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Abstract

Background: Molecular characterization has significantly improved the manage-

ment of advanced endometrial cancer (EC). It distinguishes four molecular sub-

classes associated with prognosis and personalized therapeutic strategies. This

study assesses the clinical utility of cell‐free DNA (cfDNA) profiling in EC to identify

targetable alterations.

Methods: Women with metastatic or recurrent EC were prospectively recruited

within the framework of the STING trial (NCT04932525), during which cfDNA was

analyzed. Genomic alterations were identified with the FoundationOne CDx assay.

Each molecular report underwent review by a molecular tumor board. Alterations

were categorized via the European Society of Medical Oncology Scale for Clinical

Actionability of Molecular Targets (ESCAT).

Results: A total of 61 patients were enrolled. The median age was 66.9 years, with

43% presenting frontline metastatic disease. All histologic subgroups were repre-

sented. Notably, 89% of patients yielded informative cfDNA analysis. Six tumors

were classified with deficient mismatch repair/microsatellite instability (11%) and 37

as TP53 gene mutant (67%), and 12 had nonspecific molecular profiles (22%). Mo-

lecular classification based on liquid biopsy showed 87.5% accuracy in correlating

with tissue results. Moreover, 65% of cases exhibited ≥1 actionable alteration,

including 25% ESCAT I alterations and 13% ESCAT II alterations. Consequently, 16%

of patients received a molecularly matched therapy, and presented with a 56%

response rate and median progression‐free survival of 7.7 months.
Conclusions: cfDNA sequencing in EC is a feasible approach that produces infor-

mative results in 89% of cases and accurately categorizes patients into the main
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molecular subclasses. It also reveals multiple actionable alterations, which offers the

potential for personalized therapeutic strategies.

K E YWORD S

cell‐free DNA (cfDNA), clonal hematopoiesis, endometrial cancer, molecular profile,
personalized treatment

INTRODUCTION

In recent decades, the incidence and mortality of endometrial cancer

(EC) have been on the rise, primarily as a result of a concerning in-

crease in risk factors such as obesity, metabolic syndrome, and dia-

betes.1 Although the majority of EC cases are diagnosed at a localized

stage, often curable with a combination of surgery, radiation therapy,

and cytotoxic platinum‐based chemotherapy, approximately 20% of

newly diagnosed cases present as advanced/metastatic disease car-

rying a grim prognosis.2,3

The molecular classification of EC by The Cancer Genome Atlas

program revealed four distinct molecular subgroups of EC based on

copy‐number alterations (CNAs) and tumor mutational burden

(TMB).4 These subgroups are as follows: (1) POLE‐mutated (POLEmut)
EC, (2) EC with microsatellite instability and a deficient mismatch

repair pathway (dMMR/MSI), (3) a subgroup of EC with low CNAs

and TMB and a stable microsatellite status (CN‐low), and (4) a CN‐
high subgroup with a high number of CNAs and a low mutational

rate. It is strongly linked to nonendometrioid histology, particularly

serous, and TP53 mutations. Importantly, this classification holds

significant prognostic relevance, with POLEmut EC demonstrating

excellent outcomes, dMMR/MSI and CN‐low EC displaying stage‐
dependent intermediate outcomes, and CN‐high EC having the

poorest clinical outcomes. Consequently, molecular classification has

been incorporated into the diagnostic algorithm for guiding decisions

regarding adjuvant chemoradiation, and several active clinical trials

are now offering personalized strategies based on these molecular

subgroups to improve cure rates and reduce toxicity.6–8

Recently, the management of advanced/metastatic EC has been

greatly improved because of this molecular characterization. In cases

of dMMR/MSI advanced EC, which accounts for approximately 30% of

cases, immune‐checkpoint inhibitors (programmed death 1 [PD‐1]/
programmed death ligand 1 [PD‐L1] inhibitors) have shown remark-

able response rates and significantly prolonged survival outcomes.9,10

As a result, PD‐1/PD‐L1 inhibitors have become part of international
recommendations for the treatment of advanced/metastatic dMMR/

