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A R T I C L E  I N F O   
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A B S T R A C T   

Despite the known link between air pollution and cause-specific mortality, its relation to chronic kidney disease 
(CKD)-associated mortality is understudied. Therefore, we investigated the association between long-term 
exposure to air pollution and CKD-related mortality in a large multicentre population-based European cohort. 

Cohort data were linked to local mortality registry data. CKD-death was defined as ICD10 codes N18–N19 or 
corresponding ICD9 codes. Mean annual exposure at participant’s home address was determined with fine spatial 
resolution exposure models for nitrogen dioxide (NO2), black carbon (BC), ozone (O3), particulate matter ≤2.5 
μm (PM2.5) and several elemental constituents of PM2.5. Cox regression models were adjusted for age, sex, cohort, 
calendar year of recruitment, smoking status, marital status, employment status and neighbourhood mean 
income. 

Over a mean follow-up time of 20.4 years, 313 of 289,564 persons died from CKD. Associations were positive 
for PM2.5 (hazard ratio (HR) with 95% confidence interval (CI) of 1.31 (1.03–1.66) per 5 μg/m3, BC (1.26 
(1.03–1.53) per 0.5 × 10− 5/m), NO2 (1.13 (0.93–1.38) per 10 μg/m3) and inverse for O3 (0.71 (0.54–0.93) per 
10 μg/m3). Results were robust to further covariate adjustment. Exclusion of the largest sub-cohort contributing 
226 cases, led to null associations. Among the elemental constituents, Cu, Fe, K, Ni, S and Zn, representing 
different sources including traffic, biomass and oil burning and secondary pollutants, were associated with CKD- 
related mortality. 

In conclusion, our results suggest an association between air pollution from different sources and CKD-related 
mortality.   

Funding 

the research described in this article was conducted under contract to 
the Health Effects Institute (HEI), an organisation jointly funded by the 
United States Environmental Protection Agency (EPA) (Assistance 
Award No. R-82811201) and certain motor vehicle and engine manu-
facturers. The contents of this article do not necessarily reflect the views 
of HEI, or its sponsors, nor do they necessarily reflect the views and 
policies of the EPA or motor vehicle and engine manufacturers. 

Ethical approval 

Medical ethics committees had approved all cohort studies in their 
respective countries (CEANS: Regional Ethical Review Board at Kar-
olinska Institutet; DCH: The science-ethical committee for Copenhagen 
and Frederiksberg municipalities; DNC: The science-ethical committee 
for Copenhagen and Frederiksberg municipalities Danish Data Protec-
tion Agency; EPIC-NL: Medisch Ethische Commissie TNO, Leiden; E3N: 
Comission Nationale de l’Informatique et des Libertés (CNIL); VHM&PP: 
Ethikkommisssion Vorarlberg). Anonymized data were transferred to a 
secure Utrecht University server to build the data set of the pooled 
cohort. 

1. Introduction 

Chronic kidney disease (CKD) mortality has become one of the 
leading causes of death worldwide (GBD, 2013 Mortality and Causes of 
Death Collaborators, 2015). By 2017 CKD had become the 12th leading 
cause of death with 1.2 million deaths globally and is expected to reach 
the 5th rank by 2040 (Bikbov et al., 2020; Kovesdy, 2022). 

The CKD risk factors considered in the Global Burden of Disease 
study were impaired fasting plasma glucose, high blood pressure, high 
body-mass index (BMI), a diet high in sodium, and lead (Bikbov et al., 
2020). Air pollution, which emerges as a relevant risk factor for CKD, 
was not considered. However, this may be an important oversight 
because air pollution may also influence the two most important CKD 
risk factors, glucose tolerance and blood pressure (Brook et al., 2018). 

Evidence on the association between air pollution and kidney disease 
has accumulated over the past years. Previous research showed positive 
associations with particulate matter (PM) of aerodynamic diameter less 
than 10 μm (PM10), less than 2.5 μm (PM2.5) and nitrogen dioxide (NO2) 
(Wu et al., 2020; Ye et al., 2021). Fewer studies, with conflicting results 
are available for black carbon (BC, a measure of soot) (Chen et al., 2023; 
Feng et al., 2021; Xu et al., 2022) and ozone (O3) (Hwang et al., 2021; Li 

et al., 2022b; Yang et al., 2022). 
The epidemiological evidence has been accompanied by conceptual 

and toxicological work that indicates that several interlinked systemic 
pathways progressively damage the nephrons (Shubham et al., 2022). 
Diverse mechanisms known from cardiovascular and metabolic disease, 
especially diabetes, seem to play a role - in particular inflammation and 
oxidative stress. In addition, the above diseases are well-known impor-
tant risk factors for CKD. Besides initiating CKD, air pollution may also 
influence prognosis by accelerating CKD progression towards end stage 
kidney disease (Bowe et al., 2018) and finally CKD-related mortality 
(Chen et al., 2023; Hu et al., 2023; Ran et al., 2020). 

