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Abstract

We present a new self-supervised approach, SelfPose3d,
for estimating 3d poses of multiple persons from multi-
ple camera views. Unlike current state-of-the-art fully-
supervised methods, our approach does not require any
2d or 3d ground-truth poses and uses only the multi-
view input images from a calibrated camera setup and 2d
pseudo poses generated from an off-the-shelf 2d human
pose estimator. We propose two self-supervised learning
objectives: self-supervised person localization in 3d space
and self-supervised 3d pose estimation. We achieve self-
supervised 3d person localization by training the model
on synthetically generated 3d points, serving as 3d per-
son root positions, and on the projected root-heatmaps in
all the views. We then model the 3d poses of all the lo-
calized persons with a bottleneck representation, map them
onto all views obtaining 2d joints, and render them using
2d Gaussian heatmaps in an end-to-end differentiable man-
ner. Afterwards, we use the corresponding 2d joints and
heatmaps from the pseudo 2d poses for learning. To al-
leviate the intrinsic inaccuracy of the pseudo labels, we
propose an adaptive supervision attention mechanism to
guide the self-supervision. Our experiments and analy-
sis on three public benchmark datasets, including Panop-
tic, Shelf, and Campus, show the effectiveness of our ap-
proach, which is comparable to fully-supervised methods.
Code is available at https://github.com/CAMMA—
public/SelfPose3D.

1. Introduction

The task of estimating 3d poses for multiple persons us-
ing a few calibrated cameras is a challenging computer vi-
sion problem [10, 18, 32, 52, 57]. A significant part of this
challenge lies in identifying and matching the same person
across different camera views. The solutions developed so
far generally use one of the two paradigms: learning-based

*co-first authors with equal contributions.

kegi.chen@unistra.fr

npadoy@unistra.fr

methods and optimization-based methods. The learning-
based methods develop novel deep-learning models and use
3d ground-truth poses for both training the models and es-
tablishing person correspondences across different views
[39, 52, 57, 59, 63]. The accurate 3d ground-truth poses
are typically generated using a dense camera system [32].
In contrast, the optimization-based methods formulate the
3d pose reconstruction as a mathematical optimization task,
primarily focusing on aligning and matching the 2d poses
across different camera views to infer 3d poses using tri-
angulation within the framework of multi-view geometry
[10, 18, 31-33, 49]. The 2d poses are estimated using off-
the-shelf 2d human pose detectors [5, 55]. These methods
apply geometric and spatial constraints in the optimization
loop to ensure the anatomical plausibility and consistency
of the inferred 3d poses. Although these methods do not
require 3d ground-truth poses, their effectiveness is some-
what limited compared to the fully-supervised learning-
based methods, see Table 1.

In this paper, we explore the possibility of combining the
strengths of both paradigms. Specifically, we investigate
whether it’s feasible to utilize a learning-based model for
multi-view, multi-person 3D pose estimation and simultane-
ously eliminate its dependence on 3D ground-truth poses by
incorporating geometric and appearance constraints, draw-
ing inspiration from optimization-based methods.

We propose, SelfPose3d, a self-supervised learning-
based approach to estimate the 3d poses of multiple persons
from a few calibrated cameras without using any 2d or 3d
ground-truth poses. Our approach requires only 2d pseudo
poses obtained using an off-the-shelf 2d pose detector [55].
Learning 3d poses without 3D ground-truth poses would re-
quire suitable supervisory signals to train a learning-based
model. We follow the learning-by-projection paradigm,
where the main idea is to learn the 3d output by compar-
ing the projected bottleneck 3d output against the 2d input
features [12].

