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Different notions of Passivity and
their characterization in the port-Hamiltonian formalism

Mario Spiritoa, Bernhard Maschkea, Yann Le Gorrec1

aUniversité Claude Bernard Lyon 1, Villeurbanne, 69100, France (e-mail: mario.spirito@univ-lyon1.fr).

Abstract

In this work, we give an overview of different notions of stability, dissipativity and passivity. In particular, we first focus our
attention to incremental stability, convergence dynamics, and contractive systems. We then consider their extension to the case of
open systems, i.e., dynamical systems that interact with the surrounding environment via inputs and output signals, hence we address
different concepts of dissipativity/passivity, such as incremental, convergence and differential dissipativity/passivity. We write the
notions into an unifying framework in order to make an easier comparison among them by leveraging coordinate-free definitions.
We then obtain conditions to determine the related storage functions for a class of passive system, i.e., port-Hamiltonian dynamics.
In particular, we show what additional conditions must be satisfied by a passive system with its associated storage function in
order to fit the non-standard passivity definitions. We obtain the relative storage functions based on the knowledge of the system
Hamiltonian that for these systems plays the role of storage function for the standard passivity notion.

Keywords: Incremental Stability, incremental Passivity, Convergent dynamics, Contraction, differential passivity,
port-Hamiltonian systems, incremental port-Hamiltonian systems

1. Introduction

The aim of this work is to provide in Sections 2 and 3 an
overview of different notions of stability that have had a rele-
vant impact into the control community, such as Lyapunov and
incremental stability, convergent dynamics, contractive system,
and a new stability concept for dissipative Hamiltonian systems
that has been inspired by maximal monotone structures. The
extended notion of Lyapunov stability to open systems, i.e.,
systems with inputs and outputs, is the so-called Dissipativity
property, and a particular case of the latter is the so-called Pas-
sivity. They are recalled in Section 4.

The former stability definitions are directly related to some
passivity properties when we deal with a input-output relation-
ship in the state space. We thus aim at providing a general
overview of different dissipativity notions in Section 5, and
then characterize alternative passivity notions in Section 6. In
particular, we aim to find an uniform framework to compare:
incremental passivity, convergent passivity, differential passiv-
ity, and the incremental port-Hamiltonian systems (here called
maximal monotone passivity).

The discussed notions are applied to the class of dissipative
and port- Hamiltonian systems. In particular, we analyze the
stability conditions in the framework of dissipative Hamilto-
nian systems in 7. Furthermore, because port-Hamiltonian are
a particular class of passive systems, we aim to describe in Sec-
tion 8, the conditions under which a passive system can satisfy
the other passivity notions, while seeking the relative storage
function based on the knowledge of the system Hamiltonian.
We then summarize the paper content in Sec. 9. We also pro-
vide, in Appendix A, the concepts of variational and prolonged

systems that are used when discussing contractive systems and
differential dissipativity/passivity.

The introduction is intentionally left short because the lit-
erature review is given and detailed throughout the text when
introducing the corresponding concepts.

Notation: Given a real-valued function H : Rn → R,

we denote its gradient (in covector form) as
∂H

∂x
= ∂xH, and

for the sake of simplicity we write its column vector form as

∇H(x) =
∂H

∂x

>

(x). Its Hessian will then be written as ∇2H(x) =

∂

∂x
·
∂H

∂x

>

(x). For a matrix-valued function J(x) ∈ Rn×n, x ∈ Rn,
we consider, with some abuse of notation, that its time deriva-

tive, to be written as J̇(x) =
∂J(x)
∂x

ẋ, or, column-wise, we write

J̇i(x) =
∂Ji

∂x
ẋ, where Ji(x) refers to the i-th column of J(x) .

When we evaluate J̇(x)∇H(x), we write it in matrix form as

J̇(x)∇H(x) =
∂H

∂x

∂>J

∂x
ẋ, meaning that the resulting vector will

have as i-th element J̇i∇H =

ẋ>
∂Ji

∂x

>> ∇H(x) =
∂H

∂x

∂>Ji

∂x
ẋ.

Along the text, for the sake of readability, we might use the fol-
lowing contract notation ∇Hi = ∇H(xi), Ji = J(xi), Ri = R(xi),
and gi = g(xi), i = 1, 2.
We denote the set of nonnegative real as R≥0. Given a subset
D ⊂ R≥0, a continuous function α : D → R≥0 is said to belong
to class K if it is strictly increasing and α(0) = 0. A contin-
uous function α : R≥0 → R≥0 is said to belong to class K∞
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if it belongs to class K and α(∞) = ∞. A continuous function
β : D×R≥0 → R≥0 is said to belong to the classKL if, for each
fixed s, β(r, s) belongs to class K and, for each fixed r, β(r, s)
is decreasing in s with β(r,∞) = 0. Given a domain X ⊆ Rn,
a continuous function V(x, t) : X × R → R≥0 is called a posi-
tive definite function if V(0, t) = 0 and for some K∞ function α,
V(x(t), t) ≥ α(|x(t)|) for all x ∈ X and t ∈ R.

2. Stability Theory

Stability theory plays a significant role in engineering and
control theory, although the approach can be used to study
closed dynamical systems in any domain. Lyapunov stability
criterion is a general and useful approach to analyze the sta-
bility of nonlinear systems. In particular, the Lyapunov direct
method is the most used tool for design and analysis of nonlin-
ear closed systems. The fundamental concept of the Lyapunov
direct method is that if we consider the distance between the
system trajectory and the final (desired) equilibrium point to be
an energy-like function (for which the equilibrium point might
be its global minimum) for the system under consideration and
this energy-like function is continuously dissipating, then the
system will eventually reach such an equilibrium point and re-
main there. The reader can be interested in referring to [1, 2, 3]
for additional details.

In this work, we consider a forward complete1 dynamical
system described by the following differential equations

ẋ = f (x, t), x(t0) = x0 (1)

where x ∈ X ⊆ Rn and t ≥ t0 ∈ R, where X is considered to be
the forward invariant system manifold while x are some local
set of coordinates. System (1) is said to be autonomous if we
drop the explicit dependence on time in f (x, t), i.e., the system
dynamics can be written as

ẋ = f (x), x(t0) = x0. (2)

A particular case of (2) is described by the class of autonomous
systems whose vectorfield f (x) presents a particular structure,
i.e.,

ẋ = (J(x) − R(x))∇H(x), x(t0) = x0 (3)

where J : X → Rn×n is a skew-symmetric matrix that describes
the underlying Dirac structure (i.e., the energy transfer between
different physical domains), R : X → Rn×n is a positive semi-
definite matrix describing the dissipative elements of the sys-
tem, and the C2 function H : X → R is the Hamiltonian func-
tion associated to the system energy. Systems belonging to this
class are called dissipative Hamiltonian systems.

The standard definition of asymptotic stability in the sense of
Lyapunov or attractiveness of an equilibrium point2 can be ex-
pressed, as in classical approaches, by the following ‘regional’
characterization.

1A system is called forward complete if for every initial condition the cor-
responding solution is defined for all forward time [4].

2Where x? is said to be an equilibrium point for (1) if f (x?, t) = 0 for all
t ∈ R.

