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Accurate occupancy prediction in smart buildings is crucial for optimizing energy management, improving 
occupant comfort, and effectively controlling building systems, particularly for short- and long-term horizons. 
Recently, deep learning-based occupancy prediction methods have gained considerable attention. However, the 
full potential of these methods remains under explored in terms of model architecture variations and prediction 
horizons. This study introduces cascaded LSTM and cascaded Bi-LSTM models for multi-horizon predictions 
from 10 minutes to 24 hours, integrating a modified activation function, additional input features, and optimized 
hyper-parameters using OPTUNA. Traditional performance metrics and various other analyses were conducted to 
compare the models. Both models performed well for short- and long-term predictions, with minimal differences 
in the results. Nevertheless, analysis focusing on non-zero data errors (accounting for approximately 11% of 
occupied periods) and occupancy-wise errors showed a significant performance gap between the two models. The 
cascaded Bi-LSTM model demonstrated consistent performance across various prediction horizons and occupancy 
variations, with accuracy approximately 10-15% higher than the cascaded LSTM model, highlighting its superior 
capability in capturing complex dataset dynamics through a bidirectional process. This study highlights the 
importance of additional input features, data feature analysis, and multi-perspective result analysis to select 
the most suitable model for occupancy prediction, validated with pre- and post-modeling feature importance 
analysis.
1. Introduction

Buildings are built to provide proper lighting, fresh air, and a com-
fortable temperature by incorporating systems such as heating, ventila-
tion, and air conditioning (HVAC), and other types of equipment. As a 
result, building design, construction, and operation should be aligned 
with the needs and demands of the occupants. Thermal and daylight 
comfort are the two most important aspects of occupant comfort along 
with air quality and acoustic comfort. Occupant comfort varies accord-
ing to individual preferences and variations (e.g. age, gender, body 
composition, etc.), and it causes extra energy consumption and the 
building sector as one of the major energy consuming sectors [1–3].
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Building operations account for 30% of global final energy consump-

tion and 26% of global energy-related emissions which include energy 
combustion and industrial processes. Building-related direct emissions 
account for 8% of the total amount emitted, while indirect emissions ac-

count for 18%. According to world energy outlook 2022 study [4], from 
2012 through 2040, overall global energy consumption by buildings 
will rise by 1.5% each year on average. Currently, building operation 
and construction emissions collectively account for more than one-third 
of worldwide energy-related CO2 emissions [5]. Despite the substantial 
energy consumed in buildings, personal occupant satisfaction is not al-

ways reached [6].
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The unexpected outbreak of the COVID-19 pandemic has shifted the 
work environment in favor of remote working, influencing perceptions 
of job quality, satisfaction, and performance. Remote working, work-
force reductions, and distribution of work had impact on offices or 
working schedules [7]. Due to the restrictions on the activities and lock-
down during COVID-19, the studies in South Korea prove that gas and 
electricity consumption in buildings have reduced 10.35% and 4.46%
respectively [8]. Post COVID-19 also, there are still effects of it on the 
lifestyle and scheduled remote working are part of many companies 
around the world.

In this situation, the presence and behavior analysis of occupants 
in non-residential buildings such as offices, academic buildings have 
a considerable influence on forecasting energy demand as well as en-
ergy consumption [9]. Currently, most of the building control systems 
continue to condition rooms with a set point assuming maximum oc-
cupancy from early morning to late evening on weekdays. As a result, 
rooms are frequently over-conditioned, which can result in severe en-
ergy waste [10]. For example, it was observed that multi-person work-
places had greater occupancy probabilities, with peak occupancy rates 
of almost 90%, while single-person offices had low occupancy rates, 
with a daily peak occupancy probability of only approximately 60% 
[11].

However, building equipment is often kept operational regardless 
of indoor occupancy. This results in wasteful energy use during non-
occupied hours. According to the study [12], significant energy savings 
can be achieved by applying a nighttime-setback technique, which in-
volves reducing comfort limits during the night. This establishes the 
concept of information of extended absences (in response to illness, 
travel for work, or vacation) could provide an opportunity for saving 
energy. According to [10] and [13], 10-42% of annual energy savings 
can be achieved even with the use of occupancy presence/absence in-
formation.

The variation in occupant interactions with buildings is recognized 
as one of the primary causes of uncertainty in building models [14,15]. 
To improve occupant comfort, the building indoor condition setting 
needs to be adjusted by using occupancy number prediction along with 
occupant behavior/activity data. The energy-saving potential of occu-
pancy prediction is significant, particularly for incidental energy waste, 
long-term occupancy absence, or even during changes in occupancy 
density inside the facility. Real-time control of HVAC systems is crucial 
for achieving optimal building energy efficiency. Accurate occupancy 
prediction modeling is necessary for comprehensive demand-response 
HVAC control, improving building energy efficiency. This approach also 
helps in monitoring and predicting room energy consumption based on 
actual usage. It was evaluated in [10] that using accurate occupancy 
prediction, up to 42% yearly energy savings is possible to achieve while 
satisfying ASHRAE comfort criteria. Real-time occupancy prediction is 
used for cooling control in three different categories of office uses in 
[16]. The experimental results showed that 7%-52% of the energy can 
be saved compared to conventionally-scheduled cooling systems.

Therefore, to gain a deeper insight into energy consumption in 
buildings, studies often focus on examining the diversity of occupancy 
patterns through the analysis of big data streams [17]. In addition to 
improving the management of energy within buildings, prediction of 
number of occupants helps during emergency evacuation such as fire, 
earthquake, or any other natural calamity, better facilities management, 
security monitoring etc [18]. An improved model for forecasting occu-
pancy will contribute to more effective building management, thereby 
optimizing energy use while ensuring the comfort of occupants.

There are two primary methods for determining the activity or esti-
mate the occupants number in a room. Cameras and pattern recognition 
are effective methods for estimating the number of occupants. However, 
the deployment of such intrusive sensors raise concerns about personal 
privacy. In many nations, the use of surveillance equipment that com-
promises on privacy in public spaces is strictly forbidden, except for 
2

security reasons [19,20]. Alternatively, non-intrusive sensors like pyro-
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electric infrared (PIR), ultrasonic, and acoustic sensors can be used for 
immediate detection of occupants. Nevertheless, these sensors typically 
provide limited information about occupancy, making them rarely used 
for estimating the number of occupants [21,22].

The data-driven occupancy prediction modeling concerning time se-
ries can be categorized as temporal occupancy prediction. For temporal 
resolution, occupancy prediction models can be categorized into three 
categories: real-time estimation, future prediction, and occupancy pro-
file modeling [23]. The temporal-based occupancy prediction could be 
short-term or long-term with respect to the prediction horizon. The 
short-term prediction has a direct application for rapid occupancy de-
mand response and satisfies industrial demands. However, the seasonal 
influence of occupant behavior requires a full year monitoring and is 
more dependable, particularly in specialized circumstances such as im-
itating academic institutions’ holiday schedules in terms of energy use 
[24].

There has been a lot of study done in the literature regarding occu-
pancy detection or determining whether or not a space is occupied [25]. 
Using occupancy detection with industrial controllers (ON/OFF or PID) 
can lead to immediate energy savings in buildings. However, with the 
rise of intelligent controllers such as model predictive controller (MPC), 
future occupancy predictions are required to optimize control strategies 
[26]. Nonetheless, due to the stochastic nature of the occupants, this 
subject has not been sufficiently explored in existing literature. Accord-
ingly, the focus of this research is on predicting occupancy number.

