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Abstract
This paper introduces the concept of Generalized Compliance for continuum robots, specifically for those modeled with the

Cosserat Rod theory. Unlike existing models based on tip compliance, the proposed approach considers interactions along the
entire body of the flexible robot. The paper also presents a novel method referred to as the Low-Level Derivative Propagation
Method, which is designed for the computationally efficient derivation of the Generalized Compliance matrix. The proposed
method streamlines calculations and reduces integration time. The presented method, which is general and applies to various
types of continuum robot models, is demonstrated on the case of a Concentric Tubes Continuum Robot. We provide detailed
derivations of the equations and computation techniques leading to the derivation of the Generalized Compliance matrix, as well
as a large-scale numerical validation of the method. The code used in this paper will be made public upon acceptance of the paper.
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Keywords: Continuum robots, Differential kinematics, Generalized Compliance, Cosserat theory, Derivative Propagation
Method.

1. Introduction

Continuum robots are thin, slender, flexible structures that conform to curvilinear paths and are intrinsically com-
pliant. In opposition to standard rigid-link robots, their mechanical structure allows them to bend passively upon
contact with the environment, which is a strong asset in medical contexts. For this reason, the development of contin-
uum robots for medical and surgical applications has been a very active area of research in the last two decades [1],
with applications in laryngeal surgery [2], urology [3], gastrointestinal surgery [4], brain surgery [5], and many oth-
ers [6]. Various mechanical structures of continuum robots have been proposed in the literature: Concentric Tubes
Continuum Robots (CTCR) [7, 8], Tendon-Actuated Continuum Robots (TACR) [9, 10], Concentric Push-Pull Robots
(CPPR) [11], Multi-backbone Continuum Robots (MBCR) [12] and Magnetic Continuum Robots (MCR) [13]. Each
of these mechanical structures stands out for its ability to be miniaturized, the mechanical stability of shape control,
the diversity of the reachable shapes, or also by their ease of manufacturing [1].

In order to control such continuum robots, models linking the joint motor input to the robot shape are re-
quired. Historically, continuum robot models were based on geometrical features (e.g. the so-called constant curva-
ture model [14]) and have then evolved to more advanced models that take distributed and tip loads into account [15].
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Such models, however, are more complex and require numerical resolution methods. Computing differential kine-
matics is also challenging, and the robot Jacobian calculation is often derived under some constant curvature assump-
tions [2, 16], or by using approximation schemes [17, 18].

A correct robot Jacobian enables the formulation of a control algorithm to follow a given trajectory in the absence
of external forces. However, when external forces are exerted either along the shaft or at the tip of continuum robots,
it becomes imperative to consider these forces, given that such structures undergo significant deflection under load.
For this reason, continuum robot models have been developed including both distributed forces along the robot and tip
forces [7, 8, 19, 20]. Such models can be used for estimating applied loads on the robot using an external measurement
such as vision sensors [21, 22] or fiber Bragg gratings [23], for instance. The Compliance Matrix, the inverse of the
stiffness matrix, is very useful to quantify the interaction between force and shape. It defines the variation of the robot
shape resulting from a variation of the wrench applied to the robot. There has been recently a growing interest in the
use of the Compliance Matrix for the stiffness control of continuum robots, the design of their mechanical structures
and in the development of force sensing algorithms.

Stella et al. [24] designed and experimentally assessed a control algorithm allowing a TACR to have a prescribed
stiffness at the end-effector. This was made possible by coupling the robot Jacobian with the end-effector Compliance
Matrix in the control strategy. In the context of MBCR, Bajo et al. proposed a hybrid force/position control frame-
work exploiting specific features of the MBCR structure [25]. Another approach for Compliance control, inspired
by the concept of manipulability, consists in analyzing Compliance ellipsoids. This approach has been applied to
pneumatic-driven soft robots in [26] and to CTCR in [27]. Since compliance relates externally applied forces to robot
deformation, the Compliance Matrix can be used indirectly in a force-based control algorithm. This idea was devel-
oped and experimentally validated by Black et al. [28] on a Parallel Continuum Robot where the Compliance Matrix
is used for estimating the force applied by the end-effector. An innovative use of compliance is also presented in [29],
where a Compliance distribution index provides indications for the mechanical design of a soft rod. By analyzing this
index, one can find a singular material distribution to carry actuating forces from the base to the tip while achieving a
given tip displacement.

However, to the best of the authors’ knowledge, formal definitions of the Compliance Matrix only consider force
applied at the tip, which can be seen as a historical legacy of the rigid-links robots models. The existing Compliance
Matrix representation is therefore not well adapted to the modeling of continuum robots [7, 8, 19, 20] since non-tip
forces have to be considered [21, 22, 23]. This observation has led to the first contribution of this article: to propose
a generalized definition of compliance for which the forces producing robot deformations are no longer restricted to
the tip but can be applied anywhere along the robot’s shaft.

A standard numeric technique to compute the Compliance Matrix is to do an approximation using finite differences
on the robot model [17, 18]. Many papers in the literature have proposed to define the compliance by a set of N
matrices computing the locally-linearized displacement δT (s) at arc-length s under a tip wrench (force and/or torque).
This was done, for instance, in [26, 30, 31]. It is worth pointing out here that this first extension of the concept
of compliance matrix already brings a layer of complexity. Computing the arc-length discretized compliance using
finite difference schemes requires 6 evaluations of the continuum robot BVP (Boundary Value Problem), each of them
requiring several evaluations of the IVP (Initial Value Problem). This computational problem has been pointed out by
Rucker et al. and was the main reason for developing a derivative propagation method in [30]. In our paper, we go
one step further by relaxing the assumption of ”tip forces only”.

In this paper the models considered are the most advanced ones built on the Cosserat rod theory [32] as it is done
for instance in [7, 8, 9, 10, 19, 20, 21, 33]. These models use the set of Cosserat Ordinary Differential Equations
(ODE) to compute the propagation of stress and strain along the robot neutral fiber. Two approaches are possible:
one can consider the whole continuum robot as an unique Cosserat rod [31, 34, 35, 36] or one can consider multiple
Cosserat rods (one for each interacting rod) and rearrange the equations to obtain a robot model that is more faithful
to the robot internal structure specificities [8, 10, 37, 38]. For the unique Cosserat rod case, solving the model consists
in integrating once an Initial Value Problem (IVP) from on side of the robot to the other. For the multiple Cosserat
rods case, the known boundary conditions of the ODE are split between the two ends of the robot. Therefore solving
the model consists in solving a Boundary Value Problem (BVP) using a shooting method [39, 40] which optimizes
a residual computed at each step using the IVP. Since using a finite differences approximation on the robot model
can be time-consuming, some analytical methods have been developed in order to speed up the Compliance Matrix
computation.
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Smoljkic et al. have proposed a method for the unique Cosserat rod case which consists in expanding the ODE
with the tangent problem (i.e. applying directly the partial derivative w.r.t. the tip wrench on the ODE), which yields
the tip Compliance matrix after an additional integration [31]. Such a method, called a Derivative Propagation Method
(DPM), ensures a high computing efficiency and is geometrically exact. However it is not exploitable for the multiple
Cosserat rods case since the optimization residual is not involved in the partial derivatives propagation. This limitation
has been overcome by Rucker et al. with another formulation of the DPM [30]. It differs from [31] because the partial
derivatives are applied on three extra matrices and not directly on the robot model. After integrating the new equations,
the partial derivative of the residual is included in the final tip Compliance computation. This method has opened up
promising avenues for active structures such as MBCR, CTCR, TACR and CPPR. Nevertheless the computation time
has been increased, while still only considering forces applied at the tip.

Because these DPM have been initially developed for the tip Compliance Matrix, they are not adapted for the
Generalized Compliance matrix for which it is required to compute as many derivators as there are points on the
robot. This issue has led to the second contribution of this paper: to develop a new DPM specially designed for the
new definition of the Compliance Matrix. This method combines the best of the two existing methods [31, 30] and
incorporates some mathematical optimizations to keep computation time low.

The paper is organized as follows. In section 2, after presenting the necessary mathematical derivations for
Cosserat-based continuum robot modeling, we show how the method proposed in [30] can be adapted to the Gen-
eralized Compliance matrix computation, as well as the limitations posed by such a direct adaptation in terms of
computational efficiency. We then propose an alternative formulation, termed as Low-Level Derivative Propagation
Method (LLDPM). In section 3 we detail an application of the proposed LLDPM to a CTCR model, including the
full derivation of the method for easy replication by interested readers. A large-scale numerical validation as well as
a computation time analysis is then carried out in Section 4 to show the accuracy and performances of the proposed
method. Finally, some interesting properties of the Generalized Compliance matrix are discussed in Section 5 and the
conclusions and perspectives of this work are drawn in Section 6.

2. Computing Generalized Compliance Matrix on Continuum Robots

The following sections present the necessary notations. To enhance readability, all notations are listed in Appendix
A.

2.1. Preliminaries: Continuum Robot Model

Let us consider a continuum robot, illustrated in Fig 1a, whose neutral axis is parameterized by a bounded curvi-
linear abscissa s ∈ [0, L] in a fixed reference frame RB0 . This neutral axis is discretized into N points distributed
according to a non-constant discretization step ∆(s). Every variable attached to the continuum robot will hold the in-
dicator •0. The studied continuum robot is considered under external loads, composed of bending moments τ0(s) and
forces f0(s), applied to the neutral axis. These loads are composed of tip loads, denoted as τ0(L) ∈ R3 and f0(L) ∈ R3,
and distributed loads τ0(s0) ∈ R3 and f0(s0) ∈ R3 applied over the range s ∈ [lmin , lmax]. Every external load is
defined in the fixed reference frame RB0 . As commonly seen in the literature, the external loads will be grouped into
a wrench:

w0(s) =
[
τ0(s)
f0(s)

]
(1)

A body frame R0(s) is attached to the robot and is described by the homogeneous transformation matrix T0(s) ∈
SE(3) defining the transformation between frame RB0 and R0(s). Transformation T0(s) includes a rotation matrix
R0(s) ∈ SO(3) and a translation vector p0(s) ∈ R3. Let •̂/•∧ denote the skew-symmetric operator [41] associated with
SO(3) and its extension to SE(3), respectively. For u = [ux uy uz]T and v = [vx vy vz]T ∈ R3:
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û =

 0 −uz uy

uz 0 −ux

−uy ux 0

 (2a)

[
v
u

]∧
=


0 −uz uy vx

uz 0 −ux vy

−uy ux 0 vz

0 0 0 1

 (2b)

For further use, we also define •∨ the inverse operator of •∧.

