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In brief

Bellet et al. show that neuronal

populations in the prefrontal cortex

spontaneously form rich internal models

that represent abstract and identity-

specific information of visual sequences

with different complexity. These models,

detected in superimposed population

subspaces, rapidly update after

presentation of mismatch sequences and

generalize to sequences with identical

structure.
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SUMMARY
When exposed to sensory sequences, do macaque monkeys spontaneously form abstract internal models
that generalize to novel experiences? Here, we show that neuronal populations inmacaque ventrolateral pre-
frontal cortex jointly encode visual sequences by separate codes for the specific pictures presented and for
their abstract sequential structure. We recorded prefrontal neurons while macaque monkeys passively
viewed visual sequences and sequence mismatches in the local-global paradigm. Even without any overt
task or response requirements, prefrontal populations spontaneously form representations of sequence
structure, serial order, and image identity within distinct but superimposed neuronal subspaces. Represen-
tations of sequence structure rapidly update following single exposure to a mismatch sequence, while
distinct populations represent mismatches for sequences of different complexity. Finally, those representa-
tions generalize across sequences following the same repetition structure but comprising different images.
These results suggest that prefrontal populations spontaneously encode rich internal models of visual se-
quences reflecting both content-specific and abstract information.
INTRODUCTION

How do we spontaneously encode the specific elements of ex-

periences and at the same time learn their structure to generalize

to new situations? Resolving how the brain encodes sequential

patterns of sensory experience on the fly, without any explicit

task demands, is key to understanding the fundamental compu-

tations underlying higher-order cognition. At the neuronal level,

internal models implemented by neuronal populations could

encode information about a sensory sequence at both an ab-

stract structural level and at a concrete sensory level. Impor-

tantly, the reinstatement of an internal model, i.e., reactivating

the same neuronal ensemble to encode the same structure

when it is encountered in new circumstances, may provide a

simple mechanism for generalizing knowledge across similar ex-

periences.1–3 Nevertheless, a complete model should also

encode specific aspects of sequential experiences, such as

the pictures being presented. Therefore, understanding how

neuronal populations spontaneously encode sequences of stim-

uli may provide insights about the abstract scaffolding mecha-
This is an open access article under the CC BY-NC-ND
nism that supports generalization as well as the event-specific

neural populations that encode the contents of perception.

Both abstract processing of sequential information and

conscious perception of specific stimuli appear to converge in

the prefrontal cortex (PFC). The PFC is critical for temporal orga-

nization of task-related behavior through the encoding, mainte-

nance, and flexible use of abstract rules, representations, and

schemas that guide behavior and facilitate cognitive control.4,5

At the same time, apart from such contextual and abstract infor-

mation that can be applied to new circumstances, prefrontal

populations also encode the specific consciously perceived

contents of sensory experience.6–8 This dual role of the PFC sug-

gests that the instantaneous prefrontal population activity should

encode both properties, even when a sequence of events is

encountered without any task-related demands. This hypothesis

leads to predictions concerning the expected structure of the

population code during a sequential sensory experience. On

the one hand, the neural code should disentangle, or factorize,

the experience into its main structural variables, such as the

number of items or the presence of repeated elements,9–11
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Figure 1. Recording vlPFC spiking activity

during the visual local-global paradigm

(A) Location of the implanted Utah arrays in the

macaque vlPFC.

(B) Example trials. A sequence of four stimuli was

presented and 100 ms after offset of the last stim-

ulus, the monkeys received a liquid reward. Reward

time was constant for all conditions; therefore, a

differential impact on each condition was unlikely.

Examples show a single xxxY and an xxxx trial within

the context of frequent xxxY sequences.

(C) Each session consisted of four blocks

comprising a frequent sequence (global standard,

which could have the structure xxxx or xxxY) and a

rare sequence (global deviant). In each block, the x

was a fixed image (A or B, taken from the pairs in D)

and the Y was the other image (B or A).

(D) The five pairs of visual stimuli (rows) used in the

experiments.
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thus allowing for generalization when similar variables are

encountered, a hallmark of abstract processing.1,12 Simulta-

neously, apart from abstract information about structure, a com-

plete model should also include concrete information about spe-

cific events or contents. Using different dimensions within the

same overall population, the PFC would represent the flow of

incoming information by a dynamic flow of neural activity encod-

ing, e.g., ‘‘This is the first picture, it is a tree.now here is a sec-

ond tree.a third tree.but the fourth picture is different! It is a

face.’’ According to our hypothesis, all the above labels, whether

abstract (first, second, third, different.) or concrete (face, tree),

should be decodable from PFC activity.

The neuronal properties in the PFC are ideal for a population

code that can accommodate multiple representations that bal-

ance abstract and specific information. In the PFC, a large per-

centage of neurons exhibit mixed selectivity for the different vari-

ables of a task and encode multiple task-related overlapping

representations.13–16 This mixed selectivity property facilitates

high-dimensional representations and, therefore, linear readouts

of many different variables from population activity.12,13 How-

ever, the computational capabilities of the PFC would be con-

strained if the population code allowed only for higher-dimen-

sional representations. In particular, the role of the PFC in

abstract processing suggests that prefrontal population activity

should also converge into a low-dimensional representation
2 Cell Reports 43, 113952, March 26, 2024
that is optimal for extracting contextual in-

formation and generalizing across similar

circumstances.12,13

Here, we studied how prefrontal popu-

lation activity encodes visual sequences

and generalizes across them spontane-

ously without any overt task or response

demands. We used a visual version of

the ‘‘local-global’’ paradigm that probes

sequence processing at two hierarchical

levels, local (sequence element transi-

tion probabilities) and global (whole

sequence).9,17,18 First, we asked whether
the PFC encodes all aspects of the sequences in the local-

global paradigm, therefore holding a complete internal model

of the ongoing sensory stream and its occasional violations.

Second, are some of these neural representations abstract

enough to be independent of the specific stimulus identities

within the sequence pattern, as predicted by earlier work using

functional magnetic resonance imaging?11

We tested these hypotheses by recording from chronically im-

planted multielectrode arrays in macaque ventrolateral PFC

(vlPFC) during the local-global paradigm. Using multivariate de-

coders, we show for distinct prefrontal population subspaces

encoding of all aspects of the visual sequences, including image

identity, serial position of stimuli, and abstract sequence struc-

ture, as well as local and global structure violations. These re-

sults reveal the fundamental computations in prefrontal ensem-

bles mediating the spontaneous encoding of sequential

information.

RESULTS

vlPFC spiking activity during the visual local-global
paradigm
We recorded spiking activity from neuronal populations with

multielectrode Utah arrays, chronically implanted in the vlPFC

of two macaque monkeys (Figure 1A), during a visual version



Table 1. Terminology of sequence types in the local-global paradigm

Sequence (one trial) Global contexta Local deviance Global deviance Terminology

xxxx (aaaa, bbbb) xx block standard standard xx|xx (frequent xx)

xY block standard deviant xx|xY (rare xx)

xxxY (aaaB, bbbA) xx block deviant deviant xY|xx (rare xY)

xY block deviant standard xY|xY (frequent xY)
aThe global context corresponds to the structure of the frequent trials in a block. xx is short for an xxxx trial and xY is short for an xxxY trial.
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of the local-global sequence paradigm17 (Figures 1B–1D). To

eliminate activity related to decision making and association of

sequences with specific motor responses that could confound

sequence specific population coding, the task did not require

overt behavioral reports but mere sequence observation. There-

fore, this no-report paradigm allowed studying the spontaneous

emergence of population codes during passive observation of

visual sequences. On each trial, we presented a sequence of

four images (300 ms stimulus duration; 300 ms inter-stimulus in-

terval) while themonkeysmaintained their gaze for thewhole trial

duration within the image region (Figure 1B). For completion of a

trial, the monkeys received a liquid reward 100 ms after offset of

a sequence. A sequence consisted either of four repeats of the

same stimulus (xxxx sequence, abbreviated as xx) or of three re-

peats and one local deviant in the last position (xxxY sequence,

abbreviated as xY; Figure 1C). We presented these sequences in

blocks of 200 trials where one sequence type (xx or xY) was the

frequent sequence (global standard). The global standard

sequence was presented in the first 50 trials of each block. Of

the remaining 150 test trials, 80% were global standards and

20%were global deviants, which differed only in the last position

compared to the standard. We will use a notation that indicates

trials according to their local structure and global context: e.g., a

rare xY trial (in an xx block) will be denoted as xY|xx. The first two

letters indicate the current trial and the last two letters the global

context in which it occurred (Table 1). The design enabled us

to distinguish the effects of first-order (local) vs. higher-order

(global) sequence regularity, which requires representing the

whole sequence pattern (STAR Methods).