While the effect of air pollution on kidney function and its associa-
tion with CKD incidence have been increasingly studied, studies on CKD- 
associated mortality are rare. Bowe et al. estimated the excess burden of 
CKD-related mortality in the US to be over 7000 deaths, more than ten 
times as much as the burden related to COPD (Bowe et al., 2019). 
Nevertheless, results from different studies from different parts of the 
world are inconsistent (Brauer et al., 2022; Ran et al., 2020; So et al., 
2022). 

PM constitutes a complex mixture of particles of different size and 
chemical composition depending on sources and location and this may 
lead to conflicting results from different study locations. Still, little is 
known on which sources and elemental constituents or compounds are 
most crucial to human health. 

We therefore investigate the relation of CKD-associated mortality 
with long-term exposure to different air pollution components in a large 
European study including population-based cohorts from several coun-
tries. Namely, we investigate the association with PM2.5, NO2, BC, O3 
and eight elemental constituents of PM2.5 that are indicative of different 
PM sources. 

2. Methods 

2.1. Study population 

From the pooled cohort of the Effects of Low levels of Air Pollution – 
a Study in Europe (ELAPSE) we included all subcohorts with at least 10 
cases of CKD-associated mortality, namely the Diet, Cancer and Health 
cohort from Denmark [DCH (Tjønneland et al., 2007),], Danish Nurse 
Cohort [DNC-1993 (Hundrup et al., 2012), ], the prospective sub-cohort 
of Dutch European Investigation into Cancer and Nutrition 
[EPIC_NL-Prospect (Beulens et al., 2010),], Etude Epidémiologique 
auprès de femmes de la Mutuelle Générale de l‘Education Nationale 
[E3N from France, (Clavel-Chapelon F, E3N Study Group for the ES, 
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2015)] and Vorarlberg Health Monitoring and Prevention Programme 
[VHM&PP from Austria (Ulmer et al., 2007),]. 

Recruitment of study participants was mostly done in the 1990s and 
2000s and information on potential confounders was collected at base-
line. Detailed information on the cohorts is provided in (Hvidtfeldt et al., 
2021; Strak et al., 2021). Medical ethics committees in the respective 
countries approved all cohort studies. 

2.2. Exposure assessment 

We determined the concentrations of air pollutants at the baseline 
home address with land use regression (LUR) models: for PM2.5 and 
several elemental constituents thereof, NO2 and BC the annual mean and 
for O3 the mean over the warm period i.e. April to September of the year 
2010. PM2.5 elemental constituents were chosen to represent different 
sources of PM: copper (Cu), iron (Fe) and zinc (Zn) for (non-tailpipe) 
traffic emissions, sulfur (S) for long-range transport, nickel (Ni) and 
vanadium (V) for mixed oil burning/industry, silicon (Si) for crustal 
material, and potassium (K) for biomass burning (Viana et al., 2008). 

LUR models were developed for Western Europe and validated as 
described in detail in (de Hoogh et al., 2018). In short, the models were 
created with supervised linear regression using 2010 European Envi-
ronment Agency (EEA) AirBase routine monitoring data for PM2.5, NO2 
and O3, and monitoring data from the European Study of cohorts on air 
pollution effects (ESCAPE) for BC and PM2.5 elemental constituents 
(Chen et al., 2020; de Hoogh et al., 2018). In addition to land use and 
traffic variables, chemical transport model (CTM) estimates and satellite 
observations were used as potential predictor variables. For PM2.5 
elemental constituents, information on relevant sources (e.g. industries 
emitting specific aerosols such as Cu, Ni or Zn) was also incorporated. 
Exposure values were estimated at participants’ home address at base-
line with a resolution of 100m × 100m. LUR model performance in 
fivefold hold-out validation was good, explaining 66 %, 58 %, 51 %, and 
60 % of the measured spatial variation for PM2.5, NO2, BC, and O3, 
respectively (de Hoogh et al., 2018). 

We also performed back-extrapolation of exposure concentrations 
for PM2.5, NO2, BC, and O3 using historical pollution data from the 
Danish Eulerian Hemispheric Model (DEHM) that covers the whole of 
Europe (Brandt et al., 2012), based either on the ratio or the difference 
in concentrations between years (for a detailed description see (Bru-
nekreef et al., 2021; Stafoggia et al., 2022)). 

2.3. Outcome 

Mortality data was derived from mortality registries using the In-
ternational Classification of Diseases (ICD) codes 9th and 10th revision. 
CKD-related death was defined as underlying cause of death from death 
certificates coded by ICD-10 codes N18 (CKD, 585 in ICD-9) or N19 
(unspecified kidney failure, 586 in ICD-9). Mortality follow-up started 
between 1985 and 2005 and ended between 2011 and 2017 depending 
on the respective cohort (see Table 1). 

2.4. Statistical analyses 

Cox Proportional Hazard models were used to calculate hazard ratios 
(HRs) for the association between air pollution and CKD-related mor-
tality. Individuals were censored at the time of death from other causes, 
emigration, loss to follow-up, or the end of follow-up. 

