing areas, and the halting of economic
activities. The models used for flood forecasting in this region are generally physical-based,
and produce unsatisfactory results. The use of artificial intelligence based methods for flood
forecasting in order to limit its consequences is a way to be explored in the Far-North region
of Cameroon. The aims of the present research work is to design and compare the performance
of Machine Learning and Deep Learning based models such as one dimensional Convolutional
Neural Network, Long and Short Term Memory and Multi Layer Perceptron for short-term and
long-term flood forecasting in the Far-North region of Cameroon. The models designed take as
input the temperature and rainfall time series recorded in this region. Performance criteria used
for evaluating models are Nash–Sutcliffe Efficiency, Percent Bias, Coefficient of Determination
and Root Mean Squared Error. As the results of the design and performance comparison of the
models, the best model for short-term flood forecasting is the LSTM model , and the best model
for long-term flood forecasting is still the LSTM model. The best models obtained from the
comparisons have satisfactory performance and good generalization capabilities, as reflected
by the performance criteria. The results of our research work can be used for implementation
of floods warning systems and for definition of an effective and efficient flood risk management
policies in order to make the Far-North region of Cameroon more resilient to flood crises.

Introduction

Since the 1960s, floods remain the most frequent climatological disasters, and its proportion is steadily increasing [1]. In the
same ways, 45.54% of natural disasters were floods in the last ten years [1]. According to [2–4], floods are the most frequent among
natural disaster and they can occur anywhere after heavy rainfall, causing a huge loss of lives and material damage. Floods disasters
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have increased, causing economic destabilization, social devastation, infrastructure destruction, and environmental erosion and
collapse, especially in indigenous communities [5]. The severity of floods is most visible in a country where structural accessibility
is insufficient due to limited financial resources [6]. The consequences of extreme meteorological events is greater in Africa than in
other regions of the world due to Africa’s low adaptive capacity, high reliance on ecosystem resources for livelihoods and climate-
sensitive agriculture [7]. The authors in [6] have noticed that the number of households displaced and made homeless by floods is
increasing dramatically in Africa.

Maga and neighborhoods in Cameroon’s Far-North region has been the scene of flood crises, in August and September 2012,
0,000 people were affected with huge material and infrastructural damage, deterioration of economic, social, crop and livestock
ctivities [8]. Cameroon’s Far-North region has been again, in 2020, affected by floods due to heavy rainfall with similar
onsequences. The authors in [9] carried out morphological, pedological and climatic studies for the mapping of flood risk areas
n Maga and its surroundings in Cameroon’s Far-North region, and they found that the conditions which favor flooding include
mpermeable soils, low vegetation cover and heavy rainfall concentrated over four months. The authors in [10] used traditional
ethods for precipitation trends and flood risks study in Cameroon’s Far-North region. Thirty of the forty municipalities in the
ameroon’s Far-North region have been affected at least once by floods according to the analyses of the history of flood disasters
arried out by [10].

The consequences of floods are numerous: loss of lives, livelihoods, material damage, extensive direct and indirect health
mpacts, discouragement of public and private investment [1]. The reduction of exposure and losses of lives, material and
nfrastructural damage is the aim of flood risk management strategies [11]. According to [12], flood risk management can be
chieved by implementing legal, economic, political, educational, structural, technological, cultural, social, health, environmental,
nd institutional measures to reduce and prevent hazard, vulnerability, and exposure. The most effective way to handle disasters is to
revent them from happening in the first place [13]. To reduce these consequences, several flood forecasting methods are used such
s: conceptual, empirical, physical based and probabilistic methods [6]. The methods used for rainfall forecasting were based on
ydrodynamic theories before the 1990s [14]. Numerical models gradually came to prominence along with the rapid development
f computers after the 1900s, and technologies based on Artificial Intelligence (AI) have developed at an exponential speed, and
ave rapidly emerged in the field of meteorology [14].

For [12], in areas with no data or few data, several methods can be used to estimate peak flows and the return period of floods.
ince it is very difficult to measure hydrological variables in real time due to the lack of ground-based meteorological stations in
poor country, Machine Learning (ML), which learns from few observed data, is more reliable for hydrological forecasting [6].
L and Deep Learning (DL) based methods have been shown to be promising for flood modeling and offer a useful alternative

o physical-based hydraulic models, which are computationally demanding and difficult to use in operational flood forecasting
ystems [15]. In this light, ML and DL methods can be combined with traditional methods to improve their performance. The
uthors in [16] proposed an adjustment module based on learning methods, which uses forecast data from hydraulic models to give
ynamic auto-adaptation capability to flood forecasting systems.

The methodology used to carry out our research consists of the following steps: data collection and preprocessing, model design
nd training, model testing and performance evaluation, model performance comparison, and selection of the best performing
odels. The structure of our research work is organized as follows. Some related works are presented in Section ‘‘Related works’’.
he ML and DL techniques used for the design of short- and long-term floods forecasting models are presented in Section ‘‘ML and
L models’’ of this research work. Section ‘‘Study area and data’’ presents the study area and the data used in this research work.
he methodology used for the design and comparison of the different models, the performance evaluation criteria and the tests of
hese models are presented in Section ‘‘Design and comparison of models’’. Section ‘‘Results and discussion’’ presents the results and
he discussions of this research work. Conclusion of our research work is made in Section ‘‘Conclusion’’.

elated works

As applications of data-driven, AI models such as Adaptive Neuro-Fuzzy Inference System (ANFIS), Artificial Neural Network
ANN), Genetic Programming (GP), Multi-Layer Perceptron (MLP), Support Vector Machine (SVM), and DL algorithms find their
lace in the field of hydrology [17]. Application of ML tools such as ANN, SVM and several prediction systems to flood forecasting
ppear to be more efficient than physical-based methods [18].

Many more studies on performance comparison of ML and DL models for flood forecasting have been conducted by several
uthors (Table 1). The authors in [20] worked on comparison of LSTM and 1D-CNN models for real-time flood forecasting in Red
iver of the North of United State of America (USA) using streamflow data. The results of the study shown that the LSTM model

s the best performed. The authors in [19] compared ML and DL models for water level forecasting of Surma River at Sylhet city
sing daily discharge and water level data. The Exponential Gaussian Process Regression Model showed the best performance than
thers models. Compared ML and DL models had better performance than the MIKE-11 in term of 𝑅2 for 2, 4, and 5 days lead
ime. The authors in [33] carried out study on improving flood forecasting using DL techniques for the banks of river Daya and
hargavi that flows across Odisha in India. They compared the Deep Belief Network with Teaching Learning-Based Optimization
ethod. In this study, floods were forecasted 1 day, 1 week and 2 weeks ahead. The authors in [22] carried out study on stacked
L algorithms and Bidirectional LSTM (Bi-LSTM) for multistep ahead streamflow forecasting. Models were used for daily prediction

f streamflow of the Bacchiglione River, the Raccoon River, the Wilson River, and the Trent River. The both models used had
ery high accuracy in several cases; therefore, stacked models perform better than Bi-LSTM model for peak prediction in many
2

ases. The authors in [21] worked on improving multistep ahead prediction ability for long-term streamflow forecasting in a poorly
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Table 1
Performance comparison of ML and DL techniques for flood forecasting.

Ref. Modeling techniques
compared

Input variables Output variables Prediction type Best model Region

[19] EGPR, Bagged Trees,
MIKE-11,

Discharge, Water
level

Water level Daily EGPR Bangladesh

[20] LSTM, 1D-CNN Streamflow Streamflow Real-time LSTM USA

[21] 3D-CNN-T, TD-CNN-T,
TD-CNN-LSTNet,
3D-CNN-LSTNet

Streamflow Streamflow Long-term 3D-CNN-T Persian Gulf

[22] Stacked ML algorithms,
Bi-LSTM

Streamflow Streamflow Daily Stacked ML
algorithms

Italy, New Zealand, USA

[23] FFNN, CNN, LSTM Streamflow Streamflow Daily LSTM Vietnam
[24] WASH123D, HEC-HMS, SVM Radar rainfall Flood level Hourly SVM for QPF Taiwan

[25] LR, MLP, SVM, LSTM Precipitation,
Streamflow

Streamflow Daily LSTM USA

[26] CNN, RNN, KNN, MLP, SVM,
DT, RF, LR

Temperature,
Rainfall intensity

Flood Monthly CNN, KNN Iraq

[27] ANN, SVR, DT, RFA, LSTM Rainfall Rainfall Weekly LSTM Malaysia

[28] ANFIS, SVM, GEP 18 parameters Flood discharge Long-term ANFIS, SVM,
GEP

Iran

[29] MLR, MLP, ANFIS Climate signals Precipitation (SPI) Long-term MLP Iran
[30] AR, ANN, ANFIS Reservoir inflow Reservoir inflow Monthly ANFIS India