MSI EC.11,12 Similarly, POLEmut EC is suspected to be highly respon-

sive to immunotherapy, although there is a lack of prospective data

because of its rarity in the metastatic setting.13 Finally, there are

several other promising targets for personalized therapeutic strategy

in advanced EC, including ERBB2 amplifications, frequently detected in

TP53 mutant (TP53mut) EC,14 FGFR2 mutations,15 CCNE1 amplifica-

tions,16 and homologous recombination (HR) repair alterations.17

In the context of metastatic solid tumors, circulating cell‐free
DNA (cfDNA) profiling has proven to be acceptable and clinically

valuable for detecting molecular alterations and guiding treatment

decisions.18,19 However, despite the increasing importance of EC

molecular profiling, clinicians often face challenges in obtaining suf-

ficient tissue for large panel sequencing. Remarkably, there are only

very limited data regarding the clinical utility of comprehensive liquid

molecular profiling in advanced EC.20,21 We aim to report, for the

first time, the clinical value of prospective analysis of cfDNA in a

cohort of patients with advanced EC. In particular, our objectives

were to describe the feasibility of cfDNA sequencing analysis per-

formed in patients with advanced EC, and explore its clinical utility in

terms of molecular classification, detection of actionable alterations,

and benefit of matched therapies.

MATERIALS AND METHODS

Patients

Patients were prospectively enrolled in the STING trial

(NCT04932525) at Institut Gustave Roussy (IGR) in France, which

allowed the collection of blood samples from patients with advanced

solid tumors for cfDNA profiling.

Here, we focus on a cohort of womenwith recurrent, advanced, or

metastatic EC. Patients were eligible for inclusion in the study at any

point of their disease history, whether it was before, during, or after

systemic treatment, regardless of the prior number of lines. Blood

samples for cfDNA analysis were collected on the day of enrollment.

This study was approved by the Ethical Review Board of IGR and

conducted in accordance with the Declaration of Helsinki. Written

informed consent for translational research substudies was obtained

from all participants before enrollment.

Molecular profiling

cfDNA was isolated from plasma derived from anticoagulated pe-

ripheral whole blood. Extracted cfDNA underwent hybrid capture‐
based targeted DNA sequencing with the FoundationOne CDx

assay, which covers 324 genes with high‐uniform depth (targeting

>500� median coverage with >99% of exons at a coverage of

>100�) and provides TMB and MSI status. TMB was calculated by

counting somatic variants (single‐nucleotide and indels, including

synonymous variants, excluding germline and driver mutations) with

a variant allele frequency (VAF) of ≥0.5%. MSI score was assessed

with >1800 repetitive loci.

Only alterations classified as pathogenic or likely pathogenic

were considered in the analysis. Each individual molecular report
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underwent comprehensive review and discussion by a molecular tu-

mor board (MTB) consisting of organ specialists, phase 1 specialists,

biologists, and geneticists. Pathogenic or likely pathogenic alterations

of clonal hematopoiesis (CH) genes evaluated by the panel, including

DNMT3A, TET2, ASLX1, SF3B1, JAK2, MPL, IDH1, IDH2, U2AF1, and

MYD88, were also registered. High‐risk CH was defined as mutations

in JAK2, MPL, or MYD88 regardless of their variant allele fraction, or

as mutations in DNMT3A or TET2 or ASXL1 or IDH1 or IDH2 or SF3B1

or U2AF1 genes with a VAF of ≥10%.22–24 TP53 and ATM mutations,

which frequently occur as EC‐related mutations, were not considered
related to CH in this analysis.

