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Abstract

In this paper, we study linear backward parabolic SPDEs and present new a priori
estimates for their weak solutions. Inspired by the seminal work of Y. Hu, J. Ma and J. Yong
from 2002 on strong solutions, we establish Lp-estimates requiring minimal assumptions on
the regularity of the coefficients, the terminal data, and the external force. To this end, we
derive a new Itô’s formula for the Lp-norm of the solution, extending the classical result in the
L2-setting. This formula is then used to improve further the regularity of the first component
of the solution up to L∞. Additionally, we present applications such as the controllability
of backward SPDEs with Lp-controls and a local existence result for a semilinear equation
without imposing any growth condition on the nonlinear term.

Keywords: Backward SPDEs, weak solutions, Itô’s formula, controllability, Banach fixed-point.

1 Introduction

1.1 Notation and main results

Backward stochastic partial differential equations (BSPDEs, for short) arise in many applica-
tions of probability theory and stochastic processes. In the literature, BSPDEs can be found
in various contexts, including control under incomplete information (see [Ben83,Tan98]), as ad-
joint equations in optimal control (see e.g. [NN90, HP91, Zho93]), in controllability problems
(see e.g. [BRT03,TZ09,HSLBP23]), in mathematical finance for the formulation of the stochas-
tic Feynman-Kac formula and the Black-Scholes equation (see [MY97, MY99]), among other
applications.

Let (Ω,F ,P) be a complete probability space on which is defined a one-dimensional standard
Brownian motion W = {W (t) : t ≥ 0} and let {Ft}t≥0 be the natural filtration generated by W ,
augmented by all the P-null sets in F . For any given (deterministic) time T > 0, let us consider
the following linear BSPDE











dy = − (∆y + αy + βY + F ) dt+ Y dW (t) in (0, T ) ×O,

y = 0 on (0, T ) × ∂O,

y(T ) = yT in O,

(1)
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where O ⊂ R
n is an open and bounded set with a C2 boundary ∂O. In (1), the coefficients

α and β, the forcing term F and the terminal datum yT are suitable random fields verifying
appropriate measurability and regularity conditions.

A solution to (1) consists of a pair of random fields (y, Y ) that are {Ft}t≥0-adapted and
satisfy (1) in a specified sense. At this point, it is important to note a fundamental difference
from standard SPDEs: the noise term in a BSPDE like (1) arises from the intrinsic random-
ness in the coefficients and terminal data—making it endogenous—and comes from martingale
representation theorems.

A classical question for BSPDEs consists in understanding the notion of the solution (for
instance strong, mild, or weak in the PDE sense) and determining the best regularity available
for the given data of the problem. This issue has been studied in the literature in different
contexts and frameworks. In [HP91,LvN19], using semigroup theory, the authors establish the
existence and uniqueness of mild solutions for abstract backward evolution equations in the L2

and Lp settings, respectively. In [HMY02,Dok12,DT12], the problem of existence and regularity
of strong solutions (i.e., solutions that can be evaluated point-wisely in the spatial variable)
is studied in bounded and/or unbounded domains. In the context of weak solutions (i.e., the
PDE satisfies a scalar product equation), the works [DQT12,DTZ13] tackle the existence and
regularity of solutions posed in the whole space within the Lp-setting and in higher order Sobolev
spaces Wm,p (m ≥ 1, p ≥ 2), respectively. Finally, existence and regularity of solutions in Hölder
spaces are established in [TW16].

In this direction, the first goal of this paper is to establish Lp- and L∞-estimates for weak
solutions to (1) (see Definition 1.1 below) without imposing additional regularity and/or differ-
entiability assumptions on the coefficients, the terminal data or the source term. Our aim is to
use natural hypotheses corresponding to the desired function space: for instance, obtaining Lp

estimates requires Lp terminal datum and source term, and similarly, L∞ solutions are obtained
with L∞ data.

To make this precise, we begin by introducing the following notations. In what follows, we
denote {Ft}t≥0 by F unless we want to emphasize a precise Ft. Let (X, ‖·‖X ) be a Banach space,
for any p ∈ [2,+∞) and any s ∈ {0, T}, we denote by Lp

Fs
(Ω;X) the set of all Fs-measurable

X-valued random variables ξ : Ω → X such that E(|ξ|pX) < +∞. For any p, q ∈ [2,∞) we define
the spaces

Lp
F
(Ω;Lq(0, T ;X)) :=

{

ψ : Ω× [0, T ] → X | ψ(·) is an F-adapted process

on [0, T ] and E

[

(

∫ T

0
‖ψ(t)‖qXdt

)
p

q

]

< +∞
}

,
(2)

Lq
F
(0, T ;Lp(Ω;X)) :=

{

ψ : Ω× [0, T ] → X | ψ(·) is an F-adapted process

on [0, T ] and

∫ T

0

[

E
(

‖ψ(t)‖pX
)

q

p

]

dt < +∞
}

,
(3)

endowed with their natural norms. In a clear and analogous way, we define the spaces (2) and (3)
when p and/or q equal to ∞. When p = q with p ∈ [2,+∞), from Fubini’s theorem we have that
Lp
F
(Ω;Lp(0, T ;X)) = Lp

F
(0, T ;Lp(Ω;X)) and the norms coincide and for simplicity we just write

Lp
F
(0, T ;X). When p = q = ∞, we also have that L∞

F
(Ω;L∞(0, T ;X)) = L∞

F
(0, T ;L∞(Ω;X))

and the norms coincide. Lastly, by Lp
F
(Ω;C([0, T ];X)) we denote the Banach space consisting

of all X-valued F-adapted continuous processes ψ(·) such that E

(

‖ψ‖pC([0,T ];X)

)

< +∞, also

equipped with the canonical norm.
In the remainder of this document, we will make the following instrumental assumption on

the coefficients of system (1)
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(H) α, β ∈ L∞
F
(0, T ;L∞(O)).

We recall the following notion of solution for (1).

Definition 1.1. A pair of random fields (y, Y ) is called a weak solution to (1) if

1) (y, Y ) is L2(O)× L2(O)-valued and Ft-measurable for each t ∈ [0, T ],

2) (y, Y ) ∈
[

L2
F
(Ω;C([0, T ]);L2(O))

⋂

L2
F
(0, T ;H1

0 (O))
]

× L2
F
(0, T ;L2(O)), and

3) for any t ∈ [0, T ] and φ ∈ H1
0 (O) it holds

(y(t), φ)L2(O) = (yT , φ)L2(O) −

∫ T

t
(∇y,∇φ)L2(O)ds

+

∫ T

t
(αy + βY + F, φ)L2(O)ds−

∫ T

t
(Y, φ)L2(O)dW (s), a.s.

The following result ensures the existence and uniqueness of such weak solutions.

Theorem 1.2. Let α, β be given coefficients satisfying (H). If yT ∈ L2
FT

(Ω;L2(O)) and F ∈

L2
F
(0, T ;L2(O)), then (1) admits a unique weak solution in the sense of Definition 1.1. Moreover,

the following energy estimate holds

E

(

sup
t∈[0,T ]

‖y(t)‖2L2(O)

)

+ E

(∫ T

0

∫

O
|∇y|2 dxdt

)

+ E

(∫ T

0

∫

O
|Y |2 dxdt

)

≤ CE

(
∫

O
|yT |

2 dx+

∫ T

0

∫

O
|F |2 dxdt

)

, (4)

for a positive constant C > 0 independent of yT and F .

This theorem is well-known in the literature and the proof can be derived in two different
ways: by a duality analysis similar to [Zho92] or by a more direct and constructive approach
relying on Galerkin method (see, e.g., [Gao18, Proposition 2.1] or [SY09, Section 3]).

Our first main result says that the integrability of the weak solution (y, Y ) can be improved
by taking more regular data. More precisely, we have the following.

Theorem 1.3. Let (y, Y ) be a weak solution to (1). Assume that yT ∈ Lp
FT

(Ω;Lp(O)) and
F ∈ Lp

F
(0, T ;Lp(O)) for some p ∈ [2,+∞). Then,

(y, Y ) ∈ Lp
F
(Ω;C([0, T ];Lp(O))) × Lp

F
(Ω;L2(0, T ;L2(O)))

and satisfies

E

(

sup
t∈[0,T ]

‖y(t)‖pLp(O)

)

+ E

[

(∫ T

0
‖Y (t)‖2L2(O)dt

)p/2
]

≤ CeCT
E

(
∫

O
|yT |

p dx+

∫ T

0

∫

O
|F |p dxdt

)

,

for a constant C > 0 only depending on O, α, β and p.

Our second result says that we can go up to L∞ for the first component y of the solution
(y, Y ) to (1). In more detail, we have the following.
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Theorem 1.4. Let (y, Y ) be a weak solution to (1). Assume that yT ∈ L∞
FT

(Ω;L∞(O)) and
F ∈ L∞

F
(0, T ;L∞(O)). Then the process y taken from the solution (y, Y ) to (1) belongs to

L∞
F
(0, T ;L∞(O)) and satisfies

ess sup
(ω,t)∈Ω×[0,T ]

‖y(t)‖L∞(O) ≤ exp(CT )
(

‖yT ‖L∞
FT

(Ω;L∞(O)) + ‖F‖L∞

F
(0,T ;L∞(O))

)

, (5)

for some C > 0 only depending on O, α and β.