In each recording session, a specific pair of images (A and B)

was chosen out of five possible pairs (Figures 1C and 1D), and

four blocks were run with this picture pair in random order (two

xx blocks, aa and bb; two xY blocks, aB and bA). This allowed

us to test whether the population code of sequence structure

generalized within sessions, where the order of the images

changed, and across sessions, where stimulus identities were

different. For the latter, it was important that the signal was sta-

ble across recording days. We found that the recordedmulti-unit

activity (MUA), i.e., the sum of recorded spikes from each elec-

trode, was robust over several days in both animals, with overall

more active sites in monkey A. Figure S2 shows that the chan-

nels that carriedmost information about the sequences (see later

decoding analysis) contained mostly MUA and that isolated sin-

gle units were not stable across all recording days. We therefore

decided to perform most analyses using MUA.

To analyze the selectivity properties of the recorded PFC neu-

rons, we used isolated neurons from monkey A, for which we

were able to obtain 11 neurons on average per recording. To
assess selectivity of single neurons in our experiments, we per-

formed an ANOVA on the responses of individual neurons19,20

with the independent variables stimulus, local and global devi-

ance, and first-order interactions to reveal non-linear mixed

selectivity (NMS) (STAR Methods). The total degree of freedom

(df) was 279 (monkey A) and 267 (monkey H) on average per

neuron, and the df for factors and interaction was 1. p values

were corrected using false discovery rate (FDR)21 across all six

recording sessions, and values at p < 0.01 were regarded as sig-

nificant (see Table S1 for statistics). We found that on average

28% of neurons had NMS (27% for stimulus and local, 8% for

local and global, 3% for stimulus and global—note that these

percentages do not sum to 28% because one neuron could

have several interaction effects). Four percent of neurons had

linear mixed selectivity to local deviance and stimulus identity,

33% had classical selectivity to only one variable (13% stimulus,

19% local, 2% global), and 35% were not selective (Figure 2D;

for statistics see Table S1). Local deviants and stimulus identity

were most prominently represented by single-neuron re-

sponses, whereas global deviants yielded responses of only a

few neurons.

vlPFC ensembles form a rich representation of visual
sequences
Given the diversity of response types and signs of mixed

selectivity, we hypothesized that visual sequences could be

better represented by neuronal population vectors rather than

by individually specialized units, as previously shown for the

PFC.12–15,22–24 We used regression analyses to test whether

the vlPFC represented all the variables that defined the visual

sequences in the local-global paradigm, namely, (1) stimulus

identity (one of two possible images in each session), (2) serial

position of the image within each sequence (from 1 to 4), (3)

global context (xx or xY block), (4) local deviance, and (5) global

deviance. For this analysis, we used only the data from the test

trials that followed the first 50 habituation trials in each block

to ensure that the current global context was learned (see also

Figures 4G and 4H).

We applied multiple linear regression for all variables but serial

position, for which we used multinomial logistic regression

(STAR Methods). This approach allowed us to determine which

population vectors, if any, carried maximum information about

each sequence variable. We then used these vectors to reduce

the dimensionality of the MUA and obtain trajectories of the

neural population within each neural subspace (Figure 3). Using

the subspace trajectories for classification allowed us to perform

a decoding analysis for each of the sequence variables. We

quantified such decoding, relative to chance level, using the
Cell Reports 43, 113952, March 26, 2024 3



Figure 2. Neural selectivity during the local-global paradigm

(A) Spike waveforms from three example neurons in monkey A, selected on the

basis of their selectivity (see C). Isolated neurons are shown in green.

(B) Auto-correlograms of isolated neurons in (A).

(C) Peri-stimulus time histograms of three isolated neurons for different se-

quences: aaaa in orange, bbbb in blue, bbbA in yellow, and aaaB in cyan. The

neuron on the left shows classical selectivity (CS), in this case selectivity for

local deviants. The neuron in the middle exhibits linear mixed selectivity (LMS),

i.e., joint selectivity for stimulus b and for local deviants. The neuron on the right

shows non-linear mixed selectivity (NMS), i.e., selectivity for a combination of

stimulus A and local deviance. Statistics are listed in Table S1. In this table,

neuron 1 corresponds to ID 14, neuron 2 to ID 1, and neuron 3 to ID 10.

(D) Ratio of selectivity types, averaged across six recording sessions in

monkey A, with 11 neurons per session on average.

Article
ll

OPEN ACCESS
area under the receiver-operating characteristic curve (AUROC;

see Figure S1 formethods). A randompermutation test with clus-

ter-based correction for multiple comparisons was used to
4 Cell Reports 43, 113952, March 26, 2024
obtain p values for each tested time bin (STAR Methods). Bins

were regarded as significant at p < 0.05. For the number of trials

per recording and condition, see Table S2.

The results showed that all sequence variables could be de-

coded at above-chance levels (Figure 3). First, the decoding per-

formance for stimulus identity (image A vs. image B within each

recording session) was close to 1 for every item in a sequence,

including the last sequence item when it changed on xY trials

(Figures 3A–3F).

Second, using a separate decoder for serial position within

a sequence, we could predict serial position, particularly for

the first and last items, reflecting known primacy and recency ef-

fects,25–27 but also at above-chance levels for positions 2 and 3

(Figures 3B–3F, predictions are indicated by horizontal bars).

Since the sequences used a fixed timing, this decoding could

reflect numerical codes, temporal codes, or both.10,28 However,

elapsed time alone could not explain all of the findings, such as

the fact that the code for ‘‘1st item’’ was partially reactivated

for the last image of xY trials (the first image with this identity)

or that the code for ‘‘4th item’’ was reactivated at ordinal posi-

tions 1, 2, or 3 on trials when the monkey broke fixation and

the visual sequence was aborted, suggesting that it actually re-

sponded to ‘‘last item’’ (Figure S3). These findings indicate that

those population codes were partially locked to the phase of

the task and not solely to timing.

Third, to test whether vlPFC neurons contained a model of the

upcoming sequence structure, we decoded the global context

(xx or xY block) from the neuronal population activity prior

to the last stimulus of a sequence. We indeed identified a

population subspace whose activity allowed us to infer the

global context even before the sequence presentation started

(Figures 3C–3H). Could this effect be carried by stronger firing-

rate adaptation in xx blocks compared to xY blocks (because

of more repetitions of the stimulus x)? To address this alternative

explanation, we tested context sensitivity in individual channels

using independent t tests on the average response during the

first three stimuli. p values were corrected for multiple compari-

sons across channels that were responsive to the sequences

(STAR Methods). For channels with a p value of <0.01, we

assessed the direction of the effect, separating channels with

decreased firing rate in xx blocks from thosewith increased firing

rate in xx blocks, compared to xY blocks, using an independent

t test. On average across sessions, 64 channels were responsive

in monkey A (22 in monkey H), out of which 12 channels

were context sensitive (6 in monkey H). Statistics are given in

Tables S3 and S4. Eight out of the 12 channels showed

decreased firing rate during the first three stimuli of xx blocks

compared to xY blocks, but four channels had an increased firing

rate (3 and 3 in monkey H). The presence of both increased and

decreased firing indicates that context encoding cannot be

explained solely by firing-rate adaptation. In the following

section, we will look in more detail at the properties of the neural

subspace-encoding context and how it builds up during the

habituation period.