[31] ARMA, ANN, ANFIS, GP,
SVM

River flow
discharge

River flow discharge Monthly ANFIS, GP,
SVM

Asia

[32] ANFIS, ANN, GRNN, FFNN,
AR

River flow,
Rainfall

River flow Daily ANFIS Turkey

gauged basin. They used geo-spatiotemporal mesoscale data and attention-based DL. They compared models for 12-months ahead
prediction using monthly historical records of streamflow of the Karkheh River basin in the northeast of the Persian Gulf. The results
shown that the 3D-CNN-Transformer was the best performed model, followed by the TimeDistributed-CNN-Transformer (TD-CNN-
Transformer), TimeDistributed-CNN-Long- and Short-term Time-series network (TD-CNN-LSTNet), and 3D-CNN-LSTNet. The authors
in [24] worked on comparative study of very short term flood forecasting using a data-driven prediction model and physical-based
numerical models. Their objective was to compare the performances of physical-based models WASH123D (Watershed model of
various spatial–temporal scales) and HEC-HMS (Hydrologic Engineering Center-Hydrologic Modeling System), and the SVM model
for hourly flood level forecasting in the Fengshan Creek basin of Northern Taiwan, using radar rainfall data. The results show
that the SVM model is an interesting solution to improve the accuracy of Quantitative Precipitation Forecasts (QPF) forecasted
flood levels. The authors in [23] compared some DL techniques for river streamflow forecasting in Red River basin of the north
of Vietnam using daily runoff data. FeedForward Neural Network (FFNN), CNN and LSTM-based models were compared in this
study. Streamflow were forecasted for one and two days ahead. As the results of the study, LSTM-based models perform better
than FFNN and CNN models. The authors in [25] worked on comparison between LSTM-based model and conventional Machine
Learning algorithms for streamflow forecasting. The aim of this work was to compare the accuracy of some data-driven models,
Linear Regression (LR), LSTM, MLP, and SVM on daily streamflow forecasting. Input data used were rainfall and streamflow time
series of the Kentucky River basin in Eastern Kentucky of US. The results indicate that the LSTM model is the best in daily streamflow
forecasting. The authors in [26] did a comparative study on some selected models (DL, ML, and SVM) for flood forecasting in Eastern
Iraq. In this study, temperature and rainfall intensity were used to compare performance of CNN, Recurrent Neural Network (RNN),
MLP, SVM, K-Nearest Neighbor (KNN), Decision Tree (DT), Random Forest (RF), and LR on predicting the occurrence of flood.
The results show that CNN and KNN models outperformed the other flood forecasting models. The authors in [27] worked on
comparing ML models for rainfall forecasting. Five ML models ANN, Support Vector Regression (SVR), DT, Random Forest Algorithm
(RFA), and LSTM were compared using weekly average rainfall data from Kuala Krai rainfall stations, Malaysia. The results show
that the best performing model is LSTM model. The authors in [28] worked on comparison of several data-driven models such
as ANFIS, SVM, and GP for regional flood frequency modeling in West Iran. Eighteen parameters were used as input variable for
compared models. The results indicate that the three models have good performances. The authors in [29] applied Multiple Linear
Regressions (MLR), MLP, and ANFIS for precipitation forecasting based on largescale climate signals. Climate signals were calculated
from precipitation data of meteorological stations of Maharlu-Bakhtaram catchment, and were used as input variable of models.
Performance comparison of models shows that MLP model is the best in precipitation (SPI) forecasting. The authors in [30] worked
on comparison between adaptive neuro-fuzzy, autoregressive, and neural network models for hydrological time series modeling.
The performances of different models were compared using monthly reservoir inflow data of Sutlej river. The results of the work
indicate that the ANFIS model has the best performance for monthly reservoir inflow forecasting. The authors in [31] worked on
3
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performance comparison of several AI techniques for forecasting monthly discharge time series. Monthly river flow discharge data of
Manwan Hydropower in Lancangjiang River and Hongjiadu Hydropower on Wujiang River were used for performance comparison
of ANFIS, ANN, Auto Regressive Moving Average (ARMA), GP, and SVM models. The results show that ANFIS, GP and SVM models
have the best performance. The authors in [32] worked on comparison of artificial intelligence techniques for river flow forecasting.
In this study, the performances of five ML models ANFIS, ANN, Generalized Regression Neural Network (GRNN), FFNN, and Auto
Regressive (AR) are compared using daily river flow and rainfall data of River Seyhan and River Cine, Turkey. The results indicate
that the ANFIS model is the best for daily river flow forecasting.

Several research works have been conducted on the use of CNNs for flood modeling. Precisely, [34] used Deep neural networks
or rainfall estimation from remotely sensed data; [35] used 1D Deep CNN for Rainfall Forecasting; [36] carried out research on
eep CNN model for rapid forecasting of fluvial flood inundation; [37] modeled rainfall-runoff using CNN techniques; [38] used
NN for forecasting flood in Internet of Things (IoT) enabled smart city; [39] applied 1D Convolutional Neural Networks for Daily
ainfall Prediction; [40] used DL technique for forecasting hydrological time-series. LSTM is appropriate for modeling time series
ith long-term dependencies [41]. In fact, numerous studies exist, including that on flood forecasting using time series and LSTM

onduced by [42]. Similarly, [43] applied LSTM model for flood forecasting. The authors in [44] used LSTM network for flash
lood forecasting, and [41,45,46] used them for rainfall-runoff modeling, [47] used a LSTM model to carry out the forecasting
f summertime seasonal-scale rainfall, [48] worked on multi-step-ahead flood forecasting using a LSTM-based Encoder–Decoder
ramework, [49] carried out work on forecasting short-term household load using LSTM time series model. The authors in [50] used
STM for forecasting flood susceptibility. The authors in [51] used a LSTM model to boost river streamflow forecasts over the western
S. The use of ML tools such as neural networks can significantly increase the performance of weather forecasting systems [52]. The
sage of Artificial Neural Network as a hydrologic forecasting technique to improve the accuracy of flood forecasts in hydrological
odeling domains has a primordial role in flood risk management strategies [6]. Artificial Neural Networks are widely used ML

echniques for designing flood forecasting models [2,6,53–63].
The various studies carried out on flood forecasting using ML and DL techniques show that a multitude of techniques can be

sed for flood forecasting. The input data used, the forecast horizons, the output variables and the areas of application are varied.
he results of these studies highlight the fact that the best models are only known at the end of the comparison, and that none
f their characteristics allow us to say in advance that they will be better than the others. It is therefore necessary to proceed by
xperimentation to compare and determine the best models based on the input data and output variables, the forecast horizon, and
he dataset dimension.

L and DL models

D-CNN

The CNN is a deep neural network with several hidden layers that simulates the functioning of the visual cortex of the brain in
rder to recognize and classify objects or images, and detect an object in an image [64]. They are mainly used for image processing
nd pattern recognition. The weight sharing concept is the main difference between CNN and MLP [65]. Three types of CNN are
ound in literature: 1D-CNN, 2D-CNN and 3D-CNN. The authors in [65] described Conv1D as follows: In one-dimensional CNN, the
onvolution kernels move in one direction. The input and output data of Conv1D are two-dimensional. Conv1D is mainly used for
ime series data and has a powerful feature extraction capability: the nonlinear features hidden in the raw data can be automatically
xtracted by the alternating convolution layer and the pooling layer in Conv1D, and adaptive feature learning is completed in the
ully-connected layer. In this way, the Conv1D algorithm eliminates the manual feature extraction process in conventional algorithms
nd enables end-to-end information processing. Fig. 1 shows our Conv1D model. One of the main advantages of the CNN model
s the ease of the training phase due to the reduced number of weights compared to a fully connected architecture. Convolutional
ayer and pooling layer are expressed by Eqs. (1) and (2) respectively [66].

𝑔𝑖 = 𝑓

[ 𝑁
∑

𝑛=1
𝑐𝑜𝑛𝑣1𝐷(𝑤𝑖,𝑛, 𝑎𝑛) + 𝑏𝑖

]

(1)

where 𝑔𝑖 is the result of the 𝑖th filter, 𝑎 the input data of size 1 ×𝑁𝑎 ×𝑁 , 𝑤𝑖 the weight matrix of the 𝑖th filter, the size of which is
1 ×𝑁𝑤 ×𝑁 , and 𝑏𝑖 and 𝑓 the bias of the 𝑖th filter and the activation function respectively.