Theorems 1.3 and 1.4 should be compared with [HMY02, Theorem 3.2], where similar results
are presented for one-dimensional BSPDEs. However, our contributions differ in several ways.
Firstly, while [HMY02] is restricted to the one-dimensional case, our results are established for
BSPDEs in any dimension. Secondly, we address weak solutions rather than strong solutions.
This distinction is important since weak solutions are less regular in the spatial variable and
cannot be evaluated pointwise, preventing the direct application of Itô’s formula to the function
u2p as in [HMY02]. Instead, we establish an Ito’s formula for the Lp-norm in the backward case
(see Proposition 2.1 below), using some ideas from [DG15] for SPDEs, which involve truncations
and limit procedures. Finally, our work considers coefficients that are merely bounded, as
opposed to some differentiability conditions imposed in [HMY02, eq. (2.4)]. Similarly, we relax
the conditions on the initial datum and the source term, which are less restrictive compared to
those required by [HMY02, eqs. (2.2)–(2.3)].

As in [HMY02], we also obtain a uniform bound on the first component of the solution of
the BSPDE (see Theorem 1.4), which initially can be surprising due to the presence of the
stochastic integral. Nevertheless, as mentioned before, the noise term in (1) is endogenous to
the equation, and as noted in [DT12], this special feature makes the theory for these equations
closer to deterministic PDEs than to SPDEs.

1.2 Applications

Once we have established the regularity of the BSPDE (1), we are interested in studying the
following applications:

1. Controllability.

2. Local existence of semilinear equations.

Controllability is a qualitative property of dynamical systems that refers to the ability to
steer the system from any initial state to any desired final state within a finite time period, using
an appropriate control input. In our context, let us consider the control system











dy = − (∆y + αy + βY + χO0h) dt+ Y dW (t) in (0, T )×O,

y = 0 on (0, T )× ∂O,

y(T ) = yT in O,

(6)

where h is an external control force localized on a set O0 ⊂ O. In this part we assume that O
is connected.

Due to Theorems 1.2, 1.3 and 1.4, system (6) is well-posed for any terminal datum yT ∈
Lp
FT

(Ω;Lp(O)) and any function h ∈ Lp
F
(0, T ;Lp(O0)) with p ∈ [2,+∞]. This motivates us to

find controls h such that the following controllability condition is fulfilled.

Definition 1.5. Let p ∈ [2,∞]. System (6) is said to be null-controllable in Lp if for any
terminal datum yT ∈ Lp

FT
(Ω;Lp(O)), there exists a control h ∈ Lp

F
(0, T ;Lp(O0)) such that the

corresponding weak solution (y, Y ) of (6) satisfies

y(0, ·) = 0 a.s.
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In the case p = 2, this problem has been studied extensively, most notably in [BRT03] and
[TZ09] (see [HSLBP23] for the extension to the semilinear case). Using duality arguments, the
controllability for (6) is established via Carleman estimates, which have been adapted from their
classical deterministic form (see [FI96]) to the stochastic setting. However, to our knowledge,
there are no results in the literature addressing the case when p > 2. To bridge this gap, we
present a result covering the full range p ∈ (2,+∞] for a simplified yet interesting case.

Theorem 1.6. Let p ∈ (2,+∞] and assume that β ≡ 0. Then, system (6) is null-controllable
in Lp. Moreover, if T ∈ (0, 1), the following estimate on the control holds

‖h‖Lp

F
(0,T ;Lp(O)) ≤ exp(C/T )‖yT ‖Lp

FT
(Ω;Lp(O)), (7)

for some C > 0 depending at most on O, O0, p and α.

By simplifying the original system, we employ the duality approach used in [TZ09, Section
7], but following the spirit of [Liu14], where we avoid the need to prove stochastic Carleman
estimates and use instead known results in the deterministic setting. Our result extends those in
[BRT03] and [TZ09] to a wider range of values of p, circumventing technical challenges typically
associated with stochastic control systems.

We remark that this L∞ controllability result and, in particular, the estimate of the control
(7) in small-time, i.e. T ∈ (0, 1) is very useful for obtaining local controllability of semilinear
equations. We refer to Remark 4.1 for more details. We also remark that an estimate similar to
(7) holds in the case T ≥ 1 but with a different exponential bound.

Our second application is concerned about the local existence of solutions to the semilinear
system











dy = − (∆y + αy + βY + f(y)) dt+ Y dW (t) in (0, T ) ×O,

y = 0 on (0, T ) × ∂O,

y(T ) = yT in O,

(8)

where we assume that

(F) f ∈ C∞(R) such that f(0) = 0.

A pair of random fields (y, Y ) is called a weak solution to (8) if

1) (y, Y ) is L2(O)× L2(O)-valued and Ft-measurable for each t ∈ [0, T ],

2) (y, Y ) ∈
[

L2
F
(Ω;C([0, T ]);L2(O))

⋂

L2
F
(0, T ;H1

0 (O))
]

× L2
F
(0, T ;L2(O)), and

3) for any t ∈ [0, T ] and φ ∈ H1
0 (O) it holds

(y(t), φ)L2(O) = (yT , φ)L2(O) −

∫ T

t
(∇y,∇φ)L2(O)ds

+

∫ T

t
(αy + βY + f(y), φ)L2(O)ds−

∫ T

t
(Y, φ)L2(O)dW (s), a.s.

To state our result, let us define the functional space X := L2
F
(Ω;C([0, T ; ]L2(O))) ∩

L2
F
(Ω;L2(0, T ;H1

0 (O))) ∩ L∞
F
(0, T ;L∞(O)) and for any p ∈ [2,+∞) we set

Yp :=
{

(y, Y ) ∈ X × Lp
F
(Ω;L2(0, T ;L2(O)))

}

endowed with its natural norm, that is, ‖(y, Y )‖Yp
= ‖y‖X + ‖Y ‖Lp

F
(Ω;L2(0,T ;L2(O))).

5



Theorem 1.7. Let T > 0, p ∈ [2,+∞) and assume that (F) holds. There exists δ > 0 only de-
pending on O, T , p and f such that for any y0 ∈ L∞

FT
(Ω;L∞(O)) satisfying ‖yT ‖L∞

FT
(Ω;L∞(O)) ≤

δ, there is a unique weak solution (y, Y ) to (8) that belongs to Yp.

The proof of Theorem 1.7 relies on a standard Banach fixed-point procedure and exploits the
boundedness of the solution provided by Theorem 1.4 to prove the contractivity of a suitable
nonlinear map.

Note that we do not impose any growth or sign conditions on the nonlinear term. As a re-
sult, we obtain only a local well-posedness result for (8), applicable to sufficiently small terminal
data. Nonetheless, this result extends existing works, which typically require global Lipschitz
conditions (see, e.g., [HP91,HMY02] or [LZ21, Chapter 4]) and avoids the need for restrictive
conditions on f , providing a more general framework for the analysis of semilinear systems.

1.3 Outline of the paper

The rest of the paper is organized as follows. In Section 2, we present and prove an Itô formula
for the Lp-norm of the solution of the BSPDE (1). As a consequence, we will deduce the proof
of Theorem 1.3. Then, in Section 3 we use the Itô formula to show uniform Lp-estimates then
Theorem 1.4 concerning L∞-estimates for the solution of the BSPDE (1). Section 4 is devoted
to prove the control result in Theorem 1.6, while Section 5 focuses on the study of the semilinear
equation (8) and its well-posedness.

2 Itô’s formula for the Lp-norm

The goal of this section is to state the Itô’s formula for the Lp-norm and deduce Lp-estimates for
the weak solution (y, Y ) of (1). Note that during this section, the Lp-estimates are not uniform
with respect to p. The final conclusion of this section will be the proof of Theorem 1.3.

The goal of this section is to prove the following result, which is essential for the proofs of
Theorem 1.3 and Theorem 1.4. This result includes an initial a priori estimate and an Itô’s
formula for the Lp-norm of the solution to the backward SPDE (1). More precisely, we have the
following.

Proposition 2.1 (Ito’s formula for Lp-norm). Let (y, Y ) be a weak solution to (1) and assume
that yT ∈ Lp

FT
(Ω;Lp(O)) and F ∈ Lp

F
(0, T ;Lp(O)) for some p ∈ [2,+∞). Then, there is a

constant C > 0 only depending on O, α, β, and p such that

E

(

sup
t∈[0,T ]

‖y(t)‖pLp(O)

)

+ E

(
∫ T

0

∫

O
|y|p−2|∇y|2 dxdt

)

+ E

(∫ T

0

∫

O
|y|p−2Y 2 dxdt

)

≤ CeCT
E

(∫

O
|yT |

p dx+

∫ T

0

∫

O
|F |p dxdt

)

. (9)

Moreover, for any t ∈ [0, T ], we have

∫

O
|y(t)|p dx+ p(p − 1)

∫ T

t

∫

O
|y|p−2|∇y|2 dxds+

p(p− 1)

2

∫ T

t

∫

O
|y|p−2|Y |2 dxds

=

∫

O
|yT |

p dx+ p

∫ T

t

∫

O
|y|p−2y (αy + βY + F ) dx− p

∫ T

t

∫

O
|y|p−2yY dW (s), a.s. (10)

For the proof, we follow the methodology in [DG15] adapted to the backward case and for
the reader’s convenience we present it in several steps.
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2.1 Technical lemmas

We begin by presenting some auxiliary functions. For each n ∈ N and some p ≥ 2, consider the
twice continuously differentiable function φn : R → R defined by

φn(r) :=

{

|r|p if |r| < n,

np−2 p(p−1)
2 (|r| − n)2 + pnp−1 (|r| − n) + np if |r| ≥ n.