Definition 2.1. The equilibrium point x? ∈ X is called a stable
equilibrium point of (1) if for all t0 and ε > 0, there exists a
δ(t0, ε) such that the following implication holds true

|x0 − x?| < δ(t0, ε) =⇒ |x(t) − x?| < ε, ∀t ≥ t0,

where x(t) ∈ X is the solution of (1) starting from x0 at t0.
Furthermore, x? is said to be an asymptotically stable equilib-
rium point if in addition it is attractive for the system trajectory
x(t), i.e., for all t0 ∈ R there exists a δ(t0) such that

|x0 − x?| < δ(t0) =⇒ lim
t→∞
|x(t) − x?| = 0 (4)

A more general definition of asymptotic stabil-
ity/attractiveness of an equilibrium point can be formalized by
involving the definition of a weaker, non-euclidean, distance,
i.e., by defining a positive definite function, such as a Lyapunov
function candidate, V? : X × R→ R≥0.

Definition 2.2. An equilibrium point x? is said to be stable
if there exists a positive definite Lyapunov function V?(x(t), t),
where V?(x, t) = 0 for all real t implies x(t) = x?, such that

V?(x(t1), t1) − V?(x(t0), t0) ≤ 0 (5)

for any t1 > t0 ∈ R. Furthermore, x? is said to be an asymptot-
ically stable equilibrium point if such a Lyapunov function V?

satisfies
V?(x(t1), t1) − V?(x(t0), t0) < 0 (6)

for all t1 > t0 ∈ R.

3. Additional notions of stability

In the following, we give other notions of stability such as
incremental stability [5], contraction analysis [6] and conver-
gent dynamics [7] that have been received increased interest in
recent years due to their potential application in synchroniza-
tion [8, 9, 10, 11], nonlinear output regulation [12, 13], steady-
state analysis of nonlinear systems [14], observer design [15],
and many other nonlinear control problems such as the stability
analysis of stochastic systems [16].

Incrementally stable system has been introduced in [17],
while contraction analysis in [6] (see also [18] for a more histor-
ical overview), and the convergent dynamics in [19, 20]. They
have also been further investigated in [21, 22, 23, 24, 25, 26].

3.1. Incremental stability
The incremental stability describes the property of any two

system trajectories x1(t), x2(t) to convergence one on the other.

Definition 3.1 (Incremental stability [5]). System (1) is in-
crementally asymptotically stable in a positively invariant set
X ⊂ Rn if there exists a class KL function β such that for any
x10, x20 ∈ X and t ≥ t0,

‖x1(t) − x2(t)‖ ≤ β(‖x10 − x20‖, t − t0) (7)

In this note, we will use the following more general definition
of incrementally stable systems.
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Definition 3.2 (Incremental stability). The system (12) is called
incrementally stable if there exists an incremental Lyapunov
function S : X × X 7→ R≥0, with S(x1, x2) = 0 implies x1 = x2,
such that for any two distinct state trajectories (x1, x2) ∈ X×X,
it holds that

S(x1(t1), x2(t1)) −S(x1(t0), x2(t0)) < 0 (8)

for all t0, t1 ∈ R with t1 > t0, or equivalently

lim
t→∞

x1(t) − x2(t) = 0.

In the above definition, the incremental Lyapunov function
S is used with the same meaning of a distance d as used in the
coordinated-independent definition of incremental stability as
employed in [25] or in [27], reported here for completeness.

Definition 3.3 (Definition 1 in [27]). Consider system (2) on
a given manifold X. Let X be a forward invariant set and d :
X × X → R≥0 a continuous distance on X. The system (1) is
incrementally stable onXwrt d if there exists a classK function
α such that ∀x10, x20 ∈ X,

d(x1(t), x2(t)) ≤ α(d(x10, x20))

and ∀t0 ∈ R, ∀t ≥ t0

lim
t→∞

d(x1(t), x2(t)) = 0.

3.2. Convergent system
A particular case of an incrementally stable system is pro-

vided by the case when the final trajectory is bounded for all
time t ∈ R, it is unique and attractive for all system initial con-
ditions. This is described by the following definition.

Definition 3.4 (Convergent dynamics [7]). System (1) is uni-
formly convergent in a positively invariant set X ⊂ Rn if

• there exists a unique solution x?(t) in X defined and
bounded for all t ∈ R;

• such a solution x?(t) is uniformly asymptotically stable in
X, i.e., there exists a class KL function β such that for
any system trajectory x(t) initialized at (t0, x0) ∈ R × X
and t ≥ t0

‖x(t) − x?(t)‖ ≤ β(‖x0 − x?(t0)‖, t − t0). (9)

In this note, we will use the following coordinate indepen-
dent definition of convergent dynamics.

Definition 3.5 (Convergent dynamics). The system (12) has a
convergent dynamics if there exist

• a unique solution x?(t) ∈ X defined and bounded for all
t ∈ R;

• a Lyapunov-like function S : X × X 7→ R≥0, where
S(x(t), x?(t)) = 0 implies x(t) = x?(t) for all t ∈ R, such
that for any state trajectories x(t) , x?(t) with x(t) ∈ X, it
holds that

S(x(t1), x?(t1)) −S(x(t0), x?(t0)) < 0 (10)

for all t0, t1 ∈ R with t1 > t0, or equivalently

lim
t→∞

x(t) − x?(t) = 0.

3.3. Contractive systems
The first results of contraction theory can be found in [19]

and [20] (see also [7]), and they are based on a constant Eu-
clidean metric, see also [3, Problem 5.2] and [28] for a more
recent reference.

It plays a crucial role in studying the stability and/or the at-
tractiveness of invariant manifolds for nonlinear autonomous
systems. More specifically, this attractiveness property is char-
acterized by the existence of a positive definite quadratic form
(called Lyapunov-Finsler metric in [27]) which is decreasing
along the flow of the autonomous prolonged dynamics, see Ap-
pendix A for a discussion on the prolonged dynamics.

The contraction approach was born as a tool to study and
describe the stability of nonlinear systems as a counterpart of
Lyapunov approach, see [27]. Only later on, in [6] the theory
has been extended to nonlinear state dependent metric, while
further developments can be found in [5, 27, 15].

Definition 3.6 (Contractive system). An autonomous system (2)
on a smooth manifold X, is said to be contractive if there exists
a C1 function P : X → Rn×n, two strictly positive real numbers
p and p such that P has a well-defined time derivative and it
satisfies

pI ≤ P(x) ≤ pI,

Ṗ(x)+P(x)
∂ f

∂x
(x) +

∂ f

∂x

>

(x)P(x) < 0, ∀x ∈ X.

Definition 3.7 (Contractive time-varying system). An au-
tonomous system (1) on a smooth manifold X, is said to be con-
tractive if there exists a C1 function P : X → Rn×n, two strictly
positive real numbers p and p such that P has a well-defined
time derivative and it satisfies

pI ≤ P(x) ≤ pI,

Ṗ(x)+P(x)
∂ f

∂x
(x, t) +

∂ f

∂x

>

(x, t)P(x) < 0, ∀x ∈ X.

Despite the fact that for the nonlinear autonomous dynamics
we can give an interpretation to the contraction property of a
system (see the appendix), we cannot conclude anything about
the contraction property of a time varying system expect for its
virtual time-varying dynamics (that in principle does not have
any straightforward interpretation).