The evolution of T0(s) can be described by its linear rate of change v0(s) ∈ R3 and the angular rate of change
u0(s) ∈ R3. By defining •̇ as the derivative d

ds , the evolution of T0(s) is given by the two differential equations:

Ṙ0(s) = R0(s)û0(s) (3a)
ṗ0(s) = R0(s)v0(s) (3b)

It is common to find the notation ξ0(s) to represent the change of rate of T0(s) as:

Ṫ0(s) = T0(s)ξ̂0(s) (4)

where

ξ0(s) =
[
v0(s)
u0(s)

]
(5)

Since continuum robots are flexible structures, it is required to describe the correlation between internal forces,
external loads, and R0(s) rates of change. Let us define the robot’s internal bending moment m0(s) ∈ R3 and its
internal force n0(s) ∈ R3. Every internal moment or force is defined in the local body frame R0(s). The application of
the Cosserat rod theory to the robot neutral axis provides two differential equations resulting from the application of
Newton’s first law on a given infinitesimally small robot cross-section:

ṁ0(s) = û0(s)m0(s) − v̂0(s)n0(s) − R0(s)T τ̇0(s) (6a)

ṅ0(s) = û0(s)n0(s) − R0(s)T ḟ0(s) (6b)

In addition to the Cosserat equations, some assumptions can be made for the studied continuum robot. By com-
bining equations (3a), (3b), (6a), (6b) and the robot-specific assumptions (e.g. interactions between the different rods
constituting the robot or actuation input), one can describe the robot behavior by a set of ODE in the form:

ẏ(s) = F (y, s) (7)

where F is a general function, and y(s) ∈ RY is a state vector (typically including curvatures and internal forces and
moments). Computing the continuum robot model consists in integrating equation (7) along the robot.

If the initial state vector value y(0) is fully known, one can integrate the ODE (7) directly. This first case is an Ini-
tial Value Problem (IVP). For continuum robots, in the general case, some components of y(0), denoted yu(0) ⊂ y(0),
are not known. On the other hand, additional constraints at the robot tip denoted b ∈ RB, may be known. This con-
stitutes a Boundary Value Problem (BVP) where boundary conditions are split. Such problems can be solved using
shooting methods [39] [40], in which values of yu(0) ∈ RU are optimized in an iterative process by integrating the
corresponding IVP until b converges to 0 (see Fig. 1b.). The optimization process is typically stopped when ||b||∞ ≤ ϵ.
The residual b is typically obtained by a static equilibrium at the robot tip, and is therefore composed of equilibrium
of internal and external forces and moments at s = Li and s = L.
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Figure 1: (a) Visualization of the base frame RB0 , the body frame R(s), the distributed loads
[
τ0(s) , f0(s)

]
and the tips loads

[
τ0(L) , f0(L)

]
.

(b) Principle of the shooting method used to solve the BVP.

2.2. Rethinking the Compliance Matrix Definition

To the best of the authors’ knowledge, the Compliance matrix has always been defined as shape derivative w.r.t.
tip loads for continuum robots [31, 30, 1]. Because application tasks are commonly defined at the robot’s tip and
knowing that the Compliance matrix is commonly used for task control loops, it was appropriate to define compliance
as follows:

C(s) =
∂T∨0
∂w0 (L)

(s) ∈ R6×6 (8)

The tip Compliance matrix C(s) has interesting applications, for instance, to enable interaction control when the robot
tip interacts with the environment. Nevertheless, its utility is limited in scenarios where interactions do not occur
specifically at the robot tip, such as when seeking to control compliance with various contact points.

A new Compliance matrix definition is therefore proposed in this paper. This new Compliance matrix will be
named Generalized Compliance matrix Cs0 (s) in the following to prevent any confusion, and is defined as follows:

Cs0 (s) =
∂T∨0
∂w0 (s0)

(s) ∈ R6×6 (9)

Since T0(s) is defined all along the robot neutral axis, both definitions (8) and (9) are parameterized by s. Cs0 (s)
features a double arc-length discretization: for any couple of points {s, s0} ∈ {[0, L] × [0, L]} along the robot, our
definition includes the compliance associated with a wrench applied at s0 and a displacement at s (where s and s0 are
not necessarily the same). The new Generalized Compliance matrix Cs0 (s) (9) goes beyond the state of the art while
maintaining the classical definition C(s) as a special case of Cs0 (s):

C(s) = Cs0=L(s) (10)

If one wants to compute the Generalized Compliance matrix Cs0 (s) for any point of application s0 of external forces,
one needs an additional dimension to store all the new derivatives. A layout, illustrated by Fig 2a, is proposed to
organize the Cs0 (s) values properly. For future applications, Cs0 (s) can be used to estimate changes of T0(s), denoted
as ∆T0(s) (∆• is used to indicate variations, here of shapes). An example is provided in Fig 2b.
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Figure 2: (a) The layout of the Generalized Compliance matrix Cs0 (s) where each parameter refers to one matrix dimension. (b) Application using
the Generalized Compliance matrix to estimate changes of homogeneous transformation matrix ∆T0(s).

2.3. Adapting Existing Derivative Propagation Method for Generalized Compliance Matrix

Now that the Generalized Compliance matrix definition has been presented, the main challenge is to develop a
method to compute it. Let us first start by describing the method developed by Rucker and. al. in [30] for the
standard compliance matrix. The method starts by solving the BVP of a continuum robot for a given actuation input,
yielding the value of yu(0) and the robot shape. Then, the method extends the state vector and proceeds to a single IVP
integration to compute the Compliance, with the three new following ODEs. These differential equations, initially
developed for Jacobians defined in the local frame R0(s), have been adapted for definition in the global frame RB0 .

V̇χ(s) =
∂F

∂y(s)
(s)Vχ(s) +

∂F

∂T∨0 (s)
(s)Eχ(s) +

∂F

∂χ
(s) (11a)

Ėχ(s) =
(
Êχ(s)ξ̂(s)

)∨
+

(
T0(s)

∂ξ̂

∂χ
(s)

)∨
(11b)

˙̃Bχ(s) =
∂b
∂y(s)

Vχ(s) +
∂b
∂T∨0 (s)

Eχ(s) +
∂b
∂χ

(11c)

where χ is a dummy vector. In [30], it is defined as χ ∈ {w0(L), yu(0)} for computing the Compliance matrix.
Additionally, we have:
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Vχ(s) =
∂y
∂χ

(s) ∈ RY×X (12a)

Eχ(s) =
∂T∨0
∂χ

(s)
∣∣∣
b,0 ∈ R

6×X (12b)

Bχ = B̃χ(s = L) =
∂b
∂χ
∈ RB×X (12c)

where X refers to the size of χ and •|b,0 specifies that Eχ derivative does not guarantee the distal constraint b = 0. On
the contrary, the Compliance matrix CL(s) is defined for the case where the constraint b = 0 is realized. But in this
case, •|b=0 is omitted for clarity reasons. Computing the Compliance matrix requires the Bχ value which is computed
thought the differential equation on B̃χ (11c) in the method from [30]. Computing the tip Compliance matrix of the
robot requires integrating equations (11a)-(11c) in order to combine them as follows:

CL(s) = Ew0(L)(s) − Eyu(0)(s)B†yu(0)Bw0(L). (13)

where •† refers to the Moore-Penrose pseudo-inverse operator.
In (13), which is the direct application of the method from [30], the Compliance matrix is computed only with

respect to forces applied at the tip. Extending the method to the Generalized Compliance matrix is not straightforward.
The computation of Bw0(L) could be done directly in [30] because the residual b contains the forces applied at the tip
of the robot. Applying the method with a force applied at an arc length s0 , L would therefore require solving a BVP
with 3-point split boundary conditions. Instead, we propose to redefine the problem as follows.

First, we define the dummy variable χ as :

χ ∈ {w0(s0), yu(0)} (14)

To avoid the above-mentioned problem, when forces are not applied at the tip we compute partial derivatives with
respect to w0(s0) = [τ0(s), f0(s)] with a point force/torque placed at arc length s0. Such partial derivatives can be
computed with literal expressions, because τ0(s) and f0(s) appear explicitly in equations (6a) and (6b), which are used
for constructing F . This operation enables computing equations (12a) - (12c) with respect to the full vector χ defined
in (14). The Generalized Compliance matrix can then be computed for each value of s0 as :

Cs0 (s) = Ew0(s0)(s) − Eyu(0)(s)B†yu(0)Bw0(s0). (15)

Note that in [30] the same derivative propagation method is applied for computing the robot Jacobian matrix. In
our case, since we are mainly interested in the Generalized Compliance matrix, we have left the robot Jacobian-related
part out of the equations. Our proposed method is however easily applicable to computing the robot Jacobian matrix.
To do so, one needs to add the vector of robot joint variables q ∈ RQ to the vector χ, leading to the computation of
additional partial derivatives Eq, Vq, and Bq. Such terms are then assembled to compute J(s) in a similar way as for
Cs0 (s):

J(s) = Eq(s) − Eyu(0)(s)B†yu(0)Bq. (16)

2.4. Towards the Development of a Dedicated Low-Level DPM

Integrating (11a) - (11c), as in [30], and computing (15) is carried out using literal equations, calculated by com-
puting the associated partial derivatives of equation (7). As shown in [30], this is a computationally efficient method
which ensures fast computational time. Applying the adapted method for computing the Generalized Compliance
matrix, however, reveals several computational bottlenecks.