(11)

It is not difficult to check that φn satisfy

|φn(r)| ≤M |r|2, |φ′n(r)| ≤M |r|, |φ′′(r)| ≤M, r ∈ R, (12)

where M > 0 depends only on p and n. Furthermore, we have

|φn(r)| ≤ N |r|p, |φ′n(r)| ≤ N |r|p−1, |φ′′(r)| ≤ N |r|p−2, r ∈ R, (13)

for a positive constant N only depending on p, and if n→ ∞, we have

φn(r) → |r|p, φ′n(r) → p|r|p−2r, φ′′n(r) → p(p− 1)|r|p−2, r ∈ R. (14)

Additionally, we can check that the following inequalities hold

|rφ′n(r)| ≤ pφn(r) (15)

|φ′n(r)|
2 ≤ 4pφ′′n(r)φn(r), (16)

[φ′′(r)]p/(p−2) ≤ [p(p− 1)]p/(p−2) φn(r) for all r ∈ R, (17)

and, by the definition of (11), we can see that

φ′′n(r) ≥ 0 for all r ∈ R. (18)

We start with the following lemma.

Lemma 2.2. Let n ∈ N, p ∈ [2 +∞), t ∈ [0, T ], and (y, Y ) be a weak solution to (1). Then

E

(∫ T

t

∫

O
φ′n(y)Y dx dW (s)

)

= 0.

Proof. By Cauchy-Schwarz and Hölder inequalities together with (12) we see that

∫ T

t

(∫

O
φ′n(y)Y dx

)2

ds ≤

∫ T

t
‖φ′n(y)‖

2
L2(O)‖Y ‖2L2(O)ds

≤M

∫ T

t
‖y‖2L2(O)‖Y ‖2L2(O)ds

≤M sup
s∈(t,T ]

‖y(s)‖2L2(O)

∫ T

t
‖Y ‖2L2(O)ds, a.s.

for any t ∈ [0, T ]. Taking expectation and using again Cauchy-Schwarz’s inequality we get

E





[

∫ T

t

(
∫

O
φ′n(y)Y dx

)2

ds

]1/2


 ≤ME

(

sup
s∈(t,T ]

‖y(s)‖2L2(O)

)1/2

E

(
∫ T

t
‖Y ‖2L2(O)ds

)1/2

7



whence

E





[

∫ T

t

(∫

O
φ′n(y)Y dx

)2

ds

]1/2




≤
M

2

[

E

(

sup
s∈(t,T ]

‖y(s)‖2L2(O)

)

+ E

(∫ T

t
‖Y ‖2L2(O)ds

)

]

< +∞.

by the regularity estimate (4). Defining H(s) :=
∫

O φ
′
n(y(s))Y (s)dx, we have proved that

H(·) ∈ L2(Ω×(0, T )). Therefore, E
(

∫ T
t H(s)dW (s)

)

= E

(

∫ T
0 H(s)dW (s)−

∫ t
0 H(s)dW (s)

)

=

0. This ends the proof.

We continue with the following identity.

Lemma 2.3. Let n ∈ N and (y, Y ) be a weak solution to (1). For any t ∈ [0, T ], the following
identity holds

∫

O
φn(y(t))dx+

∫ T

t

∫

O
φ′′n(y)|∇y|

2 dxds+
1

2

∫ T

t

∫

O
φ′n(y)Y

2 dxds

=

∫

O
φn(y(T ))dx+

∫ T

t

∫

O
φ′n(y)(αy + βY + F )dxds−

∫ T

t

∫

O
φ′n(y)Y dxdW (s), a.s.

(19)

Proof. Since φn is a twice continuously differentiable function, we can apply Itô’s formula and
use equation (1) to get

∫

O
φn(y(T ))dx =

∫

O
φn(y(t))dx−

∫ T

t

∫

O
φ′n(y)∆y dxds−

∫ T

t

∫

O

(

φ′n(y)F −
1

2
φ

′′

n(y)Y
2

)

dxds

−

∫ T

t

∫

O
φ′n(y)(αy + βY )dxds+

∫ T

t

∫

O
φ

′

n(y)Y dxdW (s), a.s.

for any t ∈ [0, T ]. Note that for i = 1, . . . , d, ∂xi
(φ′n(y)) = φ′′n(y)∂xi

y, whence integrating by
parts in the space variable and using the homogeneous Dirichlet boundary condition of (1) yields

∫

O
φn(y(T ))dx =

∫

O
φn(y(t))dx+

∫ T

t

∫

O
φ′′n(y)|∇y|

2 dxds−

∫ T

t

∫

O

(

φ′n(y)F −
1

2
φ′′n(y)Y

2

)

dxds

−

∫ T

t

∫

O
φ′n(y)(αy + βY )dxds+

∫ T

t

∫

O
φ′n(y)Y dxdW (s), a.s.

After rearranging some terms, we obtain the desired equality.

In the remainder of this section, C denotes a generic positive constant uniform with respect
to n and that may change from line to line. We have the following estimate.

Lemma 2.4. Let n ∈ N, p ∈ [2,+∞), (y, Y ) be a weak solution to (1) and assume that yT ∈
Lp
FT

(Ω;Lp(O)) and F ∈ Lp
F
(0, T ;Lp(O)). Then, the following estimate holds

E

(
∫ T

0

∫

O
φ′′n(y)|∇y|

2 dxds

)

+ E

(
∫ T

0

∫

O
φ′′n(y)Y

2 dxds

)

(20)

≤ CeCT
E

(∫

O
|yT |

p dx+

∫ T

0

∫

O
|F |p dxds

)

,

for some constant C > 0 that only depends on p, ‖α‖L∞

F
(0,T ;L∞(O)) and ‖β‖L∞

F
(0,T ;L∞(O)).
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Proof. Let t > 0 and 0 < r ≤ t. From identity (19) of Lemma 2.3, we take conditional
expectation to obtain

E

(
∫

O
φn(y(t))dx+

∫ T

t

∫

O
φ′′n(y)|∇y|

2 dxds+
1

2

∫ T

t

∫

O
φ′′n(y)Y

2 dxds
∣

∣

∣
Fr

)

= E

(∫

O
φn(y(T ))dx+

∫ T

t

∫

O
φ′n(y)(αy + βY + F )dxds

∣

∣

∣ Fr

)

− E

(∫ T

t

∫

O
φ′n(y)Y dxdW (s) | Fr

)

.

From (15)-(17), the positivity property (18) and Young’s inequality, we can deduce

|φ′n(y)F | ≤ C|F |φn(y)
(p−1)/p ≤ C

(

|F |p + φn(y)
)

, (21)

|φ′n(y)αy| ≤ C|α|φn(y), (22)

|φ′n(y)βY | ≤ δφ′′n(y)|Y |2 + C|β|2
δ φn(y), (23)

almost surely, for a constant C > 0 only depending on p and any δ ∈ (0, 1). Therefore, taking δ
small enough

E

(∫

O
φn(y(t))dx+

∫ T

t

∫

O
φ′′n(y)|∇y|

2 dxds+

∫ T

t

∫

O
φ′′n(y)Y

2 dxds
∣

∣

∣
Fr

)

≤ CE

(
∫

O
φn(y(T ))dx+

∫ T

t

∫

O
|F |p dxds+

∫ T

t

∫

O
φn(y)dxds

∣

∣

∣
Fr

)

− E

(∫ T

t

∫

O
φ′n(y)Y dxdW (s) | Fr

)

,

where C > 0 depends on p and the norms ‖α‖L∞
F
(0,T ;L∞(O)) and ‖β‖L∞

F
(0,T ;L∞(O)).

Taking expectation in the above inequality and by Fubini’s theorem and Lemma 2.2, we get

E

(∫

O
φn(y(t))dx+

∫ T

t

∫

O
φ′′n(y)|∇y|

2 dxds+

∫ T

t

∫

O
φ′′n(y)Y

2 dxds

)

≤ CE

(
∫

O
φn(y(T ))dx+

∫ T

0

∫

O
|F |p dxds

)

+ C

∫ T

t
E

(
∫

O
φn(y)dxds

)

. (24)

By (18), we can drop the second and third terms in the above estimate and, by the backward
Grönwall inequality (see Lemma A.1), we obtain

E

(∫

O
φn(y(t))dx

)

≤ CeCT
E

(∫

O
φn(y(T ))dx+

∫ T

0

∫

O
|F |p dxds

)

. (25)

Integrating in time (25) and combining with (24) entails

E

(∫

O
φn(y(t))dx

)

+ E

(∫ T

t

∫

O
φ′′n(y)|∇y|

2 dxds

)

+ E

(∫ T

t

∫

O
φ′′n(y)Y

2 dxds

)

≤ CeCT

[

E

(
∫

O
φn(y(T ))dx

)

+ E

(
∫ T

0

∫

O
|F |p dxds

)]

, (26)

where we have replaced the terminal data of (1). Dropping the first term in (26) and applying
the monotone convergence theorem yield the desired result.
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The following result tells us that we can improve Lemma 2.4 by adding a supremum (in
time) estimate on the left-hand side of (20).

Lemma 2.5. Under the assumptions of Lemma 2.4, there is C > 0 only depending on p such
that

E

(

sup
t∈[0,T ]

∫

O
φn(y(t))

)

+ E

(∫ T

0

∫

O
φ′′n(y)|∇y|

2 dxds

)

+ E

(∫ T

0

∫

O
φ′′n(y)Y

2 dxds

)

(27)

≤ CeCT
E

(∫

O
|yT |

p dx+

∫ T

0

∫

O
|F |p dxds

)

.