cfDNA analysis was considered informative if the panel detected

at least one alteration (single‐nucleotide variant or CNA) not asso-

ciated with CH. Alterations that were potentially actionable were

categorized via the European Society of Medical Oncology Scale for

Clinical Actionability of Molecular Targets (ESCAT) tier.25 Patients

for whom a targetable alteration was detected had the option to

participate in clinical trials running at IGR.19

Patients could benefit from tumor molecular classification based

on tissue analysis as part of their disease management. Molecular

classification by tissue was performed with MMR immunohistochem-

istry (IHC) and p53 IHC or TP53 sequencing, following international

recommendations.6 For molecular class assignment the diagnostic

Vermij algorithm was used.26 This algorithm also provided support for

cases that had more than one classifying feature, sometimes referred

to as “double classifiers.” With cfDNA, molecular classification was

determined by MSI testing, and TP53 status was determined by tar-

geted sequencing. Similarly, class assignment was made via the Vermij

algorithm. No matched normal DNA was analyzed.

Statistical considerations

Categorical variables are reported as frequencies (percentages) and

continuous variables as medians (interquartile ranges). The objective

response rate (ORR) was determined as the percentage of patients

achieving either a partial or complete response according to Response

Evaluation Criteria in Solid Tumors, version 1.1. Overall survival (OS)

was calculated fromthedate of inclusion to thedateof last follow‐upor
death. Progression‐free survival (PFS) was calculated from the date of

treatment start to thedate of progressionor last follow‐up if treatment
was ongoing. Survival outcomes were generated via the Kaplan–Meier

method. The threshold for statistical significance was set at p< .05. All

statistical analyseswere performedwith R software, version 4.1.3, and

the BlueSky R package, version 10.2.1.

RESULTS

Patients

Between January 2021 and September 2023, 61 patients with

advanced EC were prospectively recruited into the STING trial

(Figure 1). Among the overall cohort, 26 patients (43%) had frontline

metastatic disease, whereas 35 patients (57%) had recurrent disease.

The median age was 66.9 years, the distribution of histologic types

included33% serous EC (20 of 61), 29% low‐grade and 12%high‐grade
endometrioid EC, and 18% carcinosarcomas. Forty‐six percent of the
patients were aged older than 70 years at the time of inclusion,

including 12% who were aged older than 80 years. Patient character-

istics are summarized in Table 1. The median time between the diag-

nosis of advanced disease and trial inclusion was 7.7 months, with a

range of 2.8–19.7 months (quarters 1–3). With a median follow‐up of
11.7 months, OS for the entire cohort was 14.0 months (95% CI, 10.5

months to not achieved [NA]). The 1‐ and 2‐year OS rates were 56.2%
(95% CI, 43.1%–73.4%) and 30.3% (95% CI, 16.5%–55.5%).

Patients were sampled before initiation of any systemic treatment

in 34% of cases, during an effective systemic therapy in 20% of cases,

and at disease progression in 46% of cases (Table 1). A total of 326

alterations were detected, including 47 amplifications, four deletions,

F I GUR E 1 Consolidated Standards of Reporting Trials diagram of patients with advanced EC included in the study. CH indicates clonal

hematopoiesis; dMMR/MSI, deficient mismatch repair/microsatellite instability; EC, endometrial cancer; NSMP, nonspecific molecular profile;
TP53mut, TP53 gene mutation.
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three fusions, and 272 mutations. The most frequently altered genes

were TP53 (N = 42; 68.9%), DNMT3A (N = 23; 37.7%), PIK3CA (N = 20;

32.8%), PTEN (N = 15; 24.6%), ERBB2 (N = 9; 14.8%), CTNNB1 (N = 9;

14.8%), and PPP2R1A (N = 8; 13.1%). The main molecular alterations

encountered in this cohort are summarized in Figure 2.

Of the 61 patients, 55 (90.2%) achieved an informative cfDNA

analysis. Among the six patients (9.8%) with noninformative cfDNA

analysis, with no tumor‐related driver detectable in their liquid bi-

opsy, four patients were sampled during an effective systemic ther-

apy and one patient had locoregional recurrence without any

evidence of distant metastasis.