𝑝𝑖(𝑗) = max
(𝑗−1)×𝑚<𝑘≤𝑗×𝑚

(𝑎𝑖(𝑘)) (2)

where 𝑎𝑖(𝑘) is the 𝑘th element of the 𝑖th feature map input into the pooling layer and 𝑝𝑖(𝑗) is the 𝑗th element of the 𝑖th feature map
output by the pooling layer. The size of the pooling layer filter is 1 × 𝑚.

Several architectures of 1D-CNN models have been designed and trained. These architectures are obtained by alternating the
conv1D and Maxpooling1D layers, then adding fully connected layers (1 to 3) and an output layer with a single neuron. For the
conv1D layers, the input data size varies from (4,2) to (30, 2), the number of filters used is 16, 32 and 64, the kernel size is 3 and the
activation function used is ReLU function. The pool_size parameter for Maxpooling layers is 2. Dense layers (fully connected layers)
4

aries between 32, 64 and 128, and their activation function is the ReLU function. The activation function of the output layer is
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Fig. 1. Architecture of 1D-CNN model.

Fig. 2. LSTM memory block architecture [65].

the linear function. The optimization function used to train 1D-CNN models is the Adam function and the loss associated with this
function is the MSE (Eq. (3)).

𝑀𝑆𝐸 = 1
𝑛

𝑛
∑

𝑘=1

(

𝑦𝑘 − 𝑦𝑝𝑘
)2

(3)

where 𝑦𝑘 is the observed rainfall at time 𝑘, and 𝑦𝑝𝑘 the calculated rainfall at the same time 𝑘.

LSTM

LSTM models are designed to learn long-term dependencies in data and are able to overcome vanishing and exploding gradients
problems of Recurrent Neural Network [25,65]. LSTM models have been introduced by authors in [67]. The architecture of LSTM
consists of an input layer, one or more memory cells and an output layer [68]. The number of input variables is the same as the
number of neurons in the input layer. Memory cells of LSTM models have three types of gate, input gate, forget gate and output
gate. These gates are used to update and control the flow of data in the memory blocks [65]. Fig. 2 presents LSTM memory block
architecture.

LSTM update equations are presented in [25,68,69]. These equations are given below (see Eqs. (4)–(10)):

𝑔(𝑡) = tanh(𝑊𝑔𝑥𝑥(𝑡) +𝑊𝑔ℎℎ(𝑡 − 1) + 𝑏𝑔) (4)

𝑖(𝑡) = 𝜎(𝑊𝑖𝑥𝑥(𝑡) +𝑊𝑖ℎℎ(𝑡 − 1) + 𝑏𝑖) (5)

𝑓 (𝑡) = 𝜎(𝑊𝑓𝑥𝑥(𝑡) +𝑊𝑓ℎℎ(𝑡 − 1) + 𝑏𝑓 ) (6)

𝑜(𝑡) = 𝜎(𝑊 𝑥(𝑡) +𝑊 ℎ(𝑡 − 1) + 𝑏 ) (7)
5

𝑜𝑥 𝑜ℎ 𝑜
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Fig. 3. Architecture of Vanilla LSTM model [70].

Fig. 4. Architecture of stacked LSTM model [23].

Fig. 5. Architecture of bidirectional LSTM model [23].

𝑠(𝑡) = 𝑔(𝑡)⊗ 𝑖(𝑡) + 𝑠(𝑖 − 1)⊗ 𝑜(𝑡) (8)

ℎ(𝑡) = tanh(𝑠(𝑡))⊗ 𝑜(𝑡) (9)

𝑦(𝑡) = (𝑊𝑦ℎℎ(𝑡) + 𝑏𝑦) (10)

where 𝑡 is the current time, 𝑥(𝑡) the input vector, 𝑔(𝑡) input node, 𝑖(𝑡) input gate, 𝑓 (𝑡) forget gate, 𝑜(𝑡) output gate, 𝑠(𝑡) cell state,
ℎ(𝑡) hidden state, 𝑊 weights matrix, 𝑏 bias vector, 𝜎 the sigmoidal function, tanh hyperbolic tangent function, ⊗ element wise
multiplication, and 𝑦(𝑡) the output.

In our study, we designed and compared four LSTM-based models for short and long term flood forecasting: Bidirectional LSTM,
Conv-LSTM, Stacked LSTM and Vanilla LSTM. The architectures of vanilla LSTM models consist of a single LSTM layer with a
variable number of units (32, 50, 64 and 100) and a Dense layer consisting of a neuron (Fig. 3). The size of the input data is (number
of samples, length of temporal window, number of features).

The architectures of stacked LSTM models are obtained by stacking several LSTM layers (2 to 5) made up of different numbers of
units (32, 50, 64 and 100) and a Dense layer made up of a neuron (Fig. 4). The size of the input data is (number of samples, length
of the temporal window, number of features).

The architectures of the Bi-LSTM models consist of several bidirectional layers (1 to 5) having different numbers of units (32, 50,
64 and 100)(Fig. 5). The size of the input data is (number of samples, length of temporal window, number of features).
6
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Fig. 6. Architecture of convLSTM model [71].

Fig. 7. Architecture of the MLP model.

The convLSTM model architectures are made up of several convLSTM2D layers (1 to 5) whose number of units varies (32, 50, 64
and 100) (Fig. 6). The kernel_size of the convLSTM layers is (3, 3). The number of filters varies between 32 and 64. A conv3D layer
is added at the end of the model. The number of filters in this layer is 1, its kernel_size is (3, 3, 3) and its activation function is the
linear function. The input data size is (number of samples, time step,1, length of temporal window, number of features).

Number of samples and length of temporal window are parameters that vary, and therefore the architectures of LSTM models
also vary according to these parameters. The linear function is used as the activation function for the neuron in the output layer of
the different LSTM models. The optimization function used to train the LSTM models is the Adam function and the loss associated
with this function is the MSE.

MLP

An ANN is a data-driven technique that focuses on data processing algorithm to solve a nonlinear problem [72]. MLP is a neural
network with fully-connected architecture, which has the property of universal approximation [73,74] and parsimony [75] as well
as the ability to approximate non-linear functions.

The architecture of our MLP model is as follows: an input layer (with the input variables rainfall and temperature), one hidden
layer, and the output layer (with rainfall calculated by the model). Fig. 7 shows this architecture.

For a vector of input variables 𝑥 =
[

𝑥0, 𝑥1,… , 𝑥𝑛
]

and synaptic coefficients 𝑤 =
[

𝑤0, 𝑤1,… , 𝑤𝑛
]

, the output 𝑦 is given by the
following expression (Eq. (11)):

𝑦 = 𝑓 (𝑔(𝑥,𝑤)) (11)

where 𝑔 is the aggregation function and 𝑓 the activation function of the formal neuron. The aggregation function 𝑔 used is the
weighted sum given by Eq. (12) below:

𝑔(𝑥,𝑤) =
𝑛
∑

𝑖=0
𝑥𝑖 ∗ 𝑤𝑖 (12)

We use the ReLU (Rectified Linear Unit) function as the activation function of the hidden layer neurons, and its expression is given
by Eq. (13) :

𝑓 (𝑦) = 𝑚𝑎𝑥(0, 𝑦) (13)
7
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Fig. 8. Map of Cameroon’s Far-North region.

The output 𝑦 of the MLP model is calculated by the following relation (Eq. (14)):

𝑦 = 𝑤𝑠,0 +
𝑁𝐶
∑

𝑗=1
𝑤𝑠,𝑗𝑓

(

𝑤𝑗,0 +
𝑛
∑

𝑖=1
𝑤𝑗,𝑖𝑥𝑖

)

(14)

where 𝑥𝑖 is the input variable of index 𝑖, 𝑁𝐶 the number of neurons in the hidden layer, 𝑤𝑠,0 and 𝑤𝑗,0 the biases of neurons in the
output and hidden layers, 𝑤𝑗,𝑖 the synaptic coefficient linking the input variable of index 𝑖 to the hidden neuron of index 𝑗, and 𝑤𝑠,𝑗
the synaptic coefficient linking the hidden neuron of index 𝑗 to the output neuron.