Proof. Using as a starting point identity (19) of Lemma 2.3, we use (21)–(23) to deduce that
almost surely

∫

O
φn(y(t))dx+

∫ T

t

∫

O
φ′′n(y)|∇y|

2 dxds+

∫ T

t

∫

O
φ′′n(y)Y

2 dxds

≤ C

(∫

O
|yT |

p dx+

∫ T

t

∫

O
|F |p dxds+

∫ T

t

∫

O
φn(y)dxds

)

−

∫ T

t

∫

O
φ′n(y)Y dxdW (s),

for any t ∈ [0, T ] and some C > 0 only depending on p, ‖α‖L∞

F
(0,T ;L∞(O)) and ‖β‖L∞

F
(0,T ;L∞(O)).

Hence
∫

O
φn(y(t))dx ≤ C

(
∫

O
|yT |

p dx+

∫ T

0

∫

O
|F |p dxds

)

+ sup
t∈[0,T ]

∣

∣

∣

∣

∫ T

t

∫

O
φ′n(y)Y dxdW (s)

∣

∣

∣

∣

+ C

∫ T

t

∫

O
φn(y)dxds, a.s. (28)

From the backward Grönwall inequality (see Lemma A.1) and taking supremum in [0, T ], we
have that a.s.

sup
t∈[0,T ]

∫

O
φn(y(t))dx

≤ CeCT

(

∫

O
|yT |

p dx+

∫ T

0

∫

O
|F |p dxds+ 2 sup

t∈[0,T ]

∣

∣

∣

∣

∫ t

0

∫

O
φ′n(y)Y dxdW (s)

∣

∣

∣

∣

)

, (29)

where we have used that

sup
t∈[0,T ]

∣

∣

∣

∣

∫ T

t

∫

O
φ′n(y)Y dxdW (s)

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫ T

0

∫

O
φ′n(y)Y dxdW (s)

∣

∣

∣

∣

+ sup
t∈[0,T ]

∣

∣

∣

∣

∫ t

0

∫

O
φ′n(y)Y dxdW (s)

∣

∣

∣

∣

≤ 2 sup
t∈[0,T ]

∣

∣

∣

∣

∫ t

0

∫

O
φ′n(y)Y dxdW (s)

∣

∣

∣

∣

. (30)

We take expectation in (29) and apply Burkholder-Davis-Gundy inequality to get

E

(

sup
t∈[0,T ]

∫

O
φn(y(t))dx

)

≤ CeCT



E

(∫

O
|yT |

p dx+

∫ T

0

∫

O
|F |p dxds

)

+ E





∣

∣

∣

∣

∣

∫ T

0

(∫

O
φ′n(y)Y dx

)2

ds

∣

∣

∣

∣

∣

1/2






 . (31)
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To estimate the last term in the above inequality we note that from (16)

|φ′n(y)Y | ≤ 2|Y |φ′′n(y)
1/2φn(y)

1/2 a.s.

and applying Hölder and Young inequalities we have that there exists a numerical constant
C > 0 such that

E





∣

∣

∣

∣

∣

∫ T

0

(
∫

O
φ′n(y)Y dx

)2

ds

∣

∣

∣

∣

∣

1/2




≤ δE

(

sup
s∈[0,T ]

∫

O
φn(y)dx

)

+
C

δ
E

(
∫ T

0

∫

O
|Y |2|φ′′n(y)|dxds

)

, (32)

for any δ ∈ (0, 1). Replacing (32) in (31) and taking δ small enough we get

E

(

sup
t∈[0,T ]

∫

O
φn(y(t))dx

)

≤ CeCT
E

(∫

O
|yT |

p dx+

∫ T

0

∫

O
|F |p dxds+

∫ T

0

∫

O
|Y |2|φ′′n(y)|dxds

)

. (33)

Finally, putting together estimate (20) of Lemma 2.4 and inequality (33) we obtain the desired
result. This ends the proof.

2.2 Proof of the Ito’s formula for the Lp-norm

Now we are in position to prove the Ito’s formula, that is, Proposition 2.1.

Proof of Proposition 2.1. Estimate (9), follows from (14), estimate (27) in Lemma 2.5 and a
straightfoward application of Fatou’s Lemma. This proves the first assertion of Theorem 1.3.

To prove the Itô’s formula (10), we proceed as follows. From Lemma 2.3, we have that the
following identity holds

∫

O
φn(y(t))dx+

∫ T

t

∫

O
φ′′n(y)|∇y|

2 dxds+
1

2

∫ T

t

∫

O
φ′′n(y)Y

2 dxds

=

∫

O
φn(y(T ))dx+

∫ T

t

∫

O
φ′n(y)(αy + βY + F )dxds−

∫ T

t

∫

O
φ′n(y)Y dxdW (s) a.s.,

(34)

for all t ∈ [0, T ]. We will see that each term in (34) converges to the corresponding one in (10).
At this point, we will make use of estimate (9).

From estimate (9), we readily deduce that

sup
t∈[0,T ]

‖y(t)‖pLp(O) < +∞, a.s. (35)

Then, by (13), (14), (35), and dominated convergence theorem we obtain that

∫

O
φn(y(t))dx→

∫

O
|y(t)|p dx a.s. for all t ∈ [0, T ].

This proves the convergence of the first terms in both sides of identity (34).
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Now we note from (13) that a.s.

|φ′n(y)F | ≤ N |y|p−1|F |

and, moreover, by succesive applications of Hölder inequality we have for all t ∈ [0, T ]

∫ T

t

∫

O
|y|p−1|F |dxds ≤ ‖y‖p−1

Lp((t,T ];Lp(O))‖F‖Lp((t,T ];Lp(O)) < +∞ a.s.,

where the boundedness follows from (35) and the regularity of F . Therefore, dominated conver-
gence theorem together with (14) imply that

∫ T

t

∫

O
φ′n(y)F dxds→ p

∫ T

t

∫

O
|y|p−2yF dxds a.s. for all t ∈ [0, T ].

Similar arguments using the energy estimate (9) yield that

∫ T

t

∫

O
φ′′n(y)|∇y|

2 dxds→ p(p− 1)

∫ T

t

∫

O
|y|p−2|∇y|2 dxds a.s.,

1

2

∫ T

t

∫

O
φ′′n(y)Y

2 dxds→
p(p− 1)

2

∫ T

t

∫

O
|y|p−2|Y |2 dxds a.s.,

∫ T

t

∫

O
φ′n(y)αy dxds→ p

∫ T

t

∫

O
α|y|p dxds a.s.,

∫ T

t

∫

O
φ′n(y)βY dxds→ p

∫ T

t

∫

O
|y|p−2βyY dxds a.s.,

for all t ∈ [0, T ].

Finally, for the term
∫ T
t

∫

O φ
′
n(y)Y dxdW (s), first we will prove that

∫ T

t

∣

∣

∣〈φ′n(y), Y 〉L2(O) −
〈

p|y|p−2y, Y
〉

L2(O)

∣

∣

∣

2
ds→ 0 a.s. for all t ∈ [0, T ]. (36)

For this, we recall from (13) that |φ′n(r)| ≤ N |r|p−1 and by Cauchy-Schwarz inequality

∣

∣〈φ′n(y), Y 〉L2(O) − 〈p|y|p−2y, Y 〉L2(O)

∣

∣

2
≤ C

(∫

O
|y|p−2|Y |2 dx

)(∫

O
|y|p dx

)

a.s.

On the other hand, by estimate (9), we have

∫ T

t

(∫

O
|y|p−2|Y |2 dx

)(∫

O
|y|p dx

)

ds

≤ C

(

sup
s∈[t,T ]

∫

O
|y(s)|p dx

)

(∫ T

t

∫

O
|y|p−2|Y |2 dxds

)

,

< +∞, a.s. for all t ∈ [0, T ].

From (14), the continuity of the L2-inner product, and dominated convergence theorem allow
us to conclude (36) and therefore

∫ T

t

∫

O
φ′n(y)Y dW (s) → p

∫ T

t

∫

O
|y|p−2yY dW (s) a.s. for all t ∈ [0, T ].

The proof is complete.
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2.3 Extra regularity for the process Y and proof of Theorem 1.3

The goal of this part is to establish extra-regularity for the process Y .

