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Abstract

Small populations (e.g., hospitals, schools or workplaces) are characterised by high contact

heterogeneity and stochasticity affecting pathogen transmission dynamics. Empirical indi-

vidual contact data provide unprecedented information to characterize such heterogeneity

and are increasingly available, but are usually collected over a limited period, and can suffer

from observation bias. We propose an algorithm to stochastically reconstruct realistic tem-

poral networks from individual contact data in healthcare settings (HCS) and test this

approach using real data previously collected in a long-term care facility (LTCF). Our algo-

rithm generates full networks from recorded close-proximity interactions, using hourly inter-

individual contact rates and information on individuals’ wards, the categories of staff

involved in contacts, and the frequency of recurring contacts. It also provides data augmen-

tation by reconstructing contacts for days when some individuals are present in the HCS

without having contacts recorded in the empirical data. Recording bias is formalized through

an observation model, to allow direct comparison between the augmented and observed

networks. We validate our algorithm using data collected during the i-Bird study, and com-

pare the empirical and reconstructed networks. The algorithm was substantially more accu-

rate to reproduce network characteristics than random graphs. The reconstructed networks

reproduced well the assortativity by ward (first–third quartiles observed: 0.54–0.64; syn-

thetic: 0.52–0.64) and the hourly staff and patient contact patterns. Importantly, the

observed temporal correlation was also well reproduced (0.39–0.50 vs 0.37–0.44), indicat-

ing that our algorithm could recreate a realistic temporal structure. The algorithm consis-

tently recreated unobserved contacts to generate full reconstructed networks for the LTCF.

To conclude, we propose an approach to generate realistic temporal contact networks and
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reconstruct unobserved contacts from summary statistics computed using individual-level

interaction networks. This could be applied and extended to generate contact networks to

other HCS using limited empirical data, to subsequently inform individual-based epidemic

models.

Author summary

Contact networks are the most informative representation of the contact heterogeneity,

and therefore infectious disease transmission risk, in small populations. However, the

data collection required is costly and complex, usually limited to a few days only and likely

to suffer from partially observed data, making the practical integration of networks into

models challenging. In this article, we present an approach leveraging empirical individual

contact data to stochastically reconstruct realistic temporal networks in healthcare set-

tings. The algorithm accounts for population specificities including the hourly distribu-

tion of contact rates between different individuals (staff categories, patients) and the

probability for contact repetition between the same individuals. We illustrate and validate

this algorithm using a real contact network measured in a long-term care facility. Our

approach outperforms random graphs informed by the same data to accurately reproduce

observed network characteristics and hourly staff-patient contact patterns. The algorithm

recreates unobserved contacts, providing data augmentation for times with missing infor-

mation. This method should improve the usability and reliability of contact networks, and

therefore promote integration of empirical contact data in individual-based models.

Introduction

Limiting the burden of infectious diseases requires a good understanding of how they spread.

For pathogens transmitted mostly via close-proximity interactions, the rate at which individu-

als come into contact with each other is strongly correlated with the expected spread of the dis-

ease across the population [1]. In large populations such as cities or countries, contact

structures are usually approximated by grouping individuals into relatively broad categories

(neighbourhood, age. . .), and assuming that contact rates are heterogeneous between catego-

ries, but homogeneous within [2,3]. In small populations such as healthcare institutions,

schools, or workplaces however, disease transmission is affected by high contact heterogeneity

and stochasticity [4]. Capturing these characteristics requires a detailed, individual-level

description of contacts instead of only relying on summary contact rates by groups [5,6].

Contact networks are increasingly used to fully capture the interactions between individuals

in small populations [7,8]. These networks explicitly represent the links between all individuals

in such populations, as opposed to contact matrices which capture average contact rates

between groups of individuals [9,10]. Temporal contact networks further capture the time-

changing nature of contacts, therefore representing individual interactions more accurately

than static networks [11–15]. Contact networks can be coupled with individual-based mathe-

matical models to help design effective interventions against the spread of infectious diseases,

since they enable the identification of highly connected individuals who can be targeted to lead

to the greatest impact on transmission [10]. Recently, empirical data collected to build inter-

individual temporal networks has become increasingly available to inform contact networks.

For example, studies have used sensors to record close-proximity interactions between
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individuals [16–18], and contact tracing programs have relied on the integrated Bluetooth

technology in mobile phones [19].

However, the detailed empirical data required to build temporal contact networks remain

subject to several limitations [20,21]. These data are typically collected over a few days only

[22,23], and may be subject to observation bias; sensors might not be properly placed to regis-

ter contacts [24], or individuals may disable Bluetooth on their mobile phones at different

times [19]. Due to the resulting missed contacts, the networks derived from these data may

only be partially observed. Transmission rates estimated using these partially observed net-

works would be overestimated compared to reality due to the lower number of contacts, which

could lead to an incorrect evaluation of the impact of interventions [25–27]. By comparison,

although they do not provide individual-level information, contact matrices and summary sta-

tistics such as contact rates between individual groups are more readily available, as they can

be inferred using simple cross-sectional survey data [28–30].

Here, we propose an algorithm to stochastically reconstruct realistic contact networks from

partially observed contact data in healthcare settings (HCS). To validate our approach, we use

close-proximity data collected in a long-term care facility (LTCF) during the i-Bird study

[17,31]. We first illustrate the typical complexity of contact structures in HCS through the i-

Bird network example. We then compute summary contact parameters from these data to gen-

erate reconstructed contact networks and compare these synthetic contact networks with the

observed data.

Methods

Building synthetic contacts in a HCS

Algorithm outline. We built an algorithm to stochastically reconstruct a realistic full

temporal network of inter-individual close-proximity interactions (CPIs, at less than 1.5m)

in a HCS using parameters estimated from empirical individual contact data. This algo-

rithm generates a new synthetic network which notably reconstructs contacts at times when

individuals were known to be present in the HCS but had no contact data recorded, which

we consider to be a recording bias. The synthetic network hence includes both the observed

and unobserved parts of the empirical network. This approach first involves the calculation

of contact rates and durations between individuals, stratified by the individuals’ ward, cate-

gory (patient, or staff profession), type of day (weekday or weekend) and hour. The algo-

rithm then reconstructs a new network, taking as input these summary statistics as well as

data on presence days for each individual in the facility. Each CPI is generated stochasti-

cally, with individuals chosen in order to promote recurring contacts, based on a probability

estimated from the data.