Molecular classification

According to cfDNA results, 11%of patients (6 of 55)were classified as

dMMR/MSI, 67%of patients (37of 55)were classified asTP53mut, and

22% of patients (12 of 55) were classified as nonspecific molecular

profile (NSMP). No POLE mutations were detected. TP53mut EC was

the predominant classification among serous tumors, which accounted

for 19 of the 20 serous tumors (94%) and the majority of high‐grade
tumors (81%). In contrast, the dMMR/MSI and NSMP subgroups

included various histologic subtypes and grades.

We then sought to compare themolecular classifications based on

liquid biopsy and tissue analysis according to ProactiveMolecular Risk

Classifier for Endometrial Cancer (ProMisE) classification.27 Tissue‐
based molecular classification was available for 54 patients and

showed strong concordance with the liquid biopsy results. There were

onlyminordiscrepancies: tumors for four patientswith anNSMPbased

on tissue sequencing were classified as TP53mut on liquid biopsy and

vice versa, two patients with TP53mut tumors based on tissue

sequencing were classified as NSMP by liquid biopsy (ID 680 and

1557). Details outlining these discrepant cases are provided in

Table S1.

Notably, seven patients forwhom tissue analysis was not available

because of a small biopsy or poor DNA quality had contributive cfDNA

sequencing, which allowed molecular classification. Overall, molecular

classification based on liquid biopsy had an accuracy rate of 87.5% (42

of 48) for predicting tissue‐based results. Molecular classification

based on cfDNA and tissue analysis is summarized in Figure 2.

Actionable targets

Of the 55 patients with contributive cfDNA analysis, 35 patients

(63.6%) exhibited at least one actionable alteration. We detected

25% of patients (14 of 55) with an ESCAT I alteration, 13% of pa-

tients (7 of 55) with an ESCAT II alteration, and 25% of patients (14

of 55) with an ESCAT IIIA alteration. The list of targetable alterations

classified according to the ESCAT system is summarized in Table 2.

ESCAT I alterations

dMMR/MSI was detected in cfDNA from six patients (11%), and was

always associated with high TMB as defined by >15 mutations per

megabase. The dMMR phenotype was associated with multiple path-

ogenic mutations in TP53, PTEN, and PIK3CA genes, among others.

ERBB2 amplification was found in the liquid biopsy of seven pa-

tients (13%), all with TP53mut EC. Half of the ERBB2‐amplified ECs

were serous (four of seven; 57.1%), two patients had carcinosar-

comas, and one patient had a low‐grade endometrioid EC. Last, two

patients had FGFR2 mutations, one of which was associated with

dMMR/MSI status.

ESCAT II alterations

ERBB2 mutations were detected in the cfDNA of two patients (3.6%),

both of whom had TP53mut tumors. Additionally, four patients

TAB L E 1 Patient characteristics included in the study.

Overall (N = 61)

Age at diagnosis, years

Median (Q1–Q3) 66.9 (60.6–73.3)

FIGO stage (2023) at diagnosis, No. (%)

I 20 (33.3)

II 3 (5.0)

III 14 (23.3)

IV 23 (38.3)

Frontline advanced versus recurrent disease, No. (%)

Frontline Metastatic/Advanced 26 (42.6)

Recurrent 35 (57.4)

Histology, No. (%)

Serous 20 (32.8)

Low‐grade endometrioid 18 (29.5)

Carcinosarcoma 11 (18.0)

High‐grade endometrioid 7 (11.5)

Undifferentiated 2 (3.3)

Mixed 2 (3.3)

Clear cell 1 (1.6)

Histopathologic grade, No. (%)

High 43 (70.5)

Low 18 (29.5)

Time point of liquid biopsy, No. (%)

Before systemic treatment initiation 21 (34.4)

During systemic therapy (PR/SD) 12 (19.7)

Progressive disease 28 (45.9)

Abbreviations: FIGO, International Federation of Gynecology and

Obstetrics; PR, partial response; Q, quarter; SD, stable disease.