Proposition 2.6. Let (y, Y ) be a weak solution to (1) and assume that yT ∈ Lp
FT

(Ω;Lp(O))

and F ∈ Lp
F
(0, T ;Lp(O)) for some p ∈ (2,+∞). Then Y ∈ Lp

F
(Ω;L2(0, T ;L2(O))) and there is

a constant C > 0 only depending on O, α, β, and p such that

E

[

(∫ T

0
‖Y (t)‖2L2(O)dt

)p/2
]

≤ CeCT
E

(

‖yT ‖
p
Lp(O) +

∫ T

0
‖F (t)‖pLp(O)dt

)

. (37)

Proof. Let (y, Y ) be a weak solution to (1). Along the proof, C stands for a generic positive
constant depending at most on O, ‖α‖L∞

F
(0,T ;L∞(O)), ‖β‖L∞

F
(0,T ;L∞(O)), and p but which is

uniform with respect to T . This constant may change from line to line.
Using formula (10) in Proposition 2.1 with p = 2 (which amounts to the usual Ito’s formula)

and dropping some of the positive terms we have

∫ T

t

∫

O
|Y |2 dxds ≤

∫

O
|yT |

2 dx+ 2

∫ T

t

∫

O
y(αy + βY + F )dxds− 2

∫ T

t

∫

O
yY dxdW (s), a.s.

for any t ∈ [0, T ]. Since y ∈ L2
F
(Ω;C([0, T ];L2(O))), then

∫

O |yT |
2 ≤ sups∈[0,T ] ‖y(s)‖

2
L2(O) a.s.

From this, and taking the power p/2 with p > 2 in both sides of the above inequality, we deduce

(
∫ T

t

∫

O
|Y |2 dxds

)p/2

≤ C

(

sup
s∈[0,T ]

‖y(s)‖p
L2(O)

+

(
∫ T

0

∫

O
|α||y|2 dxds

)p/2

+

(
∫ T

0

∫

O
|βyY |dxds

)p/2
)

+ C

(

∫ T

0

∫

O
|yF |dxds+

∣

∣

∣

∣

∫ T

t

∫

O
yY dxdW (s)

∣

∣

∣

∣

p/2
)

, (38)

almost surely for any t ∈ [0, T ].
Let us estimate the expectation of the last four terms in the right-hand side of (38). For the

first one, from Hölder inequality and since α verifies (H), we readily deduce

E

[

(
∫ T

0

∫

O
|α||y|2 dxds

)p/2
]

≤ CT p/2
E

(

sup
s∈[0,T ]

‖y(s)‖p
L2(O)

)

. (39)

For the second one, recalling (H) and using Cauchy-Schwarz inequality successively, we have

(
∫ T

0

∫

O
|βyY |dxds

)p/2

≤ C

(
∫ T

0
‖y(s)‖2L2(O)ds

)p/4(∫ T

0
‖Y (s)‖2L2(O)ds

)p/4

a.s.

Therefore, taking expectation and using Cauchy-Schwarz and Young inequalities we obtain

E

[

(∫ T

0

∫

O
|βyY |dxds

)p/2
]

≤ δE

[

(∫ T

0
‖Y (s)‖2L2(O)ds

)p/2
]

+
C

δ
E

[

(∫ T

0
‖y(s)‖2L2(O)ds

)p/2
]
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for any δ > 0. Using Hölder inequality in the last term, we can further estimate

E

[

(∫ T

0

∫

O
|βyY |dxds

)p/2
]

≤ δE

[

(
∫ T

0
‖Y (s)‖2L2(O)ds

)p/2
]

+
CT p/2

δ
E

(

sup
s∈[0,T ]

‖y(s)‖p
L2(O)

)

. (40)

To estimate the third term in the right-hand side of (38), we proceed as follows. Using
Cauchy-Schwarz and Hölder inequalities, we get

(
∫ T

0

∫

O
|yF |dxdt

)p/2

≤ sup
s∈[0,T ]

‖y(s)‖
p/2
L2(O)

(
∫ T

0
‖F (s)‖L2(O)ds

)p/2

, a.s.

Taking expectation and using Cauchy-Schwarz and Young inequalities we obtain

E

[

(∫ T

0

∫

O
|yF |dxdt

)p/2
]

≤
1

2
E

(

sup
s∈[0,T ]

‖y(s)‖p
L2(O)

)

+
1

2
E

[

(∫ T

0
‖F (s)‖L2(O)ds

)p
]

. (41)

To estimate the last term in (38), arguing as we did in (30), we have that

sup
t∈[0,T ]

∣

∣

∣

∣

∫ T

t

∫

O
yY dxdW (s)

∣

∣

∣

∣

p/2

≤ 2 sup
t∈[0,T ]

∣

∣

∣

∣

∫ t

0

∫

O
yY dxdW (s)

∣

∣

∣

∣

p/2

,

whence, by Burkholder-Davis-Gundy inequality, we deduce that

E

[

∣

∣

∣

∣

∫ T

t

∫

O
yY dxdW (s)

∣

∣

∣

∣

p/2
]

≤ CE





∣

∣

∣

∣

∣

∫ T

0

(∫

O
yY dx

)2

ds

∣

∣

∣

∣

∣

p/4


 . (42)

Using Cauchy-Schwarz and Hölder inequalities we can estimate the right-hand side of (42) as

E

[

∣

∣

∣

∣

∫ T

t

∫

O
yY dxdW (s)

∣

∣

∣

∣

p/2
]

≤ CE

[

sup
s∈[0,T ]

‖y(s)‖
p/2
L2(O)

∣

∣

∣

∣

∫ T

0
‖Y (s)‖2L2(O)ds

∣

∣

∣

∣

p/4
]

,

and from Young inequality, we deduce that for any δ > 0

E

[

∣

∣

∣

∣

∫ T

t

∫

O
yY dxdW (s)

∣

∣

∣

∣

p/2
]

≤ δE

[

∣

∣

∣

∣

∫ T

0
‖Y (s)‖2L2(O)ds

∣

∣

∣

∣

p/2
]

+
C

δ
E

(

sup
s∈[0,T ]

‖y(s)‖p
L2(O)

)

.

(43)

Taking expectation in (38) and putting together with (39), (40), (41), and (43) we have that
for any t ∈ [0, T ] the following holds

E

[

(∫ T

t

∫

O
|Y |2 dxds

)p/2
]

≤ C

(

1 +
2T p/2

δ

)

E

(

sup
s∈[0,T ]

‖y(s)‖p
L2(O)

)

+ 2δE

[

(∫ T

0
‖Y (s)‖2L2(O)ds

)p/2
]

+
1

2
E

[

(∫ T

0
‖F (s)‖L2(O)ds

)p
]

.
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In particular, taking t = 0 in the above estimate and setting δ > 0 small enough yields

E

[

(
∫ T

0
‖Y (s)‖2L2(O)ds

)p/2
]

≤ C(1 + T p/2)E

(

sup
s∈[0,T ]

‖y(s)‖p
L2(O)

)

+ CE

[

(
∫ T

0
‖F (s)‖L2(O)ds

)p
]

. (44)

To conclude, using Hölder inequality and since ‖z‖p
L2(O)

≤ |O|
p−2
2 ‖z‖pLp(O) for any z ∈ Lp(O),

we obtain

E

[

(∫ T

0
‖Y (s)‖2L2(O)ds

)p/2
]

≤ C(1 + T p/2)E

(

sup
s∈[0,T ]

‖y(s)‖p
L2(O)

)

+ CT p−1
E

(
∫ T

0
‖F (s)‖p

L2(O)
ds

)

≤ C ′eC
′T
E

(

sup
s∈[0,T ]

‖y(s)‖pLp(O) +

∫ T

0
‖F (s)‖pLp(O)ds

)

, (45)

for some constant C ′ > 0 only depending on O, α, β, and p. To conclude, we use estimate (9)
in (45) to obtain the desired inequality (37). This ends the proof.

Proof of Theorem 1.3. The result follows directly from Proposition 2.1 and Proposition 2.6.

3 Uniform Lp- and L∞-estimates

The goal of this section is to show Theorem 1.4. In the first step towards Theorem 1.4, we will
use Itô’s formula for the Lp-norm (see Proposition 2.1) to obtain a precise uniform estimate for
the solution to (1). The result reads as follows.

Proposition 3.1. Let (y, Y ) be a weak solution to (1). Assume that yT ∈ Lp
FT

(Ω;Lp(O)) and
F ∈ Lp

F
(0, T ;Lp(O)). Then the process y taken from the solution (y, Y ) to (1) satisfies

‖y‖L∞
F
(0,T ;Lp(Ω;Lp(O))) ≤ exp(CT )

(

‖yT ‖Lp

FT
(Ω;Lp(O)) + ‖F‖Lp

F
(0,T ;Lp(O))

)

,

for a constant C > 0 independent of yT , F and p.

Proof. Let (y, Y ) be a weak solution to (1). We start from formula (10) in Proposition 2.1,
namely

∫

O
|y(t)|p dx+ p(p− 1)

∫ T

t

∫

O
|y|p−2|∇y|2 dxds+

p(p− 1)

2

∫ T

t

∫

O
|y|p−2|Y |2 dxds

=

∫

O
|yT |

p dx+ p

∫ T

t

∫

O
|y|p−2y (αy + βY + F ) dx− p

∫ T

t

∫

O
|y|p−2yY dW (s), a.s.,

that holds for any t ∈ [0, T ].
In particular, by taking into account that the third term in the left-hand side is nonnegative,

we deduce that
∫

O
|y(t)|p dx+

p(p− 1)

2

∫ T

t

∫

O
|y|p−2|Y |2 dxds

≤

∫

O
|yT |

p dx+ p

∫ T

t

∫

O
|y|p−1 |αy + βY + F | dx− p

∫ T

t

∫

O
|y|p−2yY dW (s), a.s. (46)
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Let r ≤ t and take conditional expectation with respect to Fr in (46) to get

E

(

‖y(t)‖pLp(O)

∣

∣

∣ Fr

)

+
p(p − 1)

2
E

(∫ T

t

∫

O
|y|p−2|Y |2 dxds

∣

∣

∣ Fr

)

≤ E

(

‖yT‖
p
Lp(O)

∣

∣

∣
Fr

)

+ pE

(∫ T

t

∫

O
|y|p−1

[

|αy|+ |βY |+ |F |
]

dxds
∣

∣

∣
Fr

)

− E

(
∫ T

t

∫

O
p|y|p−2yY dW (s)