Adjustment models were chosen a priori with increasing level of 
adjustment: Model 1 included age (as timescale), calendar year of 
enrolment and stratification by cohort and by binary sex. Model 2 was 
further adjusted for individual-level variables on smoking status (never; 
former; current), marital status (single; married or living with partner; 
divorced or separated; widowed) and employment status (yes; no). 
These individual variables related to the baseline year. Model 3, defined 
as the main model, adjusted in addition for area-level socio-economic Ta

bl
e 

1 
D

es
cr

ip
tio

n 
of

 s
tu

dy
 p

op
ul

at
io

n.
  

Co
ho

rt
 

Si
ze

 o
f t

he
 s

tu
dy

 
po

pu
la

tio
n 

a 

(N
) 

In
di

vi
du

al
s 

in
 

M
od

el
 3

 (
N

) 
Re

cr
ui

tm
en

t 
pe

ri
od

 (
Ba

se
lin

e)
 

Ye
ar

s 
of

 
fo

llo
w

-u
p 

(M
ea

n)
b 

CK
D

 
m

or
t 

ca
se

s 
9 

(N
) 

Cr
ud

e 
m

or
ta

lit
y 

ra
te

 p
er

 1
00

,0
00

 
py

ea
rs

 

A
ge

 a
t b

as
el

in
e 

(m
ea

n 
±

SD
) 

Fe
m

al
e 

13
 (

%
) 

Cu
rr

en
t 

sm
ok

er
s 

(%
) 

Em
pl

oy
ed

/S
el

f- 
em

pl
oy

ed
 (

%
) 

M
ar

ri
ed

/1
7 

liv
in

g 
w

ith
 

pa
rt

ne
r 

(%
) 

N
ei

gh
bo

ur
- 

ho
od

 in
co

m
ec 

(M
ea

n 
±

SD
) 

Po
ol

ed
 

co
ho

rt
 

31
5,

93
7 

28
9,

56
4 

- 
20

.4
4 

31
3 

5.
29

 
48

.4
 ±

13
.5

 
68

 
25

 
70

 
72

 
19

.6
 ±

5.
1 

D
CH

 
56

,3
08

 
54

,6
58

 
19

93
–1

99
7 

18
.1

7 
35

 
3.

53
 

56
.7

 ±
4.

4 
52

 
36

 
78

 
72

 
20

.2
 ±

3.
4 

D
N

C-
19

93
 

19
,6

64
 

18
,0

33
 

19
93

 
18

.5
8 

22
 

6.
57

 
56

.5
 ±

8.
7 

10
0 

38
 

69
 

67
 

19
.2

 ±
2.

6 
E3

N
 

53
,5

21
 

51
,2

77
 

19
89

–1
99

1 
16

.6
8 

10
 

1.
17

 
53

.0
 ±

6.
8 

10
0 

13
 

68
 

83
 

11
.2

 ±
3.

1 
EP

IC
_N

L-
 

Pr
os

pe
ct

 
16

,1
94

 
15

,2
05

 
19

93
–1

99
7 

16
.4

3 
20

 
8.

01
 

57
.7

 ±
6.

1 
10

0 
82

3 
51

 
77

 
13

.1
 ±

1.
4 

VH
M

&
PP

 
17

0,
25

0 
15

0,
39

1 
19

85
–2

00
5 

23
.1

8 
22

6 
6.

48
 

42
.0

 ±
14

.9
 

56
 

23
 

70
 

69
 

22
.9

 ±
1.

7 
 

a
N

um
be

r 
of

 in
di

vi
du

al
s 

in
cl

ud
ed

 in
 th

e 
po

ol
ed

 c
oh

or
t o

n 
th

e 
U

tr
ec

ht
 U

ni
ve

rs
ity

 s
er

ve
r 

in
 th

e 
co

ho
rt

s 
of

 in
te

re
st

.. 
b

Fr
om

 th
is

 c
ol

um
n 

on
, o

nl
y 

fo
r 

pe
rs

on
s 

in
 M

od
el

 3
. C

KD
: c

hr
on

ic
 k

id
ne

y 
di

se
as

e.
 

c
In

 E
ur

os
 ×

1,
00

0,
 y

ea
r 

20
01

. p
ye

ar
s 
=

pe
rs

on
 y

ea
rs

. 

P. Kadelbach et al.                                                                                                                                                                                                                             



Environmental Research 252 (2024) 118942

4

status (SES) using neighbourhood or municipal level mean income in the 
year 2001 (in 1000€), referred to a neighbourhood-level from hereon. 
Only individuals without missing covariates in model 3 were included in 
the analysis. 

The proportional hazard assumption was examined by plotting 
scaled Schoenfeld residuals over time and tested for deviation of the 
slope from zero. In a sensitivity analyses, variables violating the pro-
portional hazard assumption were included as stratum. 