Estimation of contact rates from the data. Contact rates per hour (h from 00h to 23h),

category of individual (Ci, i.e. patient, or hospital staff profession) and ward Wi are estimated

from the data as:

Th;c1w1!c2w2
¼

P
i2C1W1

P
j2C2W2

PNh;i
k¼1 Vi;j;k

PNh
l¼1
NC1W1 ;l

ð1Þ

where Th,c1w1➔c2w2 is the average per-person contact rate at the hour h between individuals

from category C1 belonging to ward W1 and individuals from category C2 belonging to ward

W2. For given hour h and individual i, Nh,i is the number of instances of the hour h where at

least one contact was recorded for individual i. For example, if i had a contact recorded on

Tuesday 11th August at 10h, and on Tuesday 18th August at 10h, N10,i would be equal to 2. For
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two individuals i from C1W1 and j from C2W2, Vi,j,k indicates whether contacts have been

recorded between them on instance k of the hour h: it equals 1 if i and j had at least one contact

recorded at that time, and 0 otherwise. Finally, Nh is the total number of instances of the hour

h in the full dataset and, for a given instance l of the hour h, NC1W1,l is the number of individu-

als from C1W1 that had any contact recorded during that hour.

This estimation is conducted separately for contacts during weekdays and contacts during

weekends.

Estimation of recurring contacts. For each individual i, we calculate the probability of

recurring contact for each day d between the first (d0) and last (dmax) days where a contact was

recorded for i, according to

pi;d ¼
jUi;d \ Ui;½d0 ;d½

j

jUi;dj
ð2Þ

Where Ui,d is the set of unique individuals with whom i had a contact on day d, Ui,[d0,d [is the

set of unique individuals with whom i had at least one contact on any day between the first day

d0 and the current day d (d non-included), and the notation |x| indicates the cardinality of the

set x. For example, if i had a contact with four unique individuals on day d, and previously had

a contact with two of those on any day between d0 and d, the probability of recurring contact

for day pi,d would be 2/4 = 0.5.

We then calculated the mean daily probability of recurring contacts for individual i across

all days as

pi ¼
Pdmax

d¼d0
pi;d

1þ ðdmax � d0Þ
ð3Þ

Finally, we calculated the mean probability of recurring contacts by individual category c
(patient or staff) as

pc ¼
P

i2Cpi
jCj

ð4Þ

Where C represents the set of individuals belonging to category c.
Generation of synthetic CPIs: number and identity of individuals in contacts. For each

hour of our period of interest, we estimate the number of contacts between individuals present

in the HCS during that hour, determined using admission data and staff schedule. We generate

the number of individuals n from category C2S2 in contact with an individual i from category

C1S1 during an hour h by sampling from a Poisson distribution with the mean being the con-

tact rate as described above. Before selecting these n individuals, since contacts are generated

dynamically, we check if i is already included in the contacts of individuals from C2S2 during

h. If n’ individuals from C2S2 have already had a contact with i during h, we only select n-n’
new individuals from those available, in order to avoid double counting.

These individuals are selected by favouring contacts between individuals who have already

met at any other time previous to h. Let pc be the probability of a recurring contact for category

c (patient or staff) of the individual i. To determine the identity of the n individuals in contact

with i, we draw a random number r ~ Uniform(0,1)

• If r� pc, a recurring contact is generated: j is chosen among Zi, the subset of C2S2 individuals

who previously met i, according to probability pi➔j:
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pi!j ¼
Ni!j

P
k2Zi

Ni!k
ð5Þ

Where Ni!j is the number of previous contacts between i and j before hour h, and ∑k2SNi!k is

the number of previous contacts between i and each individual k belonging to Zi.

• Otherwise, the contact is not recurring: the individual j in contact is randomly and uni-

formly chosen among Zi’, the subset of C2S2 individuals who have not yet met i.

Generation of contact durations. For each contact between two given individuals i from

C1S1 and j from C2S2 the duration of contact is sampled from a log-normal distribution cali-

brated from the observed mean and variance of contact durations between individuals from

C1S1 and C2S2 on hour h.

Validation dataset: the i-Bird network

Dataset description. We validate our algorithm by applying it to data collected during the

Individual-Based Investigation of Resistance Dissemination (i-Bird) study [17,31]. This study

took place in a rehabilitation and long-term care facility (LTCF) from the beginning of July to

the end of October 2009. Over this period, each participant (patient or hospital staff) was wear-

ing an RFID sensor that recorded CPIs every 30 seconds. Here, we only used contacts recorded

between 27 July to 23 August 2009 (included). This period corresponds to the weeks between

two sensor battery replacements and hence avoids interference due to loss of contact. A tem-

poral network of proximities was therefore available over 28 days with information on individ-

ual ID and ward of affectation.

The LTCF was structured into five wards: three neurological wards, one nutritional care ward

and one geriatric ward. Patients were systematically linked to a ward, whilst some staff were mobile

and not linked to a specific ward. For the purpose of this work, we considered here that mobile

staff belonged to an “artificial” 6th ward, to compute contact rates according to the algorithm

detailed above. Staff were divided into 13 professions: administrative, animation/hairdresser, logis-

tic, hospital service agent, porter, occupational therapist, physiotherapist, other rehabilitation staff,

nurse, head nurse, care assistant, medical student/resident, and physician. A total of 200 patients

and 213 hospital staff were included and had contacts recorded during the 28 days of study.

We used hospital staff schedules to determine the hourly presence of each staff and com-

pared these schedules to the dates and times when staff had any contact recorded. We assumed

that, in reality, staff would have at least one contact with any other individual during any given

hour of their presence time, hence if no contact was recorded for a given hour of presence we

considered this was missing data rather than true absence of contact. Through this, we esti-

mated that the median percentage of a staff’s total presence time when no contact data was

recorded was 40.0% (interquartile range (IQR): 0–75.0%). We repeated this analysis for

patients at the daily instead of hourly level, as we only had access to admission and discharge

dates for patients. We estimated that the median time when no contact data was recorded was

33.3% (interquartile range (IQR): 10.5–53.6%) of a patient’s presence days.