According to the types of prediction models, there are majorly three 
types as listed [27]:

• The white-box model, also referred to as the physical model: this 
approach is used at different scales for different purposes. The 
white box framework, for example, allows to analyze a building’s 
interior environmental factors, such as occupancy predicted, on 
various temporal (year, month, day, or hour) and spatial (build-
ing as a whole, a room, or a room cell) scales.

• The black-box model, also known as the data-driven model: the 
significant benefit of these methods is their simplicity in implemen-
tation, coupled with their ability to generate an accurate prediction 
model without requiring a deep knowledge of building geometry or 
specific physical phenomena. Yet, since these (ex: machine learning 
(ML)) models depend entirely on data measurements, they might 
under-perform in scenarios where collecting data poses difficulties.

• The grey-box model, also considered as the hybrid model, merges 
the above-mentioned approaches. The black-box methods are pri-
marily constrained by their need for substantial data. Whereas 
interpreting statistical data in physical terms can be challenging 
in the white-box model. By integrating these methods, the limita-
tions of each can be reduced. In fact, the strengths of one approach 
can compensate for the weaknesses of the other. Nevertheless, the 
hybrid method still retains the drawbacks of each approach, indi-
cating as free parameters for statistical tools or the computational 
time needed for both physical and statistical codes.

Considering the intricate dynamics between occupants and build-
ings, the development of white-box models is particularly complex and 
challenging. Statistical or traditional models predict the current value 
of a variable by using previous time series values and previous or cur-
rent values of exogenous factors such as weather and social variables.

Authors in [28] used the SARIMA (seasonal auto-regressive inte-
grated moving average) model, which is an extended form of the ARIMA 
(auto-regressive integrated moving average) model for forecasting. This 
model is suitable for time series with trends, seasonal patterns, and 
short-term correlations [29]. But SARIMA and ARIMA models are capa-
ble of dealing with a single input feature and making the prediction. Ac-
cording to [30], algorithms such as ARIMA, and Holt-Winters produce 
accurate results for time series prediction with stable data patterns, 

but the performance lowers during complex, unexpected interference, 
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and unstable patterns. To incorporate the exogenous data, advanced 
versions of these models called auto-regressive integrated moving av-
erage with exogenous factors ARIMAX and seasonal auto-regressive 
integrated moving average with exogenous factors (SARIMAX) are used. 
The ARIMAX technique uses a time series approach whereas ARIMAX 
uses a time series approach with both seasonal and exogenous affecting 
elements [31]. The SARIMAX model performs well in terms of classifi-
cation and consideration, with much higher predicting accuracy than 
simpler auto-regressive integrated moving average-based algorithms. 
Furthermore, the model can handle varied sized sequential datasets. 
However, the SARIMAX model implies linearity [32], although the real 
temporal relationship and covariance are completely nonlinear for oc-
cupancy prediction. Due to these reasons, a review of the literature in 
[33], it is shown that DL-based models outperform the traditional mod-
els for forecasting.

While numerous ML and deep learning (DL) algorithms have been 
applied and evaluated in the literature, the selection of an algorithm 
depends on the specific context; the configuration of the model is influ-
enced by various factors such as the data at hand, desired time scale, 
duration (ranging from seconds to years), and scope (from a small area 
to large community). Under these circumstances, DL methods, partic-
ularly Long Short-Term Memory (LSTM) models, have demonstrated 
better performance accuracy compared to auto-regressive models and 
widely adapted for time series prediction as shown in Table 1. There-
fore, this paper primarily concentrates on exploring DL methods, specif-
ically LSTM and Bi-directional Long Short-Term Memory (Bi-LSTM) 
models for occupancy prediction modeling.

1.1. Occupancy prediction models

In recent times, significant efforts have been made to develop accu-
rate and reliable occupancy models for context-driven control applica-
tions. This progress is partly due to the widespread implementation of 
building automation systems, intelligent systems, and Internet of Things 
(IoT) platforms, which have greatly increased the volume of accessi-
ble data. Numerous DL-based occupancy models have been developed 
to mimic the unpredictability and diversity of occupants and to build 
stochastic occupancy models that generate accurate simulations. The 
LSTM algorithm and its variations meet these requirements with their 
high accuracy and scalability. The availability of various input features 
and sensors has made the necessary features accessible. Consequently, 
numerous studies have implemented LSTM and other DL algorithms for 
occupancy estimation or prediction modeling.

Many studies have used either the classical LSTM or modified 
LSTMs. In study [48], both Genetic Algorithm (GA) and Particle Swarm 
Optimization (PSO) were used for LSTM weights optimization. The 
model was used to predict multi-variables such as CO2, noise, and 
relative temperature. When compared with the traditional LSTM algo-
rithm, particularly in terms of auto-correlation prediction, the results 
indicated that the GA and PSO-based LSTMs were more accurate in 
predicting these variables than conventional LSTM models. The experi-
mental predictions demonstrated high correlation coefficients, ranging 
from 99.16% to 99.97%, showcasing the effectiveness of these tech-
niques. The input features also have influence over the model’s per-
formance, an approach was proposed in [34], that uses environmental 
features collected through a specially designed IoT system. Multivariate 
time series data from the IoT was collected and used as input for the 
LSTM algorithm. The results of LSTM was then compared with the Sup-
port Vector Machine (SVM), Naive Bayes Network (NB), and Multi-layer 
Perceptron Feed-Forward Network (MPFFN). The results demonstrated 
that the LSTM algorithm outperformed the other algorithms, achieving 
an accuracy of 96.8%. Although the LSTM algorithm showed a 16% 
higher accuracy compared to other algorithms, it is important to notice 
that the data used in this study was noisy and required an extensive set 
of features. Building managers can use these prediction models to esti-
3

mate occupancy and monitor indoor air quality (IAQ) to make sure that 
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spaces within have sufficient ventilation and are free of hazardous pol-
lutants. The CO2 level within the space determines IAQ, and IoT can 
be implemented to predict it. The CO2 level was forecasted in [49] us-
ing an LSTM model using a variety of environmental features. With a 
5.5% error margin, the model can forecast the CO2 concentration in the 
steady state.

The study [36] focused on predicting the occupancy number by us-
ing real-time CO2 measurements. Initially, an analysis was conducted to 
understand the correlation between occupant numbers and CO2 concen-
trations, and the LSTM model used for forecasting. The accuracy of the 
model in estimating occupant numbers was approximately 70%. How-
ever, these techniques are limited to current occupancy estimation and 
do not predict future occupancy. Furthermore, real-life features such as 
the opening and closing of windows and doors were not examined or 
discussed in this study. The LSTM model was used as a baseline model 
to predict miscellaneous electric loads [50]. Considering the time series 
dataset, LSTM, Bi-LSTM, and Gated Recurrent Unit (GRU) are the pre-
diction models used for comparison. The paper concludes that Bi-LSTM 
and GRU models performed better than baseline model. Nevertheless, 
the robustness and adaptability of the models are not analyzed in the 
paper.