3.4. Maximal monotone stability
A very specific stability notion, that recalls that of incremen-

tal stability was inspired by the definition of incremental port-
Hamiltonian system in [29].

Definition 3.8. A dissipative Hamiltonian system (3) is said to
be stable in a maximal monotone sense (or maximally mono-
tone stable) if for any two distinct trajetories x1(t) and x2(t)
initialized, respectively, on x10 ∈ X and x20 ∈ X at t0 ∈ R, it
holds

(∇H(x1) − ∇H(x2))>(ẋ1 − ẋ2) ≤ 0 (11)

for all t ≥ t0 and any x10 , x20.
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4. Dissipative and passive systems

Concurrently to the development of the contraction analysis,
the concept of dissipativity was introduced by J.C. Willems in
[30] is has played a relevant role in systems theory, in particular
in the analysis of open and interconnected systems, as it gener-
alizes the concept of Lyapunov function to system interfacing
the surrounding environment, as described in [31]. It also gives
the foundations to dissipativity-based nonlinear control designs,
see, e.g., [32, 33, 34].
Consider a nonlinear system, in the state space (local) coordi-
nates of a smooth manifoldX, expressed by a model of the form

Σ :
ẋ = f (x, u), x(0) = x0

y = h(x, u)
(12)

with the input value u ∈ U ⊆ Rm, the output values y ∈ Y ⊆
Rp, and the system’s state x ∈ X ⊆ Rn, whereU,Y, and X are
the input, output, and state spaces, while f : X × X → TX and
h : X × U → Y. With some abuse of notation U refers, for
the sake of brevity of exposition, also to the space of admissible
inputs.

A particular case of (12) is when the functions f and h are
input affine, i.e., with some abuse of notation we can writeẋ = f (x) + g(x)u, x(0) = x0

y = h(x) + j(x)u
(13)

where g : X → Rn×m and j : X → Rp×m. Futhermore, when-
ever the system output map h does not depend on the input, the
system is called input affine strictly proper, and it has dynamicsẋ = f (x) + g(x)u, x(0) = x0

y = h(x).
(14)

Otherwise, when the system dynamics f is a nonlinear function
of the input u, the system is simply called strictly proper and its
dynamics reads as ẋ = f (x, u), x(0) = x0

y = h(x).
(15)

The definition of dissipative system for Σ, introduced in [30],
employs two real-valued functions, i.e., the supply rate denoted
by s : U ×Y → R, and the storage function S : X → R.

Definition 4.1 (Dissipation inequality). System Σ is said to sat-
isfy the dissipation inequality with respect to the supply rate s
and storage function S if

S(x(t2)) − S(x(t1)) ≤
∫ t2

t1
s(u(t), y(t))dt (16)

for all t1, t2 ∈ R, with t2 ≥ t1 and all admissible state-input-
output trajectory (x(t), u(t), y(t)) ∈ X ×U ×Y.

To be more precise, the tuple (x(t), u(t), y(t)) should belong
to the behavior of Σ, see [31] for more details.

The well-known and accepted interpretation of the dissipa-
tion inequality (16), is that (in general) not all the supplied

quantity (
∫

s dt) is stored (in S), and thus the amount that is
supplied but not stored is dissipated.
The definition of the dissipation inequality allows us to intro-
duce the definition of dissipative and cyclo-dissipative systems
as follows.

Definition 4.2 (Cyclo-dissipative systems). A system Σ is said
to be cyclo-dissipative with respect to the supply rate s : U ×
Y → R if there exists a real-valued storage function S : X → R
such that the dissipation inequality (16) holds.

Definition 4.3 (Dissipative systems). A system Σ is said to be
dissipative with respect to the supply rate s : U × Y → R
if it is cyclo-dissipative with a non-negative storage function
S : X → R≥0 satisfying the dissipation inequality (16).

As described in [31], the notion of storage function for dis-
sipative systems is a generalization to open systems of the con-
cept of Lyapunov function for closed systems.

A particular case of dissipative system is given when the sup-
ply rate takes the form of an inner product between the input
and the output of the system, i.e., s(u, y) = y>u. We then have
the following definition.

Definition 4.4 ((Cyclo-)Passive system). A square (i.e., m = p)
dynamical system Σ is said to be (cyclo-)passive if it is (cyclo-)
dissipative with respect to the supply rate s(u, y) = y>u.

On the latter, a special class of nonlinear physical systems
has been built, i.e., port-Hamiltonian systems, as described in
the following subsection.

Note that, for the sake of simplicity, in the port-Hamiltonian
formalism discussed in the following (see also Section 8) we
will employ the differential form of the dissipation inequal-
ity (16), i.e., if S is C1 then (16) can be written as Ṡ(x) ≤
s(u(t), y(t)).

4.1. Port-Hamiltonian systems
The port-Hamiltonian approach to modeling and control of

complex physical systems is a well-established framework,
and it started/pioneered with the work by [35], [36], see also
[37, 32, 38] for a general overview of the topic including also
control techniques. A particular feature of port-Hamiltonian
systems is that of describing all the main physical properties of
the system under consideration, such as energy dissipation, pas-
sivity, and power conservation laws. Moreover, the formalism
is particularly well suited for the interconnection of physical
systems, preserving the passivity, stability, and structure in a
larger port-Hamiltonian system, [39].

The concept of passive system is explicitly expressed by the
dynamical equations of such a class of nonlinear systems. In
particular, a nonlinear system Σ is port-Hamiltonian when its
dynamical equations present a predefined structure of the form

ẋ = (J(x) − R(x))∇H(x) + g(x)u
y = g(x)>∇H(x)

(17)

where J,R,H, g are as described above. The particular structure
of y defines an output that is power-conjugated to the input u,
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i.e., their inner product provides an equivalent power quantity.
We say that the passivity concept is explicitly expressed by the
dynamics of a port-Hamiltonian system (17) because, via the
energy balance, we retrieve the differential form of the dissipa-
tion inequality (16), i.e.,

Ḣ(x) = ∇H>(x)(J(x) − R(x))∇H(x) + ∇>H(x)g(x)u
= −∇H>(x)R(x)∇H(x) + y>u ≤ y>u.

Thus the system dynamics explicitly satisfies the dissipation
inequality of a passive system if H is lower bounded, or of a
cyclo-passive system otherwise.

5. Additional notions of dissipativity

Each definition of stability introduced in Section 3 can be
extended to a dissipativity definition.

5.1. Incremental dissipativity

Incremental dissipativity is considered by [10] and partly by
[12], as a methodology to study synchronization of nonlinear
oscillators. A more recent result can be found in [40].

Definition 5.1 (Incremental Dissipativity [40]). The system
(12) is called incrementally dissipative w.r.t. the supply func-
tion s : U × U × Y × Y → R, if there exists an incremental
storage function S : X × X → R≥0, with S(x1, x2) = 0 implies
x1 = x2, such that for any two state-input-output trajectories
(x1, u1, y1), (x2, u2, y2) ∈ X ×U ×Y, it holds that

S(x1(t1), x2(t1)) −S(x1(t0), x2(t0))

≤

∫ t1

t0
s(u1(t), u2(t), y1(t), y2(t))dt (18)

for all t0, t1 ∈ R with t1 ≥ t0.