Although the overall compliance was high (90% of individuals agreed to wear a sensor),

there was therefore substantial heterogeneity in the individual coverage of the raw i-Bird net-

work (S1 Fig). Interestingly, there was no correlation between the proportion of presence time

during which contact data were recorded for a given individual and their average number of

contacts on presence days where data were available, nor their total presence time (S2 Fig).
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Observation bias process. As mentioned earlier, the observed i-Bird network, as any real-

life data, includes recording biases leading to some periods of non-recording of CPIs, with the

extent of this bias varying between individuals. To make our reconstructed networks compara-

ble to the observed one, we therefore introduced an observation bias process. For each individ-

ual in the observed network, we identified the hours with no contact recorded. We then

removed those individuals on those hours before proceeding with the algorithm described

above. The resulting “reconstructed biased network” and the observed network hence suffer

from the same bias and are comparable.

Simulations and analysis

From the analysis of the i-Bird empirical network and data, we used our algorithm to generate

100 full synthetic reconstructed networks, and 100 reconstructed networks with observation

bias. For comparison, we also used our algorithm to generate 100 pseudo-random contact net-

works with observation bias, and 100 without. The latter networks simulate contacts without

taking into account the ward, staff category, and probability of recurring contact in the calcula-

tion of contact rates and durations. The patient-patient, staff-staff, and patient-staff contact

rates are calculated as detailed in the section “Estimation of contact rates from the data”, treat-

ing all staff as if they were part of the same profession, and all individuals as if they were part of

the same ward. At each contact, the individual encountered is therefore chosen randomly

from all those present in the LTCF at that time, regardless of whether or not the individual was

previously encountered. This approach to generate pseudo-random networks is similar to a

stochastic block model with two sub-populations (patients and staff).

We implemented the algorithm in C++ with the repast HPC 2.3.0 library. All network

reconstructions were performed on the Maestro cluster hosted by the Institut Pasteur. The net-

works were analysed and the epidemics were simulated in R [32], using the igraph package

[33]. The relevant contact networks and analysis code are available in the following GitHub

repository: https://github.com/qleclerc/network_algorithm.

Validation of the full reconstructed networks

For validation, we also applied the algorithm to each of the 100 reconstructed networks with

bias, considering them as empirical networks. This allowed us to generate 100 new full recon-

structed networks from fully known networks, and confirm these “re-simulated networks”

were similar to the full reconstructed networks generated from the observed data.

Application: transmission of a pathogen over the network

To investigate the impact of the network structure on the predicted dissemination of a patho-

gen, we implemented a simple susceptible-infected-recovered epidemic transmission model

on the networks. Briefly, we aggregated the contact network at the daily level, without consid-

ering contact durations for simplicity. We initiated an epidemic by randomly infecting one

individual on the first day, then simulating transmission for each day between individuals in

contact. When an infected individual had a contact with a susceptible one, there was a stochas-

tic risk of transmission with a probability of 0.05. Each individual remained infectious with an

assumed constant transmissibility risk for an average of 5 days (sampled from a Poisson distri-

bution), after which we assumed they were recovered and could not be reinfected. These

parameters equate to an average basic reproduction number of 3.25 in the observed i-Bird net-

work (= 0.05 * 5 * 13), since individuals have on average approximately 13 unique contacts per

day (see Results). Using these parameters, we simulated complete epidemics over a one month

period: in all networks, the epidemic almost becoming extinct in by the end of the period. We
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simulated 100 independent stochastic epidemics for each network, and excluded simulations

where less than 10 individuals were infected in total.

Results

Description of HCS contact heterogeneity: the example of the i-Bird

dataset

In this section, we illustrate the typical complexity of contact structures in HCS using the i-

Bird network. While the algorithm makes use of data at the hourly level, in this section the

contact data are aggregated at the daily level, so that if two individuals have two separate con-

tacts with each other at different times of the day, this is only counted once. The contact net-

work is considered undirected, since contacts are assumed to be reciprocal. Daily-averaged

contact matrices built from these data are described in a previous work [31].

We first summarise the observed temporal network recorded in the LTCF during the i-Bird

study, comparing the total daily network and subgraphs with only patient-patient, staff-staff,

or patient-staff contacts (Fig 1A–1D). Table 1 provides the degree, global efficiency, density,

transitivity, assortativity and temporal correlation of these four networks. The mean degree of

the total network per day is 12.99 (standard deviation: 3.53), which corresponds to the average

number of unique contacts per individual per day. In the subgraphs, the degree is highest in

the patient-staff subgraph (8.09; sd: 1.89), although we still note a relatively important number

of patient-patient contacts, with a degree of 5.25 (sd: 1.87) in the corresponding subgraph. The

distribution of individual degrees for all individuals and all days across the total network is het-

erogeneous, with a squared coefficient of variation equal to 0.44 (Fig 1E). The global efficiency

of the total network is 0.40 (sd: 0.05), meaning that on average the shortest path between any

two individuals has a distance of 2.5 (whereby the shortest path between two individuals in

direct contact would be of distance 1). As expected, the efficiencies are lower in the subgraphs,

since we remove individuals and hence increase the distance between those remaining

(patient-patient: 0.25 (sd: 0.08, distance: 4); staff-staff: 0.32 (sd: 0.10, distance: 3.1); patient-

staff: 0.31 (sd: 0.05, distance: 3.2)). Densities in the total network and subgraphs are relatively

low (< 0.1), indicating that less than 10% of all possible connections between individuals in

the network are actual observed connections.

Transitivity in the total network is high (0.37; sd: 0.02), meaning that for any two individu-

als a and b both in contact with the same third individual c, the probability that a and b are

also in contact is 0.37. Transitivity is also high in the patient-patient and staff-staff subgraphs,

but this metric is not relevant for the patient-staff subgraph–it is impossible for a triangle of

contacts to occur in this subgraph as it excludes staff-staff and patient-patient contacts by

design. Assortativity by degree is negative in the total network (-0.13; sd: 0.10), indicating that

highly connected individuals are more likely to be in contact with less connected individuals.