The combination of CNN-LSTM was used to predict the residen-
tial energy consumption using spatial and temporal information [51]. 
Power consumption is a multivariate time series data that includes spa-
tial information as well as irregular temporal patterns. Compared to 
LSTM, GRU, Bi-LSTM, and Attention LSTM algorithms, the presented 
CNN-LSTM algorithm achieved superior performance. The proposed 
model in this paper was able to extract complex features of energy 
consumption. However, tuning hyper-parameters were difficult for the 
model. Occupancy prediction based on a minimum sensing strategy by 
identifying the most significant features using a comprehensive set of 
sensor data is proposed in [40] using DL architectures such as Deep Neu-
ral Network (DNN), LSTM, Bi-LSTM, GRU, and Bi-directional GRU (Bi-
GRU). This study used indoor and outdoor environmental conditions, 
Wi-Fi-connected devices, energy consumption data, HVAC operations, 
and time-related information as input features in an office, library, and 
lecture room. According to empirical studies, indoor CO2 levels and the 
number of Wi-Fi-connected devices were consistently among the top 15 
most important features, and Bi-GRU and GRU were the more suitable 
algorithms for occupancy prediction.

Table 1 summarizes the study findings on LSTM models presented in 
this section. It includes works on occupancy prediction and highlights 
the use of sensor data, comparison models, accuracy, and building types 
used. Using a proper prediction algorithm and the appropriate input fea-
tures are critical for predicting occupancy numbers. The DL algorithms 
meet such requirements due to their high accuracy and good scalabil-
ity. For prediction, DL algorithms such as Recurrent Neural Networks 
(RNN), and LSTM and its variants require a variety of input variables.

1.2. Contributions

Some of the methods used for occupancy prediction are described 
in the section above. Despite advancements, the occupancy models de-
scribed in the literature have yet to consider the data as a zero-inflated 
dataset and work for both short- and long-term predictions. These sig-
nificant disadvantages are what our proposed method aims to address. 
Accurate long-term predictions, such as day-ahead predictions, could 
significantly aid intelligent controllers in developing optimal control 
strategies and increasing energy-saving potential. Although the classi-
cal LSTM model has been effective for short-term predictions, it shows 
limitations in predicting long-term occupancy. In previous work [15], 
a cascaded LSTM model was used to develop both short- and long-
term prediction models. However, results demonstrated limitations in 
determining the multitude relationships between input features and the 
occupancy number for long-term predictions, as well as the limitations 

associated with the LSTM model capabilities.
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Table 1

Comparative analysis of occupancy modeling literature.

Paper year Algorithm used Application Space type Parameters used Place Accuracy Pros Cons

[34] 2021 Naïve Bayes Classifier, 
SVM, and Multi-layer 
Perceptron 
Feed-Forward 
Network against LSTM

Occupancy 
detection

Educational 
building

Internet of Things (IoT) 
including temperature 
sensor, humidity sensor, 
lighting sensor, CO2

sensor, and the passive 
infrared sensor, GPS 
Sensor

Kigali city 
Rwanda

96.8 for 
LSTM, 16 
times more 
than others

High accuracy compared 
to other models, The 
LSTM model does not 
over-fit from the used 
data and minimizes the 
loss that can infer their 
prediction

Different parameters are 
used for modeling which 
may be noisy, enclosed 
environments is not used

[35] 2021 Stacked LSTM and a 
sequential deep model 
with transfer learning

Occupancy 
detection and 
transfer learning

Educational 
building

Environmental data: 
temperature, relative 
humidity and CO2, and 
motion sensor

City-Of 
Newcastle, 
United 
Kingdom

Around 62% 
-66% for 
LSTM

Applying transfer learning 
on top of the DL models 
can improve the 
prediction accuracy

Only one case study with 
one dataset with limited 
dataset.

[36] 2019 LSTM Short-term 
forecasting of 
occupants’ 
number

Laboratory IoT technologies to collect 
CO2 level and a motion 
sensor

Ifrane, 
Morocco

Around 70% Strong correlation 
between CO2 level and 
occupancy is determined

Only one environmental 
data is considered and the 
effectiveness of the 
modeling is not analyzed 
with other models

[37] 2023 LSTM, and LSTM with 
GA and PSO optimizer

Occupancy 
prediction

Smart 
home

Room temperature, CO2

concentration, pressure, 
noise, lighting, and 
occupancy

France 99.16% and 
99.97%

Proven that optimization 
of LSTM enhances the 
accuracy

Over-fitting of the data is 
not analyzed

[38] 2020 2D-LSTM Spectrum 
occupancy 
prediction 
(occupancy 
detection)

Educational 
building

Spectrum measurement/ 
frequency measurement

Istanbul 
Medipol 
University, 
Turkey

Correlation over time and 
frequency for occupancy 
prediction, less 
computational complexity

Only binary prediction is 
done

[39] 2023 One-layer GRU and 
LSTM

Occupancy 
prediction

Office 
building

PIR, IoT sensors Beijing, 
China

96.6% for 
GRU

GRU is a more effective 
method for real-time 
forecast

LSTM results are very 
close to GRU

[40] 2022 DNN, LSTM, Bi-LSTM, 
GRU, and Bi-GRU

Occupancy 
prediction

Office, 
library, and 
lecture 
room.

Indoor environmental and 
outdoor weather data, 
Wi-Fi connected devices, 
energy consumption data, 
HVAC operations data, 
and time-related 
information

Singapore NO Different patterns of 
occupancy movements 
and various types of 
spaces are considered for 
modeling

Different models showed 
better performance in 
different spaces. Thus 
generalization of 
modeling is not possible.

[41] 2019 LSTM with ARIMA Plug load 
prediction using 
occupancy 
detection

Office 
building

Camera-based sensors Berkeley, 
California

95% Absence of occupant 
counts data would result 
in a higher prediction 
error

Intrusive occupancy 
detection approach is 
utilized

[42] 2019 RNN model with LSTM 
and multi-layer LSTM

Occupancy 
prediction

Exhibition 
hall

Image sensors Busan, 
South 
Korea

No Fine-resolution control in 
the energy management 
system and can improve 
energy consumption 
efficiency in large and 
spontaneous occupancy 
movement buildings

Intrusive occupancy 
detection approach is 
utilized and the dataset is 
extrapolated

[43] 2020 LSTM with NN Through 
behavioral 
change and 
transfer learning

Two 
residential 
rooms

Date, time, weekday, 
temperature, PIR and CO2

No Above 80% 
for different 
time steps

Transfer learning 
improves the performance 
of the LSTM

prediction is better at 
lower time-steps

[44] 2022 LSTM Occupancy 
prediction 
estimate the 
heating energy 
consumption of a 
building

Non-
residential 
building

Building data, outdoor 
environmental data, 
Pattern for energy 
consumption

Jincheon, 
South 
Korea

No Building operation 
patterns to a model can 
apply to all similar 
buildings with certain 
periodicity

Performance is building 
specific and largely varies 
with the number of input 
variables. The variation of 
concerning these variables 
is not studied.

[45] 2021 LSTM-based seq2seq, 
LSTM-dense-LSTM and 
LSTM-LSTM, 
LSTM-dense model

Multi-zone 
indoor 
temperature 
prediction

Institu-
tional 
building

Room temperature, 
ventilation flow, 
ventilation temperature, 
indoor temperature, CO2

concentration, lighting 
and occupancy

France Varies Large variation of 
forecasting windows are 
considered (1 h-168 h)

Relevant information 
could be collected to 
address important 
mechanisms of the 
building

[46] 2017 CD-Bi-LSTM Occupancy 
prediction and 
estimation

Research 
lab envi-
ronment

CO2, humidity, 
temperature, and air 
pressure

Singapore 76.04% Model has generalization 
capability

Limited sensors usage 
might have limited the 
data points and variations

[47] 2022 CNN and LSTM tested 
against RNN, GRU, 
LSTM, Bi-LSTM

Occupancy 
prediction

Controlled 
lab envi-
ronment

Temperature, 
illumination, sound, CO2, 
and PIR

No 95.6% for 
CNN-LSTM

Applicable for scalable 
data for short-term 
occupancy estimation

Long-term estimation and 
moving horizon are not 
considered
4
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To address these challenges, the current study used both cascaded 
LSTM and Bi-LSTMs, alongside hyper-parameter optimization using OP-
TUNA framework [52] and modifications to the traditional model ar-
chitectures to better suit the occupancy prediction problem. This model 
is used for predicting multi-horizon occupancy, with results analyzed 
from various perspectives. Both pre-modeling and post-modeling fea-
ture analyses are conducted using correlation matrices and the Model 
Reliance (MR) importance method [53], respectively, to understand the 
influence of each feature. This detailed data analysis and model reliance 
technique provide a clear understanding of occupancy prediction mod-
eling.