We consider VoxelPose [57] as a learning-based method
and use its output 3d poses as a bottleneck representation.
To recover the accurate underlying 3d poses, we propose us-
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Figure 1. Our self-supervised approach, called SelfPose3d, estimates multi-person 3d poses from multi-view images and pseudo 2d poses
generated using an off-the-shelf 2d human pose estimator. We propose a self-supervised learning objective that generates differentiable and
geometrically constrained 2d joints and heatmaps across multiple views from bottleneck 3d poses. On the right, we show 3d pose outputs
from our approach along with estimated body meshes (using SMPL body mesh fitting on 3d poses [4, 41]) and the projected 2d poses.

ing differentiable multi-view 2d representations and cross-
affine-view consistency. In particular, given a multi-view in-
put image, we apply two random affine augmentations and
pass them to the VoxelPose. It generates the bottleneck 3d
poses corresponding to each affine augmented multi-view
image. To enforce the model to learn and reason in the spa-
tial dimension, we project the bottleneck 3d poses onto each
view, obtaining 2d joints, and rendering them into spatial
2d heatmap representations in an end-to-end differentiable
way. We further put tight geometric constraints by cross-
affine-view operation, i.e. the bottleneck 3d poses from the
Ist affine augmented multi-view image is mapped and ren-
dered in the 2nd affine augmented multi-view image space
and vice versa. Finally, we use the affine transformed 2d
joints and heatmaps from the 2d pseudo poses to enable the
geometrically constrained learning, with L, and Lo losses
respectively.

As the 2d pseudo poses contain non-negligible noises
(mostly due to occlusions, see Figure 3), we propose adap-
tive supervision attention to guide our model to focus on
more reliable regions. We apply two strategies towards Ly
joint loss and Lo heatmap loss; for L joint loss supervi-
sion, we employ hard attention, where we ignore the one
view with the largest absolute error for each multi-view im-
age set; for Lo heatmap loss supervision, we employ soft
attention using a lighter backbone to process each view, ob-
taining same-size attention heatmaps. During Lo loss com-
putation, we compute the element-wise product of the at-
tention heatmaps and the square error before averaging. To
avoid obtaining zero attention, which the model tends to do,
we add a regularization term, where we create tensors of all

ones as the attention heatmap labels and use L» loss as the
attention loss.

Finally, specific to our choice of learning-based method,
i.e., VoxelPose, which uses a voxel-based 3d root localiza-
tion model to localize the persons in space using ground-
truth 3d root joints (mid-hip joint), we use a simple but ef-
fective strategy to localize persons in space. Specifically,
we randomly place 3d points in 3d world-space and project
them to each view using the given camera parameters, sub-
sequently rendering the projected 2d points as heatmap rep-
resentations. This generates a synthetic dataset containing
3d points (roots) and their corresponding rendered multi-
view root-heatmaps. We then use this dataset to train a 3d
root localization model that takes multi-view root-heatmaps
as input and predicts the 3d roots as output. We further regu-
larize the model by enforcing invariant constraints between
pairs of affine augmented root-heatmaps coming from the
real multi-view input.

Evaluation on three 3d pose benchmarks datasets,
Panoptic [32], Shelf [1] and Campus [1], along with
extensive ablation studies on the Panoptic [32] dataset,
show the effectiveness of our approach. Our approach
reaches a performance comparable to learning-based fully-
supervised approaches and performs significantly better
than optimization-based approaches. Moreover, SMPL
body mesh fitting [4, 41] on our estimated 3d poses gener-
ates geometrically plausible body shapes (see Figure 1 and
Figure 4).

We summarize our contributions as follows: 1) We ad-
dress the challenging multi-person multi-view 3d person
pose estimation problem using a self-supervised approach
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without any 2d or 3d ground truth. 2) We propose self-
supervised 3d pose estimation by using a new method to re-
cover geometrically constrained 2d joints and heatmap rep-
resentations from the bottleneck 3d poses. 3) We propose
adaptive supervision attention to address the misinforma-
tion caused by the inaccurate pseudo labels. 4) We propose
self-supervised 3d root localization to estimate the 3d root
location utilizing synthetic 3d roots and the corresponding
rendered multi-view root heatmaps.

2. Related work

In this section, we briefly review current works related to
fully-supervised learning-based methods for 3d pose esti-
mation, optimization-based methods for 3D pose estima-
tion, and self-supervised learning.