Concentration-response shapes for PM2.5, NO2, BC and O3 were 
investigated with natural cubic splines (3 degrees of freedom), subsets 
(individuals living below a certain concentration) and threshold ana-
lyses (exposure variable set to zero below a certain cut-off value and 
performance evaluated with the Akaike Information Criterion (AIC) and 
Bayesian Information Criterion (BIC)) – see online supplement for 
details. 

In sensitivity analyses additional adjustment models included further 
covariates: BMI (categorical with cut-off points at 18.5 and 24.9 kg/m2) 
acknowledging that BMI may be a mediator on the pathway rather than 
a confounder; smoking intensity (linear, and squared) and smoking 
duration (continuously in years); level of education (primary school or 
less; up to secondary school or equivalent; university degree or more); 
normalized difference vegetation index (mean within 300 × 300m, scale 
from − 100 000 to 100,000) and urban neighbourhood (cities and 
densely populated areas; towns and suburbs; rural areas, from Eurostat 
degree of urbanization dataset). As alternative neighbourhood SES in-
dicators we investigated neighbourhood unemployment rate and 
neighbourhood low education (instead of mean income) as well as 
neighbourhood ethnicity (in addition to mean income). 

We excluded one cohort at a time from model 3 to evaluate the 

impact of influential cohorts and cohort specific HRs were calculated, 
also. For PM2.5, NO2, BC and O3, we also ran model 3 with exposure 
values back-extrapolated to baseline year and with time-varying expo-
sures considering residential history and respective neighbourhood in-
dicators. Furthermore, two pollutant-models including two of the main 
pollutants or adjusting the PM-constituents with PM2.5 and NO2, 
respectively, were calculated. The adjustment for NO2 was attempted to 
evaluate potential effects of non-tailpipe emissions from traffic, with Fe 
and Cu as the main indicators (of brake, tyre and road wear). We 
acknowledge that, because of the high correlation, it is difficult to 
separate tailpipe and non-tailpipe pollutant. Effect modification was 
investigated by including an interaction term. For all analyses, R 
(version 3.4.0) was used. 

3. Results 

3.1. Population description 

Of 315,937 individuals, 289,564 persons were included in the model 
3 dataset, more than half of them from the VHM&PP cohort (Table 1). 
Over an average follow-up period of 20.44 years, 313 persons died from 
CKD. The mean age at baseline was 48.4 years with VHM&PP being the 
youngest cohort (mean age 42.0 years vs 53.0–57.7 years in the other 
cohorts). The cohorts DNC, E3N and EPIC_NL consisted of females only, 
and in the pooled cohort, there were 68% females. The neighbourhood 
mean income varied from 11,200 € in E3N to 22,900 € in VHM&PP. 

Fig. 1. Exposure to annual mean of a PM2.5, b NO2, c BC and d O3 (warm season) in 2010 at participants address, per cohort. Data set of model 3 (N = 289,564). 
Whiskers are for 5th and 95th percentiles. Boundaries of the box are for 25th and 75th percentiles. Bold vertical line is for median. Green = 2021 WHO guidelines 5 
and 10 μg/m3 PM2.5 and NO2, respectively, red = 2005 WHO guidelines 10 and 40 μg/m3 PM2.5 and NO2, respectively, and EU ambient air quality limit values, 25 
and 40 μg/m3 PM2.5 and NO2, respectively. 

P. Kadelbach et al.                                                                                                                                                                                                                             



Environmental Research 252 (2024) 118942

5

3.2. Air pollution description 

For PM2.5 and BC, exposures in the Danish cohorts (DNC and DCH) 
were lower than those of the more southern countries (Fig. 1). No similar 
trend could be observed for NO2 and O3. Exposure to PM2.5 and NO2 was 
below annual limit values (PM2.5: 25 μg/m3; NO2: 40 μg/m3) of the 
European Air Quality Directive (EU-AAQD) for most of the cohorts, but 
generally above current WHO guidelines for PM2.5 (5 μg/m3) and NO2 
(10 μg/m3). 

Spearman correlation for exposure to air pollution was moderate to 
high (Supplementary Table S1); especially for BC and NO2, the corre-
lation was high in every cohort with a median of 0.9 across cohorts, and 
in the large Vorarlberg cohort correlation of NO2 and BC with ozone was 
high. 

3.3. Main analyses on the main pollutants 

Cox model results showed effect estimates above one for PM2.5 and 
BC (Table 2) e.g. for PM2.5 the HR in model 3 was 1.31 (95%CI: 
1.03–1.66) for an increase of 5 μg/m3. Effect estimates for NO2 were in 
the same direction, but not statistically significant, e.g. HR of 1.13, 95% 
CI: 0.93–1.38) per 10 μg/m3 in model 3. For O3, statistically significant 
inverse associations were found. 

Natural Splines (Supplementary Fig. S1) were difficult to interpret 
due to large uncertainties probably due to low number of cases. The 
same limitation applies to subset and threshold analyses (Supplemen-
tary Tables S2 and S3) 

In two-pollutant models (Table 3), the effect estimate for PM2.5 was 
stable when adjusting for NO2, whereas the estimate for NO2 decreased 
towards the null. In the model containing PM2.5 and BC, the estimates 
for both decreased moderately, becoming statistically non-significant 
with widened CIs. 