2. Methodology

This section introduces the methodology used to predict the num-
ber of occupants in the given space for multi-horizon prediction. Indoor 
features, calendar features, and the behaviors of the residents all have 
an impact on occupancy prediction and behavior. As a result, data for 
occupancy modeling should consider all of these aspects. Because hu-
man nature is very stochastic, accurate occupancy modeling is difficult. 
Detailed information regarding occupant space and energy utilization 
patterns, as well as occupant schedule, is crucial during data collect-
ing [54]. The stochastic nature of humans is handled better using 
data-driven approaches. Data-driven models especially ML and DL al-
gorithms models learn from available data and provide the additional 
benefit of increased processing speed and excellent accuracy [55].

The primary goal of this research is to analyze the performance of 
the proposed model cascaded LSTM and Bi-LSTM models and to de-
termine the most accurate ones. The study includes how to enhance 
the performance of suggested models using optimization and hyper-
parameter tuning as well as different performance metrics and graphs 
for the analysis.

2.1. Long short-term memory (LSTM)

A class of artificial neural network model called RNN is designed to 
handle sequential data. RNN model has three layers called input layer, 
memory layer and output. The middle layer enables RNN to capture 
the patterns and temporal dependencies in sequential data. But, RNN 
models fail to learn long-term dependencies due to vanishing gradient 
problem [56]. LSTM is a type of neural network model that can be 
considered an improvement over RNN architecture due to its ability to 
retain historical information to make predictions. LSTM models basi-
cally expand the memory of RNNs to allow them to properly maintain 
and learn long-term input dependencies. This algorithm works well with 
grid-like data in one or more dimensions. These features recommend us-
ing LSTM for time-series prediction, classifying, processing, and making 
event predictions. The LSTM procedure and mathematical representa-
tion are explained below as follows:

LSTM unit 𝑖 consists of input state activation 𝑥𝑖 and output state ac-
tivation 𝑦𝑖 which are related by the activation function. Status of the 
previous timestamp is 𝑡 − 1 and controlling gate 𝑂𝑡 determines state 
𝐶𝑡. Also, gate 𝑖𝑡 overwrites on 𝐶𝑡, and gate 𝑓𝑡 clears 𝐶𝑡. New input can 
be accumulated in a memory cell if it is activated. Moreover, if 𝑓𝑡 is 
activated, the previous memory cell value 𝐶(𝑡−1) will be erased. The ac-
tivation of output gate 𝑂𝑡 can determine information propagation of 𝐶𝑡

to the output vector ℎ𝑡 which is given in the equations below (1)-(6)
[57]. The entire process of a single LSTM unit is depicted in Fig. 1. 
LSTM layers consist of memory blocks rather than neurons. These mem-
ory blocks are linked together throughout the layers, and each block 
may include one or more recurrently connected memory components 
or cells. As shown in the illustration (by the symbol x), the flow of in-
formation is governed by three types of gates: the forget gate (𝑓𝑡), the 
input gate (𝑖𝑡), and the output gate (𝑂𝑡).
5

𝑓𝑡 = 𝜎(𝑊𝑓 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓 ) (1)
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Fig. 1. LSTM architecture.

𝑖𝑡 = 𝜎(𝑊𝑖 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (2)

𝐶 ′ = tanh(𝑊𝑐 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐) (3)

𝑜𝑡 = 𝜎(𝑊𝑜 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (4)

𝐶𝑡 = (𝑖𝑡 ⋅𝐶 ′) + (𝑓𝑡 ⋅𝐶𝑡−1) (5)

ℎ𝑡 = 𝑜𝑡 ⋅ tanh(𝐶𝑡) (6)

2.2. Bidirectional LSTM (Bi-LSTM)

The Bi-LSTM design extends the fundamental LSTM architecture by 
combining two independent LSTMs. The first LSTM provides forward 
information about the sequence, while the second LSTM provides back-
ward information about the sequence. Bi-LSTM unit i consists of input 
state activation 𝑥𝑖 and output state activation 𝑦𝑖 which are related by 
the activation function and weights through hidden layers. If we con-
sider six independent weight matrices (𝑤𝑖 where i= 1, 2, 3, 4, 5, 6) as 
follows. These weight matrices are connected as follows: input to for-
ward and backward hidden layers (𝑤1 and 𝑤3), hidden layer to hidden 
layer (𝑤2 and 𝑤5), forward and backward hidden layer to output layer 
weights (𝑤4 and 𝑤6). These six weights are used repeatedly at each 
time step. The Bi-LSTM model’s hidden layer saves two values: one for 
forward computation (ℎ⃗𝑡) and one for backward calculation (⃖⃖ ⃖ℎ𝑡). The 
output 𝑂𝑡 can be determined by adding backward and forward layer 
outputs which are given in the equations below [40], [58]:

ℎ⃗𝑡 = 𝑓 (𝑤1 ⋅ 𝑥𝑡 +𝑤2 ⋅ ⃖⃖ ⃖ℎ𝑡) (7)

⃖⃖ ⃖ℎ𝑡 = 𝑓 (𝑤3 ⋅ 𝑥𝑡 +𝑤2 ⋅ ⃖⃖ ⃖ℎ𝑡) (8)

𝑂𝑡 = 𝑔(𝑤4 + ℎ⃗𝑡 +𝑤6 ⋅ ⃖⃖ ⃖ℎ𝑡) (9)

2.3. Cascaded LSTM and Bi-LSTM

This model is generated by cascading the basic LSTM model. The 
cascaded network blocks anticipate output for certain time lags, creat-
ing a hierarchical representation for each lag value. After training, the 
model learns its weights and biases. Unlike the baseline LSTM model, 
cascaded LSTM model can eliminate feature redundancy and hence 
train the model more efficiently.

However, the LSTM and unidirectional stacked layer architecture do 
not perceive information in the future; its hidden states can only learn 
and analyze data inputs from the past. Each memory unit receives the 
output state of the preceding memory unit and redirects it to the next 
memory unit. Bidirectional architecture, on the other hand, uses data 
in both directions. It is divided into two levels, each of which analyses 
data differently, from past to future and future to past [59].

The cascaded network has been built of two connected layers, with 
each layer conducting operations on the input sequence in distinct 
flow directions. In the bidirectional architecture, one layer operates in 

alignment with the data sequence original flow, while the other layer 
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Fig. 2. Cascaded Bi-LSTM architecture.

applies its operations in the reverse direction. To merge the final out-
puts provided by network layers, many merging strategies are used. 
Consequently, two layers of LSTM can be arranged in a stacked manner, 
employing two contrasting flow directions to handle the input sequence 
and thereby creating a Bi-LSTM architecture [60].