4 - cfDNA IN ADVANCED ENDOMETRIAL CANCER
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presented with CCNE1 amplification on the basis of cfDNA analysis

(7.3%). These amplifications were exclusively observed in TP53mut

EC, including three carcinosarcomas and one serous tumor. Finally,

two patients presented with a tumor with an AKT1E17K mutation, one

patient with a low‐grade endometrioid NSMP tumor and the other

with an undifferentiated NSMP carcinoma.

ESCAT III alterations

Twenty patients presented with PIK3CA alterations, including two

amplifications and 18 mutations. Recurrent pathogenic variants were

detected, including PIK3CAH1047R in four cases and PIK3CAE454K,

PIK3CAE81K, and PIK3CAG118D in two cases each. The HR repair

pathway was frequently mutated in the cohort, with 11 mutations

detected across nine different patients (nine of 54; 16%). These

included one RAD51D, two PALB2, and six ATM mutations. The low

allelic frequency observed in HR gene mutations excluded a germline

origin for all these patients. One patient with a dMMR/MSI tumor

had concurrent BRCA1 and BRCA2 mutations.

Interestingly, four patients in our cohort showed ESR1mutations,

including two ESR1Y537S mutations. All of these patients had received

andprogressed under endocrine therapy before cfDNAanalysis. Three

received an aromatase inhibitor andone received progestogen therapy

and remained under treatment for 9, 11, 12, and 15 months,

respectively.

Among the other ESCAT III alterations, various others were

identified, including one ST7–MET fusion, one MET amplification, one

FGFR1 amplification, and one RET mutation (RETE511K).

Of the patients with contributive results, nine patients (16.4%)

received genomically matched therapy on the basis of an MTB

recommendation. Four patients received a PD‐1/PD‐L1 inhibitor,

either as monotherapy or in combination with lenvatinib, another

checkpoint inhibitor, or a PARP inhibitor. Two patients received anti‐
ERBB2 therapy, and three received a targeted therapy including

FGFR, MET, and PARP inhibitors. These targeted therapies were

chosen on the basis of specific alterations identified in the cfDNA

analysis. Six patients received the therapy as part of a clinical trial,

whereas two received it as standard therapy and one received the

matched‐treatment off‐label. In our study, the ORR with matched

F I GUR E 2 Molecular alterations detected on cfDNA analysis and correlation with clinical characteristics and molecular classification
based on tissue analysis. cfDNA indicates cell‐free DNA; CH, clonal hematopoiesis; dMMR/MSI, deficient mismatch repair/microsatellite
instability; ESCAT, ESMO Scale of Clinical Actionability for Molecular Targets; NC, noncontributive; NSMP, nonspecific molecular profile;

TMB, tumor mutational burden; TP53mut, TP53 gene mutation; WT, wild type.
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therapy was 55.6% and median PFS was 7.7 months (95% CI, 3.7

months to NA). Details are provided in Table S2.

CH

Of the overall cohort, 26 patients (42.6%) had at least one alteration

in a CH gene identified by cfDNA sequencing. These CH gene mu-

tations had a median VAF of 1.1% with an interquartile range of

0.47%–3.92%, and 11 patients (18.0%) had a CH mutation with a VAF

greater than or equal to 2%. In total, eight patients carried at least

one high‐risk CH mutation (13.1%). The median OS for patients with

high‐risk CH was 7.8 months (95% CI, 7.8 months to NA). In contrast,

patients without high‐risk CH had a median OS of 14.4 months (95%

CI, 10.5 months to NA). However, the difference was not statistically

significant, with a p value of .284.