First, integrating (11a) - (11c) turns out to be unnecessary since y(s) can be integrated thanks to a unique ODE,
given by equation (7). It is possible to compute the partial derivatives of (7) directly as it has been done for a passive
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Cosserat rod [31]. Computing the partial derivatives directly on (7) will intrinsically propagate the χ partial derivative
all along the robot thanks to the s derivatives. This approach leads to the following second-degree ODE:

∂

∂χ

(
dy
ds

)
(s) =

∂F

∂χ
(y, s) ∈ RY×X (17)

Because the neutral axis discretization is independent of the external loads and joint values, partial derivatives can be
reorganized as follows:

∂

∂χ

(
dy
ds

)
(s) =

d
ds

(
∂y
∂χ

)
(s) (18)

Combining equations (17) and (18) yields a new ODE which can be integrated along the arc length of the con-
tinuum robot. Once this is done, the values of Vχ(s), Eχ(s), and Bχ can be assembled in one pass without requiring
to integrate them. Because the derivatives are applied directly to the state vector components, this method will be
designated as a Low-Level Derivative Propagation Method (LLDPM).

Unlike a direct adaptation of [30], our proposed LLDPM minimizes the number of equations required to propagate
the derivatives. Each of the quantities computed in (17) is needed behind the hood to evaluate high-level ODEs (11a) -
(11b). A striking example is ∂ξ

∂χ
(s) which appears explicitly in (11b) and is also computed in (17) because ξ is part

of the state vector y. While in our method only such low-level ODEs are integrated, the original DPM requires
assembling them in the form of large matrices to be integrated. This introduces supplementary operations which turn
out not to be necessary.

A second advantage of our proposed LLDPM is that it enables a smart adaptation of the integration bounds. [30]
presents an integration process considering all the derivatives along the robot s ∈ [0, L]. We can observe, however, that
the low-level partial ODE referring to w0(s0) does not generate information before reaching the point where the load
is applied, i.e. the integration is not relevant on the integration range s ∈ [0, s0]. This means that partial derivatives
related to w0(s0) can be directly set to zero for a given integration point if the considered arc length s satisfies s < s0.
For example, at s = 0 the only derivative computed will be w.r.t. w0(s0=0) while on the other boundary s = L every
external load w0(s0), s0 ∈ [0, L] derivatives will be computed. Such a selection of the integration bounds is made
possible by the fact that low-level partial derivatives are individually integrated in our LLDPM method. In the adapted
DPM for Generalized Compliance matrix, such a selection of the integration bounds is not possible because low-level
variables are concatenated in large high-level matrices Vχ and Eχ.

Let us define NDPM(Cs0 ) and NLLDPM(Cs0 ) the number of operations required to compute the Generalized Com-
pliance matrix using respectively the DPM and the LLDPM. By multiplying the size of the matrices involved in the
computation by the number of integration points to consider, the total number of operations required is estimated by
equations (19a)-(19b).

NDPM(Cs0 ) = N2(6Y + 6B + 36) (19a)

NLLDPM(Cs0 ) = N23Y + N3Y (19b)

where it is recalled that N is the number of discretization points, Y is the size of y(s), U is the size of yu(0) and B is
the size of b. Using the LLDPM saves a large number of operations as the number of discretization points increases.
In fact, subtracting (19b) from (19a) shows that the number of operations saved by our proposed method increases
quadratically as the number of discretization points N increases:

NGain(Cs0 ) = NDPM(Cs0 ) − NLLDPM(Cs0 ) = N2(3Y + 6B + 36) − N3Y (20)

Table 1 shows the LLDPM theoretical computational cost when applying equation (20) to several models of
continuum robots from the literature. This table demonstrates the benefits of the LLDPM for reducing the number of
operations when computing the Generalized Compliance matrix Cs0 (s).
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Paper Continuum Robot N Y U B
NGain(Cs0 )

NDPM(Cs0 )

[30] CTCR with 2 tubes 60 22 6 5 66%
[30] CTCR with 3 tubes 60 24 9 6 66%
[10] TACR with 6 tendons and 3 segments 30 18 6 6 69%
[9] TACR with 3 tendons and 1 segment 40 27 6 6 65%
[38] CPPR with 2 tubes ∗ 100 40 10 4 60%
[38] CPPR with 3 tubes ∗ 100 53 12 8 60%
[12] MBCR with 8 rods and 2 segments ∗ 100 26 10 10 69%
[12] MBCR with 12 rods and 3 segments ∗ 100 30 12 12 68%

Table 1: Computation of equation (20) for representative continuum robot designs and models from the literature. When the number of discretiza-
tion points was not specified in the paper, the default value N = 100 was used. Such cases are indicated with a •∗.

Values in Table 1 indicate that as well as the Generalized Compliance matrix definition, it was essential to develop
the dedicated LLDPM to compute it. Indeed, the LLDPM cuts the number of operations by half, compared to a
simpler adaptation of existing DPM. Current developments in continuum robots push ahead with more complex robot
architectures and combinations of different technologies. The most advanced robot models rely on the Cosserat equa-
tions, resulting in the introduction of more complex variables, and a higher number of operations. As a consequence,
the more relevant the proposed LLDPM will be.

In the next section, the proposed LLDPM will be applied to a CTCR model. For this kind of robot, several tubes
are involved, each of them modeled as a Cosserat rod. This assumption makes the y(s) components have different
integration ranges that do not always correspond to the full s ∈ [0, L]. Therefore some optimization can be added to
the integration process by considering only the relevant y(s) components depending on the current evaluation point s.

3. Computing Generalized Compliance Matrix on Concentric Tubes Continuum Robots

3.1. From the assumptions to the definition of state vector y

CTCR are composed of several elastic precurved concentric tubes creating an overall deformable and controllable
shape, designated as the ”robot”. This continuum robot architecture is based on the elastic interactions of the tubes,
which are commonly made in Nitinol. Each tube is actuated in translation and rotation at its base, allowing the
deployed part miniaturization. Numerous works have already been presented regarding aspects of the CTCR such as
design, fabrication, model, sensing, and control [42, 43]. Because the application of LLPDM is directly dependent
on the quasi-static model (7), the assumptions used in this study will be redefined here. However, the model provided
here is very close to the ones presented in [7] and [8].

Let us define nbT ∈ N+ the total number of tubes that form the CTCR and nbT (s) ∈ N+ the number of tubes
involved at a given s. Each tube is allocated an index denoted by i ∈

[[
1, nbT

]]
, which defines its position in the

concentric assembly: i = 1 is the shortest one while i = nbT refers to the longest (and thinnest) one. Index i = 0 refers
to variables associated with the assembled robot. In addition to the Bishop frame R0(s), each tube i has its body frame
Ri(s) that is used to measure the twist θi(s) defined as:

θi(s) =
〈−→x0(s),−→xi(s)

〉
(21)

Each tube is expected to be straight for length Lr i ∈ R then precurved with a constant radius of curvature Rc i ∈ R up
to the distal end, which corresponds to length Lc i ∈ R. The total length of the tube Li ∈ R corresponds to the sum of
the straight and curved sections:

Li = Lr i + Lc i (22)

The natural 3D curvature of the tube is designated by u∗i (s) ∈ R3 while ui(s) ∈ R3 represents the curvature after tube
deformation. The undeployed part of the tube is constrained to be straight by the actuation unit, even for precurved

9



/ Mechanism and Machine Theory 00 (2025) 1–32 10

sections. Each tube is actuated by two motors: it is rotated by an angle denoted θci ∈ R and translated by a curvilinear
length denoted βci ∈ R.

When the tubes are concentrically assembled, they should share the robot shape p0(s) and curvature u0(s). If
we assume that there is no mechanical play between the tubes, each tube should exhibit the same curvature at any
curvilinear abscissa where they are deployed. Furthermore, the driving control has to guarantee that the deployment
respects the following conditions:

0 ≤ βc1 ≤ ... ≤ βc i ≤ ... ≤ L = βcnbT (23)

Finally, tube cross-sections are not expected to undergo plastic deformations: they keep a perfectly circular section,
and their neutral line stay centered on their section.

It is necessary to define a constitutive law (also known as a stress-strain law) of the tubes to estimate mechanical
behavior resulting from tube interactions. It is assumed that Nitinol keeps an elastic and linear behavior, i.e. the
angular stress is proportional to the internal bending moment. It is also expected that the shear and elongation of the
tubes are negligible compared to bending and twisting (also known as the Kirchhoff assumption). Finally, the manu-
facturing process is assumed to be sufficiently controlled to suggest that the Nitinol material used is homogeneous and
isotropic along the tubes. This leads to consider a diagonal and constant stiffness matrix Ki ∈ R3×3 defined as follows
(24):

Ki =


kxi 0 0
0 kxi 0
0 0 kzi

 (24)

All the information contained in the defined assumptions can be translated into equations. With the body frame
definitions and Cosserat equations (6a), (6b), (3a) and (3b), it is then possible to define a state vector y(s) as follows:

y(s) =



θ1(s)
...

θnbT (s)
u1(s)|z
...

unbT (s)|z
m0(s)
n0(s)

R0(s)∨

p0(s)



∈ R2nbT+12 (25)

that can be described by the following ODE, which is the developed form of ODE (7):

θ̇i(s) = ui|z(s) (26a)

u̇i|z(s) =
kxi

kzi
ui(s)

∣∣∣T
x,y

[
u∗i (s)|y
−u∗i (s)|x

]
(26b)

ṁ0(s) = û0(s)m0(s) − êzn0(s) − R0(s)T τ̇0(s) (26c)

ṅ0(s) = û0(s)n0(s) − R0(s)T ḟ0(s) (26d)
Ṙ0(s) = R0(s) û0(s) (26e)
ṗ0(s) = R0(s) ez (26f)

10
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where

u0(s)
∣∣∣
x,y =


 ∑

i∈nbT0(s)

Ki

−1  ∑
i∈nbT0(s)

Rotz
(
θi(s)

)
Kiu∗i (s)

 + m0(s)


∣∣∣∣∣∣
x,y

(27a)

u0(s)
∣∣∣
z = 0 (27b)

ui(s)
∣∣∣
x,y =

(
Rotz

(
θiT (s)

)T u0(s)
)∣∣∣∣∣

x,y
(27c)

u∗i (s) = Rotz (θc i)

ϕi(s)
0
0

 (27d)

ϕi(s) =
{ 1

Rc i
i f max (0, βc i − Lc i) ≤ s ≤ βci

0 i f not
(27e)

ez =
[
0 0 1

]T (27f)

Vector ez is the z-axis unit vector, •T refers to the standard transpose operator, Rotz ( ) operator is the 3D rotation
matrix around the z-axis and ϕi(s) describes the tubes piecewise constant curvature. The indicator |x/y/z is used to
specify particular vector components when it is required.