Fourth, we assessed responses to violations of either local or

global sequence regularity. The population that was sensitive to

local deviance showed a response to both predicted (xY|xY) and

unpredicted (xY|xx) local deviants (Figures 3D and 3I, orange and



Figure 3. Decoding neural population codes for different aspects of the sequences

Upper plots in all panels (and lower plot in B and G) show the population trajectories resulting from the multiple linear regression (with the time windows used for

training and testing indicated in the insets above the plots). Black traces in the bottom plots show decoder performance in terms of AUROC, relative to chance

level 0.5. Horizontal lines on top of each graph indicate the time points for which the decoding performance was significantly above chance (p < 0.05). Data from

monkey A (left, A–E) and monkey H (right, F–J).

(A and F) Decoding of image identity (picture A vs. picture B).

(B and G) Decoding of the four ordinal positions in the sequence. Colored curves show the predictive probability of decoders (derived from multinomial logistic

regression) trained on xx trials and generalized to xY trials.

(C and H) Decoding of global context, i.e., xY blocks vs. xx blocks. Note how decoding is significant even prior to sequence presentation, indicating an antic-

ipation of the forthcoming sequence.

(D and I) Decoding of local deviance, i.e., xx vs. xY sequences.

(E and J) Decoding of global deviance, i.e., frequent vs. rare sequences.

In (D), (I), (E), and (J) only, decoding was time-locked to the last sequence item (�100 ms to 1,400 ms relative to last stimulus onset). Training/testing scheme

shows that decoder was trained and tested on each time bin after last stimulus onset. A positive activation indicates a local or global deviance signal, respectively.
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yellow). Decoding local deviance was almost perfect on a sin-

gle-trial basis, with an early peak (�200 ms) indicating a very

robust and fast response to local novelty. Nevertheless, the acti-
vation was stronger upon unpredicted than predicted local devi-

ants, in agreement with the predictive-coding framework

(Figures S4G and S4H, left). We also decoded global deviance
Cell Reports 43, 113952, March 26, 2024 5
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(rare vs. frequent sequences in a given block), with the effect

showing a later peak �500 ms after last item onset. In contrast

to the unimodal phasic response observed for local deviants,

the trajectories encoding global deviance showed a biphasic

response. First, until around 300 ms (200 ms in monkey H)

following the last stimulus onset, only trials with a local deviant

showed a positive activation (Figures 3E–3J, orange and yellow),

again with a higher amplitude for unpredicted local deviants.

Somewhat later, both types of rare trials (xY|xx and xx|xY)

evoked a response in the same direction (yellow and cyan) and

opposite to the frequent trials (orange and blue). We separately

measured the global deviance decoding performance by

computing the AUROC for rare vs. frequent xY (local and global

deviants, see Figures S4C and S4D, dashed lines) and rare vs.

frequent xx trials (pure global deviants, see Figures S4C and

S4D, solid lines). The effect was significant for both and slightly

earlier for xY than for xx trials, suggesting that deviant detection

for xx trials requires a longer integration time.

We next investigated whether global deviance detection was

abstract and invariant for sequence pattern by evaluating a

‘‘cross-condition’’ decoder trained on xx trials and tested on

xY trials (Figures S3E and S3F). We did indeed find that decoding

significantly generalized across the two sequence structures,

occurring late after the last item onset (�300–500 ms), indicating

that by that time, the neural code for global surprise was shared

by the two sequences with a different local structure. This finding

also suggests that the population subspace coding for global

deviance might be different from the respective subspace cod-

ing earlier for local deviance. We further assessed the indepen-

dence of these two subspaces by decoding global deviance

from the subspace that represented local deviance and found

that the late global mismatch response was indeed not encoded

in the subspace that showed a late local mismatch response

(Figures S4G and S4H).

Importantly, the generation of eye movements, found to be a

behavioral readout of local novelty detection, could not explain

neural deviance responses, as the effects remained after the

removal of trials in which the monkeys made an eye movement

(Figures S5A and S5B). The different timescales of the local and

global effect are consistent with previous results showing that pro-

cessing of global sequence violations requires longer times that

reflect conscious integration compared to the detection of local

deviants that can happen non-consciously.17,29 We assessed

how distributed the subspaces are by computing a ‘‘participation

ratio’’ (PR), which indicates the fraction of sites that contributes

significantly to the subspace (STARMethods). ThePR for the stim-

ulus subspace was 73% in monkey A and 74% in monkey H, for

context 72% and 73%, for local deviance 72% and 69%, and for

global deviance 74% and 69%. For item position, the PR was

74% and 70% for item 1, 72% and 70% for item 2, 74% and

67% for item 3, and 72% and 66% for item 4. Only sites that

were responsive to the sequences were considered, which were

64 for monkey A and 22 for monkey H. These ratios indicate that

the different subspaces were distributed across the populations

and not restricted to only a few responsive sites.

Decoding performance of the main effects after the last stim-

ulus in the sequence was not altered when interaction effects

were included (Figures S5C and S5D). Furthermore, all pairwise
6 Cell Reports 43, 113952, March 26, 2024
interactions could be decoded from the population activity,

potentially due to the block structure of the paradigm.

Altogether, these findings indicate that the vlPFC population

comprised multiple, overlapping, and distributed representa-

tions of all the features of the visual sequences used in the

local-global paradigm.

The representation of global context is learned
spontaneously during habituation and is updated upon
errors
Predictive-coding models suggest that following a global

context violation, the internal model is destabilized or updated,

at least transiently. We examined whether this could be detected

in the population activity within the subspace that represented

global context (xx or xY sequence) (Figures 4A and 4B). In both

monkeys, there was sustained activity persisting throughout all

trials and distinguishing xx from xY context, regardless of the

previous trial (Figures 4C and 4D). A trial in an xY block, for

example, led to an activation into the ‘‘xY direction’’ of this sub-

space during the first three stimuli in a sequence, whether

following a global standard xY|xY (Figures 4A and 4B, orange

solid lines) or a global deviant xx|xY trial (Figures 4A and 4B, or-

ange dashed lines). This observation is important, as it indicates

that the activity was not simply due to a lingering memory of the

previous trial but was sustained in the long term and resistant

to an occasional global deviant, as needed to encode the

global context of an entire session. Nevertheless, the encoding

strength of global context was reduced after the occurrence of

a global deviant (Figures 4A and 4B, dashed vs. solid lines).

This effect was transient, and activity was quickly restored within

the following 1–2 standard trials (Figures 4E and 4F).

We also examined how fast this activity built up during the first

50 habituation trials of a given block (Figures 4G and 4H). The

divergence between xx and xY blocks increased continuously

through the habituation period of 50 trials (linear regression of

the average difference between xY and xx blocks onto the trial

number for monkeys A and H, respectively: slope mean,

0.0069 and 0.0031; confidence interval, ±0.0015 and ±0.0007;

Z, 8.87 and 8.65; p = 7.40 3 10�19 and 5.26 3 10�18).

Together, these findings show that the population activity re-

flected the global sequence context that was inferred at a long

timescale while at the same time being updated on a shorter

timescale whenever a deviant sequence occurred. The former

finding indicates the spontaneous emergence of a neural repre-

sentation of global sequence regularity in the vlPFC, while the

latter fits with a transient destabilization or update of this model

after a mismatch in the learned global structure.

A shared population code for global deviance and
context
Current models of predictive coding hypothesize that, at each

level of the cortical hierarchy, separate neural populations

code for predictions and prediction errors30 According to this

hypothesis, expectation and mismatch or error signals should

be detected in distinct, segregated ensembles. Alternatively,

the representation of context might happen within the same

neural population that also emits the mismatch responses.

Such integration might be especially relevant for higher-order
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Figure 4. Neural signals reflecting the updating of global sequence knowledge

(A and B) Population activity projected onto the axis coding for global sequence knowledge, i.e., xY blocks (orange) vs. xx blocks (blue). Dashed curves indicate a

reduction in the neural separation of xY and xx blocks after a rare global deviant.

(C and D) In both blocks, the global context can still be decoded after a global deviant trial (after xx trials in xY blocks and after xY trials in xx blocks), i.e., when the

previous trial is suggestive of the opposite block.