The process for constructing the bidirectional cascaded LSTM is il-
lustrated in Fig. 2. The hidden layers of the network are denoted as ℎ𝑛, 
where 𝑛 represents the number of neurons. During the training phase, 
each sample generates a target value denoted as out, while the output 
of each hidden cell in the learning process is indicated by 𝑦𝑡. The gen-
erated models undergo refinement through a series of tests involving 
different architectures. To determine the optimal learned structure, var-
ious combinations of memory cells and epochs are utilized to train mul-
tiple models. The same procedures are applied across diverse architec-
tures to evaluate the performance of each envisioned model. Compared 
to baseline models, cascaded models have increased model capacity, 
improved representation learning, better handling of sequential depen-
dencies, increased non-linearity, and thus enhances the performance of 
the models.

The visual representation of a process or algorithm is shown in 
Fig. 3. The flowchart can be categorized into four sections as follows:

• Input Data: The data source, data description and input features 
are explained in this.

• Data handling: Data pre-processing and adding new features such 
as calendar and slope variation of CO2 and temperature is done in 
this section. This part helps to improve the quality of the model 
performance.

• Model optimization: Cascaded LSTM or cascaded Bi-LSTM models 
are introduced in this section. The model hyper-parameters are op-
timized using OPTUNA optimization technique [52].

• Performance analysis: In the last step, the performance of the se-
lected model is analyzed using different performance metrics for 
the required window. All prediction horizons are considered, and 
steps 2 and 3 are repeated until the performance of both models 
is obtained for all prediction horizons. Finally, post-modeling fea-
ture importance analysis is conducted for better model inference 
and to understand precisely how each feature impacted the model 
6

performance.
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Fig. 3. Proposed methodology - cascaded LSTM and cascaded Bi-LSTM.

2.4. Occupancy data and analysis

The data used for model development is taken from [61]. The data 
were collected at an office block of the University of Calabria, a pub-
lic institution founded in 1972 and built on the concept of a Campus 
in Southern Italy (39⁃21′58.6′′𝑁16⁃13′30.9′′𝐸) with Mediterranean cli-
mate conditions. The office room is 19 𝑚2 in size and 2.50 m in height. 
The room has a Westward facing exterior single wall and a 68x76 cm 
two-wing window as shown in Fig. 4. The area is outfitted with desktop 
PCs and printers, as well as an autonomous heating and cooling system 

[61].
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Table 2

Correlation of input features with occupancy number according to seasons.

Season Influential features Non-influential features

Spring Door status, indoor VOC, indoor CO2, electric power Cooling status, indoor temperature, indoor air pressure, window status
Summer Door status, cooling status, electric power, window status Indoor temperature, indoor CO2, indoor VOC, indoor air pressure
Fall Door status, indoor CO2, electric power, window status Cooling status, indoor temperature, indoor VOC, indoor air pressure
Winter Door status, cooling status, indoor CO2, indoor VOC, electric power Indoor air pressure, window status
Fig. 4. a. Office building; b. monitored office.

Fig. 5. Correlation matrix for the collected data.

2.4.1. Data analysis

The dataset has many features including the occupancy number. 
These can be broadly categorized into two types:

• Continuous features: CO2 level, volatile organic compound level 
(VOC), indoor air temperature, and electric power usage.

• Binary state features: door, window, air conditioning, and occu-
pancy status (0/1).

Fig. 5 shows that the electric power feature demonstrates a stronger 
positive correlation with the number of occupants, indicating that 
power usage increases with more occupants. Similarly, features related 
to the respiration of occupants, such as CO2 levels and VOC have shown 
a moderately positive correlation, which is expected as humans ex-
hale CO2 with each breath, and the accumulation of these compounds 
increases with more occupants. However, since the indoor thermal con-
ditions are regulated with ventilation air, there is a weak correlation 
between indoor temperature and relative humidity. However, when we 
7

consider the seasonal dataset, this correlation changes as shown in Ta-
Table 3

Statistics for occupancy measurement feature.

Overall Non-zero part

Stats Mean Var % of 0’s Mean Var Skewness

Min 0 0.16 0.24 86.34 1.42 0.41 1.48
1st Qu 0 0.2 0.34 86.34 1.48 0.58 2.97
Median 0 0.16 0.29 89.02 1.46 0.51 1.53
Mean 0.17 0.17 0.29 88.55 1.42 0.56 1.88
3rd Qu 0 0.16 0.25 89.06 1.43 0.44 1.5
Max 10 0.2 0.34 89.83 1.62 0.82 2.97

ble 2. Some of the weakly correlated features for the whole dataset 
such as indoor temperature have a strong influence at certain times, 
like spring as shown in Fig. 6. Therefore, all the features are consid-
ered for the modeling instead of considering only the highly correlated 
features for the whole dataset.

The feature of occupancy number is further analyzed for a better 
understanding of its authenticity and dynamics. The statistics of occu-
pancy number feature is summarized in Table 3. It can be observed that 
the non-occupancy periods are much higher almost 89.83% maximum 
and 86.34% minimum of unoccupied periods, thus indicating that the 
occupancy feature is zero-inflated. Furthermore, the maximum number 
of occupants present at a time is 10, indicating that the occupancy var-
ied greatly during occupied periods.

When the focus was solely on the non-zero part of the feature which 
excludes periods of vacancy, it can be noticed that a mean occupancy 
value of 1.42 to 1.46. This represents a moderate occupancy rate during 
occupied periods. The variance in the non-zero part ranges from 0.41 
to 0.82, indicating a wide range of occupancy levels when the build-
ing is in use. Furthermore, the skewness of this non-zero part, which 
ranges from 1.48 to 2.97, indicates a positively skewed distribution. 
This skewness indicates that lower occupancy counts are much more 
frequent, whereas higher occupancy levels are less frequent (Fig. 7).

Furthermore, occupancy density according to specific days and 
times has been analyzed to understand how occupancy is distributed/
concentrated throughout the day (see Fig. 8). Peak occupancy typi-
cally occurs around 9h30 - 12h00, lowering towards the early and late 
parts of the day. This pattern is consistent across the weekdays, indi-
cating a regular presence of occupants, which is directly attributable 
to standard operational or work hours. The highest concentrations of 
occupancy are observed from late morning to early afternoon, particu-
larly between 10h00 - 12h00 and 15h00 - 17h00, with slight variations 
across the days. Mondays demonstrate a higher concentration of oc-
cupancy, whereas Fridays show a small decrease in early occupancy 
periods, reflecting a late start to the day. Such significant behavioral 
patterns are crucial and must be used for the training of predictive 
models. Based on the analysis presented, it is critical to note that fea-
tures reflecting occupancy behavior, in addition to the regular features, 
are significant in improving the performance of the predictive model. 
The routine patterns of occupancy, such as the hour and day of the 
week, as well as working hours, are valuable and likely to positively in-
fluence performance of the model. Similarly, variations in CO2 levels 
and thermal variable concentrations can help in determining changes 
in occupancy density. Therefore as shown in Fig. 9, we have included 
first-order difference (slope) features alongside calendar features. Also, 
all the features from Fig. 9 are considered as the input variables for 

cascaded LSTM and Bi-LSTM modeling.
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Fig. 6. Seasonal correlation matrix for the collected data.
Fig. 7. Distribution of occupancy number feature.