Because the robot body frame R0(s) is defined as a Bishop frame, the z-component of the robot curvature u0(s)|z
stays null all along the robot (27b). However because each tube can twist, the z-component of individual curvature
ui(s)|z has to be estimated by equation (26b). It can be noticed that equations (26a) and (26b) are defined for each tube
and not for the robot i=0. This means that the ranges on which they will be integrated have to be adapted depending
on the tubes deployment. The integration range will be maximum for tube i=nbT and minimum for tube i=1.

3.2. Definition of the Distal Residual b

Choosing a direction for the integration defines the known y(0) components. The known boundary conditions are
shown in Fig 3. Therefore, choosing to integrate ODE (7) along s+ creates a sub-state vector yu(0), defined by:

yu(0) =


u1(01)|z
...

unbT (0nbT )|z
m0(0)
n0(0)

 (28)

that groups the unknown values of y(0). All the initial values of y(0) are provided in Table 2.

Derivatives Abscissa s Dimensions Value

Global rotation matrix R0(s) s = 00 R3×3 I3
Global position vector p(s) s = 00 R3 (βc3 − L3) ez

Twist of tubes θi(s) s = 0i R 0
Twist curvature of tubes ui(s)|z s = 0i R unknown
Global internal bending moment m0(s) s = 0 R3 unknown
Global internal force n0(s) s = 0 R3 unknown

Table 2: Values of the initial state vector y(0) components; s=00 refers to the first point of the robot, s=0i refers to the first point of the tube i and
s=0 refers to the first point of the deployed robot.

As explained in Section 2.1 the shooting method used to solve the CTCR quasi-static model is based on the opti-
mization of a residual b. This residual is built on the known distal values of y(L) and compares the integration values

11
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Position
Orientation

Twist tube n∘3

Twist tube n∘1

Twist tube n∘2

Z − internal

tube n∘1
forces / moment

Complete internal

tube n∘3
forces / moment

Z − internal

tube n∘2
forces / moment

θ3(s1)
u3 |z (s1)

s = s1 = 0

θ2(s2)
u2 |z (s2)

s = s2

θ1(s3)
u1 |z (s3)

s = s3

n0(s4)
m0(s4)

s = s4 u1 |z (s5) = 0

s = s5

u2 |z (s6) = 0
s = s6

n0(s7)
m0(s7)

u3 |z (s7)

s = s7 = L0

IC =

u3 |z (s1)
u2 |z (s2)
u1 |z (s3)
n0(s4)
m0(s4)

BC = ℱΔ(IC )

BC =

u1 |z (s5)
u2 |z (s6)
u3 |z (s7)
n0(s7)
m0(s7)

Initial condition :

Bounduary condition :

Figure of the split boundary conditions

θ(0)
u |z (0)

m0(0)
n0(0)

m0(L)
n0(L)u |z (L)

u3 (03) |z

θ3 (03)
(B0(0)R00)
(B0(0)p00)

u2 (02) |z

θ2 (02)

u1 (01) |z

θ1 (01)
n0 (0)
m0 (0)

u1 (L1) |z

θ1 (L1)
u2 (L2) |z

θ2 (L2)

n0 (L0)
m0 (L0)
u3 (L3) |z

θ3 (L3)
(B0(0)RL0)
(B0(0)pL0)

s+

Conditions initiales connues

Conditions initiales inconnues

u3 (03) |z

θ3 (03)
(B0(0)R00)
(B0(0)p00)

u2 (02) |z

θ2 (02)

u1 (01) |z

θ1 (01)
n0 (0)
m0 (0)

u1 (L1) |z

θ1 (L1)
u2 (L2) |z

θ2 (L2)

n0 (L0)
m0 (L0)
u3 (L3) |z

θ3 (L3)
(B0(0)RL0)
(B0(0)pL0)

s+

Known boundary conditions

Unknown boundary conditions

Torsion

Forces internes

Position

Torsion

Forces internes

Position

Connues Partiellement connues Inconnues

s+

Actuation unit

Deployed robot

θ1 (01)

s = βc1

s = 0
s = βc2

s = βc3

s = 01

θ2 (02)

(B0(0)R00)
(B0(0)p00)
θ3 (03)

s = 02

= 00s = 03

u1 (L1) |z

m1 (L1) |z
n1 (L1) |z

u2 (L2) |z

m2 (L2) |z
n2 (L2) |z

u3 (L3) |z

m3 (L3) |z
n3 (L3) |z

Deployed robotActuation unit

θ1 (01)

(B0(0)R00)
(B0(0)p00)

u1 (L1) |z

s = βc1

s = 0

s = βc2

s = βc3

s = 01

θ2 (02)

θ3 (03)

s = 02

= 00s = 03

m1 (L1) |z
n1 (L1) |z

u2 (L2) |z

m2 (L2) |z
n2 (L2) |z

u3 (L3) |z

m3 (L3) |z
n3 (L3) |z

Actuation

Deployed
robot

unit

θ1 (01)

s = βc1

s = 0

s = βc2

s = L

s = 01

θ2 (02)

R0(00), p0(00)θ3 (03),

s = 02

= 00s = 03

m (L), n (L), u3 (L) |z

u2 (βc2) |z

u1 (βc1) |z

Proximal

Distal

M1≠0
U1≠0 M2≠0

U2≠0 M3≠0
U3≠0

M1(xy)≠0

U1xy=0
M1(z)=0

U1z≠0 M2(xy)≠0

U2xy=0
M2(z)=0

U2z≠0

M3≠0
U3≠0

M0 = M1+M2+M3

a) dM0/dz = f(M0)
b) dMi/dz = f(Mi)

ℛB0
xB0

yB0

zB0

zi(s)

xi(s)

yi(s)
ℛi(s)

mi(s)
ni(s)

n0(s) = ∑
i∈nbT(s)

Rotz(θi(s))ni(s)

m0(s) = ∑
i∈nbT(s)

Rotz(θi(s))mi(s)

·mi(s) = ̂ui(s)mi(s) − ̂vi(s)ni(s)
·ni(s) = ̂ui(s)ni(s)

·m0(s) = ̂u0(s)m0(s) − ̂v0(s)n0(s)
·n0(s) = ̂u0(s)n0(s)

Actuation unit

Deployed robot

θ1 (01)

s = βc1

s = 0

s = βc2

s = L

s = 01

θ2 (02)

R0(00), p0(00)θ3 (03),

s = 02

= 00s = 03

m (L), n (L), u3 (L) |z

u2 (βc2) |z

u1 (βc1) |z

θ2(02)
s = 02

s = 01
θ1(01)

u2(βc2) |z

s = βc2

s+

m0 (L), n0(L)
s = L

u3(βc3) |z

s = βc3u1(βc1) |z

s = βc1

s = 0

R0(00), p0(00)
s = 00

θ3(03)
s = 03

Actuated part s < 0

Deployed part s > 0

s+

Actuated part s < 0
R0(00), p0(00)

s = 00

θ3(03)
s = 03

m0 (L), n0(L)
s = L

u3(βc3) |z

s = βc3

Deployed part s > 0

θ2(02)
s = 02 s = 01

θ1(01)

s = 0

u2(βc2) |z

s = βc2u1(βc1) |z

s = βc1

Figure 3: Illustration of the known values of the state vector (25) for a CTCR composed of 3 tubes.

and the ones expected by the distal condition. Since tube i ∈
[[
1, nbT − 1

]]
is concentrically assembled to the others,

the z-component of its distal curvature ui(Li)|z is mechanically not constrained. Assuming that tubes do not have a
precurved twist, i.e. u∗i (s)|z = 0, ui(Li)|z has to be null to guarantee the tube twist equilibrium. The distal end of the
robot is also mechanically free and has to be balanced. However, some tip loads can be applied to the tip of the robot,
which means that the internal forces should be equal to the tip loads. The same consideration can be made for the
longest tube i = nbT creating a specific constraint on unbT (L)|z. These three mechanical constraints can be used to
formulate the residual b as follows:

b =



u1 (βc1)
∣∣∣
z

...

ui (βc i)
∣∣∣
z

...

unbT−1 (βcnbT−1)
∣∣∣
z

unbT (L)
∣∣∣
z −

[0 0 1]
kznbT

RnbT (L)Tτ0(L)

m0(L) − R0(L)Tτ0 (L)

n0(L) − R0(L)T f0 (L)


∈ RnbT+6 (29)

where
RnbT (s) = R0(s)Rotz

(
θnbT (s)

)T (30)

3.3. Low-Level Derivatives for the LLDPM

Computation of (17) requires to compute the partial derivatives of equations (26a) to (26f) w.r.t. χ. The general
derivatives expressions are provided in the following equations:

12
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d
ds

(
∂θi
∂χ

)
(s) =

∂ui|z

∂χ
(s) (31a)

d
ds

(
∂ui|z

∂χ

)
(s) =

kxi

kzi

 ∂u0

∂χ
(s)T Rotz

(
θi(s)

)  u∗i (s)|y
−u∗i (s)|x

0


+ u0(s)T êz Rotz

(
θi(s)

)∂θi
∂χ

(s)

 u∗i (s)|y
−u∗i (s)|x

0

 (31b)

+u0(s)T Rotz
(
θi(s)

) 
∂u∗i |y
∂χ

(s)

−
∂u∗i |x
∂χ

(s)

0




d
ds

(
∂m0

∂χ

)
(s) =

∂û0

∂χ
(s)m0(s) + û0(s)

∂m0

∂χ
(s) − êz

∂n0

∂χ
(s) −

∂R0

∂χ
(s)T τ̇0(s) − R0(s)T ∂τ̇0

∂χ
(s) (31c)

d
ds

(
∂n0

∂χ

)
(s) =

∂û0

∂χ
(s)n0(s) + û0(s)

∂n0

∂χ
(s) −

∂R0

∂χ
(s)T ḟ0(s) − R0(s)T ∂ ḟ0

∂χ
(s) (31d)

d
ds

(
∂R0

∂χ

)
(s) =

∂R0

∂χ
(s)û0(s) + R0(s)

∂û0

∂χ
(s) (31e)

d
ds

(
∂p0

∂χ

)
(s) =

∂R0

∂χ
(s)ez (31f)

where

∂u0

∂χ
(s)