(E and F) Activation of the global context axis averaged over the first three stimuli in each trial, aligned to rare trials in xY blocks (orange) or xx blocks (blue). Height

of bars indicates average across trials from pooled sessions, and error bars are the 95% confidence interval. Asterisks denote a significant change in global

context signal between the trial before the global deviance occurred (0) and the following trial (p < 0.05, paired t test).

(G and H) Buildup of sequence knowledge during habituation. The population activity during the 50 habituation trials of each block was projected onto the

population axis that encoded global context and averaged over the first three stimuli in each trial. Lines show average of blocks from all sessions (12 in monkey A,

20 inmonkey H), and the shaded area is the SE. The divergence between block types over trials was significant for both animals (linear regression of the difference

between xY and xx blocks, p < 0.05, see main text).

(I and J) Trajectories of the neural population that lead to maximal overall global deviance decoding performance (Figures 3E–3J), indicated by the gray shaded

area. Middle panel: zoom into the time prior to the onset of the last stimulus. Bottom panel: quantification of the context-decoding performance based on the

activation of the global deviance population.

Horizontal bars on top of the AUROC plots indicate periods of significant context decoding. Horizontal dashed line shows the chance level. Only trials following a

global standard sequence were used. Curves indicate average across all trials from all sessions, and shaded areas are ±SEM.
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areas such as the PFC, where mismatch signals interact with

model representations to promote model update. To address

this issue, we studied the overlap of global deviant and context

representations in the PFC. We projected the unfolding popula-

tion MUA onto the vector corresponding to maximal

global deviance decoding performance (±100 ms around the

maximum time bin) (Figures 4I and 4J). We found that the re-

sulting population trajectories also segregated as a function

of the global context, i.e., xx vs. xY blocks (Figures 4I and

4J). During the first three items, there was a slightly larger pop-

ulation trajectory deviation into the direction of global deviance
on xY blocks than on xx blocks. This was reflected by a signif-

icant AUROC for context decoding from these trajectories

(Figures 4I and 4J [bottom], obtained via random permutation

test and cluster-based correction for multiple comparisons;

STAR Methods). It is important to note that, conversely, this ef-

fect of context cannot entirely explain the deviance response to

rare xx trials because the latter elicited an additional trajectory

deviation after the last stimulus (Figures 4I and 4J [top], cyan).

We therefore conclude that at least part of the population code

for global deviance detection was shared with the representa-

tion of global context.
Cell Reports 43, 113952, March 26, 2024 7



Figure 5. Population responses to global context, local deviance, and global deviance generalize to new sessions and stimuli

Plots show the generalization of decoding to new sessions with either the same visual stimuli (gray curve) or difference stimuli (black curve). Generalization

performance (AUROC) is shown separately for decoders trained on global context (A and D), local deviance (B and E), and global deviance (C and F). Horizontal

lines on top of each graph show time points where the decoding performance was significantly above chance (p < 0.05).
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The population code for sequence structure generalizes
across stimulus identities
The above results establish that vlPFC population activity spon-

taneously forms partially overlapping representations of image

identity, serial order, global context, local deviance, and global

deviance. Furthermore, the above analyses were applied across

the two pictures that were presented in each session (A and B),

hinting at neural codes that generalize across stimulus identities.

To further evaluate the abstractness of these representations,

we exploited the chronic nature of recordings and tested the

generalization of the population codes across sessions with

different picture pairs, always presented on different days. We

found that the same neuronal population vectors allowed us

to decode global sequence context, local deviants, and global

deviants, respectively, even for stimulus pairs that differed

completely from those presented in the training session (Fig-

ure 5). This finding indicates that vlPFC sequence representa-

tions were stable for multiple days and, most importantly, were

reinstated across distinct picture identities, thus possibly reflect-

ing an abstract neural code. Although the decoding performance

was significantly above chance levels, it was not perfect. This

may indicate that part of the representation for sequence struc-

ture is sequence specific, or it may reflect neural drift or instabil-

ities in recording from the same neuronal populations across

days. Furthermore, differences in the generalization perfor-

mance of the neuronal populations between the two animals

(Figure 5B vs. Figures 5E and 5C vs. Figure 5F) might relate to in-

dividual differences in attention, learning the structure, or both. It
8 Cell Reports 43, 113952, March 26, 2024
is also likely that the reduced number of recorded units in the

second animal could have contributed to these differences in

generalization performance.

Rather than a difference between predicted and seen pictures,

the representation of local deviance could reflect the indirect ef-

fect of stimulus-specific adaptation (SSA) occurring at an earlier

stage such as inferotemporal cortex (IT). Neural responses

would be smaller on BBBB trials than on AAAB trials because

the response to picture B would have been adapted.31,32 Note

that SSA in IT is picture specific,33 but if the signal from multiple

picture-specific neurons in IT was integrated in the vlPFC, it

might explain the observed generalization across different pic-

tures. To test whether the vlPFC population response to local de-

viants reflected genuine deviance detection or merely SSA, we

performed an additional experiment in monkey A, presenting

new random sequences with different numbers of image repeti-

tions and changes (Figure 6A). Contrasting the activation evoked

by the last stimulus in XXXY sequences with the last stimulus in

WXYZ sequences allowed us to disentangle deviance and SSA,

as done with the many-standards control in mismatch negativity

(MMN) studies.34 In the many-standards control paradigm, devi-

ance detection predicts a novelty response to XXXY (where a

prediction develops about X) but none to WXYZ (in which image

identity changes on every trial and is unpredictable); SSA, how-

ever, predicts no difference, as the last picture is equally novel

and non-adapted in both cases. The results supported deviance

detection (Figures 6A and 6B): local deviants always led to a

larger response of this neural subpopulation (Figures 6C and



Figure 6. Abstract change and deviance detection by neural populations in monkey A

In a control experiment, four possible sequence chunks (see titles in A) were presented in a uniform random manner. Letters W–Z indicate any of 948 grayscale

images from the Brainscore database,35 changing randomly in each trial. A decoder for local deviance was trained on XXXY vs. XXXX trials (asterisk in A), using

leave-one-stimulus-out cross-validation.

(A) Predictive probability of the decoder for all sequence types and stimulus positions in a sequence (indicated by colors).

(B) Decoding performance in terms of AUROC for local deviants (XXXY vs. XXXX, black), novel stimulus, as well as vs. pure repeats (WXYZ vs. XXXX, gray) or any

transition vs. single repeats (XY vs. XX, dashed gray). All conditions could be decoded above chance level with p < 0.01 (randompermutation test). Horizontal bars

indicate significant time bins.

(C) Rare stimuli violating a local pattern of repetitions (XXXY) yielded a significantly higher response of this population than rare stimuli without preceding regularity

(WXYZ), indicated by horizontal bars on top.

(D) Examples of multiple units contributing to the population axis coding for local deviance. A large negative (left) or positive (right) coefficient means a lower or

higher firing rate for deviant stimuli, respectively.

(E) Population deviance response to repeats (light gray) or alternations (black) of three example images. Lines showmean across N number of trials (indicated by

small numbers in each plot), and shaded areas show ±SEM.
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S6), indicating that the vlPFC indeed encodes deviance from a

local context, regardless of picture identity. Indeed, we found

that MUA responses underlying this population subspace were

far more diverse than what would be expected based on the

adaptation hypothesis (Figure 6D), namely a simple decrease

in response amplitude upon repetition. This provides additional

evidence that PFC populations spontaneously encode sequence

deviance in an abstract way, as previously inferred indirectly

through brain-imaging signals.11

DISCUSSION

Our results suggest that prefrontal population activity encodes

concrete, event-specific features of sequential information

such as image identity, but also all other abstract aspects of

visual sequences such as the serial position of each picture

and/or task phase, the global sequence pattern, and local and

global sequence structure violations. The population code for

global sequence patterns generalized across similar pattern se-
quences, suggesting that it encoded abstract structural knowl-

edge. Importantly, these representations emerged spontane-

ously during passive viewing in the absence of any active task

that could have resulted in the association of specific sequences

with behavioral responses or other contingencies.