It is also strongly negative in the patient-staff subgraph (-0.42; sd: 0.14), reflecting the expected

disassortivity of healthcare contacts, where each staff member is in contact with multiple

patients, whilst each patient is contact with relatively few staff members. In the patient-patient

and staff-staff subgraphs, assortativity by degree is positive, as frequently seen in social

networks.

Visually, we observe that contacts are naturally clustered by ward (Fig 1A–1D). This is

reflected in the assortativity by ward, which is systematically high (> 0.45) and indicates that

individuals in a ward are always more likely to have contacts with other individuals in the

same ward than with individuals in other wards (Table 1). We also observe that contacts exist

between all grouped staff professions and patients in different wards, although the distribution

is heterogeneous (Fig 2A–2B). For example, the median number of wards with which a care
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Fig 1. Representation of the observed network recorded during the i-Bird study: (a) total network, and (b) patient-patient, (c) staff-staff and (d) patient-

staff subgraphs on a single day. The date of 28th of July 2009 was chosen arbitrarily. The layout was calculated using the Kamada-Kawai algorithm, with no
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assistant (orange) is in contact with is two, while almost all porters (yellow) have contacts with

patients from all five wards (Fig 2B).

Overall, contacts are relatively well maintained over time, as shown by the temporal correla-

tion coefficient of 0.47 (sd: 0.11, Table 1). This corresponds to the average probability that,

between two subsequent days, an individual maintains the same number of unique contacts,

with the same individuals. This metric is highest in the patient-patient subgraph (0.65, sd:

0.07) and lowest in the patient-staff subgraph (0.35, sd: 0.16), indicating that patients tend to

have the same contacts with each other every day, whilst contacts amongst healthcare workers

often vary between subsequent days. This consistency over time is reflected in the high proba-

bility of recurring contacts (mean probability: 0.78 for patients, 0.71 for staff), although we

note more variability amongst staff than patients (Fig 2C).

All the characteristics described above differ between weekdays and weekends in the net-

work and indicate that there are fewer contacts during weekends (S1 Table). This difference is

reflected in the temporal correlation, which tends to be high when comparing Sunday to Satur-

day, but low when comparing Saturday to Friday and Monday to Sunday, indicating that the

structure of the network changes the most between these timepoints (S3 Fig).

Comparison of synthetic and observed networks

To illustrate and validate our algorithm, we applied it to the i-Bird network described above to

stochastically construct four types of synthetic networks using the estimated contact parame-

ters: 100 full reconstructed networks, 100 reconstructed networks incorporating observation

bias, 100 full pseudo-random networks, and 100 pseudo-random networks incorporating

observation bias. We expected that the characteristics of the reconstructed networks with

observation bias would be broadly similar to those of the observed i-Bird network. Summary

network characteristics are reported in Figs 3 and S4.

The daily degrees in the reconstructed networks were slightly higher than the observed net-

work (Fig 3A). Global efficiency was similar between the observed and reconstructed net-

works, but slightly higher in the reconstructed network with bias (Fig 3B). This is because the

algorithm with bias removed individuals from the network at times when they did not wear

their sensor during the study, hence reducing the average distance between remaining individ-

uals. For the same reason, the density of the reconstructed network with bias was slightly

weights applied to edges. e) Distribution of individual degrees for the total network per person per day, across the entire study period. The dashed red line

indicates the mean degree (13.59). CV: coefficient of variation (standard deviation/mean).

https://doi.org/10.1371/journal.pcbi.1012227.g001

Table 1. Summary of network characteristics for the observed i-Bird total network, patient-patient subgraph, staff-staff subgraph, and patient-staff subgraph. Val-

ues were estimated for each day of the 28-days period and summarised here with the mean and standard deviation (sd). Transitivity is not calculated for the patient-staff

subgraph as triangles of contacts cannot occur in this network.

Total Patient-patient Staff-staff Patient-staff

Degree (sd) 12.99 (3.53) 5.25 (1.87) 5.82 (1.87) 8.09 (1.89)

Global efficiency (sd) 0.40 (0.05) 0.25 (0.08) 0.32 (0.10) 0.31 (0.05)

Density (sd) 0.07 (0.01) 0.05 (0.01) 0.09 (0.01) 0.05 (0.00)

Transitivity (sd) 0.37 (0.02) 0.41 (0.05) 0.56 (0.07) NA

Assortativity (sd)

By degree -0.13 (0.10) 0.22 (0.10) 0.14 (0.14) -0.42 (0.14)

By ward 0.59 (0.08) 0.77 (0.11) 0.72 (0.09) 0.47 (0.09)

Temporal correlation 0.47 (0.11) 0.65 (0.07) 0.35 (0.16) 0.41 (0.12)

https://doi.org/10.1371/journal.pcbi.1012227.t001
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higher than the observed (S4 Fig). Transitivity was slightly higher for the reconstructed net-

work with observation bias than without, but lower than the observed network in any case (Fig

3C), as expected since the algorithm did not take into account any element of transitivity when

constructing synthetic networks. Finally, assortativity by degree and by ward, as well as tempo-

ral correlation, were all well preserved in the reconstructed networks (Fig 3D–3F). As a com-

parison, the random networks with or without bias either substantially over- or under-

estimated the values for all metrics compared to the observed network (Fig 3A–3F), although

we note that transitivity was similar to the other synthetic networks (Fig 3C).

The hourly distributions of numbers of unique patient-patient, staff-patient and staff-staff

contacts in the reconstructed network with bias align with those in the observed network (Fig

4A). Whilst these two networks are only partially observed since individuals in the i-Bird study

did not have contacts recorded during all their presence days, those unobserved contacts are

Fig 2. Description of contact heterogeneity and recurrence across the facility. a) Repartition of contacts between grouped staff professions and patient

wards. A link between one staff category and one patient ward indicates that, at any point during the investigation period, a staff member from that category

had a contact with a patient from that ward. For ease of visualisation, occupational therapists, physiotherapists, and other re-education staff are grouped into

“Reeducation”; administrative, animation/hairdresser, logistic, and hospital service agents are grouped into “Other”; and nurses, head nurses, and students/

interns are grouped into “Nurses”. Porters, doctors and care assistants are not grouped. b) Distribution of number of wards with which each staff member

has had at least one contact with during the study period. c) Distribution of probabilities of recurring contacts. Each observation is calculated over the

entire studied period, and corresponds to the average probability for one staff or one patient to form a new contact with a previously-met individual (staff or

patient) over the studied period rather than a new individual. Diamonds indicate the mean values.

https://doi.org/10.1371/journal.pcbi.1012227.g002
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present in the reconstructed network without bias, leading to approximately twice as many

contacts in that network (Fig 4A). Similarly, the random network without bias which is only

informed by the hourly distribution of patient-patient, staff-staff and patient-staff contact rates

is aligned with the reconstructed network (Fig 4A).