DISCUSSION

This study presents a large cohort of patients with advanced EC who

underwent prospective cfDNA sequencing analysis. As with other

tumor types, we have demonstrated the feasibility of liquid biopsy in

advanced EC, with contributive results obtained in more than 88% of

cases.19 In this study, cfDNA results from 61 patients accurately

categorized patients into the main EC molecular subgroups, including

the dMMR/MSI subgroup. Importantly, they provided molecular

classification for patients with noncontributive tissue analysis. Spe-

cifically, liquid biopsy showed high accuracy compared to tissue

classification based on IHC or sequencing assays.54 Moreover, cfDNA

provides a tool to characterize metastatic disease without the need

for a new tumor biopsy

Our findings align with the known molecular characteristics of

EC published in the literature. First, TP53 mutations are frequent in

TAB L E 2 List of genomic alterations potentially actionable on the basis of their level of evidence detected by cfDNA next‐generation
sequencing.

ESCAT alteration Molecular alteration on cfDNA ESCAT tier Incidence, No. (%) Reference

I dMMR/MSI IA 6 (11.3) 9,10,28,29

ERBB2 amplification IA 7 (13.2) 30,31

FGFR2 mutation IC 2 (3.8) 32

II ERBB2 mutation IIB 2 (3.8) 33

AKT1 mutation IIB 2 (3.8) 34

CCNE1 amplification IIB 4 (7.5) 35

III PIK3CA mutation IIIA 18 (34.0) 36

BRCA1 mutation IIIA 1 (1.9) 37

BRCA2 mutation IIIA 1 (1.9) 37

RAD51D mutation IIIA 1 (1.9) 38

PALB2 mutation IIIA 2 (3.8) 39

ATM mutation IIIA 6 (11.3) 40

RET mutation IIIA 1 (1.9) 41

ESR1 mutation IIIA 4 (7.5) 42

MET amplification IIIA 1 (1.9) 43

IV KRAS G12A, G12D, G12R, and G12V IV 5 (9.4) 44,45

BRAF non‐V600 mutation IV 1 (1.9) 46

ARID1A mutation IV 8 (15.1) 47

SMARCA4 mutation IV 2 (3.8) 48

CDH1 mutation IV 2 (3.8) 49

PIK3R1 mutation IV 7 (13.2) 50

MAP3K1 mutation IV 1 (1.9) 51

ST7–MET fusion IV 1 (1.9) 52

FGFR1 amplification IV 2 (3.8) 53

Note: Alterations were categorized via ESCAT tier.25

Abbreviations: cfDNA, cell‐free DNA; dMMR/MSI, deficient mismatch repair/microsatellite instability; ESCAT, ESMO Scale for Clinical Actionability of

Molecular Targets.
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metastatic/relapsed EC, being the most common alteration in our

cohort, detected in almost 70% of the patients. The TP53mut sub-

group comprises most nonendometrioid subtypes (type 2 tumors)

and is associated with a poorer prognosis.4,5,55,56 We further

confirmed that TP53mut EC displays specific clinically valuable mo-

lecular alterations, such as ERBB2 alterations, CCNE1 amplifications,

and RAD51D and PALB2 mutations.16,17,26 Second, the PI3K/AKT/

mTOR pathway is frequently altered in our cohort, primarily because

of PIK3CA or PTEN mutations, detected in 33% and 25% of cases,

respectively. Notably, these alterations cut across all histologies and

molecular subgroups. This high incidence highlights the potential of

novel agents targeting this pathway, such as AKT inhibitors, which

are currently under investigation.57 Last, dMMR/MSI EC represents a

minority of advanced EC cases, accounting for 15%–30%.4,58 Here,

we confirm that cfDNA is a valuable tool for detecting MSI, even

when tissue analysis yields noncontributive results.