∣

∣

∣ Fr

)

. (47)

Let us estimate the second integral in (47). By a direct computation using the monotonicty
of the conditional expectation, we have

pE

(
∫ T

t

∫

O
|y|p−1|αy|dxds

∣

∣

∣
Fr

)

≤ p ‖α‖L∞
F
(0,T ;L∞(O)) E

(
∫ T

t

∫

O
|y|p dxds

∣

∣

∣
Fr

)

. (48)

For the second one, by Cauchy-Schwarz and Young inequality we have

pE

(
∫ T

t

∫

O
|y|p−1|βY |dxds

∣

∣

∣
Fr

)

≤
p

2
E

(∫ T

t

∫

O
|y|p−2|Y |2 dxds

∣

∣

∣
Fr

)

+
p‖β‖2L∞

F
(0,T ;L∞(O))

2
E

(∫ T

t

∫

O
|y|p dxds

∣

∣

∣
Fr

)

. (49)

For the last one, using Young inequality ab ≤ (1/p)ap + (1/q)bq with q = p/(p − 1), so pab ≤
ap + (p− 1)bp/(p−1) with a = |F | and b = |y|p−1 we obtain that

pE

(∫ T

t

∫

O
|y|p−1|F |dxds

∣

∣

∣ Fr

)

≤ E

(∫ T

t

∫

O
|F |p dxds

∣

∣

∣
Fr

)

+ (p − 1)E

(∫ T

t

∫

O
|y|p dxds|Fr

)

. (50)

Therefore, combining (47) with estimates (48)–(50) we get

E

(

‖y(t)‖pLp(O)

∣

∣

∣
Fr

)

+
p(p− 2)

2
E

(∫ T

t

∫

O
|y|p−2|Y |2 dxds

∣

∣

∣
Fr

)

≤ E

(

‖yT ‖
p
Lp(O)

∣

∣

∣
Fr

)

+ E

(
∫ T

t

∫

O
|F |p dxds

∣

∣

∣
Fr

)

+ [pK + (p− 1)]E

(∫ T

t

∫

O
|y|p dxds

∣

∣

∣ Fr

)

− E

(
∫ T

t

∫

O
p|y|p−2yY dW (s)

∣

∣

∣
Fr

)

,

where K := ‖α‖L∞
F

(0,T,L∞(O))+ ‖β‖2L∞
F
(0,T,L∞(O)). Note that since p ≥ 2, the second term in the

left-hand side of the above inequality is always nonnegative.
Now, we take r = t in the previous estimate and use the fact that E(‖y(t)‖pLp(O) | Ft) =

‖y(t)‖pLp(O) since y if Ft-adapted to obtain

‖y(t)‖pLp(O)

≤ E

(

‖yT ‖
p
Lp(O)

∣

∣

∣ Ft

)

+ E

(∫ T

t

∫

O
|F |p dxds

∣

∣

∣ Ft

)

+ [pK + (p− 1)]E

(∫ T

t

∫

O
|y|p dxds

∣

∣

∣ Ft

)

− E

(
∫ T

t

∫

O
p|y|p−2yY dW (s)

∣

∣

∣
Ft

)

(51)
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whence, by taking expectation and using Fubini’s theorem yield, we get

E

(

‖y(t)‖p
Lp(O)

)

≤ ‖yT ‖
p
Lp

FT
(Ω;Lp(O))

+ ‖F‖p
Lp

F
(0,T ;Lp(O))

+ [pK + (p− 1)]

∫ T

t
E

(

‖y(s)‖p
Lp(O)

)

ds,

for all t ∈ [0, T ], because

E

(
∫ T

t

∫

O
p|y|p−2yY dW (s)

)

= 0.

This can be shown by means of estimate (9) and following the steps in Lemma 2.2. For brevity,
we skip the details.

To finish, we apply backward Grönwall estimate (see Lemma A.1) to deduce

E

(

‖y(t)‖pLp(O)

)

≤ exp([pK + (p− 1)](T − t))
(

‖yT‖
p
Lp(Ω;Lp(O)) + ‖F‖pLp(Ω;Lp(0,T ;Lp(O))

)

,

that is

‖y(t)‖pLp(Ω;Lp(O)) ≤ exp([pK + (p − 1)](T − t))
(

‖yT ‖
p
Lp(Ω;Lp(O)) + ‖F‖pLp(Ω;Lp(0,T ;Lp(O))

)

.

We take the power 1/p and we get

‖y(t)‖Lp(Ω;Lp(O)) ≤ exp((K + (p− 1)/p)(T − t))
(

‖yT ‖
p
Lp(Ω;Lp(O)) + ‖F‖pLp(Ω;Lp(0,T ;Lp(O))

)1/p

≤ exp([K + 1](T − t))
(

‖yT ‖Lp(Ω;Lp(O)) + ‖F‖Lp(Ω;Lp(0,T ;Lp(O))

)

,

where we have used that (p− 1)/p < 1. Taking L∞-norm in time yields the desired result.

We present the proof of our main result.

Proof of Theorem 1.4. From Proposition 3.1, we have that the following estimate holds

‖y(t)‖Lp(Ω;Lp(O)) ≤ exp(CT )
(

‖yT‖Lp

FT
(Ω;Lp(O)) + ‖F‖Lp

F
(0,T ;Lp(O))

)

(52)

for all t ∈ [0, T ], where y can be found from (y, Y ) solution to (1) and C > 0 is a constant
independent of p.

By Hölder inequality, the right-hand side of the above expression is bounded as

R.H.S. ≤ exp(CT )
(

|O|1/p ‖yT ‖L∞
FT

(Ω;L∞(O)) + |O|1/p|T |1/p ‖F‖L∞
F
(0,T ;L∞(O))

)

≤ exp(C ′(1 + T ))
(

‖yT ‖L∞
FT

(Ω;L∞(O)) + ‖F‖L∞
F
(0,T ;L∞(O))

)

(53)

for a constant C ′ > 0 depending on O but uniform with respect to T and p. Estimate (53) and
Lemma A.2 allows us to pass to the limit as p→ +∞ in (52) and obtain

‖y(t)‖L∞(Ω;L∞(O)) ≤ exp(CT )
(

‖yT ‖L∞
FT

(Ω;L∞(O)) + ‖F‖L∞
F
(0,T ;L∞(O))

)

for every t ∈ [0, T ]. Therefore,

‖y‖L∞
F
(0,T ;L∞(Ω;L∞(O))) ≤ exp(CT )

(

‖yT ‖L∞
FT

(Ω;L∞(O)) + ‖F‖L∞
F
(0,T ;L∞(O))

)

.

The result (5) then follows by interchanging the L∞-norms.
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4 Applications to controllability

The goal of this part is to present some applications to the control of backward stochastic
parabolic equations at the linear level first then at the nonlinear level. In particular, we will
prove Theorem 1.6.

Hereinafter, we set QT := (0, T ) × O and ΣT := (0, T ) × ∂O to abridge the notation. We
consider the following backward stochastic heat equation











dy = − (∆y + αy + χO0h) dt+ Y dW (t) in QT ,

y = 0 on ΣT ,

y(T ) = yT in O.

(54)

In (54), we recall that (y, Y ) the state variable while h is the control variable located in O0

where O0 is a nonempty open subset of O.
We now present the proof of the null-controllability result of Theorem 1.6.

Proof of Theorem 1.6. We take p ∈ (2,+∞) so p′ ∈ (1, 2).
The adjoint of (54) is given by the random heat equation











dq = (∆q + αq)dt in QT ,

q = 0 on ΣT ,

q(0) = q0 in O.

(55)

Note that the randomness in (55) appears through α ∈ L∞
F
(Ω;L∞(0, T ;L∞(O))) and q0 ∈

Lp′(Ω;Lp′(O)). For ω ∈ Ω fixed, we have from [FCZ00, Proposition 3.2]

‖q(ω, T )‖L2(O) ≤ C ‖q(ω)‖L1((0,T )×O0)
, (56)

from which we directly deduce, by using L2(O) →֒ Lp′(O) and Lp′((0, T )×O0)) →֒ L1((0, T )×
O0)),

‖q(ω, T )‖Lp′(O) ≤ C ‖q(ω)‖Lp′ ((0,T )×O0)
.

By taking the power p′ and by taking the expectation we finally get

E

[

‖q(T )‖p
′

Lp′ (O)

]

≤ CE

[

‖q‖p
′

Lp′((0,T )×O0)

]

.

This rewrites as
‖q(T )‖Lp′(Ω;Lp′ (O)) ≤ C ‖q‖Lp′(Ω;Lp′ ((0,T )×O0))

. (57)

Note that the constant C > 0 in (57) is of the form exp(C/T ) for T ∈ (0, 1) for some C depending
on O, O0, α and p because the observability constant C in (56) appearing in the deterministic
observability inequality is of the form exp(C/T ).

Now, we will follow an argument given by [TZ09], adapted to the Lp′-setting. For any
yT ∈ Lp(Ω;Lp(O)), the goal is to find a control h ∈ Lp(Ω;Lp((0, T ) × O0)) such that the
solution y of (54) satisfies y(0) = 0.

We introduce the following linear subspace of Lp′

F (0, T ;L
p′(O0)),

X = {q|Ω×(0,T )×O0
∈ Lp′

F (0, T ;L
p′(O)) ; q satisfies (55) for some q0 ∈ Lp′(Ω;Lp′(O))}.