∣∣∣
x,y =

 ∂∂χ
 ∑

i∈nbT0(s)

Ki

−1 ∑
i∈nbT0(s)

Rotz
(
θi(s)

)
Kiu∗i (s) + m0(s)


+

 ∑
i∈nbT0(s)

Ki

−1 ∑
i∈nbT0(s)

 êz Rotz
(
θi(s)

)∂θi
∂χ

(s)Ki u∗i (s) (32a)

+ Rotz
(
θi(s)

)
Ki
∂u∗i
∂χ

(s)

+
∂m0

∂χ
(s)



∣∣∣∣∣∣
x,y

∂ui

∂χ
(s)

∣∣∣∣∣
x,y
=

(êz Rotz
(
θi(s)

)∂θi
∂χ

(s)
)T

u0(s) + Rotz
(
θi(s)

)∂u0

∂χ
(s)

 ∣∣∣∣∣
x,y

(32b)

∂u∗i
∂χ

(s) = êzRotz (θc i)
∂θc i

∂χ

ϕi(s)
0
0

 + Rotz (θc i)


∂ϕi
∂χ

(s)
0
0

 (32c)

∂ϕi

∂χ
(s) =

{
±∞ i f χ = βc i and s ∈ {max (0, βc i − Lc i) , βci }

0 i f not (32d)

Particular attention must be paid to the equation (32c) which contains the partial derivative ∂ϕi
∂χ

(s). Because of the
piecewise constant curvature assumption, ϕi(s) shows a discontinuity on s ∈ {max (0, βc i − Lc i ) , βc i} (see definition

13
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(27e)). Since dβci=−ds, equations (32a)-(32d) show undefined values which can be quite challenging to handle with
an analytic approach. Using the neutral axis discretization step ∆(s), it is possible to estimate these values using a
local mean value approximation near the problematic abscissas s ∈ {max (0, βc i − Lc i) , βci }. It can also be noticed
that the equations (31d) and (31c) include derivatives ∂τ̇0

∂χ
(s) and ∂ ḟ0

∂χ
(s). Here τ̇0(s) and ḟ0(s) refer to the distribution of

the external loads and it is assumed that there is a single punctual load applied for each discretized piece [s, s + ∆(s)]
of the robot. Therefore, the distribution of loads can be expressed as follows:

τ̇0(s) =
τ0(s)
∆(s)

(33a)

ḟ0(s) =
f0(s)
∆(s)

(33b)

All the initial values and particular derivatives required to integrate equations (31a)-(31f) are summarized in Table 3.

Initial values

Partial derivatives Abscissa s Dimensions Value
∂ui(s)|z
∂u j(0 j)|z

s = 0i R δi j

∂θc i
∂θc j

s = 0i R δi j

∂m0
∂m0(0) (s) s = 0 R3×3 I3

∂n0
∂n0(0) (s) s = 0 R3×3 I3

Particular values

Partial derivatives Abscissa s Dimensions Value
∂ϕi
∂βc j

(s) s = max (0, βc i − Lc i) R −δi j
Rc i
∆(s)

∂ui
∂βc j

(s)|x,y s = max (0, βc i − Lc i) R2 −δi j
ui(s+∆(s))−ui(s)

∆(s) |x,y

∂u∗i
∂βc j

(s) s = max (0, βc i − Lc i) R3 −δi j
u∗i (s+∆(s))−u∗i (s)

∆(s)

∂u0
∂βc j

(s)|x,y s = max
(
0, βc j − Lc j

)
R2 −

u0(s+∆(s))−u0(s)
∆(s) |x,y

∂ϕi
∂βc j

(s) s = βci R δi j
Rc i
∆(s)

∂ui
∂βc j

(s)|x,y s = βci R2 δi j
ui(s+∆(s))−ui(s)

∆(s) |x,y

∂u∗i
∂βc j

(s) s = βci R3 δi j
u∗i (s+∆(s))−u∗i (s)

∆(s)

∂u0
∂βc j

(s)|x,y s = βc j R2 u0(s+∆(s))−u0(s)
∆(s) |x,y

∂τ0
∂τ0(s0) (s) s = s0 R3×3 I3

∂ f0
∂ f0(s0) (s) s = s0 R3×3 I3

∂τ̇0
∂τ0(s0) (s) s = s0 R3×3 1

∆(s) I3

∂ ḟ0
∂ f0(s0) (s) s = s0 R3×3 1

∆(s) I3

Table 3: Initial and particular derivatives values required to integrate equations (31a)-(31f).

where δi j refers to the Kronecker delta, s = 0i refers to the first point of tube i, s = 0 refers to the first point of the
14
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deployed robot, s=max (0, βc i − Lc i) refers to the first point of tube i precurved part, s=βc i refers to the last point of
tube i and s= s0 refers to the loaded point abscissa of the studied external loads.

After integrating ODE (31e) and (31f), Eχ(s) value can be computed at once from its definition:

Eχ(s) =

 ∂R0
∂χ

(s) ∂p0
∂χ

(s)
0 1


∨

(34)

Bχ is composed of the state vector partial derivatives computed from ODE (31a)-(31f). The following Bχ expression
comes out deriving b expression (29):

Bχ =
∂b
∂χ
=



∂u1
∂χ

(βc1)|z
...

∂ui
∂χ

(βc i)|z
...

∂unbT−1
∂χ

(βcnbT−1)|z
∂unbT
∂χ

(L) − (0 0 1]
kznbT

[
∂RnbT
∂χ

(L)Tτ0 (L) + RnbT (L)T ∂τ0
∂χ

(L)
)

∂m0
∂χ

(L) −
(
∂R0
∂χ

(s)Tτ0 (L) + R0(L)T ∂τ0
∂χ

(L)
)

∂n0
∂χ

(L) −
(
∂R0
∂χ

(s)T f0 (L) + R0(L)T ∂ f0
∂χ

(L)
)



(35)

where
∂RnbT

∂χ
(s) =

∂R0

∂χ
(s)Rotz

(
θnbT (s)

)T
+ R0(s)

(
êz Rotz

(
θnbT (s)

)∂θnbT

∂χ
(s)

)T

(36)

Finally, the Generalized Compliance matrix Cs0 (s) can be computed from equation (15). A summarizing scheme for
computing Cs0 (s) using the LLDPM is provided in Fig 4. This scheme can also be applied to compute J(s) by using
the partial derivatives associated to χ ∈ {θc i , βc i}.

4. Large-scale numerical validation of the Generalized Compliance Matrix Model

In this section we present a large-scale numerical validation of the Generalized Compliance matrix and robot
Jacobian matrices as computed using our LLDPM method.

4.1. Overall validation procedure and metrics

Let us define Ωrobot as a set of parameters defining the robot features of a given CTCR, and Ωcontrol which includes
all parameters that can change during a control loop (control inputs but also external forces):

Ωrobot = {Lr i , Lc i , Rc i , Ki} (37a)
Ωcontrol = {θc i , βc i , τ0(s0) , f0(s0)} . (37b)

Given a coupleΩrobot,Ωcontrol one can compute the robot 3D shape p∗(s) (the subscript 0 is omitted in the following
for clarity):

p∗(s) =MCTCR (Ωrobot,Ωcontrol, s) , (38)

where the function MCTCR( ) implements the model described in section 3.1. Let us now consider a change
∆Ωcontrol = {∆θc i , ∆βc i , ∆τ0(s0) , ∆ f0(s0) , ∆τ0(L) , ∆ f0(L)} (see Fig 5). One can solve again the model and obtain a
deformed shape :

pmodel(s) =MCTCR (Ωrobot,Ωcontrol + ∆Ωcontrol, s) . (39)
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Figure 4: Principle of the LLDPM applied to a CTCR to compute the Compliance matrix Cs0 (s).
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Figure 5: Visualization of the variations applied to the CTCR shape ∆Ωcontrol.

Alternatively, assuming that ∆Ωcontrol is small, one can exploit the Generalized Compliance matrix Cs0 (s) and the
robot Jacobian J(s) to compute the deformed shape :

p jacob(s) ≈ p∗(s) +
∑

0≤s0≤L

Cs0 (s)
∣∣∣
p0(s)

[
∆τ0(s0)
∆ f0(s0)

]
+

∑
i∈nbT (s)

J(s)
∣∣∣
p0(s)

[
∆θc i

∆βc i

]
(40)

where •|p0(s) specifies that only the position components of Cs0 (s) and J(s) are used.
To summarize, given an initial robot configuration we compute the nominal shape p∗(s) as well as two deformed

shapes when considering joint variables or external forces variations: pmodel(s) by solving a new BVP and p jacob(s) us-
ing a linear approximation of the deformations and exploiting the Generalized Compliance matrix and robot Jacobian
matrices computed using our proposed LLDPM method.

To compare these deformed shapes, the distance d( ) will be used to quantify the differences. Given two shapes
p1(s) and p2(s), it is defined as:

d (p1(s), p2(s)) = max
s

∣∣∣∣∣∣p1
(
s
)
− p2

(
s
)∣∣∣∣∣∣

2 (41)

Operator d( ) can be used to compute three distances for a given simulation with inputs Ωrobot, Ωcontrol, and
∆Ωcontrol:

D∗model = d (pmodel(s), p∗(s)) (42a)

D∗jacob = d
(
p jacob(s), p∗(s)

)
(42b)

D
jacob
model = d

(
p jacob(s), pmodel(s)

)
(42c)

An illustration of the three shapes and the distances D∗model, D
∗
jacob, D jacob

model is given in Fig. 6. In most cases, this
distance matches the distance between the tips of the two shapes.
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Figure 6: Distances measured between the initial shape p∗(s), the deformed shape resulting from the Jacobians p jacob(s) and the one resulting from
the model pmodel(s)

4.2. CTCR Model Parameters and implementation

The validation will be done for a single CTCR. This robot has been chosen to maximize the set of joint values that
converge through the BVP solving, i.e. joint values that lead to stable shapes (i.e. avoiding elastic instabilities). The
chosen CTCR is composed of three tubes that are described in Table 4.

Feature Units Value

Tube n◦1 Tube n◦2 Tube n◦3

Straight length Lr i mm 15 75 135
Curved length Lc i mm 30 45 45
Total length Li mm 45 120 180
Radius of curvature Rc i mm 150 100 50
Stiffness kxi N.mm2 1.5 · 106 4.0 · 105 2.0 · 105

Poisson’s ratio - 0.3 0.3 0.3

Table 4: Parameters Ωrobot of the robot simulated for the validation.