As observed from Table 3 the dataset demonstrates zero-inflation 
in occupancy numbers. If not properly addressed, these zeros can pose 
8

a significant processing challenges, as noted in [62]. The Mean Abso-
lute Error (MAE) is often considered robust for modeling zero-inflated 
data due to its resistance to the influence of extreme values or outliers, 
according to [63]. In our study, we have taken this into account and 
have selected MAE as the optimal performance metric. Additionally, we 
have used graphical representations for a more detailed analysis of the 
results. Furthermore, we have also considered the Root Mean Square Er-
ror (RMSE) and Mean Squared Error (MSE) as additional performance 
metrics for comparison.

• MSE: The average of the model forecast and the target value’s 
squared difference.

• RMSE: The difference between the model’s anticipated and mea-
sured value.

• MAE: Measures the average magnitude of differences between pre-
dicted and actual values. The equation for each is given below:

𝑀𝑆𝐸 = 1
𝑁

𝑁∑
𝑖=1

(𝑋𝑖 − 𝑌𝑖)2 (10)

𝑅𝑀𝑆𝐸 =

√√√√ 1
𝑁∑
(𝑋 − 𝑌 )2 (11)
𝑁
𝑖=1

𝑖 𝑖
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Fig. 8. Weekly occupancy concentration ratio.
Fig. 9. Summary of input features.

𝑀𝐴𝐸 = 1
𝑁

𝑁∑
𝑖=1

|𝑋𝑖 − ⟨𝑌𝑖⟩ | (12)

where, N denotes the sample size, 𝑋𝑖 represents the observed data point 
at the i-th point and 𝑌𝑖 is the predicted value using the corresponding 
model at the i-th point.

2.5. Feature importance analysis by model reliance (MR) method

In the previous section, it was shown how input features were 
selected based on correlation matrices. These methods provide pre-
modeling feature importance by assessing the linear relationship with 
the target variable. However, these methods do not explain why the 
model behaves as it does. To address this, the MR approach is used 
in this study to evaluate post-modeling feature importance and under-
stand how features influence model performance. The MR technique 
[53,64] focuses on analyzing prediction errors. ML and DL models use 
learning characteristics to make predictions. The model’s reliance on 
features may vary based on the multitude relationships between its in-
put and output. When a feature in a model is permuted, its association 
with other features collapses. During the model’s prediction phase, er-
rors based on permuted features are expected to differ from the original 
feature. MR allows learning algorithms to explore specific components 
of a model, providing a clearer explanation of how ML algorithms work 
for modeling purposes.

The accuracy of permuted features is influenced by their significance 
during the learning process. When an error is frequently skipped, it indi-
9

cates that the permuted feature is important and that the model depends 
a lot on it. To calculate the permuted error for each feature, the sam-
ple data was divided into two groups, and the first and second halves 
were swapped. This separation disrupted the relationship between the 
permuted data and other features, allowing for the computation and 
evaluation of model dependency. The following equations demonstrate 
how to calculate model effectiveness.

𝑒base = 𝐹 (𝑦,𝑀(𝑥)) (13)

𝑒permuted =
1

2
⌊
𝑛

2
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2
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(14)

where:
𝑒𝑏𝑎𝑠𝑒 is the original or base error of the model,
𝑒𝑝𝑒𝑟𝑚𝑢𝑡𝑒𝑑 is the permuted error, F is the function that calculates the error,
𝑀 is the ML or DL model,
𝑛 is the number of occurrences (samples) in the dataset,
𝑦 the real output of the ML or DL model, and
𝑥1, 𝑥2...., 𝑥𝑚 are the input features.

Using the 𝑒base and 𝑒permuted, MR for the M model is calculated as 
follows:

𝑀𝑅(𝑀) =
𝑒base

𝑒permuted
(15)

Larger MR values (MR > 1) have a greater effect on the model. If MR 
is strictly less than one (MR < 1), the proposed model or the features 
do not perform well for modeling. In the following stage, the dataset 
will be displayed, analyzed, and processed based on the MR method. 
Additionally, this model helps to identify which features have the most 
influence on the model accuracy [53].

3. Occupancy prediction: results and discussion

In this section, we present the performance analysis of occupancy 
prediction using cascaded LSTM and Bi-LSTM models, which comprise 
multiple parts. The first part describes the impact of the proposed inte-
grated features on model performance. The second part outlines the 
modeling algorithm of the two models for multi-horizon occupancy 
prediction. To assess both short-term and long-term performance, pre-
diction horizons ranging from 10 minutes to 1440 minutes (day ahead) 
have been considered. The third part provides an in-depth analysis of 
the results from various perspectives. This analysis is applied to both 
the overall dataset and the non-zero dataset to better understand the 
robustness and effectiveness of model performance. Finally, the last 
part presents the post-modeling feature importance analysis for both 

the whole dataset and specifically the non-zero portion of the dataset.
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Table 4

Optimized hyperparameters of cascaded LSTM and cascaded Bi-LSTM models.

Window Cascaded LSTM Cascaded Bi-LSTM

Layers Optimizer Units/layer Layers Optimizer Units/layer

10 7 adam 50, 90, 53, 89, 71, 64, 67, -, -, - 8 adam 50, 53, 85, 90, 90, 87, 57, 99, -, -
30 3 rmsprop 50, 50, 83, -, -, -, -, -, -, - 10 rmsprop 50, 81, 72, 86, 54, 84, 57, 91, 57, 93
60 4 rmsprop 50, 77, 99, 51, -, -, -, -, -, - 8 rmsprop 50, 69, 97, 79, 94, 66, 67, 67, -, -
90 2 rmsprop 50, 60, -, -, -, -, -, -, -, - 6 adam 50, 87, 64, 80, 88, 68, -, -, -, -
180 2 rmsprop 50, 67, -, -, -, -, -, -, -, - 10 rmsprop 50, 79, 52, 58, 68, 87, 57, 66, 68, 94
320 2 rmsprop 50, 81, -, -, -, -, -, -, -, - 2 adam 50, 95, -, -, -, -, -, -, -, -
600 11 rmsprop 50, 55, 78, 79, 62, 94, 52, 57, 78, 70 8 rmsprop 50, 60, 88, 76, 60, 75, 93, 64, -, -
1440 3 adam 50, 66, 67, -, -, -, -, -, -, - 2 adam 50, 61, -, -, -, -, -, -, -, -
Fig. 10. Performance variation with additional features for cascaded LSTM.

A comparative analysis has been performed to evaluate the impact 
of the added input features on the performance of the models. The re-
sults are shown in Fig. 10 and Fig. 11. These findings conclusively show 
that the inclusion of additional features improves all performance met-
rics across the models. When all features are used, this resulted in a 
reduction in MAE error by nearly 50% compared to models that only 
included the main features, as shown in both graphs. This indicates the 
significance of thorough data analysis and the addition of new features 
to the proposed model.

As described in the methodology section, the model hyper-param-
eters were optimally selected using the OPTUNA optimization frame-
work [52]. This framework was applied to minimize error by defining 
an objective function. In previous work [15], the cascaded LSTM model 
was used to predict short- and long-term occupancy, with a time horizon 
ranging from 5 minutes to 1440 minutes (1 day). The model produced 
high errors as the horizon increased. To address this challenge, this 
study determines the optimal number of cascaded LSTM and Bi-LSTM 
layers using OPTUNA optimization. The search space for the layers was 
set between 1 and 12 layers, with 1 to 100 units per layer. These pa-
10

rameters were selected after running multiple initial tests to identify the 

Fig. 11. Performance variation with addi
probable range of layers. Initial tests provided results within the range 
of 1 to 7 layers, but the search space was doubled to increase the explo-
ration range. The classical architecture of the LSTM and Bi-LSTM model 
was modified by incorporating two different activation functions at the 
output cell state, enabling predictions to be rounded or to approximate 
the ceiling integer. The Adam and RMSprop algorithms were selected 
to reduce the cost function of the algorithm. The optimization process 
was repeated over multiple iterations to obtain the optimal results. The 
optimized cascaded LSTM and cascaded Bi-LSTM model hyperparam-
eters are presented in Table 4. Training and testing of the data were 
divided into 80% and 20%, respectively. The phenomena of over-fitting 
and under-fitting were also verified by the initial results and during the 
optimization process. After this verification, further steps were carried 
out.