Abstract sequence processing in the PFC
Single neurons in the PFC encode abstract information about

stimulus category,36 number,37 and rules.5 More recently, the

development of multichannel recording techniques and ma-

chine-learning analytical tools has allowed for the sampling

and analysis of the activity of large neuronal populations. This re-

sulted in the re-emergence of the Hebbian concept of neural as-

sembly,38 in which the joint neuronal population activity consti-

tutes the basic computation unit in the brain.16,23,39 Abstract

coding in the PFC has been recently probed at this level of

ensemble activity. Population activity in two frontal areas, the or-

bitofrontal and anterior cingulate cortex, was shown to encode

abstract information in a task where stimulus identification and
Cell Reports 43, 113952, March 26, 2024 9
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knowledge of context were both necessary to predict reward.40

Population activity in the PFC (but also in the hippocampus) was

shown to have a low-dimensional geometrical structure that al-

lowed the linear classification of abstract features defined by

the association of a stimulus with its operant and reinforcement

contingencies.1 At the same time, the code was high-dimen-

sional enough to allow the classification of diverse combinations

of specific inputs. The same geometrical properties exist in the

humanmedial frontal cortex for cognitive control, where the pop-

ulation code was both task-general for performance-monitoring

signals and task-specific in two paradigms, the Stroop task and

a multisource interference task.41

Our results demonstrate the ability of the prefrontal population

code to represent simultaneously such abstract and content-

specific variables spontaneously, through mere exposure, in a

no-report sequence paradigm. We suggest that this mechanism

could be the basic computational unit mediating the perception

of sequences. Learning of abstract features can therefore occur

spontaneously through observation without specific instructions

or associations of stimuli with rewards or other contingencies.

Implications for predictive processing
We can conceptualize these prefrontal representations of se-

quences as internal mental models that may also operate to

generate predictions onto the external world.42–46 In previous

work, the implementation of such mental models and predictive-

coding computations was inferred indirectly from macroscopic

brain signals related to sequence violations.11,18,29,47,48 These

studies were useful in guiding the location of our intracortical re-

cordings, which in turn revealed in much higher detail the neural

code of these computations. Our results show that even under

passive sensory stimulation conditions, assemblies of PFC neu-

rons form abstract mental models of statistical regularities that

are frequently encountered in the sensory input. The function of

thesemodels could be to project predictions that bias perception,

guide decisions, and facilitate sensory processing.9,49,50

In such predictive-coding models, the incongruence of sen-

sory information with an already established mental model re-

sults in a surprise signal that serves to update the model.49,51

Based on this main hypothesis of predictive coding, deviations

from learned stimulus sequences of variable complexity have

been used to probe the existence of multiple levels of predictive

representations in the brain, showing that thesemodels unfold at

multiple hierarchical scales, reflecting different levels of abstrac-

tion and engaging different cortical areas.9 In general, sequence

violations result in mesoscale error signals with faster latencies

for low-order violations than for higher-order violations.17,18

These studies inferred that the long-latency, higher-order error

signals arose from the PFC, in agreement with recent modeling

work inwhich predictive deep neural networks develop latent im-

age representations in higher areas of amultilayer architecture.52

Indeed, our findings showing longer-latency error signals in

spiking activity for higher-order sequence violation agree with

these predictions.

Themost commonly studied brain signal to sequence deviants

is mismatch negativity (MMN).53 In the classical auditory oddball

paradigm, a local regularity is established by the repetition of one

tone, which leads to a reduction in brain responses; at this point,
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the presentation of a rare (deviant) tone yields the MMN signal, a

stronger negative deflection of the scalp electroencephalog-

raphy compared to repeated stimuli.54 Although feedforward

adaptation may contribute to the MMN,31,32 several results indi-

cate that it, and similar visual violation responses,55–58 primarily

reflect predictive processing.31,46,59,60

The source of auditory MMN has been localized in the second-

ary auditory cortex, superior temporal gyrus, and PFC.61–63

Apart from local regularities, humans and non-human primates

can infer sequence regularities at a more temporally extended

andabstract level, for instance theextractionof the samestructure

or pattern (e.g., xxY) from sequences comprising different stimuli

(e.g., AAB and CCD).11 Processing such higher-order sequential

structures necessarily abstracts away from the specific stimulus

identities and may therefore engage higher-order association

cortical areas, in particular the PFC. We have previously studied

these two levels of sequence processing using a hierarchical

‘‘local-global’’ sequence paradigmwhere auditory stimuli are pre-

sented in short sequences while measuring macroscopic brain

signals. During an entire block of trials, all sequences follow

the same pattern, either four repeats of the same stimulus

(e.g., AAAA) or three repeats followed by a deviant (e.g., AAAB).

Following the repeated presentation of one of these global

sequence patterns, the ability to detect global violations is probed

by presenting sequences that deviate from the pattern (AAAB or

AAAA, respectively; global deviants). In contrast to the MMN,

mismatch responses to such global deviants are delayed, have

been assumed to require consciousness, and predominantly

arise from higher-order cortical areas of humans and ma-

caques,17,18,29,64 including the vlPFC. Intracranial recordings of

global field potentials indicate that the PFC sends feedback sig-

nals to upstream cortical areas after the violation of global

sequenceexpectations.18 From theobservation of suchmismatch

signals, it was indirectly inferred that thePFCand associatedhigh-

level areas constitute an internal mental model of the ongoing se-

quences. We demonstrated here that neural populations in the

vlPFC indeed encoded abstract global sequence violations.

A central hypothesis of Bayesianpredictive processingmodels

is a functional segregation of predictions that account for the

causes of sensory inputs65–67 or expectations and error repre-

sentations, namely different neuronal populations representing

internal models about sensory input and their update, respec-

tively.30,51,68–70 Our results confirm the existence of both error

(mismatch) and expectation (or prediction) signals in the spiking

activity of the PFC, as predicted by the theory and in agreement

with macroscopic signals recorded with electrocorticography in

the primate brain.18,71 However, we traced global sequence

context and its mismatches to overlapping population sub-

spaces, indicating an integrative level of predictive processing

in the PFC. This observation could imply a revision of current

models of predictive-coding circuits that suggest distinguishable

neuronal activity in higher-order cortical areas (including thePFC)

for putative predictions and prediction errors.72,73

Frontal cortical areas have also been shown to provide contex-

tual information in the rodent V1,74 possibly through gain modu-

lation of neuronal activity.75 In our recordings, contextual and

mismatch signals were coded by activity vectors (population

subspaces) within the same neural population. Specifically, the
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prefrontal neural population that emitted abstract responses to

pure global deviations from a learned sequence also represented

the global context. This convergence of predictive-coding com-

putations at the population level may be a particular feature of

PFC neurons, which are known for their role in integrative pro-

cesses andmixed selectivity properties.15,24 Interestingly, axons

from the anterior cingulate cortex, a medial frontal cortical area,

projecting to V1 in the rodent brain were not found to be modu-

lated by deviant stimuli.74 This discrepancy might point to a

different role of the primate PFC, where we found responses to

deviant stimuli, compared to rodent frontal cortex. Alternatively,

this could indicate a functional specialization of primate frontal

cortical areas, with the vlPFC more likely to reflect both types of

responses (deviant andcontext). It isworth noting that, in an audi-

tory oddball paradigm, context-dependent mismatch responses

were indeed observed in the rat PFC.76

An abstract neural code for stimulus transitions
With our control experiment, we found that the neural subspace

that conveyed local deviance responses was also activated for

any stimulus change, independently of image identity. Such a

response could stem from two distinct mechanisms: a higher-or-

der process of prediction error, with neural responses represent-

ing the violation of a top-down prediction, i.e., the difference be-

tween what was observed and what was predicted,18,46,74,76,77

or alternatively a passive feedforward process of SSA.32,78,79

Our results falsify the hypothesis that SSA could explain the

observedmismatch detection response, since a rare local deviant

(last stimulus in XXXY trials) elicited a stronger population

response than an equally rare stimulus that was not preceded

by a predictable context (WXYZ trials; Figure 6). However, each

stimulus in aWXYZ sequence still elicited a response of the ‘‘devi-

ance population.’’ As this code generalized across images (Fig-

ure 6B, light-gray lines and dashed gray lines), it can be inter-

preted as an abstract code for any stimulus change, thus

encoding whether the present image was novel or was repeated.