5.2. Differential dissipativity

A strictly related concept to contraction theory is that of dif-
ferential dissipativity. As the contraction theory gives tools for
studying the neighborhood of autonomous systems trajectories,
analogously the notion of differential dissipativity can be em-
ployed as a tool to study the variational state-input-output be-
havior.

The theory of differential dissipativity was thus first devel-
oped in [41] in which the authors introduce the concept of dif-
ferential storage function S : TX → R and of differential sup-
ply rate ∫ : TU × TY → R, so to ‘lift’ the standard dissi-
pativity notion to the system’s manifold tangent bundle, when
employing the state trajectory x(t) as an exogenous signal. We
recall the definitions of differential dissipativity given in [41]
(see also [40] for a more recent development), here extended to
the weaker notion of differential cyclo-dissipativy.

Definition 5.2 (Diff. (cyclo-) dissipative system). The dynami-
cal system Σ is said to be differentially (cyclo-) dissipative with
respect to the differential supply rate ∫ : TX×TY×TU → R

if there exists a differential storage function (S : TX → R)
S : TX → R≥0 such that

S(x(t1), ξ(t1)) − S(x(t0), ξ(t0)) ≤∫ t1

t0
∫ (x(t), u(t), ν(t), y(t), ζ(t))dt (19)

for all t1, t0 ∈ R, t1 ≥ t0, and for any admissible state-input-
output trajectory of TΣ, i.e., (x, ξ, u, ν, y, ζ) ∈ TX×TY×TU.

By exploiting the assumption that S ∈ C1, (19) is equivalent
to

Ṡ(x(t), ξ(t)) ≤ ∫ (x(t), u(t), ν(t), y(t), ζ(t)) (20)

for all admissible state-input-output trajectories (x, ξ, u, ν, y, ζ)
of TΣ.

6. Additional notions of passivity

Along with the different definitions of dissipativity we find
the corresponding definitions of passivity.

6.1. Incremental passivity

The incremental passivity property instead refers to the pas-
sivity characterization of the system with state, input, and out-
put signals substituted by their increments (see [42]), i.e., x̃ =

x1(t) − x2(t), ũ = u1(t) − u2(t), and ỹ = y1(t) − y2(t), where xi(t)
is the trajectory at time t initialized in xi0 at time t0, influenced
by the input signal u1(τ), for t ∈ [t0, t), and yi its relative output
yi(t) = h(xi(t)), i = 1, 2. Some applications can be found in
[43] for controller design of convex gradient systems, or output
regulation as in [12].

Definition 6.1 (Incremental Passivity [12]). A square (i.e., m
= p) dynamical system (12) is called incrementally passive if
there exists an incremental storage function S : X × X → R≥0,
withS(x1, x2) = 0 implying x1 = x2, such that for any two state-
input-output trajectories (x1, u1, y1), (x2, u2, y2) ∈ X×U×Y, it
holds that

S(x1(t1), x2(t1)) −S(x1(t0), x2(t0))

≤

∫ t1

t0
(u1(t) − u2(t))>(y1(t) − y2(t))dt (21)

for all t0, t1 ∈ R with t1 ≥ t0.

6.2. Convergence passivity

We introduce the concept of convergence passivity as a par-
ticular case of incremental passivity.

Definition 6.2 (Convergence Passivity). The system (12) is
called passively convergent if there exists a unique state-input-
output trajectory (x?(t), u?(t), y?(t)), with x?(t) bounded in
backward and forward time and an incremental storage func-
tion S? : X → R≥0, with S?(x(t)) = 0 implies x(t) = x?(t),
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such that for any state-input-output trajectories (x, u, y) ∈ X ×
U ×Y, it holds that

S?(x(t1)) −S?(x1(t0))

≤

∫ t1

t0
(u(t) − u?(t))>(y(t) − y?(t))dt (22)

for all t0, t1 ∈ R with t1 ≥ t0.

6.3. Differential passivity
The concept of differential dissipativity has then been spe-

cialized to differential passivity in [44] and described in a ge-
ometric and coordinate-free framework in [45]. See [46] for
an application to the control of flexible-joints robots. Thus, fol-
lowing the standard definition of passivity introduced above and
lifted to the tangent bundle TX, we have the following defini-
tion of differential passivity. We recall the definitions of dif-
ferential passivity given in [44] (see also [40] for a recent de-
velopment), here extended to the weaker notion of differential
cyclo-passivity.

Definition 6.3 (Diff. (cyclo-) passivity [44]). A square (i.e., m
= p) dynamical system Σ is differentially (cyclo-) passive if it
is differentially (cyclo-) dissipative with respect to the differen-
tial supply rate ∫ (ν, ζ) = ζ>ν, i.e., if there exists a differential
storage function S such that

S(x(t2), ξ(t2)) − S(x(t1), ξ(t1)) ≤
∫ t2

t1
ζ>(τ)ν(τ)dτ (23)

for all t2 ≥ t1 and all admissible state-input-output trajectory
(x, ξ, u, ν, y, ζ) to the prolonged system TΣ.

Equivalently, with the additional assumption S ∈ C1 , the
differential passivity inequality can be written as

Ṡ(x(t), ξ(t)) ≤ ζ(t)>ν(t). (24)

It is worth noting the similarity with the definition of strictly
Krasovskii’s passivity in [47, Def. 3.1], that however is a par-
ticular case of the differential passivity defined here and in [44].

The definition of differential passivity given in [41] is dif-
ferent from the one given in [44], [45], and the one considered
here. In particular, there the supply rate for passivity is given by
∫ = ζ>W(x)ν for some metric W(x) and the differential storage
function has the more general meaning of a Finsler metric (see
also [48] for an application to exponential stability of nonlinear
systems) .

In the remainder of the paper, we focus our attention on the
particular direction, on the tangent bundle, determined by the
system vectorfield, see some motivations in the appendix. In
this case, the differential dissipativity notion earns a more con-
crete and tangible meaning, where ξ(t) = ẋ(t), ν(t) = u̇(t), and
ζ(t) = ẏ(t).

With this particular choice, the differential dissipative in-
equality (19), reads as

S(x(t1), ξ(t1)) − S(x(t0), ξ(t0)) ≤∫ t1

t0
∫ (x(t), u(t), u̇(t), y(t), ẏ(t))dt

or equivalently, under the assumption S ∈ C1,

Ṡ(x(t), ξ(t)) ≤ ∫ (x(t), u(t), u̇(t), y(t), ẏ(t)).

For the differential passivity notion we have instead

S(x(t1), ξ(t1)) − S(x(t0), ξ(t0)) ≤
∫ t1

t0
ẏ(t)>u̇(t)dt

or equivalently, under the assumption S ∈ C1,

Ṡ(x(t), ξ(t)) ≤ ẏ(t)>u̇(t).

In order to make a direct connection to the contractivity prop-
erty described in Section 3.3, we usually consider as differen-
tial storage function a Riemannian distance, i.e., the differential
storage function S as a quadratic form S = ξ>P(x)ξ, with P(x)
being a positive definite matrix as given in Definition 3.6.