Shooting method parameters can have a major impact on the BVP solving efficiency. In this study, we implement
the model in MATLAB R2023a [44]. The BVP are solved using a Levenberg-Marquardt algorithm. Using equations
(31a)-(31f) and (35) we compute Byu(0) =

∂b
∂yu(0) which is supplied to the solver as the optimization Jacobian of the

objective function, and avoids resorting to numerical differentiation. The stopping criterion for convergence of the
algorithm is defined as ||b||∞ < ϵ. Since all the ODE are integrated using a first-order scheme, a finer discretization
leads to an increase in the number of integration steps. Therefore, a coarse discretization is used all along the robot
neutral axis, and a finer one is used near the discontinuity points s ∈

{
0i, max (0, βc i − Lc i) , βc i

}
. All the model

parameters are listed in Table 5.
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Figure 7: Validation procedure used to compare the deformations estimated solving two times the BVP and by using the robot differential kinemat-
ics.

Settings Units Value

Stopping criterion ϵ 1 - 10−20

Discretization step ∆(s) away from discontinuity points mm 2
Number of points before and after each discontinuity points - 5
Discretization step ∆(s) for discontinuity points mm 10−7

Total number of discretization points - 175
Initial yu(0) value - 0

Table 5: Parameters of the shooting method used to solve the CTCR model and discretization parameters.

4.3. Large-scale Numerical Validation on Simulated CTCR

To validate that the LLDPM equations provide accurate and robust results for Cs0 (s) and J(s), the validation
procedure will be carried out on a wide range of random initial shapes p∗(s). First, a set of random values for the
set Ωcontrol is drawn, so as to challenge the LLDPM results on various state vector initial values yu(0). Joint values
θc i and βc i are randomly sampled in the range [−π, π] and [0, LnbT ] respectively. For values of τ0(s0) and f0(s0), we

1A stopping criteria ϵ ≤ 10−5 is practically sufficient for solving a standard BVP. However, in the next section 4.3, the CTCR shape variations are
measured for several parameters variations such as ∆θc i = 10−6 rad. In order to make the impact of the threshold ϵ on shape variations negligible,
a very conservative value ϵ = 10−20 has been used.
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distinguish two cases, which will be referred to in the following as the unloaded and the preloaded cases. In the
unloaded case, we simply set τ0(s0) and f0(s0) to zero for all values of s0 ∈ [0, L]. In the preloaded case, we consider
that external forces are applied to the CTCR, yielding a reference shape p∗(s) deformed by static external forces. The
rest of the procedure depicted on Figure 7 is then applied to validate the LLDPM in preloaded conditions. Values of
τ0(s0) and f0(s0) for s0 ∈ [0, L] are uniformly drawn such that the norm of the different elements do not exceed the
values listed in Table 6. Such preload magnitudes have been chosen so that they can induce significant deformations.
One should notice that the external loads τ0(s0) and f0(s0) are included in both the robot model (7) and the LLDPM
computations (17).

Once all values are set, we can construct the set of initial control variables Ωcontrol, and compute p∗(s) by solving
the BVP. One then needs to generate the ∆Ωcontrol set of values in order to be able to compute pmodel(s) and p jacob(s).
Similarly to the procedure described above, variations ∆Ωcontrol are uniformly sampled. However, we applied specific
care in ensuring that variations of individual components of ∆Ωcontrol (i.e. ∆θci , ∆βci , etc.) generate shape deformations
with the same order of magnitude. Balancing the individual deformations guarantees that the overall deformed shape
is not weighted too heavily by particular components of Cs0 (s) or J(s). Preliminary simulations have been done to
define properly the ||∆Ωcontrol|| extremal values listed in Table 6.

Variations ranges

Description Designation Units Maximum

Rotation of the tubes ||∆θci || rad 2 · 10−6

Translation of the tubes ||∆βci || mm 5 · 10−5

Tip bending moment ||∆τ0(L)|| N.mm 8 · 10−1

Tip force ||∆ f0(L)|| N 2 · 10−2

Abscissa of the loaded point s0 mm L
Non-tip bending moment ||∆τ0(s0)|| N.mm 4 · 10−1

Non-tip force ||∆ f0(s0)|| N 8 · 10−3

Preload ranges

Description Designation Units Maximum

Tip bending moment ||τ0(L)|| N.mm 1 · 102

Tip force || f0(L)|| N 1 · 100

Preloaded section length ||lmax − lmin|| mm 2 · 101

Non-tip bending moment ||τ0(s0)|| N.mm 1 · 103

Non-tip force || f0(s0)|| N 1 · 101

Table 6: Summary of the deviation between the initial shape p∗(s) and the deformed shape resulting from the Jacobians p jacob(s) and the model
pmodel(s) for an unloaded CTCR.

The simulated variations include variations on the tip loads, on a single punctual non-tip load with a random
application point s0, and the joint values. This means that the presented large-scale validation uses simultaneously
Cs0=L(s), Cs0,L(s) and J(s). For both loaded and unloaded CTCR, 5000 random shapes p∗(s) are simulated, each
of them is deformed and estimated through pmodel(s) and p jacob(s) and the distances D∗model, D

∗
jacob and D jacob

model are
systematically computed. An overview of the CTCR shapes p∗(s) sampled for our validation is shown in Fig 8. The
simulated deformations for the unloaded and preloaded CTCR are plotted in Fig 9. The simulation statistics are also
provided in Table 7.

It can be noticed that the relative difference between the two methods D jacob
model is at least one order of magnitude

lower than the absolute deformations D∗model and D∗jacob for 99% of the unloaded robots and 90% of the preloaded
ones. Instabilities can appear with preloaded continuum robots, which makes the preloaded CTCR success rate
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surprisingly promising. It can therefore be modestly admitted that the LLDPM provides precise estimations of the
CTCR deformations compared to simulations based exclusively on the robot model.
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Figure 9: Deformations simulated using the BVP (D∗model) and by using Cs0 (s) and J(s) resulting from the LLDPM (D∗jacob)

. The difference between these two estimations is measured using the relative distanceD jacob
model. The results are shown

for 5000 random shapes of an unloaded CTCR (a) and for a preloaded CTCR (b).
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Unloaded CTCR

Measurements D∗model
L [%]

D∗jacob

L [%] D
jacob
model
L [%]

Minimum [%] 1.7 · 10−4 1.7 · 10−4 7.5 · 10−6

Median [%] 3.9 · 10−3 3.8 · 10−3 1.1 · 10−4

90th Percentile [%] 9.0 · 10−3 8.9 · 10−3 2.5 · 10−4

99th Percentile [%] 1.7 · 10−2 1.7 · 10−2 4.2 · 10−3

Maximum [%] 2.7 · 10−2 2.7 · 10−2 1.6 · 10−2

Preloaded CTCR

Measurements D∗model
L [%]

D∗jacob

L [%] D
jacob
model
L [%]

Minimum [%] 8.5 · 10−5 1.0 · 10−4 8.7 · 10−6

Median [%] 4.0 · 10−3 3.8 · 10−3 1.4 · 10−4

90th Percentile [%] 9.6 · 10−3 9.0 · 10−3 5.2 · 10−4

99th Percentile [%] 3.1 · 10−2 1.5 · 10−2 2.7 · 10−2

Maximum [%] 5.6 · 100 3.6 · 10−2 5.6 · 100

Table 7: Statistics of the absolute deformationsD∗model andD∗model and the relative differenceD∗model between the two estimations. The results have
been produced by 5000 random simulations on an unloaded robot (a) and on a preloaded robot (b).

4.4. Computational performance assessment
The whole idea behind the proposed LLDPM arises from a need to optimize the number of operations involved

in integrating the partial derivatives when computing the Generalized Compliance matrix. It has been estimated in
section 2.4 that the number of operations saved can rise to almost 70%, and increases as the robot’s discretization
becomes finer. This gain only takes into account the integration operations and, therefore, does not give a full view
of the computational performance. The performance may be impacted by logical operations required to manage the
partial derivatives (see the ”Manage derivatives” block in Figure 4), but also by various numerical operations in the
implementation itself. This naturally suggests directly comparing the computation times of the different methods
when computing Cs0 (s). In order to do so, we implemented and compared four methods from the state of the art based
on Finite Differences (FD) and Derivative Propagation Methods (DPM) :

• FD BVP(Cs0 ) is the typical FD method from the state of the art [17, 18], adapted for computing Cs0 (s). It
consists in computing directly Cs0 (s) using FD (43). It requires solving a new BVP problem for each couple
{s, s0} in order to estimate Cs0 (s) :

Cs0 (s) ≈
T∨0

(
s,w0(s0) + ∆w0(s0)

)
− T∨0

(
s,w0(s0)

)
∆w0(s0)

(43)

• FD IVP(Cs0 ) is the adaptation of the IVP Finite Differences method from [30] for the Generalized Compliance
matrix. This method performs FD at the IVP level to estimate variations of Ew0(s0)(s) and Bw0(s0) based on
equations (44a)-(44b). Cs0 (s) is then computed using (15). No BVP evaluations are required in the FD scheme,
it is then expected to be faster than FD(BVP).

Ew0(s0)(s) ≈
T∨0

(
s,w0(s0) + ∆w0(s0)

)
− T∨0

(
s,w0(s0)

)
∆w0(s0)

∣∣∣∣∣∣
b,0

(44a)

Bw0(s0) ≈
b
(
w0(s0) + ∆w0(s0)

)
− b

(
w0(s0)

)
∆w0(s0)

(44b)
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• DPM(Cs0 ): This method has been also adapted from the one introduced by Rucker et al. in [30]. As discussed in
section 2.3, the values of Ew0(s0)(s) and Bw0(s0) are computed by integrating the literal partial derivatives through
equations (11a)-(11c). Then Cs0 (s) is computed using (15).

• LLDPM(Cs0 ) : This is the method proposed in section 2.4 of this paper. It consists in first integrating the Low-
Level Partial Derivatives using equations (17), then reconstructing at once the Ew0(s0)(s) and Bw0(s0) values and
finally computing Cs0 (s) using (15).