The response of this ‘‘change detector’’ population decreased

with every transition (Figure 6A) and was weaker for a transition

following repetitions (XXXY) than for the fourth transition of a

sequence (WXYZ). Hence, the adaptation of neurons that encode

abstract change information could serve as a building block to

encode other structural variables, such as deviance or number.

Implications for perceptual inference and conscious
perception
It has been suggested that PFC participates in a global neuronal

workspace (GNW) that represents any conscious experi-

ence.80,81 Indeed, several studies indicate that the contents of vi-

sual consciousness can be decoded from prefrontal neuronal

activity and that PFC activity signals whether a stimulus was

consciously perceived.7,8,82,83 The present results are congruent

with the GNW hypothesis, since they indicate that the PFC con-

tains superimposed neural codes for all features of the perceived

visual sequences, whether concrete or abstract. Some of these

features encode expectations of the upcoming sequence, a

finding that fits with prior evidence that PFC anticipatory signals

may be critical for detecting perceptual ambiguity and biasing

conscious perception through ongoing fluctuations83–85 or for
the provision of perceptual hypotheses.46,86 Our results showing

decoding of context from prefrontal populations indeed suggest

a strong influence of expectation in the activity of prefrontal en-

sembles during conscious visual perception. Importantly, due to

the passive viewing and the absence of a motor-related task,

these prefrontal representations could be viewed under the

prism of predictive processing theories of consciousness (e.g.,

neurorepresentationalism) that, in contrast to active inference,77

do not consider behavioral output as critical for realizing

phenomenal experience.67,87–89

Limitations of the study
Generalization of decoding provides strong evidence for the

application of the same internal models to novel sensory se-

quences with the same structure, a signature of abstract pro-

cessing. However, due to the rather low levels of complexity in

the local-global task, it will be important to test the validity of

our observations in sequences with higher levels of complexity

at several steps of the hierarchy recently proposed.9,90,91

Furthermore, the local-global paradigm has limitations in

probing conscious perception, since it does not include a condi-

tion where the sequences are perceptually suppressed and fall

below the threshold for conscious perception. Including such a

contrastive paradigm aswell as testing whether image identifica-

tion is influenced by features that are processed consciously or

not could test the relation of the observed activity patterns to

conscious perception. Also, a comparison between a no-report

and report version of the paradigm could separate perceptual

from post-perceptual effects in population decoding.

As only male animals participated in this study, the sex of the

animals could also reflect a limitation of our study.

Another limitation of our study relates to potential confounds

of anticipation of reward and orofacial movements on neural pat-

terns92 due to the connectivity of PFC with mouth representa-

tions in the primary motor cortex.93 Changing the time of reward

following the last stimulus offset could resolve this issue in future

studies.

Finally, it remains to be determined how these PFC signals in-

fluence downstream or upstream cortical areas. Future studies,

recording simultaneously frommultiple cortical areas and layers,

could probe how inter-areal communication contributes to pre-

dictive processing.

Conclusion
Our results reveal that the PFC, even in the absence of overt

behavior, spontaneously encodes visual sequences at multiple

levels, including abstract codes for serial position and/or task

phase and sequence pattern. The neural code relies on a super-

imposition of multiple vector subspaces, each representing a

specific dimension of the perceived sequence.
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Two adult male rhesus macaques (A and H, 9–10 kg, 19 and 16 years old, respectively) participated in this study. Both animals were

pair-housed. They had previously been implanted with a custom-made skull-form-specific titanium headpost and trained on a pas-

sive visual fixation task with liquid reward in a primate chair. Daily water access was controlled during the experimental period. All
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procedures including maintenance and care of the animals were conducted in accordance with the European convention for animal

care (86–406) and theNational Institutes of Health’s Guide for the Care andUse of Laboratory Animals. Animal studies were approved

by the institutional (CEA) Ethical Committee (CETEA protocol #A18_028).

METHOD DETAILS

Sequence paradigm
We used an adaptation of the local-global paradigm17 with visual stimuli. The stimuli were 10 colored images of objects, matched in

luminance (Figure 1D). Fixed pairs of images were used in every experiment, here denoted as stimulus A and B. The paradigm con-

sisted in the presentation of binary visual sequences composed of 4 items. Each itemwas displayed for 300ms, with an inter-stimulus

interval (isi) of 300ms (stimulus onset asynchrony, SOA - 600ms). The sequence could be one of four: aaaa or bbbb, denoted as xxxx;

and aaaB or bbbA, denoted as xxxY, where the capital letter indicates a local deviant item. One sequence was presented per trial

which were organized in blocks of 200 trials. During each block, one sequence was used as the frequent, global standard sequence

which was established during 50 habituation trials at the beginning of the block. 80% of the remaining 150 trials were global stan-

dards and 20% were global deviants, which differed in the last position compared to the standard. Each of the four sequence types

was used as the global standard sequence in one block. We will denote a global context according to its global standard sequence:

xxxx block for aaaa-frequent and bbbb-frequent or xxxY block for aaaB-frequent and bbbA-frequent. We will furthermore denote

trials according to their context: xY|xx indicates a trial with a local deviant that occurs in a block of frequent xxxx sequences. The

four trial types are thus xx|xx, xY|xY (global standards) and xx|xY, xY|xx (global deviants).

This two-by-two design enabled us to study effects of lower-order (local) and higher- order (global) sequence regularity. Consider

for instance a single xxxY sequence: it ends with a local deviant, an image that violates the repeated structure of the previous three

images. However, assuming that monkeys quickly detected the global sequence regularity in a block, the same local deviant, occur-

ring within a block of similar xY global standard trials, is predictable and may no longer generate a global surprise (xY|xY, ‘‘predicted

local deviant’’). Conversely, a rare xx trial, which does not violate the local context, may elicit a global surprise when presented among

many xY sequences (xx|xY, hereafter called ‘‘pure global deviant’’).

Each trial started with the display of a black fixation spot (diameter of 0.3�) at the center of the screen. After 300ms of fixation by the

monkey, the fixation point disappeared and the sequence was displayed centrally with stimuli at a size of 8� per visual angle. The
animals had to maintain the gaze within a window of 8 degrees of visual angle centered on the stimulus. A liquid reward was given

for trial completion 100 ms after offset of the last item.

For monkey H, 5 stimulus pairs were used during a total of 10 experiments and for monkey A, 4 stimulus pairs were used during a

total of 6 experiments.

Repetition vs. change control experiment
We performed two sessions of an additional experiment with monkey A during which we showed four different types of sequence

chunks containing each 4 images. The types of sequences were XXXX, XXXY, XYYZ and WXYZ, where letters indicate any of 948

grayscale images of objects from the Brainscore database,35 randomly changing with each sequence presentation. Sequence types

were uniformly distributed across a recording session so that there was no global context. All stimuli could occur in any position and

were presented 1 to 5 times. This experiment served to control for stimulus-specific adaptation that could underlie the deviance

response to the last stimulus in XXXY trials. As we used a broad range of stimuli, the images used as WXY are expected to be on

average as distant from Z than X is from Y in XXXY trials, thereby leading to the same amount of stimulus-specific adaptation for

the population responding to Y (in XXXY) as to Z in (WXYZ). The timing of the stimuli were the same as in the local-global experiment

and the reward was given at 100 ms after offset of the last stimulus.

Implantation of microelectrode arrays
The macaques were tranquilized in their cage by intramuscular injection of ketamine 1000 (3 mg/kg) and dexmedetomidine

(0.015 mg/kg). Once in the operating room, they were placed in a stereotactic frame and deeply anesthetized (assisted respiration)

by inhalation of oxygen (20%) and sevoflurane (1.5–2%). An intravenous catheter was installed for the administration of physiological

fluids (NaCl with 5% glucose, 10 mL/kg/h). A steroidal anti-inflammatory drug, the methylprednisolone (solumedrol 1 mg/kg i.m.) or

dexamethasone (dexazone 0.5 mg/kg i.m.) is administered to prevent swelling of the cortex as well as, an antibiotic (cefazoline

50 mg/kg i.m.) and a morphine derivative (buprecare 0.02 mg/kg i.m.). All surgical procedures were performed aseptically, and re-

cordings of heart rate, respiration patterns, blood pressure and body temperature were monitored throughout the surgery.