6.4. Maximal monotone passivity

A slightly different definition of incremental passivity has
been adopted in [49, 29], where the proposed definition char-
acterizes a class of port-Hamiltonian systems, i.e., incremental
port-Hamiltonian, although such a definition is weaker than that
of incrementally passive systems as defined in Section 6.1 . In
order to differentiate the two notions here we call the property
of incremental port-Hamiltonian systems the maximal mono-
tone passivity.

Definition 6.4 (Maximal monotone passivity [49]). A square
(i.e., m = p) dynamical system (12) is called maximally
monotone passive if for any two state-input-output trajectories
(x1, u1, y1), (x2, u2, y2) ∈ X ×U ×Y, it holds that

(∇H(x1(t)) − ∇H(x2(t)))> (ẋ1 − ẋ2) ≤
(y1(t) − y2(t))>(u1(t) − u2(t)) (25)

for all t ≥ t0 ∈ R.

Remark 1. This definition of passivity refers specifically to the
increments of effort ẽ = ∇H(x1) − ∇H(x2) and flows f̃ = ẋ1 −

ẋ2 and it is related to the power of the input/output increments
(which is a sort of power of the increments).

We treat the two definition separately because they only co-
incide when H(x) is a quadratic form in x up to a constant, i.e.,
H(x) = x>Qx + c for some real c, as discussed in Section 8.
Note that indeed, the two characterization of passivity come
from different concepts. In particular, the latter has been intro-
duced starting from the definition of maximal monotone rela-
tion that generalizes the concept of Dirac structure.

7. Stability notions of dissipative Hamiltonian systems

The different stability notions introduced in Section 3 can be
applied to the case of dissipative Hamiltonian systems.
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7.1. Incremental dissipative Hamiltonian systems
It is well-known that the concepts of incremental stability

and contracting systems overlap [27], it is not absurd to find
similar (if not the same) conditions to contractive systems when
studying the incremental stability property.

Assumption 1. There exists a positive real q such that qI ≤
∇2H(x) for all x ∈ X and ∇2H(x) is locally invertible for all
x ∈ X.

Then the following holds.

Theorem 7.1. Under Assumption 1, the dissipative Hamilto-
nian system (3) is incrementally stable with incremental Lya-
punov function H(x1, x2) = (x1 − x2)>∇2H(x2)(x1 − x2), for any
two system trajectories x1, x2 ∈ X, if and only if

d

dt
∇2H(x) − 2∇2H(x)R′(x)∇2H(x) < 0 (26)

for all x ∈ X, where

R′(x) = R(x) − sym
∂H

∂x

∂>J

∂x
−
∂>R

∂x

∇2H
−1

(x)
 . (27)

Proof. The necessity part of the theorem comes from the def-
inition of incremental stability, i.e., Definition 3.2. Here we
focus on the sufficiency part. To prove the incremental stability
property of an autonomous system (3), we need to consider two
distinct trajectories xi, i = 1, 2, both satisfying (3), and study
the properties of convergence of one on the other. In order to
do so, we introduce the incremental variable x̃ = x1− x2, whose
dynamics is given by

˙̃x = ẋ1 − ẋ2

= [J(x1) − R(x1)]∇H(x1) − [J(x2) − R(x2)]∇H(x2)
= [J(x̃ + x2) − R(x̃ + x2)]∇H(x̃ + x2)−

[J(x2) − R(x2)]∇H(x2).

Consider now the case x̃ is sufficiently small for all t, then its
dynamics can be analyzed by exploiting the Taylor expansion.
In particular, we can write

J(x̃ + x2)∇H(x̃ + x2) = J(x2)∇H(x2)+

∂J(x)∇H(x)
∂x

(x2) · [x̃ + x2 − x2] + h.o.t.

and analogously for the term in R. Thus, by neglecting the
higher order terms, around the origin for x̃, its dynamics reads
as

˙̃x ≈
∂J(x)∇H(x)

∂x
(x2) −

∂R(x)∇H(x)
∂x

(x2)
 x̃

=

∇H>(x2)
∂J(x)
∂x

(x2) − ∇H>(x2)
∂R(x)
∂x

(x2)
 x̃+

[J(x2) − R(x2)]∇2H(x2)x̃

=[J′(x2) − R′(x2)]∇2H(x2)x̃.

To prove the local asymptotic stability of x̃ we consider as in-
cremental Lyapunov function H(x1, x2) = 1

2 x̃>∇2H(x)x̃, and by
assumption its time derivative is strictly negative for all x (and
thus also for all x2), i.e., for x̃ , 0

Ḣ(x1, x2) =
1
2

x̃>
(

d
dt
∇2H(x2) − 2∇2H(x2)R′(x2)∇2H(x2)

)
x̃ < 0.

Moreover, any locally incrementally stable system is also glob-
ally incrementally stable [5] and we thus proved the theo-
rem.

What if we use another incremental Lyapunov function can-
didate such as (33)?

Remark 2. In the introduced framework, the case of conver-
gent dissipative Hamiltonian systems will then be just a partic-
ular case of the incrementally stable system when considering
x1 to be a generic evolution of the autonomous system and x2
to be the unique bounded solution x?(t) that exists for all t ∈ R.

7.2. Contractive and dissipative Hamiltonian systems
In the context of port-Hamiltonian systems, some results on

contraction theory are available but only for the case of con-
stant metric, see [50, 51, 52]. To the best of the authors’ knowl-
edge, none of the works on contractive port-Hamiltonian sys-
tems consider a nonlinear state-dependent metric, nor exploit
the knowledge of the available Hamiltonian function. Only re-
cently in [53], contraction and differential passivity were devel-
oped in the context of port-Hamiltonian systems by exploiting
the Hamiltonian Hessian as state dependent contractive metric.
In the remainder of this subsection we give a brief recap of the
result in [53], reported here for the sake of completeness. In
particular, we first show an original way to apply and exploit
the contraction theory approach to dissipative Hamiltonian sys-
tems by defining the concept to dissipative differential Hamil-
tonian dynamics, i.e., the variational dynamics of (3) has again
the structure of a dissipative Hamiltonian system.

Definition 7.1 ((Diss.) Diff. Hamiltonian system). A dissi-
pative Hamiltonian system (3) on the smooth manifold X, is
said differentially Hamiltonian if there exists a ‘lifted’ Hamil-
tonian function H : TX → R, a skew symmetric matrix
J′ : X → Rn×n and a symmetric matrix R′ : X → Rn×n, such
that the variational dynamics of (3) reads as

ξ̇ = (J′(x) − R′(x))∇ξH(x, ξ), (x, ξ) ∈ TX. (28)

Furthermore, we say that it is dissipative differentially Hamil-
tonian, if additionally H is lower bounded and Ḣ ≤ 0 along
the flow of prolonged system TΣ.

We then provide the conditions under which a dissipative
Hamiltonian system is also dissipative differential Hamiltonian.

Theorem 7.2. Under Assumption 1, a dissipative Hamiltonian
system (3) is dissipative differentially Hamiltonian with respect
to the Hamiltonian functionH(x, ξ) = 1

2ξ
>∇2H(x)ξ, if and only

if for all x ∈ X,

d
dt
∇2H(x) − 2∇2H(x)R′(x)∇2H(x) ≤ 0 (29)
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where

R′(x) = R(x) − sym
∂H

∂x

∂>J

∂x
−
∂>R

∂x

∇2H
−1

(x)
 . (30)

Proof. We first show that under the assumption of everywhere
locally invertibility of Hamiltonian Hessian ∇2H(x), any dis-
sipative Hamiltonian system (3) is differentially Hamiltonian
with Hamiltonian function

H(x, ξ) =
1
2
ξ>∇2H(x)ξ.