The distributions of contact durations in the synthetic networks were similar to the distri-

bution in the observed network, although there were slightly less contacts with short durations

(Fig 4B, all distributions are significantly different; Wilcoxon test with Bonferroni correction p

values< 0.001). This is because all networks sample their contact durations from a lognormal

distribution parameterised by the mean and variance estimated from the data, which puts less

emphasis on very short contacts of less than one minute (S5 Fig).

In supplementary analyses, we assessed the robustness of our algorithm by quantifying the

variability of network characteristics across 100 reconstructed networks without bias (S6 Fig).

The variability across reconstructed networks was not statistically significant for any metric

Fig 3. Comparison of network characteristics. The reconstructed networks with observation bias exclude individuals from the network at times when they

were known to not wear their sensors. The random networks did not take into account the ward-level structure of the contacts or the probability of recurring

contacts. Boxplots for the observed network show the distribution of values calculated for each day. Boxplots for all reconstructed and random networks show

the distribution of the median values calculated for each day across 100 networks. The distributions were compared using Wilcoxon tests with Bonferroni

correction. ns: not significant; *: p< 0.05; **: p< 0.01; ***: p< 0.001.

https://doi.org/10.1371/journal.pcbi.1012227.g003
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(Kruskal-Wallis test, p value > 0.05) except for assortativity by degree (p< 0.001). We also

aimed to validate our approach by generating “re-simulated” networks informed by summary

statistics derived from the reconstructed networks with bias. These re-simulated networks are

similar to the full reconstructed networks, indicating that our algorithm consistently recreates

realistic networks and reconstructs unobserved contacts (S7 Fig). However, the number of

patient-patient contacts in the re-simulated networks is slightly higher than in the recon-

structed networks (S7 Fig).

Finally, we simulated epidemics on the networks, and found that, despite constant trans-

mission parameters, epidemic dynamics varied depending on which network was used (Fig 5).

The random networks generated the fastest and largest epidemics, with a median final attack

rate of 0.91 (interquartile range: 0.89–0.93), which corresponds to the proportion of all indi-

viduals infected by the end of the one-month period. Extinctions, defined as epidemics with

less than 10 individuals infected in total, never occurred on the random network, while they

occurred in 17% of simulations on the observed network. Random or reconstructed networks

with bias led to smaller epidemics than their non-biased counterparts, with a higher risk of

extinction. The reconstructed and re-simulated networks generated similar epidemic curves.

We repeated these simulations, changing the average duration of infectiousness to 2 or 10

instead of 5 days (corresponding to basic reproduction numbers of 1.3 or 6.5 instead of 3.25).

Fig 4. Comparison of network contact number and duration. a) Distribution of number of unique contacts per hour, separated by type of day (weekday

or weekend). Points correspond to the median, and the shaded areas correspond to the interquartile range. b) Distribution of contact durations. For ease of

visualisation, outliers are not shown on the graph.

https://doi.org/10.1371/journal.pcbi.1012227.g004
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These changes respectively led to larger and smaller epidemics, but did not affect our qualita-

tive conclusions (S8 Fig).

Discussion

Summary of findings

In this article, we present an approach to construct stochastic synthetic temporal contact net-

works in HCS from partially observed contact data. The i-Bird network illustrates the typical

complex contact structures in HCS, notably with a strong assortativity by ward, varying con-

tact rates between different staff categories and patients, and different contact structures on

weekends compared to weekdays. Importantly, we observed temporal correlation between

subsequent days in the network, and we estimated that individuals were generally more likely

Fig 5. Comparison of resulting incidence dynamics depending on the networks. a) Epidemic dynamics for the two random networks. Lines indicate

median values, and the shaded areas indicate the interquartile range. b) Epidemic dynamics for the observed and reconstructed networks. Lines indicate

median values, and the shaded areas indicate the interquartile range. c) Characteristics of the resulting epidemics for the different evaluated networks. Peak

date is shown for the median epidemic curve (solid lines in panels a and b). “Extinction prop.” indicates the proportion of simulations excluded from the

analysis, with less than 10 individuals infected in total.

https://doi.org/10.1371/journal.pcbi.1012227.g005
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to have contacts with other individuals they previously met rather than new individuals. Our

reconstruction algorithm successfully captured the heterogeneity of the observed network by

taking into account contact rates by hour, type of day (weekday or weekend) and staff cate-

gory, and probabilities of recurring contacts estimated for patients and staff. The resulting

reconstructed networks reproduced well the characteristics of the observed network, as well as

the specific distribution of unique contacts per hour. We have previously shown that, in the i-

Bird network, ward and staff category are associated with the contact frequency and duration

of individuals [31]. Our findings echo this point, since the pseudo-random networks which

did not consider contact heterogeneities by ward and staff category did not possess the same

characteristics as the observed network. Lastly, predicted epidemic dynamics varied depending

on which network they were simulated on. Although a fully observed ground-truth network

was not available for comparison, the resulting epidemics were larger in the full reconstructed

networks compared to the biased ones, highlighting the impact of missing contacts on disease

transmission.