Macaques were given a methylprednisolone (monkey A, 1 mg/kg) or dexamethasone dose (monkey H, 0.1 mg/kg) the day before

the implantation to avoid brain edema. Monkey H received another dose of dexamethasone (0.5 mg/kg) the day of implantation. The

implantation of the gas sterilized multielectrode array began with a longitudinal incision in the skin. The skin and underlying muscle

was retracted and a craniotomywas performed over the lateral prefrontal cortex using a surgical drill. The bone flapwas removed and

then a U-shaped opening in the dura mater was made to expose the cortex. Hyperventilation after dura opening was used to reduce

intracranial pressure and avoid swelling of the cortex. The Utah microelectrode array was implanted into the inferior convexity of the

prefrontal cortex, 1–2 mm anterior to the bank of the arcuate sulcus and below the ventral bank of the principal sulcus, using a
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pneumatic inserter (Blackrock Microsystems). The dimensions of the array was 4 3 4 mm in a 10 3 10 electrode configuration

(96 active recording electrodes) resulting in an electrode-to-electrode distance of 400 mm. The electrode length was 1 mm. The ti-

tanium connector that can be connected to the electrophysiological recording device was implanted on the skull with titanium

screws. Then the dura mater was sewn back together, the bone flap was reinserted and secured by a thin titanium strip. Finally,

the skin was sutured. After the electrode array implantation, injections of antibiotics (cefazoline 50 mg/kg i.m.) were given for

10 days and buprenorphine (0.015 mg/kg i.m.) for 3–5 days depending on the pain level.

Data preprocessing
The recorded broadband signals were preprocessed using MATLAB (MathWorks). Broadband neural signals (0.1–30 kHz) were re-

corded with a Cerebus neural signal processor system (Blackrock Microsystems) and bandpass filtered offline between 0.6 and

3 kHz using a 2nd order Butterworth filter. Spikes were detected with an amplitude threshold set at five times the median absolute

deviation and spike events larger than 50 times themean absolute deviation were discarded. Further, spike events with an inter-spike

interval of less than the refractory period of 0.5 ms were also discarded. Spike times were aligned to the onset of the photodiode

signal indicating the actual time of presentation of the last item in a sequence. All further analyses were performed with Python. Firing

rates of individual sites were computed from the spike times in non-overlapping bins of 25 ms and smoothed with a Gaussian kernel

corresponding to 50 ms standard deviation. For the data shown in Figure 6 and Figure S5, firing rates were computed with a moving

average window of 50 ms and a step size of 10 ms in order to obtain a better temporal resolution.

Spike sorting
To isolate spikes from individual neurons we performed dimensionality reduction of the waveforms using Uniform Manifold Approx-

imation and Projection (UMAP), in Python. We then employed the HDBSCAN clustering algorithm to cluster the reduced data and

obtain cluster labels for each spike. To ensure that the waveforms in a cluster all belong to a unique neuron, we only retained clusters

for which the timing of the spikes respected a refractory period of 2 ms while firing above 5 Hz. To this extent, we used the function

‘‘rpv_contamination’’ of the UltraMegasort2000 toolbox.94 The function returns an estimate of the proportion of contamination by

rogue spikes from other neurons. We selected only neurons for which the proportion of contaminating spikes was significantly lower

than 5%. Finally, if any two clusters hadmore than 30%of their spike times overlapping within a 2mswindow, we selected the largest

cluster to avoid selectingmultiple instances of a waveform that crossed the threshold at multiple points. This spike sorting procedure

was performed on each channel independently.

QUANTIFICATION AND STATISTICAL ANALYSIS

All of the below analyses were performed in Python.

Mixed selectivity analysis
To assess selectivity of single neurons in PFC, we performed an ANOVA on the activity of individual neurons in all six recording ses-

sions of monkey A. The independent variables were stimulus identity (A or B), local deviance and global deviance as well as pairwise

interactions. The dependent variable was the average firing rate during 1 s after onset of the last stimulus. As the sample size was

unbalanced for global standard and deviant trials, we used subsampling of global standards. We visually inspected and confirmed

normal distribution. ANOVA was performed for a total of 100 random subsamples. The resulting p values for the coefficients of the

independent variables were corrected formultiple comparisons across all recording sessions, separately for each sample, using false

discovery rate (FDR)21;. Neurons with a significant sample-averaged coefficient (p < 0.01) for only one variable were considered to

have classical selectivity, those with significant coefficients for at least two variables but not for interactions as linear mixed selective

and those with significant interaction effect as non-linear mixed selective. For statistics, see Table S1 and the text of the Results

section.

Effect of context in individual channels
We separately assessed the effect of context on the responses of individual sites in order to determine whether a reduction of firing

alone could explain the difference between xx and xY blocks. We only included channels in the analysis that were significantly modu-

lated by the sequence presentation. As a criterion for sequence modulation, we tested if there was a difference in firing rate of indi-

vidual channels during the 300ms fixation period prior to sequence onset and the first 300ms after presentation of the last sequence

stimulus. We used pairwise two-tailed t test per recording site and recording session and FDR across all sites and sessions within an

animal to correct for multiple comparisons. Sites with a corrected p value <0.01 were regarded as being modulated by sequence

presentation. We then used, for each of these channels, independent two-tailed t test on the response averaged over the duration

of the first three stimuli of a trial. P-values were also corrected with FDR and sites with a p value <0.01 were considered as being

modulated by sequence context (xx vs. xY block). Given the sign of the t-value, we could infer whether a channel showed reduced

or increased firing for xY blocks compared to xx blocks. Values for trial N and mean values are given in the respective result section.
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Population analyses
Multiple linear regression

We assessed how the sequences were represented on the neural population level by computing the axes across theMUA space that

carried most information about the variables stimulus identity, global context, local and global deviance, without pre-selection of

recording sites. For this, we used multiple linear regression.14 We performed two separate analyses, one to study the representation

of the sequences prior to the last stimulus, and one for the time after onset of the last stimulus, in order to measure responses to

deviants. For the time before the last stimulus onset, the variables stimulus identity and global context were considered, whereas

the trial condition after onset of the last stimuluswas defined by the variables stimulus identity, local and global deviance. As deviance

responses following the last stimulus might be dynamic, we performed a separate regression per time bin between 0 until 1.4 s after

onset of the last stimulus.

Themultiple linear regression was performed separately for each recording channel with the above-mentioned sequence variables

as independent variables and the MUA (r) of channel i (in a time bin t) as dependent variable:

rt;I = bstim
t;i 3 stimulus+bloc

t;i 3 local +b
glob
t;i 3global + εt;i (Equation 1)

The above equation holds for time bins t after presentation of the last stimulus. For the analysis of sequence structure represen-

tation before the last stimulus, the responses between 0 and 1.8 s after sequence onset were averaged per trial and a single regres-

sion was performed per recording channel.

ri = bstim
i 3 stimulus+bctx

i 3 context + εi (Equation 2)

ε is a noise parameter per channel (and time bin). r is a vector of dimensionNtrials, as are the independent variables stimulus, local,

global and global context. Those were dummy variables, with A = �1, B = 1 for the stimulus variable; local or global standards = �1,

local or global deviants = 1; xx block = �1 and xY block = 1. This approach results in a coefficient b per channel, variable, (and time

bin) that indicates how much the firing of a channel was influenced by a certain variable.

The set of the 96 coefficients (number of recording channels) for one sequence variable k (and time point t) constitutes a

96�dimensional vector (k) (or (k)t) that we denote as the population axis representing this sequence variable. Note that Mante

et al.14 orthogonalized these axes and denoised them using principal component analysis. We chose not to add these steps after

regression in order to measure orthogonality resulting directly from the regression and because the data did not require further

denoising. The detailed N values for each recording session and condition are given in Table S2.