We thus compute the variational system of (3), i.e., by defining
ξ = ẋ, we write its dynamics as

ξ̇ =
(
J̇(x) − Ṙ(x)

)
∇H(x) + (J(x) − R(x)) ∇̇H(x)

=
∂H

∂x

∂>J

∂x
−
∂>R

∂x

 ξ + (J(x) − R(x))∇2H(x)ξ

=
(
J′(x) − R′(x)

)
∇2H(x)ξ,

where R′ is as defined in (30) and

J′(x) = J(x) − skew
∂H

∂x

∂>J

∂x
−
∂>R

∂x

∇2H
−1

(x)
 .

We now show that the time derivative ofH(x, ξ) = 1
2ξ
>∇2H(x)ξ

is nonpositive under condition (29), since it is given by

Ḣ =
1
2
ξ>

(
d
dt
∇2H(x)

)
ξ − ξ>∇2H(x)R′(x)∇2H(x)ξ

thus condition (29) provides the necessary and sufficient to
guarantee Ḣ ≤ 0 along the prolonged system’s trajectory
(x(t), ξ(t)) ∈ TX.

From the above theorem, one can notice that every dissipa-
tive Hamiltonian system (3) is differentially Hamiltonian with
a Hamiltonian functionH(x, ξ), but in order to be also dissipa-
tive, the structural matrices must satisfy the additional require-
ment (29).
In the remainder of this subsection, we link the introduced def-
inition of dissipative differential Hamiltonian system to the no-
tion of contractive dynamics. In order to do so, we exploit the
Hessian of the Hamiltonian function H as a contraction metric
(called P in Definition 3.6), and we thus introduce the following
assumption.

Assumption 2. There exist positive real values q and q, such
that

qI ≤ ∇2H ≤ qI, ∀x ∈ X.

Then the following corollary is immediate.

Corollary 7.1. Under Assumption 2, system (3) is contractive
onX with metric ∇2H(x) under Assumption 2, if and only if it is
dissipative differentially Hamiltonian and (29) holds with strict
inequality for all x ∈ X.

The sufficient part of the proof is just an application of The-
orem 7.2, while the necessary part comes from the definition of
Contractive systems, we thus omit the proof of this corollary.

Remark 3. This result is not surprising because the notions
of incremental stability and contractivity are equal for au-
tonomous systems, what changes is their correlated notions of
passivity, as will be detailed in next section.

7.3. Maximal monotone stability

For the maximal monotone stability we have the following
Lemma that comes directly from the definition.

Lemma 1. The dissipative Hamiltonian system (3) is maxi-
mally monotone stable if and only if R1

(J1 − R1)> + (J2 − R2)
2

(J1 − R1) + (J2 − R2)>

2
R2

 ≥ 0 (31)

for all x1, x2 ∈ X solution of (3).

Proof. By considering the structure of a dissipative Hamilto-
nian system ẋi = (Ji − Ri)∇Hi, for i = 1, 2, we can check the
stability conditions from Definition 3.8, we have

(∇H1 − ∇H2)>(ẋ1 − ẋ2) = −∇H>1 R1∇H1 − ∇H>2 R2∇H2

∇H>1 (J2 − R2)∇H2 − ∇H>2 (J1 − R1)∇H1 ≤ 0

providing

−
[
∇H>1 ∇H>2

] [ R1 J2 − R2
J1 − R1 R2

] [
∇H1
∇H2

]
≤ 0

which is satisfied under the condition (31).

It is easy to see that a sufficient condition for (31) to be sat-
isfied for any pair of trajectory x1, x2, is that J(x1) = J(x2) = J
and R(x1) = R(x2) = R.

8. Passivity notions in pHs formalism

When talking about passivity we need to consider the inputs
and outputs interfaces with the environment, such as the input-
output ports in the port-Hamiltonian system dynamics (17). In
particular, as already shown before, the ports signals, i.e., the
input u and the output y, are power conjugated and they lead to
an intrinsic passivity property of this class of systems. How-
ever, the system dynamics, although passive in the standard
sense, may not satisfy the conditions of the other passivity no-
tions introduced in Section 6. In the following, we study such
particular cases in the port-Hamiltonian formalism.
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8.1. Incremental passivity for port-Hamiltonian systems
The incremental passivity property comes directly by check-

ing the passivity condition on the increments of the state x̃ =

x1 − x2, of the input ũ = u1 − u2, and of the output ỹ = y1 − y2.
Although port-Hamiltonian systems are passive by construction
(it is actually a necessary requirement for a system to be port-
Hamiltonian), they may not be incrementally passive. In partic-
ular, for port-Hamiltonian systems we have Ḣ(x) = ∂H(x)ẋ ≤
y>u and to obtain the incremental property we provide the con-
dition in terms of two general trajectories x1, x2 ∈ X, i.e., for
any two trajectories x1, x2 ∈ X we seek conditions under which
there exists a function H : X × X → R such that

Ḣ = ∂x1 H(x1, x2)ẋ1 + ∂x2 H(x1, x2)ẋ2 ≤ ỹ>ũ. (32)

We then have the following theorem

Theorem 8.1. A port-Hamiltonian system (17) is incrementally
passive with respect to the incremental storage function

H(x1, x2) = H(x1) + H(x2) + h(x1, x2), (33)

for some h : X × X → R if and only if ? for any two distinct
state-input-output trajectories (xi(t), ui(t), yi(t)) ∈ X × U × Y,
i = 1, 2, there exists a coupling storage function h(x1, x2) such
that

∂h(x1, x2)
∂x1

= −
∂H(x2)
∂x2

= −∇H>(x2)

∂h(x1, x2)
∂x2

= −
∂H(x1)
∂x1

= −∇H>(x1),

(34)

the input matrix is constant g(x1) = g(x2) = g and (31) holds.

Proof. According to the definition of incremental passivity,
there must exist a storage function H(x1, x2) such that for any
trajectories xi, i = 1, 2, with associated inputs ui and outputs yi,
i = 1, 2, we have (32). In particular, we have3

Ḣ(x1, x2) =
∂H(x1, x2)

∂x1
ẋ1 +

∂H(x1, x2)
∂x2

ẋ2

≤ỹ>ũ = y>1 u1 + y>2 u2 − y>1 u2 − y>2 u1

= ∇H>1 g1u1 + ∇H>2 g2u2−

∇H>1 g1u2 − ∇H>2 g2u1.

(35)

We prove the sufficiency part of the theorem by imposing the
incremental storage function form in (33) and substituting it in
the inequality above yields

∂H(x1, x2)
∂x1

ẋ1 +
∂H(x1, x2)

∂x2
ẋ2 =

− ∇H>1 R1∇H1 + ∇H>1 g1u1 − ∇H>2 R2∇H2 + ∇H>2 g2u2+

∂h(x1, x2)
∂x1

(J1 − R1)∇H1 +
∂h(x1, x2)

∂x1
g1u1+

∂h(x1, x2)
∂x2

(J2 − R2)∇H2 +
∂h(x1, x2)

∂x2
g2u2

≤ ∇H>1 g1u1 + ∇H>2 g2u2 − ∇H>1 g1u2 − ∇H>2 g2u1.