3.1. Performance evaluation

The metrics MAE, MSE, and RMSE are used to evaluate the perfor-
mance of the models. As the dataset is zero-inflated the MAE results 
are very important to compare, but additional metrics MSE and RMSE 
indicates if the trend is same or different. Both cascaded LSTM and Bi-
LSTM results are presented in the Table 5. The model performance is 
compared for both short- and long-term predictions. The selected pre-
diction horizons are 5 min, 10 min, 15 min, 30 min, 60 min, 120 min, 
180 min, 320 min, 600 min, 1200 min, and 1440 min.

The result of the cascaded LSTM and Bi-LSTM models show that the 
consistent performance is obtained for the all predictions, for all predic-
tion horizons. This indicates the robustness of these models. The LSTM 
model performed much better for short-term predictions, however, it 
failed to capture the complex dynamics of the data for long-term pre-
dictions and performed poor compared to Bi-LSTM model, the results 
are shown in Fig. 12 and Fig. 13. Furthermore, according to the results 
from Table 5, some conclusions can be drawn as follows:

• Short-term prediction window of 10 minutes, the cascaded Bi-LSTM 

showed an increase in the MAE by approximately 1.61% during 

tional features for cascaded Bi-LSTM.
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Table 5

Performance evaluation of cascaded LSTM and cascaded Bi-LSTM models.

Windows size (in minutes) Training Data Testing Data

MAE MSE RMSE MAE MSE RMSE

Cascaded LSTM

10 0.0248 0.0319 0.1788 0.0228 0.0312 0.1766
30 0.0246 0.0314 0.1772 0.0226 0.0310 0.1762
60 0.0393 0.0512 0.2264 0.0436 0.0600 0.2451
90 0.0257 0.0325 0.1802 0.0272 0.0347 0.1863
180 0.0248 0.0315 0.1777 0.0245 0.0324 0.1802
320 0.0271 0.0334 0.1829 0.0267 0.0344 0.1855
600 0.0248 0.0317 0.1780 0.0245 0.0325 0.1803
1200 0.0258 0.0316 0.1791 0.0247 0.0323 0.1833
1440 0.0256 0.0323 0.1799 0.0258 0.0336 0.1834

Cascaded Bi-LSTM

10 0.0252 0.0325 0.1803 0.0229 0.0325 0.1803
30 0.0262 0.0333 0.1825 0.0230 0.0318 0.1783
60 0.0252 0.0320 0.1790 0.0229 0.0314 0.1774
90 0.0248 0.0317 0.1783 0.0242 0.0323 0.1798
180 0.0249 0.0324 0.1800 0.0255 0.0330 0.1817
320 0.0248 0.0322 0.1795 0.0244 0.0324 0.1801
600 0.0246 0.0316 0.1778 0.0239 0.0323 0.1798
1200 0.0247 0.0319 0.1787 0.0228 0.0312 0.1767
1440 0.0224 0.0315 0.1775 0.0243 0.0329 0.1813

Fig. 12. Occupancy prediction results of cascaded LSTM model for different horizons.
training and 0.44% during testing phases when compared to the 
cascaded LSTM. Similarly, for 30 minutes prediction window, MAE 
increased by 6.50% in training and 1.77% in testing of cascaded 
Bi-LSTM model relative to the cascaded LSTM model.

• However, when evaluating medium-term prediction windows of 60 
to 180 minutes, it can be noticed that the for 60 minute window 
cascaded Bi-LSTM model outperformed the cascaded LSTM model 
by having a reduction in MAE, with a 35.88% decrease during 
training and 47.48% during testing. Whereas, the 90-minute pre-
diction window shows Bi-LSTM with a 3.50% reduction in training 
MAE but an 11.03% rise during testing. For the 180-minute win-
dow, the Bi-LSTM model performance MAE is slightly higher by 
0.40% during training and 4.08% during testing.

• In long-term predictions of 320, 600, 1200, and 1440 minutes, 
the cascaded Bi-LSTM showed improved MAE by 8.49%, 0.81%, 
4.26%, and 12.5% during training, and 8.61%, 2.45%, 7.69%, and 
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5.81% during testing, respectively. This indicating that the cas-
caded Bi-LSTM models are more suitable for long-term predictions 
due their consistent performance and robustness.

However, considering the zero-inflation in the dataset (almost 89% 
of unoccupied periods), and the minimal difference in performance be-
tween the two models, it indicates that the evaluation metric values 
could be biased. Thus, evaluating only the occupied hours would pro-
vide a better perspective for comparing and analyzing the performance 
of these models.

From Fig. 14 and Fig. 15, it can be observed that the cascaded 
LSTM model shows a larger spread of errors, as indicated by the wider 
inter-quartile ranges. This suggests that while the median prediction 
error remains close to zero, indicating an unbiased model on aver-
age, there is still considerable variability in the predictions. On the 
other hand, the performance of the cascaded Bi-LSTM model shows a 
tighter distribution with a smaller inter-quartile range across all predic-

tion horizons, signifying consistently better and more reliable predictive 
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Fig. 13. Occupancy prediction results of cascaded Bi-LSTM model for different horizons.

Fig. 14. Non-zero prediction errors for cascaded LSTM.
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Fig. 15. Non-zero prediction errors for cascaded Bi-LSTM model.
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Fig. 16. Cascaded LSTM model error across different prediction horizons and occupancy count.
accuracy with less variability between the quartile. The presence of 
multiple outliers, particularly in the testing results, further indicates 
that the cascaded LSTM model often produces significantly inaccurate 
predictions. However, the results of the cascaded Bi-LSTM model, al-
though presenting outliers, demonstrate that these are less frequent and 
more symmetrically distributed around the median. It suggests that the 
Bi-LSTM model’s bidirectional processing provides an improved ability 
to handle the dataset complex temporal dynamics. In terms of robust-
ness, especially regarding long-term predictions, the cascaded Bi-LSTM 
model appears to maintain its performance more effectively than the 
cascaded LSTM model.

3.2. Occupancy-wise performance evaluation

Generally, RMSE, MAE, MSE, 𝑅2 error, median error, averaged er-
ror, among others, are used as performance analysis measures for eval-
uating ML and DL models, specifically for occupancy prediction, as 
shown in the table summarizing research on occupant number fore-
casting in [65]. In this study, apart from the conventional approach of 
evaluating the model performance across the whole dataset, the evalua-
tion is also conducted occupancy number-wise. This is to understand 
the impact of occupancy variations on the model performance. The 
occupancy-wise results for cascaded LSTM and cascaded Bi-LSTM are 
presented in Fig. 16 and Fig. 17. In both figures, the x-axis represents 
the occupancy number, and the y-axis represents the prediction horizon 
(window sizes). Based on these results, the following conclusions can be 
drawn:

• RMSE and MAE are below 1 is till 3 occupants, except for 60 
minutes prediction horizon. Meanwhile, it is less than 5 for MSE 
till 4 number of occupancy number for training dataset. The cas-
caded Bi-LSTM model shows a consistent reduction in prediction 
errors across both training and testing datasets, outperforming the 
cascaded LSTM model, particularly in testing scenarios where the 
cascaded LSTM struggles with larger occupancy numbers and pre-
13

diction horizons.
• The performance differences become more noticeable in evalua-
tions with higher occupant, and for prediction windows exceeding 
30 minutes in the testing dataset. While the cascaded LSTM model 
shows good performance only for lower occupant numbers, the cas-
caded Bi-LSTM model retains better accuracy for higher occupancy 
and across all prediction horizons, thus presenting a more robust 
and reliable solution for both short- and long-term occupancy pre-
diction.