The computation time required to compute Cs0 (s) using a method M (where M is one of the above-mentioned
methods) is denoted TM(Cs0 ). Similarly to the gain of operations defined in (20), the computation time saved using the
LLDPM compared to the DPM is denoted TGain(Cs0 ). These four methods were implemented in the same framework
in MATLAB and converted to C++ through the MATLAB Coder application and MEX functions. Figure 10 shows
the results for a 3-tubes CTCR in a given random configuration, for a number of discretization points N ranging from
30 to 100 (which is the range observed in the literature, see Table 1). For each N, the average computational time for
10 runs was measured for each method. The laptop computer used for this comparison is a MacBook Pro with a 3.22
GHz 10 cores Apple M1 Pro processor.

As expected, one can see in Fig. 10 that the FD-based methods are much slower than the derivative propagation
methods. Among the derivative propagation methods, our proposed LLDPM method consistently outperforms the
DPM method adapted from [30] by a large margin. As can be seen in Fig. 10b, the computational time gain increases
with the number of discretization points, which is perfectly in line with our theoretical derivations in section 2.4. For
100 points, the LLDPM computes the Generalized Compliance matrix almost an order of magnitude faster (70%) than
the adaptation of the DPM. With N = 100, the LLDPM could compute Cs0 (s) at 100 Hz while the DPM would be
limited to 30 Hz. In comparison, FD methods compute Cs0 (s) at 0.1 to 1 Hz.
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Figure 10: a) Evolution of the Generalized Compliance matrix computation time for the four possible methods presented in 4.4 w.r.t. the number
of discretization points N for a 3-tube CTCR. b) Evolution of the computation time saving when using the LLDPM compared to an adaptation of
the DPM method from [30].
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5. Discussion: Generalized Compliance Matrix Properties and Applications

The results obtained with our large-scale numerical validation in section 4 show that our proposed LLDPM method
robustly and accurately computes the Generalized Compliance matrix Cs0 (s) and the robot Jacobian J(s) in most cases,
with a computational efficiency outperforming existing methods from the state of the art. Some particular cases,
however, exhibit larger errors, especially in the preloaded case where 10% of the simulations show a relative error in
the same order of magnitude as the displacement. An advanced study could be carried out to quantify the correlation
between yu(0), ∆ f0, and the linearization domain properties of Cs0 (s) and J(s). Besides, external forces applied in
the preloaded case can push the Cosserat rod model of CTCRs to its limits, as such forces may bring the robot closer
to singularities and elastic instabilities [19]. One should also note that the observed relative errors have a maximum
of 5.6% (see Table 7), which is close to the errors obtained by Cosserat rod CTCR models when validated against
real-world data [8, 17]. Such errors are typically due to non-linear phenomena such as friction or non-linear material
elasticity, which are not included in our continuum robot model. While a few continuum robot models include friction
[45], they are quite complex and often specific to a given implementation. Extending our method to such models is
therefore beyond the scope of the present paper. Despite this limitation, the proposed LLDPM method could serve
as a basis for several applications, typically in feedback control [15], design optimization [46] or motion planning. It
would be interesting, in future work, to investigate how the Generalized Compliance matrix behaves in the presence
of such phenomena.

The large-scale validation was carried out to emphasize the performances obtained when using Cs0 (s) and J(s)
to estimate CTCR deformations. To avoid an exponential increase in validation cases, we included a unique external
load w0(s0) per simulation, with s0 randomly drawn in [0, L]. A continuum robot is, however, typically fixed at its
base and free at its end, which means a force applied at or close to the tip should generate larger deformations than
a force applied at or close to the base. Fig. 11 shows results of simulations for a single load case with values of
s0 ∈ [L/4, L/2, 3L/4, L], for various values of ||∆ f0(s0)||. As before, each data point in Fig. 11a is the average error
(Dmodel

jacob normalized by the length of the robot) for 50 simulations in random configurations. These simulations show
that the error for tip loads is constantly 10% higher than for proximal loads up to 1 N magnitude force. Beyond this
threshold, the tip error increases faster than the proximal ones. This correlation was expected since the greater the
amplitude of the forces, the greater the deformations and, as a result, the greater the error induced by the linearization
of Cs0 (s). However, the errors stay within acceptable bounds even for large forces, up to 100 N if applied on the lower
part of the robot (see Fig. 11b).

The Generalized Compliance matrix being a locally linearized relation, one can, however, apply equation (40) with
more than one external force along the robot. Fig. 12a shows results for an increasing number of loads nbloads ∈ N+ on
a random reference configuration. In this case, for each point s0 where a force is applied, the force variation ∆ f (s0) has
a random orientation and a fixed magnitude. Each data point is the average of 50 simulations. This example shows
that the variations of magnitudes ||∆ f0(s0)|| have more impact on the deformations errors than the number of loads
nbloads. Interestingly, one can also note that the Generalized Compliance matrix can be used with ||∆ f0(s0)|| < 1 N,
or with larger forces if nbloads is not too large. Even five forces of 10 N of magnitude applied to the robot generate a
relative error of less than 1% of the robot length (as also shown Fig. 12a), which may be very interesting for control
or planning applications. Increasing the applied forces further, however, yields large deviations, as shown in Fig. 12b.

In section 4.4, it has been shown that the LLDPM is more efficient than the state-of-the-art method adaptations
to compute the Generalized Compliance matrix. The computational times have been obtained on C++ programs
generated by the MATLAB Coder application. It may be possible to optimize the code to further increase the LLDPM
computational efficiency. Furthermore, results show that the computational times are affected by the number N of
discretization points (which was also apparent in our theoretical estimation in section 2.3). In our study, we imposed
a constant discretization step ∆(s) of 2 mm, with added points close to discontinuities (see Table 5). In future work,
one could investigate a non-constant and adaptive value of ∆(s), for instance as a function of the local curvature, in
order to reduce the computational time of our method while minimally impacting its precision.

The proposed Generalized Compliance matrix definition is a general robot modeling concept that makes particular
sense for medical continuum robots. Whereas in this paper we focused on CTCR, it would be valuable to develop
the method for other types of continuum robots. In practice, the method can be adapted to any continuum robot
model which can be put in the form of an ODE integrated from the base to the tip of the robot, and which is in the
form ẏ(s) = F (y, s) (see details in sections 2.1 and 2.4). This is the case for many types of continuum robots such

24



/ Mechanism and Machine Theory 00 (2025) 1–32 25

Initial CTCR g*(s)

St r ain [ % ]

Decoupled Δpg var ia t ion s

ϵopt

ϵjacob

ϵopt − ϵjacob

Coupled Δpg var ia t ion sϵopt

ϵjacob

ϵopt − ϵjacob

St r ain [ % ]

ϵopt ϵjacob ϵopt − ϵjacob

ϵopt ϵjacob ϵopt − ϵjacob

Number of
discretisation points

Number of
operations

Direct application of
[Rucker and Webster, 2011]

Adapted LLDPM

M = 10 M = 20 M = 50

Direct application
of DPM [19]

Novel LLDPM

(M, U) = (14,7)

(M, U) = (24,12)

Number of discretisation points N

Number of operations

a) b)

Initial CTCR g*(s)

Deformed CTCR g(s)
Initial CTCR g*(s)

Deformed CTCR g(s)

Tube n∘1 Tube n∘2 Tube n∘3

Tube n∘1 Tube n∘2 Tube n∘3

Hausdorff distance
d(gjacob, gmodel)

Deformed CTCR gjacob(s)

Deformed CTCR gmodel(s)

b) e)

Tube n∘1 Tube n∘2 Tube n∘3

Tube n∘1

Tube n∘2

Tube n∘3

%

d(gmodel, g*)
d(gjacob, g*)

d(gjacob, gmodel)

a) b)

Tube n∘1

Tube n∘2

Tube n∘3

%

d(gmodel, g*)
d(gjacob, g*)

d(gjacob, gmodel)

a) b)

Tube n∘1 Tube n∘2 Tube n∘3

Middle
Low

Top
Tip

Tube n∘2
Tube n∘1

a) b)

Middle
Low

Top
Tip

[ % ]

Tube n∘2
Tube n∘1

10 loads
5 loads

a)

|| f0(s0) || = 10−2 N
|| f0(s0) || = 1 N
|| f0(s0) || = 102 N

[ % ]

b)

d(gmodel, g*)
d(gjacob, g*)

d(gjacob, gmodel)

Tube n∘1

Tube n∘2

b)

Tube n∘1

Tube n∘2

b)a)

d(gjacob, g*)
d(gjacob, gmodel)

d(gmodel, g*)
[ % ]

a)

d(gjacob, g*)
d(gjacob, gmodel)

d(gmodel, g*)
[ % ]

$
L [ % ]

$*model $*jacob $jacob
model

Tube n∘1
Tube n∘2
Tube n∘3

(a) (b)

$
L [ % ]

$*model $*jacob $jacob
model

Tube n∘1
Tube n∘2
Tube n∘3

(a) (b)

$*model
$*jacob

$jacob
model

Initial shape p*(s)

Deformed shape from
model pmodel(s)
Deformed shape from
Jacobians pjacob(s)

Δτ(L)

Δf(L) Δτ(s0)
Δf(s0)

Δβc Δθc

Tube n∘1

Tube n∘2

Tube n∘3

(b)

nbloads = 5
||Δf(s0) || = 101 N

pmodel(s)
p*(s)

pjacob(s)

||Δf(s0) || = 1 N

||Δf(s0) || = 10−2 N

(a)

||Δf(s0) || = 102 N

||Δf(s0) || = 101 N

(c)

$jacob
model

L [ % ]

(b)

s0 = 3L/4
s0 = L

$jacob
model

L [ % ]

||Δf(s0) || [N]
(a)

(c)
(b)

s0 = L/2
s0 = L/4

(a) (b)
%

$
L [ % ]

$*model $*jacob $jacob
model

$
L [ % ]

$*model $*jacob $jacob
model

(a) (b)

(a) (b)

p*0 (s)

Tube n∘1

Tube n∘2

Tube n∘3

Δτ0(s0)

Δf0(s0)Tube n∘1

Tube n∘2

Tube n∘3

p*0 (s)
p*0 (s)
p*0 (s)

pmodel(s)
p*(s)

pjacob(s)