Fully-supervised methods: Monocular 3d pose estimation
[22, 43, 45, 47, 50, 56, 62, 65] is an ill-posed problem due
to depth ambiguities as multiple 3d poses can produce same
2d pose projection. Having access to multi-view cameras
can alleviate such depth ambiguities achieving the state-of-
art results on benchmark datasets [23, 27, 28, 39, 51, 52, 57,
59, 63]. For single-person scenes, these approaches exploit
multi-view geometry [24] to either fuse the visual features
[27, 51], perform triangulation on heatmaps [28, 53], or use
pictorial structural models for 3d reconstruction [48, 51].
The multi-person scene offers extra complexity due to the
variability in the number of person in each view and the un-
known cross-view correspondence. Existing multi-person
multi-view approaches are based on volumetric paradigm
[52, 57, 64], or direct regression [63] based on transform-
ers [0, 58, 66]. Despite their good performance, these ap-
proaches rely on ground-truth 3d poses, which are gener-
ated using dense camera systems [32].
Optimization-based 3d pose estimation: For the multi-
person and multi-view scenario, optimization-based ap-
proaches use an off-the-shelf person-id detector across all
the views to solve the correspondence and triangulation
problem and temporal refinement along with training a re-
inforcement learning agent to find the best camera loca-
tions for 3d pose reconstruction [49]. More recent ap-
proaches utilize multi-view 3d reconstruction in the opti-
mization loop inferring 3D poses that are geometrically and
spatially coherent [10, 18, 33].

Self-supervised learning: Self-supervised learning can be
broadly classified into self-supervised representation learn-
ing and self-supervised fask learning. Self-supervised rep-
resentation learning aims to use large-scale unlabeled data
to learn generic feature representations. The recent promis-
ing results from these approaches have started to surpass
the fully-supervised baselines for various downstream tasks
[7, 11, 26, 54]. Self-supervised task learning aims to learn
a particular downstream task without using ground truth la-
bels and has been applied to 2d pose estimation [29, 30],

single-person 3d pose estimation [9, 19, 34, 36, 38], and
surface correspondences estimation [3]. Self-supervised ap-
proaches for 3d pose estimation have primarily been devel-
oped for single-person scenarios. Given 2d poses, estimated
by utilizing advances in the 2d pose estimation methods
[5, 13, 14, 21, 35, 42, 44, 46, 55, 60], these approaches
use the supervisory signals generated from multi-view ge-
ometry [34], video constraints [38], or adversarial learning
[9, 19, 36].

Our work proposes a learning-based approach to model
the 3d poses as bottleneck representations and recover ge-
ometrically constrained and spatially accurate 2d joints
and heatmap representations in an end-to-end differentiable
manner.

3. Methodology
3.1. Problem overview

Given a training dataset of multi-view images D = {x|y*}
where x € RE*3XHXW is a multi-view image set from
C' cameras with height H and width W, and y* €
REXPXJIX2 represents the 2d pseudo poses for P persons
with J joints, the goal is to learn a deep learning model that
estimates the 3d poses ) € R *7*3 of all the P persons
from the multi-view input image x. It is to be noted that
P can vary in each camera view due to occlusion and noisy
pseudo 2d pose estimation. For simplicity in the notation,
we keep the same variable P.

Fully-supervised approaches rely on 3d ground-truth
poses, while we only have 2d pseudo poses y*. Therefore,
after obtaining 3d poses ) € R¥*7*3 following traditional
approach, we propose to project the poses to each view ob-
taining 2d poses y € RE*F*7*2 and train the model from
2d pseudo poses y* € REXP*xIx2,

In the following, we present our self-supervised ap-
proach based on fully-supervised VoxelPose [57]. We first
generate pseudo 2d poses, and then propose self-supervised
3d root localization, self-supervised 3d pose estimation, and
an adaptive supervision attention to learn 3d poses in a self-
supervised manner, without modifying the original Voxel-
Pose structure.