Several architectures of MLP models have been designed and trained. They are made up of the following layers and neurons: an
input layer whose number of neurons varies from 4 to 30 (depending on the length of the temporal window), a hidden layer whose
number of neurons varies from 3 to 20 [76,77] and an output layer made up of one neuron. The activation function for the neurons
in the hidden layer is the ReLU function. The optimization function used to train the MLP models is the Adam function and the loss
associated with this function is the MSE.

Study area and data

Study area

Cameroon’s Far-North region is our study area. It is located between 10◦ and 13◦ North latitude, and 13◦15 and 15◦50 East
longitude, and has an area of 34, 263 km2. The area is the most populated region of Cameroon with about 3.5 million inhabitants
and most exposed to climatic hazards [78,79]. It shares borders to the North with Lake Chad, to the South with the North region of
Cameroon, to the East with the Republic of Chad, and to the West with the Federal Republic of Nigeria. The climate of the Far-North
region is tropical with a Sahelian tendency, having a dry season of about 9 months, and a rainy season of about 3 months [10].
The highest temperatures are observed during the months of March and April; the lowest temperatures are recorded during the
months of December, January and February. Rainfall in the region is relatively low, nevertheless falls very heavily over very short
periods [9,79]. The main activities practiced by the population are agriculture, livestock and fishing [79,80]. The map of our study
area is shown in Fig. 8.
8
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Fig. 9. 3D curves of temperature.

Fig. 10. 3D curves of rainfall.

Data and tools

The dataset used in our research are historical temperature and rainfall time series, which represent the input variables of
our models. Thus, we have two features in our dataset. Temperature and rainfall time series were collected from meteorological
measurement stations in the Far-North region of Cameroon. Temperatures and rainfall values are measured weekly or monthly from
1980 to 2020. The cumulative number of precipitation and temperature time series data points used in our work is 561, 708, 800 points,
or approximately 561.7 Mega data points. Our dataset has been split as follows: 80% of the dataset (449, 367, 040 data points) were
used for models training and 20% of the dataset (112, 341, 760) were used for models testing. The curves of rainfall and temperature
variations according to the years and months are shown in Figs. 9 and 10.

Rainfall is a very important input for hydrological models [81]. One of the consequences of climate change is the increase in
rainfall and its frequency, which inevitably leads to flooding [82]. Similarly, the increase in temperature has an influence on the
increase in rainfall according to the Clausius–Clapeyron thermodynamic theory [82]. Thus, temperature and rainfall are important
variables for flood forecasting.
9
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To carry out our study, we used Google Colaboratory plateform with Tensorflow and Keras for designing, training, testing and
valuating different ML and DL models.

esign and comparison of models

ethods

The analytical expression for the different flood forecasting models based on rainfall and temperature is given by Eq. (15).

𝑌 (𝑡 + ℎ𝑝) = 𝜑(𝑅ℎ𝑝(𝑡),… , 𝑅ℎ𝑝(𝑡 − 𝑟1 + 1), 𝑇ℎ𝑝(𝑡),… , 𝑇ℎ𝑝(𝑡 − 𝑟2 + 1)) (15)

where 𝜑 is the model’s flood forecast function, 𝑌 calculated rainfall, 𝑅 observed rainfall, 𝑇 observed temperature, and 𝑟1 and 𝑟2 the
time windows and ℎ𝑝 the forecast horizon.

The steps used to carry out our research work are: data collection and preprocessing, model design and training, model testing
and performance evaluation, model performance comparison, and selection of the best performing models.

The input data are rainfall and temperature time series. The preprocessing of the data consists in solving the problem of
missing data, handling incorrectly coded values, performing data aggregation/interpolation and performing data normalization.
The treatment of missing data was carried out using the simple arithmetic average method (Eq. (16)) described by [83].

𝑉𝑜 =
∑𝑁

𝑖=1 𝑉𝑖
𝑁

(16)

where 𝑉𝑜 is the missing value to be estimated, 𝑉𝑖 the value of the same parameter for the 𝑖th sample, and 𝑁 the number of samples.
Data normalization is used in data preprocessing and improves the quality of prediction. The goal of data preprocessing is to

minimize data noise, identify trends, and flatten the distribution of input variables [84]. Data normalization allows the data to fall
within the interval [0; 1], and avoid outliers. Eq. (17) below was used to perform the normalization.

𝑋′ =
𝑋 −𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 −𝑋𝑚𝑖𝑛
(17)

where 𝑋 is the value to normalize, 𝑋′ the new normalized value, 𝑋𝑚𝑖𝑛 the minimum of the values to normalize, and 𝑋𝑚𝑎𝑥 the
aximum of the values to normalize.

For each type of forecast (short and long term), the models were trained and tested with rainfall and temperature time series
ata. Fig. 11 shows the flowchart of our methodology.

odel performance evaluation

The performance criteria used for model comparisons in our work are 𝑁𝑆𝐸 (Nash–Sutcliffe Efficiency), 𝑃𝐵𝐼𝐴𝑆 (Percent Bias),
2 (Coefficient of Determination), and 𝑅𝑀𝑆𝐸 (Root Mean Squared Error).

The 𝑁𝑆𝐸 is used for assessment of the correlation between the observed values and the values calculated by the models. 𝑁𝑆𝐸
alues close to 1 indicate good model performance. When the 𝑁𝑆𝐸 value is equal to 1, then the observed values are equal to the
alues calculated by the model. The expression of the 𝑁𝑆𝐸 is given by Eq. (18) below.

𝑁𝑆𝐸 = 1 −

∑𝑛
𝑘=1

(

𝑦𝑘 − 𝑦𝑝𝑘
)2

∑𝑛
𝑘=1

(

𝑦𝑘 − 𝑦
)2

(18)

here 𝑦𝑘 is observed rainfall at time 𝑘, 𝑦𝑝𝑘 calculated rainfall at time 𝑘, and 𝑦 the average of the observed rainfall.
The 𝑃𝐵𝐼𝐴𝑆 is used to assess the quality of the model’s training. It therefore allows us to check whether the model is underfitted

r overfitted [85,86]. Eq. (19) expresses the 𝑃𝐵𝐼𝐴𝑆.

𝑃𝐵𝐼𝐴𝑆(%) =

⎡

⎢

⎢

⎢

⎣

∑𝑛
𝑘=1

(

𝑦𝑘 − 𝑦𝑝𝑘
)

∗ 100
∑𝑛

𝑘=1 𝑦𝑘

⎤

⎥

⎥

⎥

⎦

(19)

here 𝑦𝑘 is the observed rainfall at time 𝑘, and 𝑦𝑝𝑘 the calculated rainfall at the same time 𝑘.
The coefficient of determination (𝑅2) assess the variance between the observed rainfall values and those calculated by the model.

ts expression is given in Eq. (20) below.

𝑅2 =

∑𝑛
𝑘=1

(

𝑦𝑘 − 𝑦
)(

𝑦𝑝𝑘 − 𝑦𝑝
)

√

∑𝑛
𝑘=1

(

𝑦𝑘 − 𝑦
)2

∑𝑛
𝑘=1

(

𝑦𝑝𝑘 − 𝑦𝑝
)2

(20)

where 𝑦𝑘 is the observed rainfall at time 𝑘, 𝑦 the average of observed rainfall, 𝑦𝑝𝑘 the calculated rainfall at time 𝑘, and 𝑦𝑝 the average
of the calculated rainfall.
10
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Fig. 11. Flowchart of the methodology.

Table 2
The goodness of fit [86,87].

S.N Goodness of fit 𝑁𝑆𝐸 𝑃𝐵𝐼𝐴𝑆 𝑅2

1 Very good 0.75 < 𝑁𝑆𝐸 ≤ 1 𝑃𝐵𝐼𝐴𝑆 < ±10 𝑅2 ≥ 0.85
2 Good 0.65 < 𝑁𝑆𝐸 ≤ 0.75 ±10 ≤ 𝑃𝐵𝐼𝐴𝑆 < ±15 0.75 < 𝑅2 ≤ 0.85
3 Satisfactory 0.5 < 𝑁𝑆𝐸 ≤ 0.65 ±15 ≤ 𝑃𝐵𝐼𝐴𝑆 < ±25 0.60 < 𝑅2 ≤ 0.75
4 Unsatisfactory 𝑁𝑆𝐸 ≤ 0.5 𝑃𝐵𝐼𝐴𝑆 ≥ ±25 𝑅2 < 0.60

The 𝑅𝑀𝑆𝐸 determines the deviation of the forecast from the expected values. If the 𝑅𝑀𝑆𝐸 is equal to 0, then the values
obtained from the model are equal to the observed values. Its expression is given by Eq. (21):

𝑅𝑀𝑆𝐸 =

√

√

√

√

1
𝑛

𝑛
∑

𝑘=1

(

𝑦𝑘 − 𝑦𝑝𝑘
)2

(21)

where 𝑦𝑘 is the observed rainfall at time 𝑘, and 𝑦𝑝𝑘 the calculated rainfall at the same time 𝑘.
The acceptable 𝑁𝑆𝐸, 𝑃𝐵𝐼𝐴𝑆, and 𝑅2 values of the hydrological models are presented in Table 2.