3For the sake of readability, we use the subscript i = 1, 2 to mean that we
consider that matrix-valued function in x1 and x2, respectively, i.e., ∇Hi =

∇H(xi), Ji = J(xi), Ri = R(xi), and gi = g(xi), i = 1, 2.

Under the conditions g(x) = g and (34), the inequality reduces
to

− ∇H>1 R1∇H1 − ∇H>2 R2∇H2−

∇H>2 (J1 − R1)∇H1 − ∇H>1 (J2 − R2)∇H2 ≤ 0

which is equivalent to condition (31).
Necessity part follows by contradiction to have a incremental
storage function H that does not depend on the input. In par-
ticular, due to the output map of a port-Hamiltonian system,
in inequality (35), after the appropriate simplifications of the
terms y>1 u1 and y>2 u2, in order to lose the dependence on the
input signals u1 and u2, it must hold that g(x1) = g(x2) for any
trajectories pair (x1, x2), i.e., g(x) = g, and that h(x1, x2) satis-
fies (34). We thus proved the theorem.

In general, it is not easy to obtain a solution for condition
(33) although it is trivially satisfied for H(x) = 1

2 x>Qx + c, for
some real c.

Somehow, the result of this theorem provides some answers
to the questions recently posed in [42] about the incremental
dissipativity of physical systems, for the particular case of pas-
sivity. With the port-Hamiltonian formalism, we can treat a
large class of physical systems with input and output conju-
gated signals. To obtain incremental passivity with respect to
the incremental storage function (33) for such class of passive
systems, we need to introduce additional and limiting condi-
tions, such as those on the input matrix, on the Hamiltonian
function, as well as on the system’s structural matrices.

Remark 4. The conditions to get convergence passivity, i.e.,
Definition 6.2 are the same as for incremental stability just dis-
cussed, with the only difference that the state-input-output tra-
jectory (x2, u2, y2) ∈ X × U × Y should be considered as the
state-input-output trajectory (x?(t), u?(t), y?(t)) ∈ X × U × Y
defined for all t ∈ R.

8.2. Differential Passivity for port-Hamiltonian systems
In order to discuss differential passivity we have to lift the

port-Hamiltonian system onto the tangent bundle TX, thus ob-
taining the prolonged system on the tangent bundle TX, as also
described in the appendix.

Hence, to deal with the differential passivity properties of
(17), we focus our attention on its variational dynamics, i.e.,
the differential Hamiltonian system with the additional input
vectorfield (g(x)u) variation, augmented with the variation of
the output terms as given in ẏ. We thus consider the prolonged
port-Hamiltonian system

ẋ = (J(x) − R(x))∇H(x) + g(x)u,
y = g(x)>∇H(x), x(0) = x0

ξ̇ =
(
J′(x) − R′(x)

)
∇2H(x)ξ + ġ(x)u + g(x)u̇,

ξ(0) = (J(x0) − R(x0))∇H(x0) + g(x0)u(0),

ẏ = ġ(x)>∇H(x) + g(x)>∇2H(x)ξ

(36)

where ξ(t) ∈ TX here refers to the controlled system vector-
field, ξ(t) = ẋ(t).
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We then have the following conditions to guarantee dif-
ferential passivity for (17) with storage function H(x, ξ) =
1
2ξ
>∇2H(x)ξ.

Theorem 8.2. Consider the port-Hamiltonian system (17) on
the smooth manifold X. It is differentially passive with storage
function H : TX → R, H(x, ξ) = 1

2ξ
>∇2H(x)ξ, if and only if

the input matrix g(x) is constant and the following inequality4

holds for all x ∈ X

d∇2H(x)
dt

− 2∇2HR′(x)∇2H ≤ 0. (37)

Proof. To prove passivity with storage function H(x, ξ) =
1
2ξ
>∇2H(x)ξ, one can first notice that the variational dy-

namics with state-input-output trajectory (ξ, u̇, ẏ) has a port-
Hamiltonian structure with Hamiltonian function H(x, ξ) =
1
2ξ
>∇2H(x)ξ and input-output conjugate pair if and only if

ġ(x) = 0. However, to guarantee differential passivity, a suf-
ficient condition is that the equivalent differential Hamiltonian
system is dissipative, i.e., inequality (37) holds, so that

Ḣ =
1
2
ξ>

[
d∇2H(x)

dt
− 2∇2H(x)R′(x)∇2H(x)

]
ξ+

+ξ>∇2H(x)g(x)u̇ ≤ ẏ>u̇.

This proves the sufficient part.
To obtain the necessary part we find conditions to satisfy

Ḣ ≤ ẏ>u̇

for all admissible (x, ξ, u, u̇, y, ẏ) ∈ TX × TU × TY. The time
derivative ofH(x, ξ) along the prolonged dynamics reads as

Ḣ =
1
2
ξ>

[
d∇2H(x)

dt
− 2∇2HR′(x)∇2H

]
ξ+

+ ξ>∇2H(x)g(x)u̇ + ξ>∇2H(x)ġ(x)u

=
1
2
ξ>

[
d∇2H(x)

dt
− 2∇2HR′(x)∇2H

]
ξ+

+ ẏ>u̇ − ∇H(x)>ġ(x)u̇ + ξ>∇2H(x)ġ(x)u

that is, in order to fit in the definition,

1
2
ξ>

[
d∇2H(x)

dt
− 2∇2HR′(x)∇2H

]
ξ+

− ∇H(x)>ġ(x)u̇ + ξ>∇2H(x)ġ(x)u ≤ 0

must hold for all admissible (x, ξ, u, u̇), this implies that ġ(x) =

0 and that inequality (37) hold. Thus proving the theorem.

With this approach, we let the differential Hamiltonian
H(x, ξ) = 1

2ξ
>∇2H(x)ξ play the role of a differential storage

function, denoted by S in the Sections 5 and 6, under appro-
priate conditions. We refer to this property to be a ‘differen-
tial’ passivity-preservation, since the role of H , in the differ-
ential framework, is the analogous of the standard role played

4Or equivalently one can check d
dt∇

2H(x)−1 + 2R′(x) ≥ 0.

by the system Hamiltonian H for passivity in standard port-
Hamiltonian systems. Moreover, when we compare our result
to the conditions in [45, eq. (16)], we notice that our conditions
are in a sense weaker because we do not require the storage
function S to have a zero Lie derivative along the complete lift
of the input vectorfield g(x). On the other hand, some limita-
tions on the input class might be considered so to satisfy the
inequality (37). However, when the Hessian of H is constant,
such a condition is easier to satisfy as shown in the following
illustrative example.

8.3. Maximal monotone passivity
A slightly different definition of incremental passivity, in the

framework of port-Hamiltonian Systems, has been introduced
in [29] and the condition to be satisfied in this case is decribed
by the relationship (25).

Theorem 8.3. System (17) is maximally monotone passive if
and only if ? g(x) = g and for any two distinct state-input-
output trajectories (xi, ui, yi) ∈ X × U × Y, i = 1, 2, of the
system dynamics, (31) holds.