3.2. Generating pseudo 2d poses

To circumvent the dependence on the ground-truth 2d
poses, we generate the 2d pseudo poses on the training
dataset using Mask R-CNN [25] to generate person bound-
ing boxes followed by using HRNet [55] to generate 2d
poses of each detected person bounding box. The two-stage
approach is chosen based on its state-of-art performance on
the COCO dataset [40]. We first pre-train the 2d CNN back-
bone heatmap_netoq with pseudo 2d poses.
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Figure 2. Illustrating our self-supervised SelfPose3d approaches for multi-view multi-person 3d pose estimation. Instead of using ground-
truth 3d poses for learning, we propose self-supervised learning objectives to localize 3d roots (mid-hip location of the person) and estimate
their 3d poses. We utilize a synthetic 3d roots dataset, two different affine transformations on the multi-view input images (ti,s, tis
parametrized by rotation r and scale s), a differentiable cross-affine-view 2d joints and heatmaps rendering from the bottleneck 3d poses,
and an adaptive supervision attention mechanism to automatically learn the 3d poses in world-space.

3.3. Self-supervised 3d root localization

Given 2d multi-view heatmaps from all the views and all
the joints H € RE*/x TXF estimated using a 2d back-
bone model heatmap_netsq, we use [28] to construct a dis-
cretized 3d feature volume F € R7*X*Y*Z for each joint
by un-projecting the 2d multi-view heatmaps to 3d space:
Punproj(cam, center, t, ¢): H — F, (1
To localize persons’ root (mid-hip) joint in 3d space
without using 3d ground truth, we hypothesize that
2d multi-view heatmaps of the root location H,oot €
REXTXY are sufficient for 3d root localization (see
Sec. 7.6 for verification). Then we generate the 3d feature
volume for the root location Froor € R XY *Z using Hroot
using Eq. (1), which has the same dimensions as predicted
root-volumes G. This allows us to establish a one-to-one
relationship between 3d root-volumes G and 2d multi-view
root-heatmaps H,,ot. We generate a synthetic root dataset
Droor = {G7™[Hidey i}, where G € RX V7
contains the root-volumes of randomly placed 3d points,
and HY7, . is the corresponding 2d multi-view heatmaps
generated by projecting the random 3d points to each view
using camera parameters cam. After unprojecting H;> o, to
Fro, and passing it through root_net obtaining G*¥, we
compute the L loss error as the synthetic 100t 108s 10t syn:

Liootsyn = L2 (gsv®, govnr) 2)

To further regularize root_net on the real-world 2d
multi-view root-heatmaps, we propose the root consistency
loss. Given a multi-view training image set z°, we apply
two affine transformations (¢;. _, 2 ,) with random rotation
and scaling (7, s) to generate two affine transformed multi-
view images (2!, z2). We pass z°, z! and 22 through
heatmap_netoq, construct the root feature volumes using
Eq. (1) with corresponding affine transformation parame-
ters, and finally obtain GY, G! and G2 through root_net.
Since G' and G? are invariant to the applied affine transfor-
mations ¢; , and ¢7 ., we use G¥ as the baseline to compute
the Lo loss error between G°, G and G2 as the root consis-
tency 1oss lyoot_c:

lroot,C = £2 (g07 gl) + £2(g07 g2) (3)

We train root_net by minimizing E(}( (2) and Eq. (3). We

generate the person proposals {root; };_ ; by applying non-

maximum suppression (NMS) and thresholding on G2 (G!
would also work).

3.4. Self-supervised 3d pose estimation

Given pseudo 2d poses y3;, person proposals {rooti}f:l,
and 2d multi-view heatmaps H!',H? predicted using
heatmap_netoq, we describe our self-supervised 3d pose
estimation approach.

The person proposals {rooti}il are used
P

i=1

to

generate the 3d feature volumes ie {F}}

{Punproj (Cam7 Tis t}’,s) }il and {]:12 }1’;1
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{Punproj(cam, 3, 12 ) }11'3:1 corresponding to the per-
son feature volumes for each affine augmented multi-view
input image ! {F} }Zl and
{]—'f}il are passed through pose_netsq and soft-argmax
[8] to estimate the 3d poses V!, V2 € RFP*/*3, These 3d
poses serve as a bottleneck representation.