3.4. Elemental constituents 

The trend from PM2.5 and BC with comparatively small exposure 
values for the Danish cohorts was continued for most of the PM2.5 
components (all but Si, and Ni). However, for many components, 
VHM&PP had low exposure as well, especially for S, Ni, V (Supple-
mentary Fig. S6). 

An increased CKD-associated mortality was found for exposure to 
every PM2.5 constituent (see Fig. 2, single models). It was statistically 
significant for the components representing traffic emissions (Cu, Fe, 
Zn), biomass burning (K), and long-range transport (S). 

In two-pollutant models, adjustment for mass of total PM2.5 only 

slightly changed the effect estimates (Fig. 2). Adjustment with NO2 
increased HRs for Cu and Fe, albeit with very large confidence intervals, 
with small changes for the other constituents. Note that Spearman cor-
relations of Cu, Fe and Si with NO2 were high (Fig. 2 legend and Sup-
plementary Table S7). 

3.5. Sensitivity analyses 

Effect estimates from the different adjustment models were similar to 
those of the main analysis (Supplementary Figs. S2 and S3). Only when 
replacing neighbourhood mean income by neighbourhood unemploy-
ment rate and neighbourhood low education, associations attenuated to 
a certain extent for BC and NO2, but still with a very large overlap of 
confidence intervals. 

Indications for violation of the proportional hazards assumption 
were found for smoking status, marital status, employment status and 
mean neighbourhood income but stratifying for the respective variables 
showed in general very similar results to the main analysis (Supple-
mentary Table S4). Only when replacing the continuous neighbourhood 
income by a binary variable categorized with country-specific median as 
cut-off point the effect estimates attenuated, however regardless of 
whether this binary variable was included as strata or as covariate. 

Excluding one cohort at a time (Supplementary Fig. S4) did not in-
fluence the results except for exclusion of the VHM&PP cohort leading to 
null associations for all pollutants. 

Regarding cohort-specific HRs, VHM&PP was the only cohort 
showing a clear positive association (Supplementary Fig. S5) while the 
other cohorts showed very large CIs with HRs above and below one due 
to lower numbers of cases. 

Estimates for exposure back-extrapolated to baseline became smaller 
for PM2.5 (Supplementary Table S5) and not statistically significant 
(ratio method: HR 1.09, 95%CI: 0.98–1.21; difference method: HR 1.05, 
95%CI: 0.88–1.26). For BC and NO2, only small changes were seen and 
for O3 the estimates remained the same. 

Considering the time-varying exposure led to a mild attenuation for 
PM2.5, strongest in the model with 5-year strata. For BC, NO2 and O3, on 
the contrary, HRs increased moderately with results for NO2 becoming 
statistically significant. 

4. Discussion 

Our study shows a positive association of CKD-related mortality with 
PM2.5 and BC, to a lesser extent with NO2, and an inverse association 
with O3. Results were robust in most sensitivity analyses, but strongly 
influenced by VHM&PP. VHM&PP is the largest cohort of the analysis 
that contributed more than half of the included persons and the majority 
of mortality cases (226 cases) and its omission led to an absence of as-
sociation. Among the elemental constituents, Cu, Fe, K, Ni, S and Zn, 
representing different sources, were associated with CKD-related 
mortality. 

Our HR estimate of 1.31 (95% CI: 1.03–1.66) per 5 μg/m3 increase of 
PM2.5 is similar to that reported for CKD-related mortality by Ran et al., 
(2020)with a HR of 1.38 (95% CI: 1.09, 1.74) per 5 μg/m3 in a Hong 
Kong cohort of older persons (>65yrs). On the other hand, in large co-
horts from the entire adult population in Canada and Denmark no as-
sociation with CKD-related mortality was found (Brauer et al., 2022; So 
et al., 2022). 

Our results for an association between long-term air pollution and 
CKD-associated mortality are also in line with overall findings for an 
association with CKD incidence reported by recent meta-analyses (Liu 
et al., 2020; Wu et al., 2020; Ye et al., 2021), although not directly 
comparable as the outcome variable mortality in addition to incidence 
also reflects progression of kidney disease. 

For BC, we provide the novel finding of a positive association with 
CKD mortality. This is in contrast to the seemingly only other study 
available in the literature, the Danish cohort study by So et al., (2022), 

Table 2 
Hazard ratios for the association between air pollution exposure and CKD 
mortality in the pooled cohort (N = 289,564).    