Decoding from the population trajectories

In order to use the resulting population axes for decoding, the MUA of all channels was projected onto the population axis of each

sequence variable k, respectively.

r
ðkÞ
j;t = Rj;t,b

ðkÞ (Equation 3)

or

r
ðkÞ
j;t = Rj;t,b

ðkÞ
t (Equation 4)

for time-varying population axes.

j is the trial index. Rj,t is a 96�dimensional vector of the population firing rate in a single trial j and time bin t. rj,t is a scalar and

corresponds to the dimensionality-reduced population activity in one trial j and time bin t in the subspace carrying most information

about a sequence variable k. This trial-by-trial projection was then used to classify trials according to each sequence variable. The

sign of these projections was dependent on the definition of the independent variables (see above). A positive activation along the

axis coding of stimulus identity, e.g., corresponded to stimulus B, whereas a negative activation corresponded to stimulus A. As a

measure of decoding performance, we computed the area under the ROC curve (AUROC) by varying the decision boundary for

classification.

Cross-validation

The decoding performance was cross-validated both within and across sessions. Within each session, we used 10-fold cross-vali-

dation, meaning that 90%of all data was included for the regression and the remaining 10% for projecting test data onto the obtained

axes. This was repeated 10 times so that all trials were used for testing. We shuffled the data prior splitting and ensured a balance of

trial conditions in the training data. The reported performance within a session is the AUROC across all tested trials.

For the cross-validation across sessions for the variables global context, local and global deviance, we used the population axes

from one random training fold of each session and projected all trials from all other sessions onto these axes. We then computed the

AUROCs for each pair of training and test sessions and reported the performance separately for pairs that had the same or different

stimulus pairs.

Decoding of serial position

We used multinomial logistic regression to predict the item position in a sequence based on the neural population responses. This

was a classification with 4 target classes (item 1–4). The 300 ms after onset of a stimulus, shifted by 100 ms, were labeled with the

item number of the most recent stimulus. The activity of each channel was averaged in these intervals, resulting in 4 values per trial.
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The 4 items from all trials were pooled and used to train the classifiers, using 10-fold cross-validation. Only xx trials were used for

training. For testing, the activity in each test trial and time bin between 100ms prior to sequence onset until 1.4 s after sequence offset

was passed through the trained classifier. This resulted in predictive probabilities for item 1 to 4 over time and allowed us to study the

dynamic encoding of itemposition throughout a trial. We also assessed item position classification on incomplete trials. Themonkeys

could break fixation at any time during a trial by moving the gaze outside of the 6� fixation window which aborted the presentation of

the sequence. We computed the predictions for item position 1 to 4 for trials interrupted after presentation of the first, second or third

stimulus. Note that the fixation break could have occurred at any time between onset of one stimulus and onset of the next stimulus,

meaning that the time the monkeys perceived the last stimulus varied within one condition.

Cross-condition decoding of global deviance

To test for encoding of global deviance irrespective of local deviance, we trained a separate binary classifier to predict global devi-

ance for the time after last stimulus onset, on xx trials only and tested on xY trials.We used logistic regression on the pooled data from

all sessions, per animal. This was done to reduce the impact of the block structure of the paradigm within each session, which could

have been problematic in this case, as the classifier was trained from global deviants and standards from separate blocks (e.g., rare

xx in an xY block vs. frequent xx in an xx block). Decoding performance was again measured as AUROC for each time bin, separately

for each session.

Decoding of deviance or change in control data

We used logistic regression to predict whether a sequence chunk was XXXY or XXXX (deviance decoder), based on the activity after

the last stimulus. We used a time-varying decoder in time bins of 50ms, andwith a step size of 10ms. Image identities were balances

in both conditions, i.e., we only included stimuli for training that occured in XXXY and XXXX chunks, resulting in 757 unique images.

Decoder performance was cross-validated by leaving trials with one image out for testing. We hence trained 757 different classifiers.

Images that did not occur in both conditions (191 different images) were only used once for testing but not included in the training set.

We additionally trained a decoder to detect any change from a repetition by contrasting the response to alternations and repeats in

the second and third position of sequence chunks (i.e., the second stimulus inWXYZ and XYYZ trials vs. the second stimulus in XXXY

trials as well as the third stimulus in WXYZ vs. the third stimulus in XYYZ trials). The same cross-validation approach was used to test

this decoder.

Participation ratio
To evaluate the fraction of sites that contributed to the encoding of each subspace, we introduced a measure of participation ratio. It

represents the percentage of sites that have significant coefficients for each subspace, respectively. We performed 100 random per-

mutations of trials and recomputed the coefficients using the above described population analysis. As a time point, we chose the time

bin ofmaximumdecoding performance for each sequence variable. The fraction of absolute permutation coefficients that were larger

than the true absolute coefficients resulted in a p value for each subspace. P-values were corrected across all subspaces using FDR.

A p value <0.05was regarded as significant. The participation ratio was defined as the fraction of sites with significant p value for each

subspace.

Assessment of learning effects during the habituation period
We measured whether the code for global context evolved over the course of the habituation period. For this, we projected the ac-

tivity of single habituation trials (0–1.6 s after sequence onset) onto the population vector that separated xx from xY blocks during the

test trials within the same session. As we had used 10-fold cross-validation to obtain those vectors, we also obtained 10 projections

of the same habituation trials. We averaged those projections across folds to obtain one activation value for the global context tra-

jectory per trial. To assess learning, we tested the evolution of the difference between xY and xx blocks over the 50 habituation trials

using a linear regression of this difference onto trial number. For this, we first averaged the projections from the two blocks of the

same type within a session, then computed the difference between block types and averaged the difference over of all sessions

for each animal. Statistics are given in the main text.

Statistics
Statistical tests for single-neuron and single-channel analyses are described in the respective paragraph (see above).

Random permutation test
To test the significance of decoding performance from population trajectories, we used a random permutation test with cluster-

based correction for multiple comparisons.95 After estimating the population axes and projecting single trials onto these axes, we

generated 100 surrogate datasets by shuffling the trial conditions of test trials. We then computed the AUROCs for the different

sequence variables based on the trajectories with the shuffled trial labels. We averaged the true AUROCs across recording sessions

(10 in monkey H, 7 in monkey A) and likewise obtained 100 surrogate session-averages. The true AUROCs per sequence variable

were transformed into t-values by subtracting the average over the permutations and dividing by their standard deviation, separately

for each time point. Absolute t-scores that passed a threshold of 3 standard deviations were candidates for significant clusters in

time. This procedure corresponds to a two-tailed test. A correction for multiple comparisons across time was performed by

comparing the sum of t-values within each true cluster with the sum of t-values within surrogate clusters. Those surrogate clusters
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were obtained by transforming each of the 100 permutation samples into t-values by subtracting the mean of the remaining 99 sam-

ples and dividing by their standard deviation. If a true cluster had a sum of absolute t-values larger than 95% of the largest surrogate

clusters, it passed the threshold for significance which was set to a type-1 error of 5%. For the test of decoding performance across

sessions, the same procedure was followed. First, we averaged for each test session the performance based on the decoder trained

on the different possible training sessions (same or different stimulus pair). Second, we averaged the 10 or 7 test sessions. The same

was done for the surrogate AUROCs based on shuffled trial labels. The same test was also performed for the cross-condition decod-

ing of global deviance and the effect of deviance onto eye movements (see below).

Analysis of eye movements
The eye velocity (v) was measured from the non-calibrated horizontal (x) and vertical (y) eye position recording by computing the dif-

ference between time bins (t).

vt = jxt � xt � 1j + jyt � yt � 1j (Equation 5)

To test for an effect of local or global novelty on eye movements, the median smoothed velocity (20 ms moving average) in each

condition was computed across trials from all sessions and tested using a random permutation test (see above). We then controlled

for eye movements in the time window during which there was a significant effect of deviants, +- 100 ms to be more inclusive, by

removing deviant trials with an average velocity in this time period above the median eye velocity in the standard trials. The effect

of deviance in the neural data was visualized for all trials vs. the controlled case (Figures S5A and S5B).
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