Then we define the following linear functional on X by

L(q) = −E

∫

O
yT q(T )dx.
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The observability estimates (57) leads to the fact that L is a bounded linear functional on X
because
∣

∣

∣

∣

E

∫

O
yT q(T )dx

∣

∣

∣

∣

≤ ‖yT ‖Lp(Ω;Lp(O)) ‖q(T )‖Lp′ (Ω;Lp′(O)) ≤ C ‖yT‖Lp(Ω;Lp(O)) ‖q‖Lp′ (Ω;Lp′((0,T )×O0))
.

(58)

By the Hahn-Banach theorem, L can be extended to a bounded linear functional on Lp′

F (0, T ;L
p′(O0))

with
‖L‖L(Lp′

F
(0,T ;Lp′(O0)),R)

≤ C ‖yT‖Lp(Ω;Lp(O)) , (59)

where C is the same as in (57). Now, we use the following fact coming from [LYZ12, Corollary
2.3]

(Lp′

F (Ω;L
p′(0, T ;Lp′(O0)))

′ = Lp
F (Ω;L

p(0, T ;Lp(O0))).

This means that there exists h ∈ Lp
F (Ω;L

p(0, T ;Lp(O0))) such that

L(q) = E

∫ T

0

∫

O0

hq dxdt ∀q ∈ Lp′(Ω;Lp′(0, T ;Lp′(O0))), (60)

in particular for q solution to (55)

L(q) = −E

∫

O
yT q(T )dx = E

∫ T

0

∫

O0

hq dxdt ∀q0 ∈ Lp′(Ω;Lp′(O)). (61)

Now we use Itô’s formula to get

d(yq) = ydq + qdy + dydq.

So we get

E

∫

O
yT q(T )dx− E

∫

O
y(0)q0 dx = E

∫

QT

ydq + qdy + dydq = E

∫ T

0

∫

O0

hq dxdt.

Therefore, we have

E

∫

O
y(0)q0 dx = 0 ∀q0 ∈ Lp′(Ω;Lp′(O)).

This implies that y(0) = 0 in O a.s. Moreover, we have from (59) and (60) that

‖h‖Lp

F
(Ω;Lp(0,T ;Lp(O0))) ≤ C ‖yT‖Lp(Ω;Lp(O)) ,

where
C = C(T ) ≤ exp(C/T ),

hence the expected bound on h in (7). This concludes the proof.

Now we deal with the more subtle case p = +∞. The difficulty is that one cannot use [LYZ12,
Corollary 2.3] because the so-called Radon-Nikodym property is not satisfied by L∞, in particular
(L1

F (Ω;L
1(0, T ;L1(O0)))

′ is not equal to L∞
F (Ω;L∞(0, T ;L∞(O0))). We start from the L1-

observability estimate for solution q to (55)

‖q(T )‖L1(Ω;L1(O)) ≤ C ‖q‖L1(Ω;L1((0,T )×O0))
, (62)
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that is an easy consequence of (56). We then introduce the following linear subspace of
L1
F (0, T ;L

1(O0)),

X = {q|Ω×(0,T )×O0
∈ L1

F (0, T ;L
1(O)) ; q satisfies (55) for some q0 ∈ L1(Ω;L1(O))}.

Then we define the following linear functional on X by

L(q) = −E

∫

O
yT q(T )dx.

The observability estimate (62) leads to the fact that L is a bounded linear functional on
X . By the Hahn-Banach theorem, L can be extended to a bounded linear functional on
L1
F (0, T ;L

1(O0)) with

‖L‖L(L1
F
(0,T ;L1(O0)),R) ≤ C ‖yT ‖L∞(Ω;L∞(O)) , (63)

where C is the same as in (62). In particular, L is a bounded linear functional on L2
F (0, T ;L

2(O0))
because L2

F (0, T ;L
2(O0)) →֒ L1

F (0, T ;L
1(O0)), therefore we can use the following fact coming

from [LYZ12, Corollary 2.3],

(L2
F (Ω;L

2(0, T ;L2(O0)))
′ = L2

F (Ω;L
2(0, T ;L2(O0))).

This means that there exists h ∈ L2
F (Ω;L

2(0, T ;L2(O0))) such that

L(q) = E

∫ T

0

∫

O0

hqdxdt ∀q ∈ L2(Ω;L2(0, T ;L2(O0))), (64)

in particular for q solution to (55)

L(q) = −E

∫

O
yT q(T )dx = E

∫ T

0

∫

O0

hqdxdt ∀q0 ∈ L2(Ω;L2(O)).

As before we easily deduce by Itô’s formula that y(0) = 0 in O a.s.
Our goal is then to prove that h ∈ L∞

F (Ω;L∞(0, T ;L∞(O0))) and

‖h‖L∞
F

(Ω;L∞(0,T ;L∞(O0))) ≤ 2C‖yT ‖L∞(Ω;L∞(O)). (65)

From (63) and (64), we deduce that

∣

∣

∣

∣

E

∫ T

0

∫

O0

hqdxdt

∣

∣

∣

∣

≤ C‖q‖L1(Ω;L1(0,T ;L1(O))‖yT ‖L∞(Ω;L∞(O)) ∀q ∈ L2(Ω;L2(0, T ;L2(O0))).

(66)
Then we take

q = sign(h)1|h|>2C‖yT ‖L∞(Ω;L∞(O))
1O0 ,

so the left hand side of (66) is bounded from below by

2C‖yT ‖L∞(Ω;L∞(O))µΩ,[0,T ],O0
(|h| > 2C‖yT ‖L∞(Ω;L∞(O))),

while the right hand side of (66) translates into

C‖yT‖L∞(Ω;L∞(O))µΩ,[0,T ],O0
(|h| > 2C‖yT ‖L∞(Ω;L∞(O))),
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where µΩ,[0,T ],O0
denotes the product measure on Ω× [0, T ]×O, so we get

2C‖yT ‖L∞(Ω;L∞(O))µΩ,[0,T ],O0
(|h| > 2C‖yT ‖L∞(Ω;L∞(O)))

≤ C‖yT‖L∞(Ω;L∞(O))µΩ,[0,T ],O0
(|h| > 2C‖yT ‖L∞(Ω;L∞(O))).

That is a contradiction unless we have

µΩ,[0,T ],O0
(|h| > 2C‖yT ‖L∞(Ω;L∞(O))) = 0.

This exactly means that we have

|h| ≤ 2C‖yT ‖L∞(Ω;L∞(O)) a.e. (t, x) ∈ QT , a.s.

This concludes the proof of (65), then the one of Theorem 1.6.

Remark 4.1. In view of the results in the nonlinear setting stated in Section 1.2, we can also
consider the following controlled backward stochastic semilinear heat equation











dy = (−∆y + f(y) + χO0h) dt+ Y dW (t) in QT ,

y = 0 on ΣT ,

y(T ) = yT in O.

(67)

Using the control result in the linear setting stated in Theorem 1.6 for p = +∞ and in view of
Theorem 1.7, we can state the following result.

Proposition 4.2. There is δ > 0 depending only on T , O, and O0 such that for every yT ∈
L∞
FT

(Ω;L∞(O)) satisfying ‖yT ‖L∞
FT

(Ω;L∞(O)) ≤ δ, there exists a control h ∈ L∞
F
(0, T ;L∞(O0))

such that the weak solution (y, Y ) of (67) satisfies y(0) = 0.

To prove this result, we first prove null-controllability results for the heat equation with a
L∞-weighted source term by using crucially the cost estimate (7). With this at hand, a standard
Banach fixed-point theorem leads to the proof of the previous proposition. We refer to [LTT13] for
details in the deterministic setting and [HSLBP22] in the stochastic setting for forward equations.
Nonetheless, due to the paper’s length and the additional notation and complexity that such a
detailed exposition would introduce, we omit further details.

5 Local well-posedness

In this section, we present the proof of Theorem 1.7. We begin by stating the following result.

Proposition 5.1. Let p ∈ [2,+∞), (y, Y ) be a weak solution to (1) and assume that yT ∈
L∞
FT

(Ω;L∞(O)) and F ∈ L∞
F
(0, T ;L∞(O)). Then, (y, Y ) ∈ Yp and satisfies

‖(y, Y )‖Yp
≤ C

(

‖yT ‖L∞
FT

(Ω;L∞(O)) + ‖F‖L∞

F
(0,T ;L∞(O))

)

,

for a constant C > 0 only depending on O, T , and p.

Proof. The proof is a direct consequence of Hölder inequality, Theorem 1.2, point (ii) of Theo-
rem 1.3, Proposition 2.6.
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Proof of Theorem 1.7. We will see that if the terminal data yT is small enough, then there is a
unique solution (y, Y ) to (8) in Yp. We split the proof in two parts.