Model 1a Model 2b Model 3c 

Pollutant Increment HR (95% CI) HR (95% CI) HR (95% CI) 
PM2.5 5 μg/m3 1.22 

(0.96–1.55) 
1.22 
(0.96–1.54) 

1.31 
(1.03–1.66) 

NO2 10 μg/m3 1.04 
(0.86–1.25) 

1.01 
(0.84–1.21) 

1.13 
(0.93–1.38) 

BC 0.5 × 10− 5/ 
m 

1.16 
(0.96–1.40) 

1.13 
(0.93–1.36) 

1.26 
(1.03–1.53) 

O3 10 μg/m3 0.75 
(0.58–0.98) 

0.78 
(0.60–1.02) 

0.71 
(0.54–0.93) 

HR, hazard ratio; CI, confidence interval; all models were performed on data set 
for Model 3 where individuals with missing values for any of the Model 3 
covariates are excluded. 

a adjusted for study (strata), sex (strata), age (time axis), calendar year of 
enrollment.. 

b like Model 1, in addition adjusted for smoking status, marital status, and 
employment status.. 

c like Model 2, in addition adjusted for neighbourhood mean income in 2001.. 
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which, similar to the estimates of the Danish cohorts included in our 
study (Supplementary Fig. S5), showed no associations with CKD mor-
tality. The few studies on CKD incidence and BC also showed conflicting 
results (Feng et al., 2021; Xu et al., 2022). 

Similarly, studies investigating the relation between NO2 and CKD 
mortality are very limited. The Danish cohort found a positive associa-
tion with a HR of 1.05 (95%-CI: 1.00; 1.11) per 10 μg/m3 increase (So 
et al., 2022). This was weaker than our result (HR of 1.13 per 10 μg/m3, 
95%-CI: 0.93–1.38), however with narrower confidence intervals. Both 
results are in line with a meta-analysis of the association with CKD 
incidence based on 6 studies (Ye et al., 2021). Two later studies on CKD 
incidence show either no association (Hwang et al., 2021) or a statisti-
cally non-significant one with an increased HR with large confidence 
intervals (Li et al., 2022b). However, a recent analysis of CKD incidence 
in UK-Biobank participants free of microvascular disease at baseline (Li 
et al., 2022a) and in a longitudinal study in Asian children and adoles-
cents (Guo et al., 2022) found statistically significant increased risks of 

2% and 7%, respectively. 
For ozone, inverse associations have been reported previously (Bra-

uer et al., 2022; Guo et al., 2022; So et al., 2022) but we view our cor-
responding results critically due to the high correlation with NO2 and 
BC, therefore O3 may rather be a marker of low concentrations of these 
pollutants, especially in the large Vorarlberg cohort. 

Our results show that associations between air pollution and CKD 
mortality manifest in populations that are exposed to concentrations 
below the current EU air quality directives (40 μg/m3 for NO2, and 25 
μg/m3 for PM2.5) and emphasize the need to adapt these thresholds to 
the current WHO-guidelines. The exact shape of a dose-response curve 
cannot be reliably inferred from our data, possibly due to a low number 
of cases especially at the margins of the observed concentrations, and 
large concomitant uncertainties. 

The strength of the associations for all four main pollutants increases 
after adjustment for small area level mean income. This seems plausible 
as CKD incidence and progression as well as CKD mortality have been 

Table 3 
Hazard ratios for association between air pollution exposure and CKD mortality. Single- and two-pollutant models, based on Model 3a (N = 289,564).   

Pollutant 
Single-pollutant Model Two-pollutant Model  

(Adjusted for pollutants below) 

PM2.5 NO2 BC O3 

PM2.5 1.31 
(1.03–1.66) 

NA 1.31 
(0.99–1.76) 

1.17 
(0.86–1.60) 

1.16 
(0.87–1.55) 

NO2 1.13 
(0.93–1.38) 

0.99 
(0.78–1.26) 

NA 0.63b 

(0.40–1.00) 
0.88  
(0.66–1.18) 

BC 1.26 
(1.03–1.53) 

1.15 
(0.89–1.50) 

1.92b 

(1.20–3.08) 
NA 1.11 

(0.83–1.48) 
O3 0.71 

(0.54–0.93) 
0.78 
(0.56–1.09) 

0.62 
(0.41–0.94) 

0.79 
(0.53–1.17) 

NA 

Results are presented as hazard ratio (HR) and 95% confidence interval (CI) for the following increases: 5 μg/m3 for PM2.5, 10 μg/m3 for NO2, 0.5 × 10− 5 m− 1 for BC 
and 10 μg/m3 for O3. 

a Adjusted for study (strata), sex (strata), age (time axis), calendar year of enrollment, smoking status, marital status, employment status, and mean income at 
neighbourhood level in 2001.. 

b Two-pollutant results for BC in combination with NO2, are difficult to interpret because of their high correlation (Spearman correlation coefficient ≥0.7 in at least 
three cohorts).. 