Furthermore, Table 4 shows the optimized hyperparameters for the 
cascaded LSTM and cascaded Bi-LSTM models. The table indicates that 
these models have more layers for smaller window sizes, with the num-
ber of layers decreasing as the window sizes increase. This is because 
predicting short-term variations in features is more challenging, requir-
ing more layers to map complex relationships for short-term windows. 
The repetitive and periodic nature of the features explains the reduction 
in the number of layers for higher window size models, which is par-
ticularly evident in the cascaded LSTM model hyperparameters results. 
Similarly, the cascaded Bi-LSTM model uses more layers and units per 
layer compared to the cascaded LSTM model. According to our hypoth-
esis, the greater number of layers in the cascaded Bi-LSTM is associated 
with its higher performance, attributed to its bidirectional learning ca-
pability that maps detailed relationships between features. In contrast, 
the cascaded LSTM model with a higher number of layers may have 
experienced overfitting during optimization, resulting in a reduction in 
the number of layers selected. This also suggests the superior overall 
performance of the cascaded Bi-LSTM model compared to the cascaded 
LSTM model.

3.3. Results of post-modeling feature importance

In this stage of the analysis, the MR approach is used to examine 
the highest and lowest degree to which the proposed cascaded Bi-LSTM 
model performs in terms of accuracy depending on the input features. 
MR measures the performance variation of the cascaded Bi-LSTM model 

concerning interventions in the underlying data. Therefore, MR explains 
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Fig. 17. Cascaded Bi-LSTM error across different prediction horizons and occupancy count.
the prediction behavior of the proposed model and helps identify im-
portant features and their influence on model creation.

The MR model is experimented and implemented on two different 
scenarios:

1. Analyzing the MR score for all the input features for the whole 
dataset.

2. Analyzing the performance of the proposed models using MR score 
during the occupancy presence state.

Initially, when analyzing the whole dataset for MR score as shown in 
Fig. 18, almost all feature values were nearly 1, except for the Window 
status feature. Among these features, electric power and indoor CO2 had 
the most significant influence on model performance. Indoor tempera-

ture, ΔTemperature (first-order difference), and Season also considerably 
impacted model performance. Nevertheless, the results indicate a rela-
tively similar influence of all features on the whole dataset, suggesting 
that the zero-inflated part is rarely affected by feature variations. The 
results also show that the proposed temporal and first-order difference 
(Δ) features are important for improving the model’s performance ac-
curacy when applied to the entire dataset. The Window status feature 
has the lowest MR score, indicating that windows were rarely used and 
had no influence on occupancy number prediction, though it might be 
more relevant for occupancy detection.

Given the homogeneity in feature influence on model performance, 
a second MR analysis was applied only to the non-zero part of the 
dataset (only when occupants were present). This analysis provided a 
detailed description of model performance reliability when occupants 
were available (Fig. 18). Features such as Is working day, Is working hour, 
electric power, and Indoor VOC have MR scores greater than 1, indicat-
ing their strong positive influence on model performance. Features like 
indoor CO2, Δoccupancy, and ΔCO2 also influenced model performance 
but were less significant compared to those with MR scores higher than 
1. These features exhibited strong correlations during the pre-modeling 
feature analysis for the whole dataset. Due to the strong periodicity 
in the occupancy number feature, the temporal features have a signif-
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icant positive influence. In contrast, Indoor VOC and indoor CO2 have 
relatively less influence because when the ventilation system is on or 
windows/doors are open, the concentration of these compounds signifi-
cantly reduces. The MR results strongly correlate with the pre-modeling 
results of the proposed integrated calendar features and first-order dif-
ference features. Finally, these results demonstrate that the traditional 
approach to model performance metrics and analysis is misleading 
for zero-inflated datasets such as occupancy prediction, thus requiring 
multi-perspective analysis for better model selection and development. 
Furthermore, the proposed cascaded Bi-LSTM model with integrated 
features has shown superior and consistent performance in predict-
ing the occupancy number across multiple horizons. Its bidirectional 
learning capability, combined with hyperparameters optimization, suc-
cessfully managed to map the multitude relationships between features, 
resulting in improved accuracy.

4. Conclusion

This study introduced cascaded LSTM and cascaded Bi-LSTM mod-
els for multi-horizon occupancy prediction in an academic building. 
The collected data were further analyzed, leading to the addition of 
new input features. The hyperparameters of the developed models were 
optimally selected using OPTUNA optimization. Additionally, the tra-
ditional architecture of the LSTM and Bi-LSTM models was modified 
by introducing a new activation function applicable to the occupancy 
prediction problem. The results of the proposed models were com-
pared using traditional performance metrics and various other perspec-
tives. According to these traditional metrics, the models showed good 
performance for both short- and long-term predictions, with only mi-
nor differences between them. However, since occupancy datasets are 
typically zero-inflated due to unoccupied periods dominating, model 
performances were also analyzed based on non-zero data errors and 
occupancy-wise errors.

For short-term predictions, the performance difference between the 
cascaded LSTM and cascaded Bi-LSTM models is minimal. These short-
term models, optimized with a higher number of layers by OPTUNA, ef-
fectively captured the multitude of relationships between input features 

and occupancy. The cascaded Bi-LSTM model, in particular, demon-
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Fig. 18. Results summary of model reliance on input features.
strated consistent performance across different prediction horizons and 
occupancy variations, showcasing its ability to learn the complex dy-

namics of the dataset through a bidirectional process. In the final stage, 
the MR technique is applied to have a better inference for model per-

formance, the contribution of each feature for the whole dataset and 
specifically when occupants are present. For the whole dataset all fea-

tures have relatively similar influence on the performance, however, 
only for non-zero part the results show that features such as Is work-

ing day, Is working hour, electric power, and Indoor VOC have MR scores 
greater than one, indicating their higher influence on the model for 
when occupancy is present. These features, in turn, contribute to the 
higher model performance. Thus indicating that the proposed inte-

grated features have higher influence than the ones that are collected 
from the building.

It is also important to note the computational cost associated with 
these models; however, since the training is performed offline (aver-

aging 3-4 hours per model with optimization), the real-time compu-

tational cost is minimal (in seconds). The cascaded Bi-LSTM model 
demonstrated consistent performance across various prediction hori-

zons (short- and long-term) and occupancy variations, with accuracy 
approximately 10–15% higher than the cascaded LSTM model. This in-

dicates its greater capability to capture the complex dynamics of the 
dataset through a bidirectional process. Considering the performance 
consistency, robustness, and reliability of the cascaded Bi-LSTM model, 
it is more suitable for real-time occupancy prediction. Future studies 
will evaluate the model on more diversified datasets with higher occu-

pancy levels and integrate it into real-time energy management systems 
15

to assess its impact on energy-saving potential.
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