The value of approaches to stochastically generate realistic contact networks has been previ-

ously discussed for schools or workplaces [6,34], although the complexity of the contact struc-

tures in those settings is arguably lower than what we observed here. These approaches

extended networks by repeating contact structures at fixed intervals, either keeping all nodes

and links identical, or by introducing some stochasticity by randomly changing the identity of

nodes (i.e. individuals) each day [6,34]. On the other hand, our algorithm dynamically and sto-

chastically constructs new contacts at each hour based on the empirical contact rates, instead of

repeating links. Our algorithm extends the principle of the stochastic block model, which relies

on dividing individuals into a fixed number of groups and determining between- and within-

group contact rates [35]. Here, we applied this principle across multiple overlapping categories

(patient or staff categories, and ward), whilst additionally considering temporal heterogeneity

(daily, hourly, and for the probability of recurring contacts). Previous algorithms also attempted

to reconstruct missing contacts for non-participants [36]. While this was not accounted for here

(e.g. visitors, see below for details), here we conduct this reconstruction at a higher resolution,

since in reality participating individuals can also have contact data missing only for some hours

or days of their total presence time. Finally, the novelty of our approach here is that we conduct

a direct comparison between the output of our algorithm and the observed contact network, as

opposed to other algorithms which attempted to build networks directly from contact diaries

and hence did not have access to an observed network for comparison [37].

Similarities between the observed and reconstructed networks

Although 90% of individuals agreed to wear a sensor during the study, the i-Bird contact net-

work was only partially observed, since the median time when contacts were not recorded was

33.3% (IQR: 10.5–53.6%) of a patient’s presence days (40.0%, IQR: 0–75.0% for staff). This

could have occurred for a number of reasons which we cannot distinguish, including depleted

batteries, sensor malfunction, imperfect sensor-wearing compliance, or temporary patient

releases from the facility (see Limitations below). However, since the average contact rates of

individuals did not correlate with the proportion of their presence time during which no con-

tact data were recorded (S2 Fig), it can be assumed that contact patterns during unobserved

times were similar to those on observed times. With that assumption, we were able to recon-

struct contacts at those times when individuals were present but had no reported contact data.

The resulting full reconstructed network is a valuable representation of individual interactions,

as it represents the “true” contact network, compared to the i-Bird empirical network which

was only partially observed. Although we were inherently limited in our ability to validate this
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network since the real, fully observed network was not available, we compared it to a re-simu-

lated network which used the reconstructed network with observation bias as input. The

reconstructed and re-simulated networks without bias were almost identical with regards to all

the network metrics we considered (Figs 5 and S7), demonstrating the consistency of our algo-

rithm to reconstruct contacts.

The reconstructed network with bias and the observed network had similar positive assorta-

tivity by ward, as expected since the input data captured the contact structure by ward. The

negative assortativity by degree was also similar, however we noted variability between differ-

ent networks generated independently by the algorithm (S6 Fig). Since the algorithm did not

directly account for assortativity when simulating networks, this similarity stems from our use

of a recurring contact probability coupled with the contact rates estimated by staff categories,

resulting in a non-random contact structure with regards to this metric. The hourly contact

distribution of patient-patient, staff-staff, and patient-staff contacts was also successfully repro-

duced by our algorithm.

A key metric of interest here is temporal correlation, which indicates how conserved the

network structure is over time. This type of metric is useful to determine the efficiency of dis-

ease spread across temporal networks over time [38–41]. Since our algorithm took into consid-

eration the probability of recurring contacts between individuals, our reconstructed networks

displayed similar temporal correlation as observed, whilst random networks substantially

underestimated this. This may be an important factor to explain why simulated epidemics

were substantially faster and larger on random networks than reconstructed ones (Fig 5). This

aspect is therefore an important strength of our approach, compared to only using estimated

average contact rates to construct synthetic contacts.

Limitations of the algorithm

Density and global efficiency in the reconstructed network with bias were slightly higher than

in the observed network. This is a likely consequence of our observation process which forcibly

removed individuals from the network at times when they had no contacts recorded, hence

reducing the number of nodes available in the network. Simultaneously, there was still a need

at those times to generate some novel contacts between individuals who never previously met,

since the probability of recurring contacts was less than 1. Combined, these elements increased

the overall connectivity amongst all individuals in the reconstructed network with bias.

Although this could facilitate disease transmission across these reconstructed networks if they

are used for such purpose [42], the high assortativity by ward may counter this effect by slow-

ing down transmission across the entire healthcare facility.

Our algorithm did not specifically account for transitivity when recreating contacts. This is

likely why the resulting transitivity was similar to that of the random network and underesti-

mated the observed value (Fig 3). Similarly to density and global efficiency mentioned above,

any transitivity in the reconstructed network was likely an indirect consequence of assortativ-

ity by ward, restricting the pool of available individuals to generate contacts and leading to

interconnectivity between individuals present in the same ward. Whilst we could extend our

algorithm to consider transitivity when choosing the individuals to put in contact, we decided

not to do this here to maximise the generalisability of our approach by not requiring such

highly detailed contact data. In any case, this may not substantially affect disease transmission

simulated across these networks, since previous work has shown that transitivity is a poor pre-

dictor of the total number of individuals who would be infected across the network [42].

Although our algorithm can capture individual presence and absence times, information

about patient temporary releases from the LTCF (e.g., for weekends with their families, or for
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shopping outside) was not available in the i-Bird data, hence such events were not accounted

for here, although they may occur frequently in a LTCF. Consequently, the number of pres-

ence days/hours may have been overestimated, leading to an overestimation of contact days

among patients. Although this is negligible when comparing the observed and reconstructed

network with bias, this is likely why the re-simulated networks slightly overestimated the num-

ber of patient-patient contacts compared to the full reconstructed network (S7 Fig). We expect

that this overestimation would be absent in HCS with more complete information on individ-

ual presence, or in acute care facilities with shorter patient lengths of stay and where temporary

releases are less common. Similarly, our algorithm does not consider the contacts of visitors in

the hospital, and we did not have data in the i-Bird study on visitors which we would have

required to validate the synthetic networks. Consequently, our description of the contact struc-

ture in the LTCF is not exhaustive, although this does not affect the ability of our algorithm to

reproduce patient-staff contacts.

When reconstructing missing contacts, we assumed that if a staff member (patient) was

present in the facility at a given time but did not have any contact with anyone else recorded at

that hour (day), this represented unobserved data. In reality, there may be rare instances

where individuals truly did not have any contact with anyone else over a time period. In such

instances, our algorithm would over-estimate contacts by forcibly reconstructing contacts for

those individuals at those times. However, we expect this would only occur at times with lim-

ited contact rates (e.g. during the night), therefore the empirical contact rates would be small

and only a couple of contacts may be erroneously reconstructed by the algorithm.