Fig. 2. HRs and 95% CIs between exposure to PM2.5 components and CKD mortality in the pooled cohort. Crude and adjusted for NO2 or PM2.5. HRs refer to the 
following increments:5 ng/m3for PM2.5 Cu; 100 ng/m3 for PM2.5 Fe; 50 ng/m3 for PM2.5 K; 1 ng/m3 for PM2.5 Ni; 200 ng/m3 for PM2.5 S; 100 ng/m3 for PM2.5Si; 2 ng/ 
m3 for PM2.5 V; 10 ng/m3 for PM2.5 Zn. Two-pollutant results for Cu, Fe, and Si with NO2, respectively, are difficult to interpret because of their high correlation 
(median spearman ≥0.7, i.e. in at least three cohorts). 
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shown to be influenced by socioeconomic status in general (Fedewa 
et al., 2014; Fored, 2003; Zeng et al., 2018) and on area-level (Bello 
et al., 2008), possibly related to differing health care delivery and 
area-specific living conditions. 

We provide novel results on the association between long-term 
exposure to source related elemental constituents of PM2.5 and CKD 
mortality. To our knowledge, only the Danish administrative cohort (So 
et al., 2023) has investigated PM2.5 constituents and CKD mortality 
exposures so far. 

The three constituents Fe, Cu and Zn, indicating non-exhaust traffic 
emission, are all associated with CKD mortality in our analysis. The 
Danish study found an association for Fe and to a lesser extent for Cu, 
and no association with Zn. Generally there is a lack of studies regarding 
non-exhaust traffic emission and previous traffic related studies have 
looked seemingly only at exhaust related traffic emissions (Chen et al., 
2018; Hsu et al., 2019; Krauskopf et al., 2018). In the view of a trans-
formation towards increased electric mobility, further studies are clearly 
needed to disentangle non-exhaust and exhaust traffic pollutants. 

Another constituent that may be related to traffic is Si from re- 
suspended road dust. However, it also reflects crustal material from 
soil in general. We find an elevated HR for Si, however with very large 
CIs (1.53 (0.75; 3.12)). In the large Danish cohort, So et al. reported a 
statistically significant positive association (1.077 (1.021, 1.137) sup-
porting our observation (So et al., 2023). 

Regarding S, we find a robust relation whereas So et al. found no 
association (So et al., 2023). 

S was chosen to represent long-range transport of secondary PM that 
is formed in the atmosphere: SO2 is a precursor of sulphuric acid and 
sulphates and, after photochemical reaction with organic vapours, of 
secondary organic aerosols (Kelly and Fussell, 2012). 

Sulphates are also related to burning of fossil fuels and were related 
to combustion of residual oil in a source-apportionment analysis within 
the ELAPSE project, together with Ni and V that can be considered even 
more specific markers (Chen et al., 2022b). We do not find any associ-
ation of CKD-related mortality with V and a positive one for Ni that, 
however, did not reach statistical significance. Results from the Danish 
administrative cohort showed a similar pattern, albeit with considerably 
smaller effect estimates (and more precise CIs) (So et al., 2023). 

The strongest and most robust association we observe is for K. This is 
in clear contrast to the findings in the Danish administrative cohort that 
found a statistically significant negative i.e. inverse association. K is a 
tracer for biomass burning and this includes wood, the use of which is 
very widespread in the Austrian province of Vorarlberg where the large 
VHM&PP cohort is situated. The VHM&PP cohort has indeed the highest 
median concentration and clearly the highest exposure contrast among 
the cohorts. In contrast, the Danish cohorts included in our study have 
markedly lower concentrations and exposure contrasts, and the same is 
true for the Danish administrative cohort (So et al., 2023). Under such 
conditions, detecting an association would be more difficult and may 
contribute to the difference between the results found here and those in 
the Danish administrative cohort. 

The potential mechanisms underlying the observed associations be-
tween air pollution and CKD and its progression to end stage kidney 
disease have much in common with those in other chronic diseases, 
especially cardiovascular disease. For the kidney, a highly vascularized 
organ, oxidative stress and inflammation seem to play a central role. 
Indeed, the kidney is especially vulnerable to oxidative stress, as reac-
tive oxygen species are important physiological regulators, and it is a 
highly metabolic organ with high energy demand (Daenen et al., 2019). 
Correspondingly, mitochondrial dysfunction in relation to oxidative 
stress seems to be one central mechanism, which can lead to cell 
apoptosis and cell necrosis and is related to the progression of CKD (Che 
et al., 2014; Chen et al., 2022a; Daenen et al., 2019; Schlondorff, 2008; 
Shubham et al., 2022). In the kidney, cell death and loss of podocytes 
reduces the production of vascular endothelin growth factor leading 
eventually to endothelial cell apoptosis (Schlondorff, 2008). All these 

processes compromise the glomerular filtration barrier and thus kidney 
function. 

The direct deposition of PM2.5 in the small airways causes pulmonary 
inflammation. Inflammatory mediators may spill over into the circula-
tion (Brook et al., 2018) and cause harm to distant organs such as the 
kidneys (Xu et al., 2018). Via this link systemic inflammation may lead 
to glomerulosclerosis and progressive kidney disease (Shubham et al., 
2022). In addition, inflammation leads to a state of hypercoagulability, 
and emboli within the glomeruli have been suggested to lead to endo-
thelial cell and podocyte damage leading to fibrosis and glomerulo-
sclerosis (Shubham et al., 2022). 