The extensive molecular profiling in our cohort revealed

numerous potentially targetable alterations. Remarkably, 64% of

patients with EC exhibited at least one actionable alteration, which

emphasizes the importance of systematic large‐panel sequencing,
whether it is conducted on tumor tissue or cfDNA.58 Twenty‐five
percent of metastatic EC tumors harbored an ESCAT I alteration,

and 13% harbored an ESCAT II alteration. In this context, appro-

priately targeted therapies have the potential to provide clinical

benefits and should be considered as a promising therapeutic op-

tion.25 Furthermore, approximately 25% of the cohort displayed

ESCAT III alterations. Discussions regarding participation in clinical

trials should be considered for these patients. Interestingly, 16% of

patients had HR gene mutations in cfDNA, which mainly involved

ATM. One patient with known dMMR harbored concomitant BRCA1

and BRCA2 mutations; however, because these are simply a conse-

quence of hypermutability, it is unclear whether they would induce

HR deficiency or PARP inhibitor sensitivity. In our study, treatment

with a matched therapy resulted in an impressive 56% ORR and 7.7‐
month PFS. Unfortunately, only nine patients received matched

therapies. One explanation may be that patients with EC are often

relatively fragile. Therefore, subsequent lines of treatment, espe-

cially inclusion in clinical trials, can be challenging. These observa-

tions underscore the importance of early molecular profiling when

patients are still relatively fit, and advocate for dedicated trials

tailored to the unique context of patients with EC. Finally, hormonal

therapies remain a cornerstone of management for advanced EC,

and the detection of ESR1 mutations in four patients previously

treated with hormonal agents suggests that these mutations could

account for resistance. This could provide crucial information to

guide subsequent therapy with estrogen receptor degraders, for

example.

Interestingly, cfDNA not only provides insights into the tumor’s

molecular background but also detects high‐risk CH.23 In our cohort,
13% of patients presented with at least one high‐risk alteration, likely
due to factors such as aging or exposure to external mutagens. This

suggests a 5% estimated risk of developing a hematologic malig-

nancy.59,60 Furthermore, these patients tend to exhibit lower OS

compared to those without high‐risk CH. In such cases, the MTB

recommends seeking advice from hematologists. The benefits of early

intervention in these cases remain an area of investigation. Approx-

imately 43% of the cohort manifested at least one CH‐associated
alteration. This prevalence aligns with expectations for an elderly

population pretreated with systemic chemotherapy.54

Our study carries several limitations. First, tissue‐based
sequencing was not performed in all patients, which makes it chal-

lenging to perform a direct comparison of liquid and tissue molecular

profiles. Among those with paired tissue and liquid analysis, six pa-

tients exhibited discrepancies. One explanation is that cfDNA reflects

the current molecular state of the cancer, particularly the subpopu-

lation of circulating tumor cells, which may exhibit a different mo-

lecular profile compared to the historical tumor. Conversely, these

discrepant results could indicate that cfDNA primarily reflects CH

with no traces of tumor cells (ID 1619, 1724, and 680; Table S1).

Specifically, TP53, ATM, and CHEK2 mutations, which frequently

occur either as CH or cancer‐related mutations, may have misled

molecular classification and MTB interpretation.23 cfDNA is consid-

ered a surrogate biomarker for tumor burden, and is closely associ-

ated with outcomes.61,62 Thus, noncontributive results may also

reflect the paucity of cfDNA shedding, particularly in cases of local

relapses or concomitant effective systemic treatment. Indeed, among

the 12 patients sampled during an effective therapy, four had non-

contributive cfDNA sequencing (33%). In this context, although this

study was not designed to compare the different time points of

sampling, cfDNA sequencing should probably be considered at dis-

ease recurrence/progression.

In conclusion, cfDNA sequencing in advanced EC is feasible, and

provides contributive results in 90% of cases and accurate catego-

rization of patients into the main molecular subclasses. In addition,

EC may be particularly suited to this approach because potentially

actionable alterations were identified in 64% of patients, which

suggests a potential benefit from matched therapy. Last, cfDNA un-

veils high‐risk CH, for which dedicated intervention may prove

beneficial for the patient. Overall, cfDNA profiling serves as a valu-

able tool for tailoring the management of patients with metasta-

tic EC.
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