More broadly, our approach to reconstruct missing contacts relies on the assumption that,

for a given set of individual characteristics, unobserved contacts follow the same distribution

as observed ones. For example, we assume that the unobserved contacts of a nurse n1 in ward

w at hour h are similar to the observed contacts of another nurse n2 also in ward w at hour h.

We found this assumption to be reasonable in the observed i-Bird network, since the average

contact rates of individuals did not correlate with the amount of time when they had unob-

served contacts (S2 Fig). However, this assumption would have to be carefully checked when

attempting to use our algorithm with other data sources or other types of settings.

Future work

In this study, we show that our algorithm can accurately reproduce the contact structure using as

input contact data from a given long-term care facility. Although our algorithm has not been

designed to reproduce mobility networks which possess different characteristics, it should be

applicable to any contact network representing close proximity interaction between individuals in

a defined setting. A first important next step would be to repeat our analysis using data collected

in a different HCS such as acute care, over a different time period. This is because contact struc-

tures are known to vary between different HCS such as long-term or acute, with more/less con-

tacts between different individual categories, varying recurring contact probabilities etc. Similarly,

even though we tested our algorithm using substantial data covering four weeks, this contact

structure may not be representative of other time periods. Notably, the i-Bird data we used was

collected in the middle of the summer, which is a holiday period in France and may have affected

contact patterns. Although we do not expect that our algorithm will perform differently since it

has been designed to be generalisable, the strengths and limitations we have highlighted above

may be more or less relevant in these different settings. For example, in a setting with low transi-

tivity, the fact that our algorithm underestimates this metric would be less problematic.

Here we directly re-used patient admission and discharge data as well as staff schedules to

identify which individuals were present in the facility at each hour, and hence whom the
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algorithm had to build contacts for. While this choice was coherent since our aim was to com-

pare the observed and reconstructed networks, a second possible extension of our work would

be to simulate the presence of individuals over time. This could be implemented by extracting

admission and discharge rates for each category of staff and patients and using these values to

recreate new presence times for individuals by sampling from relevant probability distribu-

tions while maintaining constrains on each population size. This would allow us to further

account for possible variability in the structure of the population in the facility, add flexibility

in building synthetic networks for settings where this data may not be fully available, and

hence add further stochasticity in our algorithm.

Since contact data may only be available for short periods of time (e.g. a few days [22]), a

third question of interest would be to understand the volume of data required to generate real-

istic temporal contact networks using our algorithm. In our main analysis, we used the entire

four weeks available to both derive contact parameters and compare the reconstructed and

observed networks. For sensitivity, we also considered smaller timer periods to calculate the

summary contact parameters required by the algorithm (S9 Fig). As expected, this led to vari-

ability amongst the reconstructed networks depending on the length of the period used, since

this reduced the number of data points used to estimate the average contact rates used by the

algorithm. In any case, the main risk of using only a short period of time is to miss out on

some contacts between categories. For example, during a single week, by chance there may not

be any observed contact between patients from one ward w1 and a nurse from another ward

w2, while in reality over a longer period of time we may observe a few of such contacts. In that

case, the algorithm will systematically assume that such contacts never occur during the entire

period over which the reconstructed networks are generated and will therefore construct an

incomplete network. A further extension of our algorithm could include the possibility of cre-

ating such unobserved links, but this would still require either assumptions or information on

the nature of those links. Therefore, it is essential for users to be confident that the data they

use include contact rates for all relevant categories in their setting and for typical representa-

tive days.

As discussed above, taking into account the probability for contacts to be recurring instead

of assuming a uniform distribution is a key element of our approach. Here, we estimate the

average probabilities of recurring contacts in the studied LTCF over the studied period as 0.71

for staff and 0.78 for patients, but we note some individual variation in this value (Fig 2, inter-

quartile range for staff: 0.63–0.84, for patients: 0.77–0.85). In addition, our estimation here is

made using the entire observed contact networks over the study period, but this may be diffi-

cult in instances where only limited data are available. For sensitivity, we investigated the

impact of manually setting the probabilities to 0.1, 0.5 and 0.9 for both staff and patients (S10

Fig). This led to important variations in assortativity by degree and temporal correlation com-

pared to using the estimated probability. A greater understanding of this recurring contact

probability in various settings would be key to better understand contact formation and het-

erogeneity, and could be directly taken into consideration in our algorithm since it has been

designed to use this probability. In healthcare settings, this probability could likely be esti-

mated without requiring complete contact data, using information on staff schedules and

patient ward or room allocation instead.

Finally, other methodological approaches could be considered to reconstruct realistic con-

tact networks. For example, deep learning algorithms such as graph convolutional networks

(GCN) have become increasingly popular for this purpose, particularly in the context of infec-

tious disease transmission [43–47]. It would be interesting to compare the performance of

these approaches with our algorithm to estimate network characteristics and reconstruct

unobserved contacts. However, traditional GCN approaches do not account for temporal
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dependencies between contacts such as the ones we observed in the i-Bird network where the

probability of recurring contacts plays a key role [48,49]. On the other hand, temporal graph

networks can capture this temporal dependency [50,51], but require substantial computational

resources to be applied to a network such as i-Bird, with hundreds of interactions recorded

every 30 seconds during several weeks. Finally, deep learning methods require large amounts

of training data. Democratising their use would therefore first require new studies to collect

close-proximity interaction data in different settings and time periods, presenting further

logistical challenges.

Implications

Our algorithm relies on computing summary statistics from an observed network, then using

these statistics to stochastically reconstruct contact networks. Such statistics can be derived

directly from other observed networks, as we have done here to validate our approach. In that

case, instead of only relying on a single observed network, our approach provides multiple

realistic reconstructed networks enabling to consider the impact of stochasticity of the contact

structure and on subsequent epidemic risk in a given setting. Our approach, by providing data

augmentation, also enables to infer information on potentially unobserved contacts. Our algo-

rithm could also be used to generate extended realistic temporal dynamics over longer time

periods than the period of data collection. However, as we have shown in our supplementary

analysis using only part of the data to estimate contact parameters, this must be further studied

to clarify the minimal amount of data required to be confident in the representativity of the

synthetic networks.