Rodent experimental data support a potential causal effect of air 
pollution on kidney injury. A reduced renal blood flow pointing to renal 
vascular impairment has been observed in rats exposed to diesel exhaust 
particles (DEP), with effects potentiated by previous induction of CKD 
(Suleimani et al., 2017). In another study on mice with CKD, an increase 
in renal oxidative stress, inflammation and DNA-damage has been 
observed (Nemmar et al., 2016) upon DEP exposure strengthening a 
possible link between air pollution and progression of CKD that may 
eventually lead to premature death. 

Our study has several strengths and limitations. First, we could draw 
on the large database from the ELAPSE pooled cohort with many study 
participants but also information on many relevant confounders 
harmonized among individual studies. The analysis of a pooled data set 
increases our statistical power despite the rather limited number of cases 
even in this large data set. We cover different areas in Europe including 
areas with relatively low concentrations, but still can rely on a common 
exposure assessment according to an advanced state of the art and with a 
fine spatial resolution. Nevertheless, we had to approximate personal 
exposure by exposure at the home address. Indeed, in a study of this size 
it is virtually impossible to obtain personal mobility patterns that may 
influence exposure to different degrees. However, a study in the 
Netherlands has shown that effect estimates are rather underestimated 
as one would expect in the case of non-differential misclassification 
(Hoek, 2017). Another drawback is that our main exposure assessment 
relies on annual values for 2010 while recruitment of study participants 
was earlier. However, in a study of long-term effects, spatial contrasts 
are the most important and there is evidence that spatial patterns are 
quite stable over longer time periods (Cesaroni et al., 2012; Eeftens 
et al., 2011; Gulliver et al., 2013). In addition, our sensitivity analyses 
using exposure values back-extrapolated to baseline or to the respective 
years in time-varying analysis, the latter also taking into account 
changes in address, indicate that the results are overall stable. 

We acknowledge the limitation of using LUR models to assess 
elemental exposure, primarily because of limited availability of specific 
fine scale predictors of certain elements, e.g. we do not have fine- 
resolution predictors separating tailpipe and non-tailpipe emissions or 
wood-burning. Still we entered source-specific predictors from satellite 
and CTM where possible and, on average, the components models per-
formed similarly to the models of the main pollutants (as judged by the 
R2), with differences between the components. 

A certain caveat is that the associations are sensitive to exclusion of 
the largest cohort which contributes by far the most cases and therefore 
contributes quite precise effect estimates whereas the CIs of all the other 
studies were generally very large with a large overlap with those of the 
VHM&PP cohort. Because the Vorarlberg cohort is relatively young 
compared to the others, and thus in comparison less cases may have 
been observed, there may be a certain underestimation of the true as-
sociation. On the other hand, it is the cohort with the longest time of 
follow-up. In addition, our pooled cohort included 68% females (with 
three female cohorts of five) which again might have led to a certain 
underestimate of the association as we observed stronger associations in 
male individuals. 

There are not enough routine monitors in the Vorarlberg region to 
evaluate how well the models represent the spatial variation of long- 
term averages. The only data with a sufficient number of monitors 
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that are available so far are those from the ESCAPE measurement 
campaign conducted at 20 PM2.5 and 40 NO2 sites. The ELAPSE model 
explained 22.4% and 47% of the variance for PM2.5 and NO2 respec-
tively. The lower explained variance for PM2.5 probably relates to the 
smaller variability between measurement sites. These R2 values repre-
sent a lower estimate of the agreement, as at each site, measurements 
were made for three periods of 14 days spread over a year. Hence, the 
measured ESCAPE average includes temporal variation. It has to be 
acknowledged that the ESCAPE monitoring area only covered part of the 
ELAPSE population, notably those living below 600 m of altitude i.e. in 
the main valley. 

Another limitation is that, although we investigated primary un-
derlying causes of death, coding may still lead to cases that have died of 
kidney failure but as a consequence of other underlying causes. This 
degree of misclassification may differ between countries and lead to 
different associations with air pollution. In addition, we cannot exclude 
that misclassification may lead to an observed association that reflects 
the air pollution association with all-cause natural mortality, rather than 
with specific CKD-related deaths. Nevertheless, our HR for BC is overall 
similar to that for PM2.5 whereas for natural mortality it was moderately 
lower (Strak et al., 2021). However, given the uncertainties around our 
effect estimates this might be a spurious result. Nevertheless, while we 
seem to have a similar effect modification by sex with higher HRs in men 
(Supplementary Table S8), findings for age and smoking were seemingly 
different to those for natural mortality. This may strengthen the evi-
dence for an association independent of that for natural mortality, 
however bearing in mind uncertainties due to the low numbers of cases 
per stratum. 

In conclusion, our finding suggest an association of air pollution, 
related to different sources, with CKD-related mortality, which needs to 
be confirmed in other studies. 
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