(c)

nbloads = 5
||Δf(s0) || = 102 N

(b)

s0 = L/2
||Δf(s0) || = 102 N

pmodel(s)
p*(s)

pjacob(s)
pmodel(s)
p*(s)

pjacob(s)

s0 = 3L/4
||Δf(s0) || = 102 N

(c)
Figure 11: a) Investigations of the impact of ||∆ f0(s0)|| on the deformations error for several loaded points s0. Representation of the resulting
deformations for 100N magnitudes on middle point s0 = L/2 (b) and top point s0 = 3L/4 (c).
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Figure 12: a) Investigations of the impact of the number nbloads of external forces on the deformations error for several magnitudes ||∆ f0(s0)||.
Representation of the resulting deformations for 5 applied forces of 10 N (b) and 100 N (c) magnitudes.
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as MBCR [12], CPPR [38], parallel continuum robots [37] and pneumatically-driven soft and continuum robots [33].
However, some additional developments would be needed to apply the LLDPM for TACR since the ODE in the model
is in the form M(y, s)ẏ = F (y, s), where M is a state-dependent mass matrix [47, 33]. This constitutes a problem for
applying the LLDPM since no analytical expression for the inverse of M can be obtained, and model solving in the
state of the art relies on numerically inverting it [47, 33]. The derivation should nevertheless be possible by relying
on the relation ∂

∂χ
(M−1) = −M−1 ∂M

∂χ
M−1. However, this would rely on obtaining M−1 through numerical inversion,

and it is unclear how this method would behave in terms of numerical stability. Such a study is therefore beyond the
scope of the present paper. Besides, it would also be interesting to investigate the effect of large S-shape deformations
due to external forces acting on TACR, as observed in [48], on the accuracy of the Generalized Compliance matrix
computed through the LLDPM.

Other approaches than the usual Newtonian form can also be used for modeling continuum robots, such as
Lagrangian-based methods frequently used in soft robotics. While it was shown recently that for TACR both ap-
proaches are mathematically equivalent [10], proposing a formulation of our LLDPM in the Lagrangian framework
remains an open problem. Similarly, extension of the LLDPM method for other modeling frameworks (see for in-
stance the work from [48] which applies the virtual works principle under a constant curvature assumption) and/or in
the presence of stiffness modulating elements in the robot structure [48, 6] is an interesting future work.

Numerous applications considering non-tip forces and compliance analysis have been proposed in the state-of-
the-art. All the existing non-tip force sensing algorithms correlate the robot shape deformations with the applied
external force using iterative and numeric methods based directly on the robot model [21, 23, 35, 49]. Another
approach recently developed by Ferguson et al. [50] consists in statistically estimating external forces using an
adaptation of a continuous-time batch estimation while computing the robot shape. Using the Generalized Compliance
matrix can simplify and speed up the force estimation problem by using a differential kinematics approach. Indeed
the local wrench variation ∆w0(s0) is directly linked to the shape variation ∆T0(s) through the relation ∆w0(s0) ≈
Cs0 (s)−1∆T∨0 (s) for all (s, s0). This application scenario is currently under investigation and experimental studies are
envisioned.

The proposed Compliance definition could also have applications in compliance control strategies. Since Compli-
ance is intrinsically dependent on the robot shape, one could investigate the properties and distribution of Compliance
according to force application points that are detected or foreseen in trajectory planning. Therefore, it may be possible
to modulate the Compliance using an active robot-internal actuation such as electrodes along tubes of a CTCR [51]
or leverage mechanisms on a rod-driven continuum robot [48]. More generally, the Generalized Compliance could be
an asset for mechanical design optimization, similar to the work of Naselli et al. developed for soft robots [29] or Ha
et al. for stability-based CTCR design optimization [19].
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6. Conclusion

Since their emergence, flexible robots have been regarded as having significant potential, in particular for use
in medical applications. Models such as the robot Jacobian and the tip Compliance matrices were soon adapted for
controlling such robots. Unlike existing methods, which consider the effect of only tip forces and moments on the
shape of the robot, this paper presents the concept of Generalized Compliance matrix. The Generalized Compliance
matrix is a four-dimensional tensor containing the sensitivity of any point of the robot with respect to any forces and
moments applied at any location of the robot.

Existing computation methods can be adapted for computing the Generalized Compliance matrix using a derivative
propagation method, but they suffer from the growing number of derivatives concerned since they have not been de-
signed for this purpose. In this work, we introduce a novel method termed Low-Level Derivative Propagation Method
(LLDPM). This method has been specially developed for the Generalized Compliance matrix Cs0 (s). The LLDPM
aims to densify the propagated derivatives into the minimum of ODE and limit the time-consuming integration to the
absolute minimum.

The Generalized Compliance matrix and the associated LLDPM are suitable for any Cosserat rod-based continuum
robot model. In this paper, we present a case study using a widely studied Concentric Tube Continuum Robot (CTCR).
All relevant equations and computation techniques are explained, which eases understanding and reproducibility. A
large-scale numerical validation is also carried out on simulated CTCR, illustrating the LLDPM robustness and versa-
tility. The computation time of the LLDPM has been compared to state-of-the-art methods, showing its computational
efficiency and potential for real-time control applications.

The application of LLDPM to other widely used continuum robots (TACR, CPPR, and MBCR) and passive struc-
tures (Cosserat rods) could yield valuable insights. Finally, it is important to underline that both path planning and
motion control of continuum robots could benefit from these developments, allowing for improved performance and
accuracy.
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Appendix A. Nomenclature

Operators

Notation Definition sets Description

•̇ − Derivation w.r.t. to the curvilinear abscissa s
•̂/•∧ R3 /R6 7−→ so(3)/se(3) Skew symmetric operator
•∨ so(3)/se(3) 7−→ R3 /R6 Inverse operator of the skew-symmetric operator
•† − Moore-Penrose pseudo-inverse operator
•T − Transpose operator
|| • || R3 7−→ R Euclidean standard norm
F ( )

(
RM ,R

)
7−→ RM State vector ODE

Rotz( ) R 7−→ R3×3 Rotation matrix around the z axis
d ( )

(
R3×N ,R3×N

)
7−→ R Distance between two 3D curves discretized into N points

Table A.8: Nomenclature of the operators used in this paper.

Indicators

Notation Description

•∗ Indicates that the variable refers to an initial state, usually before a deformation happens
•i Indicates that the variable refers to the tube n◦i
•0 Indicates that the variable refers to the tubes assembly
•|x/y/z Indicates a restriction to one or several components of a vector
•|b,0 Indicates that the derivative does not ensure the constraint b = 0
•|b=0 Indicates that the derivative ensures the constraint b = 0
∆• Indicates a variation
•model Indicates that the variable has been computed using the robot model
• jacob Indicates that the variable has been computed using one or several Jacobians

Table A.9: Nomenclature of the indicators used in this paper.
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Continumm Robot Variables

Notation Dimensions Units Description

s R mm Curvilinear abscissa counted from RB0

L R mm Curvilinear length of the robot tip
s0 R mm Curvilinear abscissa describing a point where external loads are applied
[lmin, lmax] R2 mm Robot curvilinear range on which external loads are applied
Cs0 (s) R6×6 - Generalized Compliance matrix
C(s) R6×6 - Tip Compliance matrix C(s) = Cs0=L(s)
J(s) R6×• - Robot Jacobian
ez R3 - z-axis unit vector
RB0 - - General reference frame
R0(s) - - Body frame parametrized by s and attached to the tubes assembly
T0(s) SE(3) - Homogeneous transformation matrix from RB0 to R0(s)
R0(s) SO(3) rad Rotation matrix from RB0 to R0(s)
p0(s) R3 mm Translation matrix from RB0 to R0(s)
v0(s) R3 rad.mm−1 Linear rate of change of R0(s)
u0(s) R3 mm−1 Angular rate of change of R0(s)
ξ0(s) R6 - Vector that groups R0(s) rates of change
m0(s) R3 N.mm Internal bending moment of the robot
n0(s) R3 N Internal force of the robot
τ0(s) R3 N.mm External bending moment applied to the robot
f0(s) R3 N External force applied to the robot
w(s0) R6 - Vector that groups external loads applied at s = s0
y(s) RM - State vector describing the robot behavior
yu(0) RN - Sub-vector of y(0) containing the unknown initial values
b RU - Distal residual ensuring static equilibrium of the robot if b = 0
ϵ R - Optimization stopping criterion
q R6 - Vector that groups the actuation variables
χ RX - Dummy variable representing a given variable of derivation
N N∗ - Number of discretization points
Y N∗ - Size of y(s)
U N∗ - Size of yu(0)
B N∗ - Size of b
Q N∗ - Size of q
X N∗ - Size of χ
Eχ(s) R6×• - Derivative of the homogeneous transformation T0(s)
Bχ RU×• - Derivative of the residual b
Bu RU×U - Optimization matrix used to solve the BVP
Vχ RM×• - Derivative of the state vector y(s)
∆(s) R mm Discretization step at abscissa s
MCTCR( ) − - Representation of the CTCR model which gives back the robot shape

Table A.10: Nomenclature of the continuum robot variables used in this paper.
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CTCR Variables

Notation Dimensions Units Description

nbT N∗ - Number of tubes
nbT (s) N∗ - Number of tubes involved at abscissa s
0i R mm Lowest abscissa of tube i
00 R mm Lowest abscissa of the tubes assembly
Lr i R a mm Straight length of tube i
Lc i R mm Curved length of tube i
Li R mm Total length of tube i
Rc i R mm Radius of curvature of tube i
Ki R3×3 N.mm2 Stiffness matrix of tube i cross section
kxi R N.mm2 Value of Ki first and second directions
kzi R N.mm2 Value of Ki third direction
θi(s) R rad Twist tube i
ϕi(s) R mm−1 Variable describing the tubes piecewise constant curvature
u∗i (s) R3 mm−1 3D vector of the non-deformed tube i
ui(s) R3 mm−1 3D vector of the deformed tube i
θc i R rad Rotation of tube i base
βc i R mm Deployment of tube i
Ωrobot - - Set of CTCR parameters defining the robot features
Ωcontrol - - Set of CTCR parameters defining variables of the control loop
nbloads N - Number of punctual forces applied to the robot

Table A.11: Nomenclature of the CTCR variables used in this paper.
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