Results and discussion

The 1D-CNN, LSTM and MLP models were designed, trained and tested on rainfall and temperature time series data for short
term flood forecasting with a time lag of 2. Table 3 shows the performance criteria (𝑁𝑆𝐸, 𝑃𝐵𝐼𝐴𝑆, 𝑅2 and 𝑅𝑀𝑆𝐸) of the different
models for short-term flood forecasting. The observed and calculated rainfall curves for test of these models are presented in Fig. 13.
Fig. 12 represents the 𝑅2 scatter plots of the models for training and test.

All the models were trained on the training dataset with a time lag of 22 for long term flood forecasting. The performance criteria
of the different models for long-term flood forecasting are presented in Table 4. Fig. 15 shows the observed and calculated rainfall
curves of the models for test. The 𝑅2 scatter plots of the models for training and test are shown in Fig. 14.
11
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Table 3
Models’ performance criteria during training and test (short-term).

Models Training Testing

𝑁𝑆𝐸 𝑃𝐵𝐼𝐴𝑆 𝑅2 𝑅𝑀𝑆𝐸 𝑁𝑆𝐸 𝑃𝐵𝐼𝐴𝑆 𝑅2 𝑅𝑀𝑆𝐸

1D-CNN 0.93900 4.35361 0.96968 0.00655 0.90227 19.37708 0.96445 0.00608
LSTM 0.96945 1.06640 0.98490 0.00462 0.95118 4.74773 0.97631 0.00429
MLP 0.89496 7.40411 0.94886 0.00855 0.88108 1.10791 0.93894 0.00670

Fig. 12. Scatter plots of the models for training (a) and test (b).

Fig. 13. Observed and calculated rainfall curves of models for test: 2015(a)–2020(f).

The comparison of the models for short-term flood forecasting shows that the best performing model is LSTM (Stacked) with the
performance criteria presented in Table 5. According to Table 2 indicating the quality (goodness of fit) of the hydrological models
according to the intervals of the values of the performance criteria, we can conclude that: for training, the 𝑁𝑆𝐸 = 0.96945 is very
12
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Table 4
Models’ performance criteria during training and test (long-term).

Models Training Testing

𝑁𝑆𝐸 𝑃𝐵𝐼𝐴𝑆 𝑅2 𝑅𝑀𝑆𝐸 𝑁𝑆𝐸 𝑃𝐵𝐼𝐴𝑆 𝑅2 𝑅𝑀𝑆𝐸

1D-CNN 0.91624 4.18730 0.95789 0.00768 0.84693 4.19780 0.92137 0.00760
LSTM 0.94877 4.14095 0.97460 0.00599 0.92954 1.54409 0.96422 0.00516
MLP 0.86972 2.32371 0.93332 0.00958 0.81318 2.89724 0.90218 0.00840

Fig. 14. Scatter plots of models for training (a) and test (b).

Fig. 15. Observed and calculated rainfall curves of models for test: 2015(a)–2020(f).

good, the 𝑃𝐵𝐼𝐴𝑆 = 1.06640 very good, the 𝑅2 = 0.98490 very good, and the 𝑅𝑀𝑆𝐸 = 0.00462 very good. For test of the LSTM
model, the 𝑁𝑆𝐸 = 0.95118 is very good, the 𝑃𝐵𝐼𝐴𝑆 = 4.74773 very good, the 𝑅2 = 0.97631 very good, and the 𝑅𝑀𝑆𝐸 = 0.00429
very good. The 𝑅2 scatter plots for training and test of the best model are shown in Fig. 16. The observed and calculated rainfall
curves of the best model for test are shown in Fig. 17.

For long-term flood forecasting, a comparison of the performance criteria of the different models shows that the best performing
model is still LSTM (Stacked) model. Its performance criteria are presented in Table 6. The quality of the model according to the
13
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Fig. 16. Short-term forecasting — Scatter plots of the best model for training (a) and test (b).

Table 5
Performance criteria for the best model for short-term flood forecasting.

Model Performance criteria Training Testing Goodness of fit

LSTM

𝑁𝑆𝐸 0.96945 0.95118 Very good
𝑃𝐵𝐼𝐴𝑆 1.06640 4.74773 Very good
𝑅2 0.98490 0.97631 Very good
𝑅𝑀𝑆𝐸 0.00462 0.00429 Very good

Table 6
Performance criteria for the best model for long-term flood forecasting.

Model Performance criteria Training Testing Goodness of fit

LSTM

𝑁𝑆𝐸 0.94877 0.92954 Very good
𝑃𝐵𝐼𝐴𝑆 4.14095 1.54409 Very good
𝑅2 0.97460 0.96422 Very good
𝑅𝑀𝑆𝐸 0.00599 0.00516 Very good

values of the performance criteria shows that: for training, the 𝑁𝑆𝐸 = 0.94877 is very good, the 𝑃𝐵𝐼𝐴𝑆 = 4.14095 very good, the
𝑅2 = 0.97460 very good, and the 𝑅𝑀𝑆𝐸 = 0.00599 very good. For test, the 𝑁𝑆𝐸 = 0.92954 is very good, the 𝑃𝐵𝐼𝐴𝑆 = 1.54409 very
good, the 𝑅2 = 0.96422 very good, and the 𝑅𝑀𝑆𝐸 = 0.00516 very good. The 𝑅2 scatter plot for training and test of the best model
are shown in Fig. 18. The observed and calculated rainfall curves of the best model for test are shown in Fig. 19.

The results of the tests show that the Stacked LSTM models for short and long term forecasting have very good flood forecasting
performance. These models, therefore, have a good generalization capacity which reflects the absence of underfitting and overfitting
during training according to the values of 𝑃𝐵𝐼𝐴𝑆. 𝑁𝑆𝐸 values show a strong correlation between the calculated and observed
values, which means that selected models perform well. Similarly, the 𝑅2 and 𝑅𝑀𝑆𝐸 values of selected models show small variation
between the calculated and observed values. Therefore, the goodness of fit of ML and DL models (1D-CNN, LSTM and MLP) compared
are in general good for both short and long term flood forecasts according to their performance criteria values. The training times
of LSTM models are higher compared to other models. We have also observed that model performance decreases as the forecast
horizon increases. More data is needed to improve model performance for longer forecast horizons. Our finding can be used to
set up an automatic flood warning systems. They can also be used to implement flood risk management policies in the far north
region of Cameroon. The ML and DL methods used in our research work can be applied in other regions with the same or other
climatological features, but the results may differ from those obtained in our study.

Conclusion

Floods are the most frequent natural hazards causing a huge loss of human lives, material and economic damage all over the
world. Cameroon’s Far-North region has experienced several flood crises resulting in loss of lives, infrastructural damage and adverse
consequences on socio-cultural activities practiced in the area. In view of the above, there is a need to adopt effective and efficient
flood risk management policies. ML and DL methods for flood forecasting are alternatives to the less efficient traditional hydrological
methods. The aim of this study was to design and compare the ML and DL methods for short and long term flood forecasting in the
Far-North region of Cameroon.
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Fig. 17. Short-term forecasting — Observed and Calculated rainfall curves of the best model for test: 2015(a)–2020(f).

Fig. 18. Long-term forecasting — Scatter plots of the best model for training (a) and test (b).

After designing, training and testing the different models on weekly/monthly rainfall and temperature time series data, it
appears that the best performing model for short-term flood forecasting is the LSTM(Stacked) model whose performance criteria
are 𝑁𝑆𝐸 = 0.96945, 𝑃𝐵𝐼𝐴𝑆 = 1.06640, 𝑅2 = 0.98490 and 𝑅𝑀𝑆𝐸 = 0.00462 for training, and 𝑁𝑆𝐸 = 0.95118, 𝑃𝐵𝐼𝐴𝑆 = 4.74773,
𝑅2 = 0.97631 and 𝑅𝑀𝑆𝐸 = 0.00429 for test. The goodness of fit of this model is very good. For long-term flood forecasting,
the best performing model is still LSTM (Stacked) with the following performance criteria: 𝑁𝑆𝐸 = 0.94877, 𝑃𝐵𝐼𝐴𝑆 = 4.14095,
𝑅2 = 0.97460 and 𝑅𝑀𝑆𝐸 = 0.00599 for training, and 𝑁𝑆𝐸 = 0.92954, 𝑃𝐵𝐼𝐴𝑆 = 1.54409, 𝑅2 = 0.96422 and 𝑅𝑀𝑆𝐸 = 0.00516 for
test. The goodness of fit of this model is very good. The LSTM model has good flood forecasting capabilities which reflect good
generalization capabilities and the absence of underfitting/overfitting during training.