Alternatively, summary contact statistics could be more simply collected from cross-sec-

tional surveys or even derived exclusively from individual schedules, which would not require

a detailed and costly follow-up using sensors. In this scenario, the only other data required

would be individual presence times, which should either be routinely available (e.g. in health-

care settings or schools) or relatively easy to collect (e.g. in workplaces). Although as men-

tioned in the Limitations, the amount of data our algorithm requires to generate realistic

networks is still unclear, our approach could ultimately be used to generate contact networks

from contact matrices. This would substantially facilitate research on the impact of contact

heterogeneity in various populations and settings, as others have previously discussed [37].

In conclusion, our algorithm can generate temporal contact networks in a healthcare setting

by taking into consideration empirically measured contact rates based on close-proximity sen-

sors, as opposed to most available packages which only construct static networks and rely on

hyperparameters [52,53]. These temporal networks can then be analysed with mathematical

models to evaluate the potential impact of interventions against disease transmission [11–14].

In particular, this will improve the wider applicability of individual-based model which make

it possible to account for detailed contact heterogeneity in testing the effect of interventions

targeting highly specific individuals.

Supporting information

S1 Table. Summary of network characteristics for the observed total network, patient-

patient subgraph, staff-staff subgraph, and patient-staff subgraph, separated by weekday

or weekend. Values were estimated per day, with mean and standard deviation (sd) presented

here. Transitivity is not shown for the patient-staff subgraph as triangles of contacts cannot

occur in this network.

(DOCX)

PLOS COMPUTATIONAL BIOLOGY An algorithm to build synthetic temporal contact networks from contact data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012227 June 13, 2024 18 / 23

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1012227.s001
https://doi.org/10.1371/journal.pcbi.1012227


S1 Fig. Proportion of presence days during which contact data were recorded, by patient

ward and staff category. Each point is one individual’s proportion, calculated over the entire

study period. The shading of the points indicate the number of presence days for each individ-

ual (darker = more presence days).

(TIF)

S2 Fig. Proportion of presence days during which contact data were recorded is not corre-

lated with a) average number of contacts per day nor b) number of presence days. Each

point is one individual.

(TIF)

S3 Fig. Temporal correlation by subgraph and day of the week. The correlation is calculated

for each day by comparing it to the previous day; for example, the value on “Monday” indicates

the correlation between the network on Monday and Sunday. Points indicate the mean corre-

lation, and lines indicate the 95% confidence interval (1.96 times the standard deviation).

Weekdays are shown in blue, and weekends in red.

(TIF)

S4 Fig. Comparison of density across networks. The reconstructed networks with observa-

tion bias exclude individuals from the network at times when they were known to not wear

their sensors. The random networks did not take into account the ward-level structure of the

contacts or the probability of recurring contacts. Boxplots for the observed network show the

distribution of values calculated for each day. Boxplots for all reconstructed and random net-

works show the distribution of the median values calculated for each day across 100 networks.

(TIF)

S5 Fig. Contact rates in the i-Bird data and sampled from a lognormal distribution.

100,000 samples are taken from a lognormal distribution is informed by the mean and vari-

ance estimated from the data. For ease of visualisation, the x-axis is truncated at 60 minutes.

(TIF)

S6 Fig. Variability of network characteristics across iterations. Here, 100 reconstructed net-

works without bias were generated independently, all informed by the same contact rates esti-

mated from the i-Bird data. For each iteration, the distribution of the metric calculated for

each day is shown. Red points are weekdays, and blue points are weekends. The green lines

indicate the median value for the correspond metric across all networks and days. Only the

distributions of assortativity by degree are significantly different between networks (Kruskal-

Wallis test, p value < 0.001).

(TIF)

S7 Fig. Full reconstructed networks informed by the observed network, compared to full

re-simulated networks informed by the reconstructed network with observation bias.

(TIF)

S8 Fig. Comparison of resulting incidence dynamics depending on the networks, with an

average duration of infectiousness of 2 days (a-b) or 10 days (c-d). a-c) Epidemic dynamics

for the two random networks. Lines indicate median values, and the shaded areas indicate

the interquartile range. b-d) Epidemic dynamics for the observed and reconstructed net-

works. Lines indicate median values, and the shaded areas indicate the interquartile range.

(TIF)

S9 Fig. Characteristics for the full reconstructed network, estimated using two weeks or

one week instead of the complete observed four weeks. 1st quarter: 26/07–02/08, 2nd quarter:
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03/08–09/08, 3rd quarter: 10/08–16/08, 4th quarter: 17/08–23/08. “1st half” includes the 1st and

2nd quarters, and “2nd half” includes the 3rd and 4th quarters.

(TIF)

S10 Fig. Characteristics for the full reconstructed network when manually setting recur-

ring contact probability to 0.1, 0.5 or 0.9. The calculated probabilities are 0.78 for patients

and 0.71 for staff. In the other scenarios, the probabilities for patients and staff are set to the

same value.

(TIF)
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31. Duval A, Obadia T, Martinet L, Boëlle P-Y, Fleury E, Guillemot D, et al. Measuring dynamic social con-

tacts in a rehabilitation hospital: effect of wards, patient and staff characteristics. Scientific Reports.

2018; 8: 1686. https://doi.org/10.1038/s41598-018-20008-w PMID: 29374222

32. R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Founda-

tion for Statistical Computing; 2022. Available: https://www.R-project.org/

33. Csardi G, Nepusz T. The igraph software package for complex network research. InterJournal. 2006;

Complex Systems: 1695.

34. Colosi E, Bassignana G, Contreras DA, Poirier C, Boëlle P-Y, Cauchemez S, et al. Screening and vacci-

nation against COVID-19 to minimise school closure: a modelling study. The Lancet Infectious Dis-

eases. 2022; 22: 977–989. https://doi.org/10.1016/S1473-3099(22)00138-4 PMID: 35378075

35. Lee C, Wilkinson DJ. A review of stochastic block models and extensions for graph clustering. Appl

Netw Sci. 2019; 4: 1–50. https://doi.org/10.1007/s41109-019-0232-2
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