-Existence. By Taylor’s formula at second order, we have that

∀s ∈ R, f(s) = f ′(0)s + s2G(s), (68)

where G(s) =
∫ 1
0 (1− σ)f ′′(σs)dσ. For any r ∈ (0, 1), let

Y
r
p := {(y, Y ) ∈ Yp : ‖(y, Y )‖Yp

≤ r}, (69)

and consider the linear equation











dy = −
(

∆y + αy + βY + f ′(0)y + y2G(y)
)

dt+ Y dW (t) in QT ,

y = 0 on ΣT ,

y(T ) = yT in O,

(70)

where y is the first entry of any given pair (y, Y ) ∈ Y r
p and y0 ∈ L∞

FT
(Ω;L∞(O)). Note that

this is a linearized version of (8).
Let us denote by (y, Y ) the solution to (70). We will check that the mapping

N : Y
r
p −→ Y

r
p

(y, Y ) 7−→ (y, Y )

is well-defined if we consider terminal data yT small enough. Since f ∈ C∞(R), from point i)
of Lemma A.3, we have that |G(s)| ≤ M for all s ∈ [−2, 2] where the constant M > 0 only
depends on f . Hence, defining F := y2G(y) we have

‖F‖L∞

F
(0,T ;L∞(O)) = ‖y2G(y)‖L∞

F
(0,T ;L∞(O))

≤M‖y2‖L∞
F
(0,T ;L∞(O)) =M‖y‖2L∞

F
(0,T ;L∞(O))

≤M‖(y, Y )‖2Yp
≤Mr2 < +∞, (71)

for any (y, Y ) ∈ Y r
p .

Thus, using Proposition 5.1 with this particular F and estimate (71) yield that there is a
solution (y, Y ) ∈ Yp to (70) such that

‖(y, Y )‖Yp
≤ C

(

‖yT ‖L∞
FT

(Ω;L∞(O)) +Mr2
)

(72)

for some C > 0 only depending on O, T and p. Let us take

r ≤
1

8CM
,

where C is the constant appearing in (72) and fix δ > 0 such that δ ≤ r/2C. Thus for any
yT ∈ L∞

FT
(Ω;L∞(O)) verifying ‖yT ‖L∞

FT
(Ω;L∞(O)) ≤ δ we have

‖(y, Y )‖Yp
≤
r

2
+
r

8
=

5r

8
≤ r. (73)

This shows that the map N : Y r
p → Y r

p is well-defined.
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To conclude, we will verify that N is a contraction on Y r
p and use Banach fixed point

theorem. By point ii) of Lemma A.3 with I = [−2, 2], we have that for any y1, y2 taken from
the pairs (yi, Y i) ∈ Y r

p , i = 1, 2,

‖y1G(y1)− y2G(y2)‖L∞

F
(0,T ;L∞(O))

≤M‖y1 − y2‖L∞
F
(0,T ;L∞(O))

(

‖y1‖L∞
F
(0,T ;L∞(O)) + ‖y2‖L∞

F
(0,T ;L∞(O))

)

+M1‖y2‖
2
L∞
F
(0,T ;L∞(O))‖y1 − y2‖L∞

F
(0,T ;L∞(O)), (74)

for some positive constants M,M1 only depending on f .
Denote by (yi, Yi) the solution of (70) for the corresponding yi, i = 1, 2. From the linearity

of (70), Proposition 5.1 with F = y1G(y1) − y2G(y2) and yT ≡ 0, and estimate (74), we can
compute

‖N (y1, Y 1)−N (y2, Y 2)‖Yp
= ‖(y1, Y1)− (y2, Y2)‖Yp

≤ CM‖y1 − y2‖L∞
F
(0,T ;L∞(O))

(

‖y1‖L∞
F
(0,T ;L∞(O)) + ‖y2‖L∞

F
(0,T ;L∞(O))

)

+ CM1‖y2‖
2
L∞
F
(0,T ;L∞(O))‖y1 − y2‖L∞

F
(0,T ;L∞(O))

≤ 2CMr‖y1 − y2‖L∞

F
(0,T ;L∞(O)) + CM1r

2‖y1 − y2‖L∞

F
(0,T ;L∞(O)). (75)

From (75) and decreasing (if necessary) the value of r and taking r ≤ min{ 1
8CM , 1√

4CM1
}, we

get

‖N (y1, Y 1)−N (y2, Y 2)‖Yp
≤

1

2
‖y1 − y2‖L∞

F
(0,T ;L∞(O)) ≤

1

2
‖(y1, Y 1)− (y2, Y 2)‖Yp

.

Thus N is a contraction on the set Y r
p . A direct application of Banach fixed point theorem

yields that there is a unique fixed point for N which is a weak solution to (8) thanks to (68)
and that belongs to Y r

p since (73) holds.

-Uniqueness. Let δ > 0 be fixed and small enough as in the previous part. Let yT ∈
L∞
FT

(Ω;L∞(O)) be such that ‖yT ‖L∞
FT

(Ω;L∞(O)) ≤ δ and assume that there are two weak solutions

(y1, Y1) and (y2, Y2) to (8) for this same data that belong to some ball Y r
p (recall (69)). Defining

(y, Y ) := (y1 − y2, Y1 − Y2), it is not difficult to see that these new variables verify











dy = − (∆y + αy + βY + (f(y1)− f(y2))) dt+ Y dW (t) in QT ,

y = 0 on ΣT ,

y(T ) = 0 in O.

Arguing as we did for obtaining (51) and taking expectation, we can deduce

E

(

‖y(t)‖pLp(O)

)

≤ E

(
∫ T

t

∫

O
|f(y1)− f(y2)|

p dxds

)

+ CE

(
∫ T

t

∫

O
|y|p dxds

)

,

where C > 0 is a constant only depending on p, α and β. Since (yi, Yi) ∈ Y r
p , i = 1, 2, and

using the fact that f is locally Lipschitz on [−r, r], there is a constant C ′ > 0 depending on r
such that |f(s1)− f(s2)| ≤ C ′|s1 − s2|, s1, s2 ∈ [− r, r], therefore

E

(

‖y(t)‖pLp(O)

)

≤ C ′′
E

(
∫ T

t

∫

O
|y|p dxds

)

,

for a constant C ′′ > 0. A standard Grönwall argument using Lemma A.1, yields that y1 = y2
a.e (t, x) ∈ QT , a.s. This ends the proof.
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A Auxiliary results

Lemma A.1 (Backward Grönwall inequality). Let g(t), α(t), β(t) and γ(t) be integrable func-
tions with β(t), γ(t) ≥ 0. For any t ∈ [0, T ], if

g(t) ≤ α(t) + β(t)

∫ T

t
γ(s)g(s)ds,

then

g(t) ≤ α(t) + β(t)

∫ T

t
α(u)γ(u)e

∫ u

t
β(s)γ(s)dsdu.

In particular, if α(t) ≡ α, β(t) ≡ β and γ(t) ≡ 1, then

g(t) ≤ αeβ(T−t).

Lemma A.2. Let (X,M, µ) be a finite measure space and f : X → R be a measurable function.
We assume that there exists K > 0 such that

∀p ≥ 1, ‖f‖p ≤ K. (76)

Then f ∈ L∞(X) and
‖f‖∞ ≤ K.

Proof. First, we prove that f ∈ L∞(X) by proceeding as follows. We argue by contradiction.
We assume that ‖f‖∞ = +∞. Let M > 0, and let us define AM = {|f | ≥M} then we have that
µ(AM ) > 0, then take p large enough such that µ(AM )1/p ≥ 1/2, then ‖f‖p ≥ (µ(AM )Mp)1/p ≥
M/2 and since M is arbitrary, this is contradiction. Thus, this proves that f ∈ L∞(X).

Then, we prove the bound. This is a well-known fact that because f ∈ L∞(X),

lim
p→+∞

‖f‖p = ‖f‖∞ .

Therefore, by using the uniform bound on Lp spaces of f i.e. (76), we deduce the result.

Lemma A.3. Let f ∈ C∞(R) and define G(s) =
∫ 1
0 (1 − σ)f ′′(σs)dσ. For any bounded closed

interval I ⊂ R containing the origin, there are constants M,M1 > 0 only depending on f and I
such that

i) |G(s)| ≤M for all s ∈ I.

ii) For any s1, s2 ∈ I, |s21G(s1)− s22G(s2)| ≤M |s1 − s2| (|s1|+ |s2|) +M1 |s2|
2 |s1 − s2|.

Proof. Point i) is direct with M := maxτ∈I |f ′′(τ)| since f ∈ C∞(R) and 0 ∈ I . For ii), let
s1, s2 ∈ I , then we can write

s21G(s1)− s22G(s2) =
(

s21 − s22
)

G(s1) + s22 (G(s1)−G(s2)) =: J1 + J2. (77)

Using point i), we can estimate J1 as follows

|J1| =
∣

∣

(

s21 − s22
)∣

∣ |G(s1)| = |(s1 − s2)(s1 + s2)| |G(s1)| ≤M |s1 − s2| (|s1|+ |s2|) . (78)

On the other hand, w.l.o.g assume that s1 > s2. For any σ ∈ [0, 1], note that since f ∈ C∞(R),
we have from mean value theorem that

|f ′′(σs1)− f ′′(σs2)| =

∣

∣

∣

∣

∫ σs1

σs2

f ′(u)du

∣

∣

∣

∣

≤ σmax
τ∈I

|f ′(τ)||s1 − s2| ≤M1|s1 − s2|, (79)
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where we have used that [σs2, σs1] ⊂ I since 0 ∈ I and where M1 := maxτ∈I |f ′(τ)|. Thus,
from (79), we can estimate J2 as

|J2| =
∣

∣s2|
2
∣

∣G(s − 1)−G(s2)| = |s2|
2

∣

∣

∣

∣

∫ 1

0
(1− σ)

[

f ′′(σs1)− f ′′(σs2)
]

dσ

∣

∣

∣

∣

≤ |s2|
2
∫ 1

0
|1− σ||f ′′(σs1)− f ′′(σs2)|dσ ≤M1 |s2|

2 |s1 − s2|. (80)

Putting together (77), (78) and (80) yields the desired result.
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