The main contribution of our work is the use of ML and DL methods for short term and long term flood forecasting in the
far-north region of Cameroon. Our findings are alternatives to the poorly performing physical based models used in the region. Our
research can be used for the implementation of automatic flood warning systems in the Far-North region of Cameroon. They can
also be used to define effective and efficient flood risk management policies to avoid or limit loss of lives and material damage, and
make the Cameroon’s Far-North region more resilient to flood crises. The use of ML and DL methods for real-time flood forecasting
in the far north is an avenue to be explored for further work.
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Fig. 19. Long-term forecasting — Observed and Calculated rainfall curves of the best model for test: 2015(a)–2020(f).

CRediT authorship contribution statement

Francis Yongwa Dtissibe: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Resources, Software,
Writing – original draft. Ado Adamou Abba Ari: Conceptualization, Data curation, Formal analysis, Investigation, Methodol-
ogy, Project administration, Resources, Software, Supervision, Writing – original draft, Writing – review & editing. Hamadjam
Abboubakar: Project administration, Resources, Supervision, Writing – original draft, Writing – review & editing. Arouna
Ndam Njoya: Data curation, Formal analysis, Investigation, Methodology, Software. Alidou Mohamadou: Project administration,
Supervision, Writing – review & editing. Ousmane Thiare: Conceptualization, Methodology, Project administration, Resources,
Supervision.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgment

We like to thank the editor and the anonymous reviewers for their valuable remarks that helped us in better improving the
content and presentation of the paper.

References

[1] IFRC, World Disasters Report 2020 : Come Heat or High Water, Tech. rep., International Federation of Red Cross and Red Crescent Societies (IFRC),
Geneva, Switzerland, 2020.

[2] F.Y. Dtissibe, A.A.A. Ari, C. Titouna, O. Thiare, A.M. Gueroui, Flood forecasting based on an artificial neural network scheme, Nat. Hazards 104 (2) (2020)
1211–1237.

[3] F. Falah, O. Rahmati, M. Rostami, E. Ahmadisharaf, I.N. Daliakopoulos, H.R. Pourghasemi, Artificial neural networks for flood susceptibility mapping in
data-scarce urban areas, in: Spatial Modeling in GIS and R for Earth and Environmental Sciences, Elsevier, 2019, pp. 323–336.

[4] Y. Simonov, Latest tools and methodologies for flood modeling, 2017.
[5] UNISDR, Global Assessment Report on Disaster Risk Reduction 2022: Our World at Risk: Transforming Governance for a Resilient Future, Tech. rep.,

United Nations Office for Disaster Risk Reduction (UNISDR), Geneva, Switzerland, 2022.
[6] H. Tamiru, M.O. Dinka, Application of ANN and HEC-RAS model for flood inundation mapping in lower Baro Akobo River Basin, Ethiopia, J. Hydrol.:

Reg. Stud. 36 (2021) 100855.
[7] C. Ofoegbu, P.W. Chirwa, Analysis of rural people’s attitude towards the management of tribal forests in South Africa, J. Sustain. For. 38 (4) (2019)

396–411.
[8] GFDRR, Evaluation de l’État du Barrage, des Digues, du Réservoir et des Structures Hydrauliques du Système de Maga-Logone-Vrick. Cameroun, Tech.

rep., Global Facility for Disaster Reduction and Recovery (GFDRR), 2012.
16

http://refhub.elsevier.com/S2468-2276(23)00506-9/sb1
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb1
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb1
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb2
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb2
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb2
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb3
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb3
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb3
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb4
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb5
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb5
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb5
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb6
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb6
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb6
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb7
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb7
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb7
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb8
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb8
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb8


Scientific African 23 (2024) e02053F.Y. Dtissibe et al.
[9] O. Leumbe, D. Bitom, L. Mamdem, D. Tiki, A. Ibrahim, Cartographie des zones à risques d’inondation en zone soudano-sahélienne: cas de Maga et ses
environs dans la région de l’extrême-nord Cameroun, Afr. Sci.: Rev. Int. Sci. Technol. 11 (3) (2015) 45–61.

[10] L. Bouba, S. Sauvagnargues, B. Gonne, P.-A. Ayral, A. Ombolo, Trends in rainfall and flood hazard in the Far North region of Cameroon, Geo-Eco-Trop
41 (3) (2017) 339–358.

[11] UNISDR, Global Assessment Report on Disaster Risk Reduction, Tech. rep., United Nations Office for Disaster Risk Reduction (UNISDR), Geneva, Switzerland,
2019.

[12] A. Quesada-Román, J.A. Ballesteros-Cánovas, S. Granados-Bolaños, C. Birkel, M. Stoffel, Improving regional flood risk assessment using flood frequency
and dendrogeomorphic analyses in mountain catchments impacted by tropical cyclones, Geomorphology 396 (2022) 108000.

[13] IFRC, World Disasters Report 2022 : Trust, Equity and Local Action, Tech. rep., International Federation of Red Cross and Red Crescent Societies (IFRC),
Geneva, Switzerland, 2023.

[14] G. Gao, Y. Li, J. Li, X. Zhou, Z. Zhou, A hybrid model for short-term rainstorm forecasting based on a back-propagation neural network and synoptic
diagnosis, Atmos. Ocean. Sci. Lett. 14 (5) (2021) 100053.

[15] S. Nevo, E. Morin, A. Gerzi Rosenthal, A. Metzger, C. Barshai, D. Weitzner, D. Voloshin, F. Kratzert, G. Elidan, G. Dror, et al., Flood forecasting with
machine learning models in an operational framework, Hydrol. Earth Syst. Sci. Discuss. (2021) 1–31.

[16] J. Tanzouak, I. Sarr, N. Bame, B. Yenke, S. Faye, Adjustment module to give auto-adaptiveness behavior to flood forecasting systems, in: African Conference
on Research in Computer Science and Applied Mathematics(CARI), Stellenbosch, South Africa, 2018, pp. 2018–225.

[17] W.F. Krajewski, G.R. Ghimire, I. Demir, R. Mantilla, Real-time streamflow forecasting: AI vs. Hydrologic insights, J. Hydrol. X 13 (2021) 100110.
[18] A. Mosavi, P. Ozturk, K.-w. Chau, Flood prediction using machine learning models: Literature review, Water 10 (11) (2018) 1536.
[19] F. Mahmud, M. Limon, A. Khayer, S.A. Osmani, A data-driven approach to forecast floods in Sylhet city using machine learning and deep learning

techniques, in: AIP Conference Proceedings, Vol. 2713, AIP Publishing, 2023.
[20] V. Atashi, R. Kardan, H.T. Gorji, Y.H. Lim, Comparative study of deep learning LSTM and 1D-CNN models for real-time flood prediction in Red River of

the North, USA, in: 2023 IEEE International Conference on Electro Information Technology (eIT), IEEE, 2023, pp. 022–028.
[21] F. Ghobadi, D. Kang, Improving long-term streamflow prediction in a poorly gauged basin using geo-spatiotemporal mesoscale data and attention-based

deep learning: A comparative study, J. Hydrol. 615 (2022) 128608.
[22] F. Granata, F. Di Nunno, G. de Marinis, Stacked machine learning algorithms and bidirectional long short-term memory networks for multi-step ahead

streamflow forecasting: A comparative study, J. Hydrol. 613 (2022) 128431.
[23] X.-H. Le, D.-H. Nguyen, S. Jung, M. Yeon, G. Lee, Comparison of deep learning techniques for river streamflow forecasting, IEEE Access 9 (2021)