Proof. As for the incremental passivity, we introduce two gen-
eral tuples (xi, ui, yi), i = 1, 2, both satisfy the system dynamics
(17). By considering H(xi), i = 1, 2, as storage functions in
(25), we can directly check the conditions to obtain passivity,
i.e., (25) reads as

(∇H1 − ∇H2)>
[
(J1 − R1)∇H1 + g1u1 − (J2 − R2)∇H2 − g2u2

]
=

= ∇H>1 (J1 − R1)∇H1 + ∇H>1 g1u1 − ∇H>1 (J2 − R2)∇H2

− ∇H>1 g2u2 − ∇H>2 (J1 − R1)∇H1 − ∇H>2 g1u1+

∇H>2 (J2 − R2)∇H2 + ∇H>2 g2u2 =

= −
(
∇H>1 ∇H>2

) [ R1 J2 − R2
J1 − R1 R2

] (
∇H1
∇H2

)
+ y>1 u1+

y>2 u2 − ∇H>1 g2u2 − ∇H>2 g1u1.

In order for the right hand side of the equation to be less than
(y1 − y2)>(u1 − u2) for all (xi, ui, yi), i = 1, 2, it must be

sym
[

R1 J2 − R2
J1 − R1 R2

]
≥ 0

for any trajectories x1 and x2 , i.e., the condition (31), and that
g1 = g2 = g. Indeed, for g1 = g2 = g we have

y>1 u1 + y>2 u2 − ∇H>1 gu2 − ∇H>2 gu1 = (y1 − y2)>(u1 − u2).

And thus we proved the theorem.

The example considered in [29] actually shows that the incre-
mental passivity is different from maximal monotone passivity,
as also discussed in its final version compared to the archive
version [54]. Indeed, the system

ẋ = u

y = ∇H(x)

is maximally monotone passive for any differentiable H but it
is may not be incremental passive.

10



Remark 5. It is unavoidable to see the link between the in-
cremental and maximal monotone passivity. Although the two
definitions describe in general two different concepts, they are
equivalent whenever H(x) = x>Qx + c for some real c. More-
over, with such a Hamiltonian function, the additional condi-
tions to be satisfied are then equal, i.e., g(x1) = g(x2) = g and
the positive semidefiniteness of the coupling matrix as in (31).

9. Conclusions

In this paper, we introduced different notions of stability un-
der an unified framework so to better compare them. We then
introduced the concept of dissipative and passive systems in
the classical sense and the different definitions, such as incre-
mental, convergent, and differential dissipativity/passivity, so
to extend the definitions of stability to open systems. We also
introduce the port-Hamiltonian formalism, i.e., nonlinear open
systems whose Hamiltonian function plays the role of storage
function satisfying the standard passivity property.

For this class of systems, we determine the additional condi-
tions to be satisfied in order to fit the other definitions of passiv-
ity (or stability in the case of dissipative Hamiltonian systems).
We were able to a priory determine some properties of the stor-
age functions, or to obtained it, from the system’s Hamiltonian.

The conclusion of the work is that, by implying the port-
Hamiltonian formalism (which describes a class of passive sys-
tem with a well-known storage function in the classical sense),
the notions of passivity are in general all different since different
conditions must be employed in order to fit in each definition.
While, instead, for the case of linear systems all definitions are
equivalent.

Appendix A. Variational and prolonged system

As introduced in [55] and exploited in [27], we show how
a system Σ, defined on the smooth manifold X, can be ex-
tended/prolonged (or ‘lifted’ as mentioned in [27]) to a system
on the 2n-dimensional tangent bundle TX of the manifold X,
with 2m inputs and 2p outputs.
Given an admissible state-input-output trajectory t → (x, u, y)
for Σ, the variational system along such a trajectory is given by
the following time-varying system

DΣ :


ξ̇ =

∂ f

∂x
(x, u)ξ +

∂ f

∂u
(x, u)ν

ζ =
∂h

∂x
(x, u)ξ +

∂h

∂u
(x, u)ν

with state ξ ∈ Rn, where ν = (ν1, . . . , νm) and ζ = (ζ1, . . . , ζp)
denote the inputs and the outputs of the variational system. As
highlighted in [45], the terminology ‘variational’ system comes
from considering the infinitesimal variations of a family of
state-input-output trajectories of Σ, i.e., (u(t, ε), y(t, ε), x(t, ε))
parameterized by ε ∈ (−δ, δ), with x(t, 0) = x(t), u(t, 0) = u(t),
and y(t, 0) = y(t). Thus the infinitesimal variations

ξ(t) =
∂x

∂ε
(t, 0), ν(t) =

∂u

∂ε
(t, 0), ζ(t) =

∂y

∂ε
(t, 0),

satisfy the dynamical equations of DΣ. In other words, the
state-input-output variational trajectory (ξ, ν, ζ) describes any
‘virtual displacement’ of the state-input-output trajectory of Σ.
The prolonged system of Σ then corresponds to the augmented
2n-dimensional system on the tangent bundle TX composed of
Σ together with DΣ, i.e., the system dynamics

TΣ :



ẋ = f (x, u), x(0) = x0

y = h(x, u)

ξ̇ =
∂ f

∂x
(x, u)ξ +

∂ f

∂u
(x, u)ν

ζ =
∂h

∂x
(x, u)ξ +

∂h

∂u
(x, u)ν.

Note that in the standard notation, as exploited e.g. in [45],
ξ = δx, ν = δu, and ζ = δy. Furthermore, in [27], in the
case of closed system, the variational state ξ = δx refers to
the tangent vector to the parameterized curve connecting any
two system trajectories. The infinitesimal variations δx(t) on
the state x(t) can also be interpreted as being a generic ‘virtual
displacement’ along any possible direction on the tangent space
TxX. However, if we specialize such a direction to be the one
of the ‘state velocity’, i.e., we obtain the dynamics of ξ = ẋ,
we describe the time evolution of the vectorfield f (x, u). By
doing so, we can properly determine the initial conditions of the
variational system, i.e., ξ(0) = f (x0, u(0)). This choice of the
variational system direction, recalls and extends the definition
of Forward Contraction introduced in [27, sec. III.C].

It has been shown in [15, Prop. 1] that if the vectorfield
f (x) is globally Lypschitz with bounded second derivative, the
two concepts of contractive and incrementally stable systems
are equivalent. Additionally, they are both equivalent, see [15,
Prop. 1], to the global exponential attractiveness of the mani-
fold E = {(x, ξ) : ξ = 0} for the prolonged systems of ẋ = f (x),
i.e.,

ẋ = f (x), ξ̇ =
∂ f

∂x
(x)ξ.

By the characterization we gave to the virtual state ξ in the pre-
vious section, i.e., considering ξ = ẋ, we can additionally con-
clude that the manifold E, as introduced in [15, Property P2],
is the set of all equilibrium points of the autonomous system
ẋ = f (x). As a consequence, because the contraction and the
incremental stability property are assumed to hold globally in
[15], we can conclude that there is a single attractive equilib-
rium point, i.e., E = {(x̄, 0)} where x̄ is such that f (x̄) = 0.
Whenever the system is not incrementally stable, then the in-
variant manifold E refers to (possibly) a continuum of attractive
equilibrium points.
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