71805–71820.
[24] F. Hussain, R.-S. Wu, J.-X. Wang, Comparative study of very short-term flood forecasting using physics-based numerical model and data-driven prediction

model, Nat. Hazards 107 (1) (2021) 249–284.
[25] M. Rahimzad, A. Moghaddam Nia, H. Zolfonoon, J. Soltani, A. Danandeh Mehr, H.-H. Kwon, Performance comparison of an LSTM-based deep learning

model versus conventional machine learning algorithms for streamflow forecasting, Water Resour. Manag. 35 (12) (2021) 4167–4187.
[26] H.M. Idan, K.Q. Hussein, Comparison study between selected techniques of (ML, SVM and Deep Learning) regarding prediction of Flooding in Eastof Iraq,

Turk. J. Comput. Math. Educ. (TURCOMAT) 12 (14) (2021) 2893–2904.
[27] N.B.M. Khairudin, N.B. Mustapha, T.N.B.M. Aris, M.B. Zolkepli, Comparison of machine learning models for rainfall forecasting, in: 2020 International

Conference on Computer Science and Its Application in Agriculture (ICOSICA), IEEE, 2020, pp. 1–5.
[28] K. Ghaderi, B. Motamedvaziri, M. Vafakhah, A.A. Dehghani, Regional flood frequency modeling: a comparative study among several data-driven models,

Arab. J. Geosci. 12 (18) (2019) 1–9.
[29] B. Choubin, S. Khalighi-Sigaroodi, A. Malekian, Ö. Kişi, Multiple linear regression, multi-layer perceptron network and adaptive neuro-fuzzy inference

system for forecasting precipitation based on large-scale climate signals, Hydrol. Sci. J. 61 (6) (2016) 1001–1009.
[30] A. Lohani, R. Kumar, R. Singh, Hydrological time series modeling: A comparison between adaptive neuro-fuzzy, neural network and autoregressive

techniques, J. Hydrol. 442 (2012) 23–35.
[31] W.-C. Wang, K.-W. Chau, C.-T. Cheng, L. Qiu, A comparison of performance of several artificial intelligence methods for forecasting monthly discharge

time series, J. Hydrol. 374 (3–4) (2009) 294–306.
[32] M. Firat, Comparison of artificial intelligence techniques for river flow forecasting, Hydrol. Earth Syst. Sci. 12 (1) (2008) 123–139.
[33] M. Nayak, S. Das, M.R. Senapati, Improving flood prediction with deep learning methods, J. Inst. Eng. (India): Ser. B 103 (4) (2022) 1189–1205.
[34] Y. Tao, X. Gao, A. Ihler, K. Hsu, S. Sorooshian, Deep neural networks for precipitation estimation from remotely sensed information, in: 2016 IEEE Congress

on Evolutionary Computation (CEC), IEEE, 2016, pp. 1349–1355.
[35] A. Haidar, B. Verma, Monthly rainfall forecasting using one-dimensional deep convolutional neural network, IEEE Access 6 (2018) 69053–69063.
[36] S. Kabir, S. Patidar, X. Xia, Q. Liang, J. Neal, G. Pender, A deep convolutional neural network model for rapid prediction of fluvial flood inundation, J.

Hydrol. 590 (2020) 125481.
[37] S.P. Van, H.M. Le, D.V. Thanh, T.D. Dang, H.H. Loc, D.T. Anh, Deep learning convolutional neural network in rainfall–runoff modelling, J. Hydroinform.

22 (3) (2020) 541–561.
[38] C. Chen, Q. Hui, W. Xie, S. Wan, Y. Zhou, Q. Pei, Convolutional Neural Networks for forecasting flood process in Internet-of-Things enabled smart city,

Comput. Netw. 186 (2021) 107744.
[39] Y.R. Sari, E.C. Djamal, F. Nugraha, Daily rainfall prediction using one dimensional convolutional neural networks, in: 2020 3rd International Conference

on Computer and Informatics Engineering (IC2IE), IEEE, 2020, pp. 90–95.
[40] D. Hussain, T. Hussain, A.A. Khan, S.A.A. Naqvi, A. Jamil, A deep learning approach for hydrological time-series prediction: A case study of Gilgit river

basin, Earth Sci. Inform. 13 (3) (2020) 915–927.
[41] K. Ishida, A. Ercan, T. Nagasato, M. Kiyama, M. Amagasaki, Use of 1D-CNN for input data size reduction of LSTM in Hourly Rainfall-Runoff modeling,

2021, arXiv preprint arXiv:2111.04732.
[42] I.R. Widiasari, L.E. Nugoho, R. Efendi, et al., Context-based hydrology time series data for a flood prediction model using LSTM, in: 2018 5th International

Conference on Information Technology, Computer, and Electrical Engineering (ICITACEE), IEEE, 2018, pp. 385–390.
[43] X.-H. Le, H.V. Ho, G. Lee, S. Jung, Application of long short-term memory (LSTM) neural network for flood forecasting, Water 11 (7) (2019) 1387.
[44] T. Song, W. Ding, J. Wu, H. Liu, H. Zhou, J. Chu, Flash flood forecasting based on long short-term memory networks, Water 12 (1) (2019) 109.
[45] F. Kratzert, D. Klotz, C. Brenner, K. Schulz, M. Herrnegger, Rainfall–runoff modelling using long short-term memory (LSTM) networks, Hydrol. Earth Syst.

Sci. 22 (11) (2018) 6005–6022.
[46] Z. Xiang, J. Yan, I. Demir, A rainfall-runoff model with LSTM-based sequence-to-sequence learning, Water Resour. Res. 56 (1) (2020) e2019WR025326.
[47] S. Haojun, L. Yong, Z. Zongci, W. Hanjie, Prediction of summer precipitation in China based on LSTM network, Prog. Clim. Change Res. 16 (3) (2020)

263–275.
[48] I.-F. Kao, Y. Zhou, L.-C. Chang, F.-J. Chang, Exploring a Long Short-Term Memory based Encoder-Decoder framework for multi-step-ahead flood forecasting,

J. Hydrol. 583 (2020) 124631.
[49] X. Guo, Y. Gao, Y. Li, D. Zheng, D. Shan, Short-term household load forecasting based on Long-and Short-term Time-series network, Energy Rep. 7 (2021)

58–64.
[50] Z. Fang, Y. Wang, L. Peng, H. Hong, Predicting flood susceptibility using LSTM neural networks, J. Hydrol. 594 (2021) 125734.
17

http://refhub.elsevier.com/S2468-2276(23)00506-9/sb9
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb9
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb9
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb10
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb10
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb10
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb11
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb11
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb11
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb12
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb12
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb12
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb13
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb13
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb13
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb14
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb14
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb14
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb15
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb15
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb15
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb16
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb16
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb16
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb17
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb18
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb19
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb19
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb19
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb20
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb20
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb20
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb21
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb21
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb21
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb22
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb22
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb22
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb23
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb23
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb23
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb24
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb24
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb24
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb25
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb25
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb25
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb26
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb26
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb26
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb27
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb27
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb27
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb28
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb28
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb28
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb29
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb29
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb29
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb30
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb30
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb30
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb31
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb31
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb31
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb32
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb33
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb34
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb34
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb34
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb35
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb36
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb36
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb36
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb37
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb37
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb37
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb38
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb38
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb38
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb39
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb39
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb39
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb40
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb40
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb40
http://arxiv.org/abs/2111.04732
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb42
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb42
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb42
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb43
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb44
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb45
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb45
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb45
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb46
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb47
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb47
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb47
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb48
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb48
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb48
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb49
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb49
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb49
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb50


Scientific African 23 (2024) e02053F.Y. Dtissibe et al.
[51] K.M. Hunt, G.R. Matthews, F. Pappenberger, C. Prudhomme, Using a long short-term memory (LSTM) neural network to boost river streamflow forecasts
over the western United States, Hydrol. Earth Syst. Sci. Discuss. (2022) 1–30.

[52] D. Coyle, A. Weller, ‘‘Explaining’’ machine learning reveals policy challenges, Science 368 (6498) (2020) 1433–1434.
[53] S. Lek, I. Dimopoulos, M. Derraz, Y. El Ghachtoul, Modélisation de la relation pluie-débit à l’aide des réseaux de neurones artificiels, Rev. Sci. eau/J.

Water Sci. 9 (3) (1996) 319–331.
[54] S. Riad, J. Mania, L. Bouchaou, Y. Najjar, Rainfall-runoff model usingan artificial neural network approach, Math. Comput. Modelling 40 (7–8) (2004)

839–846.
[55] M.S. Toukourou, A. Johannet, G. Dreyfus, Flash flood forecasting by statistical learning in the absence of rainfall forecast: a case study, in: International

Conference on Engineering Applications of Neural Networks, Springer, 2009, pp. 98–107.
[56] D. Llamas Gaspar, Application de l’apprentissage artificiel à la modélisation systémique de la chaîne hydrométéorologique pour la prévision des crues

éclair, 2010.
[57] A. Bornancin-Plantier, A. Johannet, P. Roussel-Ragot, G. Dreyfus, Flash flood forecasting using neural networks without rainfall forecasts: model selection

and generalization capability geophysical research abstracts, 2011, EGU2011–1794.
[58] S.H. Elsafi, Artificial neural networks (ANNs) for flood forecasting at Dongola Station in the River Nile, Sudan, Alex. Eng. J. 53 (3) (2014) 655–662.
[59] O. Kharroubi, O. Blanpain, E. Masson, S. Lallahem, Application du réseau des neurones artificiels à la prévision des débits horaires: Cas du bassin versant

de l’eure, france, Hydrol. Sci. J. 61 (3) (2016) 541–550.
[60] G. Artigue, A. Johannet, V. Borell, S. Pistre, Neural network flash flood forecasting: generalizing to ungauged basins, in: Geophysical Research Abstracts,

Vol. 21, 2019.
[61] B.D. Bowes, J.M. Sadler, M.M. Morsy, M. Behl, J.L. Goodall, Forecasting groundwater table in a flood prone coastal city with long short-term memory

and recurrent neural networks, Water 11 (5) (2019) 1098.
[62] C.K. Sønderby, L. Espeholt, J. Heek, M. Dehghani, A. Oliver, T. Salimans, S. Agrawal, J. Hickey, N. Kalchbrenner, Metnet: A neural weather model for

precipitation forecasting, 2020, arXiv preprint arXiv:2003.12140.
[63] L. Zhihua, J. Zuo, D. Rodriguez, Predicting of runoff using an optimized SWAT-ANN: a case study, J. Hydrol.: Reg. Stud. 29 (2020) 100688.
[64] T. Naili, A. Louazene, Détection De Visage Par Un Modèle CNN (Ph.D. thesis), UNIVERSITY OF OUARGLA.
[65] S. Ghimire, Z.M. Yaseen, A.A. Farooque, R.C. Deo, J. Zhang, X. Tao, Streamflow prediction using an integrated methodology based on convolutional neural

network and long short-term memory networks, Sci. Rep. 11 (1) (2021) 1–26.
[66] T. Liu, H. Xu, M. Ragulskis, M. Cao, W. Ostachowicz, A data-driven damage identification framework based on transmissibility function datasets and

one-dimensional convolutional neural networks: verification on a structural health monitoring benchmark structure, Sensors 20 (4) (2020) 1059.
[67] S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural Comput. 9 (8) (1997) 1735–1780.
[68] C. Hu, Q. Wu, H. Li, S. Jian, N. Li, Z. Lou, Deep learning with a long short-term memory networks approach for rainfall-runoff simulation, Water 10 (11)

(2018) 1543.
[69] W. Li, X. Gao, Z. Hao, R. Sun, Using deep learning for precipitation forecasting based on spatio-temporal information: a case study, Clim. Dynam. 58 (1)

(2022) 443–457.
[70] Q. Zhang, J. Zhang, J. Zou, S. Fan, A novel fault diagnosis method based on stacked lstm, IFAC-PapersOnLine 53 (2) (2020) 790–795.
[71] Y. Li, H. Xu, M. Bian, J. Xiao, Attention based CNN-ConvLSTM for pedestrian attribute recognition, Sensors 20 (3) (2020) 811.
[72] H. Tamiru, M. Wagari, Evaluation of data-driven model and GIS technique performance for identification of Groundwater Potential Zones: A case of Fincha

Catchment, Abay Basin, Ethiopia, J. Hydrol.: Reg. Stud. 37 (2021) 100902.
[73] K.-I. Funahashi, On the approximate realization of continuous mappings by neural networks, Neural Netw. 2 (3) (1989) 183–192.
[74] G. Cybenko, Approximation by superpositions of a sigmoidal function, Math. Control Signals Systems 5 (4) (1992) 455.
[75] A.R. Barron, Universal approximation bounds for superpositions of a sigmoidal function, IEEE Trans. Inform. Theory 39 (3) (1993) 930–945.
[76] Q. Zhang, J. Zhang, Z. Chen, M. Zhang, S. Li, A stock decision model based on optimized neural network algorithm, in: Fuzzy Systems and Data Mining

V, IOS Press, 2019, pp. 523–533.
[77] K.G. Sheela, S.N. Deepa, Review on methods to fix number of hidden neurons in neural networks, Math. Probl. Eng. 2013 (2013).
[78] A. Cheo, Understanding seasonal trend of rainfall for the better planning of water harvesting facilities in the Far-North region, Cameroon, Water Util. J.

13 (2016) 3–11.
[79] ONACC, Pluviométrie et Température dans la Région de l’Extrême-Nord Cameroun : Analyse de l’Évolution de 1950 à 2015 et Projections Jusqu’à l’Horizon

2090, Tech. rep., Observatoire National sur les Changements Climatiques (ONACC), Yaoundé, Cameroun, 2018.
[80] A.E. Cheo, H.-J. Voigt, F. Wendland, Modeling groundwater recharge through rainfall in the far-north region of Cameroon, Groundw. Sustain. Dev. 5

(2017) 118–130.
[81] G.R. Ghimire, W.F. Krajewski, T.B. Ayalew, R. Goska, Hydrologic investigations of radar-rainfall error propagation to rainfall-runoff model hydrographs,

Adv. Water Resour. 161 (2022) 104145.
[82] M. Fofana, J. Adounkpe, I. Larbi, J. Hounkpe, H.D. Koubodana, A. Toure, H.B. Maiga, S.-Q. Dotse, A.M. Limantol, Urban flash flood and extreme rainfall

events trend analysis in Bamako, Mali, Environ. Chall. (2022) 100449.
[83] M.-T. Sattari, A. Rezazadeh-Joudi, A. Kusiak, Assessment of different methods for estimation of missing data in precipitation studies, Hydrol. Res. 48 (4)

(2017) 1032–1044.
[84] A. Faruq, A. Marto, N.K. Izzaty, A.T. Kuye, S.F.M. Hussein, S.S. Abdullah, Flood disaster and early warning: application of ANFIS for river water level

forecasting, Kinet.: Game Technol. Inf. Syst. Comput. Netw. Comput. Electron. Control (2021) 1–10.
[85] D. Ouali, A. Cannon, Estimation of rainfall intensity–duration–frequency curves at ungauged locations using quantile regression methods, Stoch. Environ.

Res. Risk Assess. 32 (10) (2018) 2821–2836.
[86] J. Pérez-Sánchez, J. Senent-Aparicio, F. Segura-Méndez, D. Pulido-Velazquez, R. Srinivasan, Evaluating hydrological models for deriving water resources

in peninsular Spain, Sustainability 11 (10) (2019) 2872.
[87] Y. Wang, R. Liu, L. Guo, J. Tian, X. Zhang, L. Ding, C. Wang, Y. Shang, Forecasting and providing warnings of flash floods for ungauged mountainous

areas based on a distributed hydrological model, Water 9 (10) (2017) 776.
18

http://refhub.elsevier.com/S2468-2276(23)00506-9/sb51
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb51
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb51
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb52
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb53
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb53
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb53
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb54
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb54
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb54
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb55
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb55
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb55
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb56
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb56
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb56
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb57
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb57
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb57
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb58
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb59
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb59
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb59
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb60
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb60
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb60
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb61
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb61
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb61
http://arxiv.org/abs/2003.12140
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb63
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb64
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb65
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb65
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb65
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb66
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb66
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb66
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb67
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb68
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb68
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb68
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb69
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb69
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb69
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb70
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb71
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb72
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb72
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb72
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb73
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb74
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb75
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb76
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb76
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb76
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb77
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb78
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb78
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb78
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb79
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb79
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb79
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb80
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb80
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb80
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb81
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb81
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb81
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb82
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb82
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb82
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb83
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb83
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb83
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb84
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb84
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb84
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb85
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb85
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb85
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb86
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb86
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb86
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb87
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb87
http://refhub.elsevier.com/S2468-2276(23)00506-9/sb87

	A comparative study of Machine Learning and Deep Learning methods for flood forecasting in the Far-North region, Cameroon
	Introduction
	Related Works
	ML and DL Models
	1D-CNN
	LSTM
	MLP

	Study area and data
	Study area
	Data and Tools

	Design and comparison of models
	Methods
	Model performance evaluation

	Results and discussion
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgment
	References