Given the camera parameters cam and the affine trans-
formation parameters t%s, t,%)s, we project the bottleneck 3d
poses in cross-affine-view i.e. J' are projected to z? im-
age space using tf,s to generate multi-view 2d poses y? €
REXPXJIx2 and J? are projected to the 2! image space us-
ing ! | to generate multi-view 2d poses y' € RE*Fx7/x2,

We propose to render y' and y? 2d poses in the 2d
heatmap representation. The heatmap representation en-
codes the per-pixel likelihood of a body joint and has been
a vital component to enable the state-of-the-art 2d pose es-
timation approaches [55]. Generating heatmap representa-
tion has essentially been a pre-processing step where state-
of-the-art approaches quantize the 2d joints before gener-
ating the heatmap [55]. However, this quantization step
is non-differentiable and could cut the backward gradient
flow. Zhang et al. [61] show that encoding floating point 2d
joints into heatmap representation in their pre-processing
step leads to improved performance. We propose to use the
same differentiable approach in an online way to render the
projected 2d joints into the heatmap representation.

We render y! and y? into heatmap representation to gen-
erate 2d multi-view heatmaps 7!, and 72, respectively. We
apply the affine transformations ¢} ,¢2 , on the pseudo 2d
poses y3q to generate pseudo 2d multi-view joints y3 7, ya
and heatmaps H'*, H2*. Then, we compute the Lo loss be-
tween heatmaps as the pose heatmap 10SS lposc_H:

and 2, respectively.

lpose.n = Lo(HY, HY) 4+ Lo(H?, H™) “4)

After training with [,se g preliminarily, we propose to
add the L loss between 2d joints to further fine-tune the
model. For each view, we employ the Hungarian algo-
rithm [37] to obtain the optimal assignment between y and
Y54, Where the matching cost is the mean absolute error.
Based on the optimal assignment, we obtain the L; loss as
lpose_3- Then we use lpose 1 and lposc_ together to train the
whole network, where A is a manually defined weight:

lpose_J = ‘Cl (y17 y%;) + ‘Cl(yza y%:i) (5)

lpose_f}d = Zpose_H + /\Zpose_J (6)

As the network needs to reason about the 2d joint lo-
cations in spatial dimension, it implicitly solves the person
correspondence problem. Training pose_netsq with 3d pose
loss Ipose3a performs decently, but to achieve even better
results, we introduce the adaptive supervision attention.

ground truth 2d poses pseudo 2d poses "

Figure 3. Comparing ground-truth 2d poses generated by project-
ing the ground-truth 3d poses to each multi-view image and our
pseudo 2d poses generated by running HRNet human pose esti-
mation model [55] on the training dataset. Pseudo 2d poses con-
tain localization errors due to occlusion (see the red arrows), and
ground-truth 2d poses exist for partially or even entirely occluded
persons (see the blue dotted arrows).

3.5. Adaptive supervision attention

Traditional L, and L5 losses treat each label equally, which
is sub-optimal in two aspects: (1) the 2d human pose de-
tector may generate inaccurate labels due to occlusions (see
the red arrows in Figure 3); (2) the 3d-2d projection will
output 2d joints in certain views even when the person is
entirely occluded (see the blue dotted arrows in Figure 3).
Therefore, we propose to employ attentions to adaptively
guide the supervision process.

For Ly loss supervision, we use the soft attention.
Specifically, we use ResNet-18 to extract the visual fea-
tures of the views, followed by deconvolutional layers to ob-
tain the attention heatmaps A (see attn_netoq in Figure 2).
Then we compute the element-wise product of .4 and the

square error before averaging, as the new loss zgggg_H.
1
lpocen = 37 D Ai ® (Hi — M)’ ™
i=1

To avoid that A becomes zero, we add a regulariza-
tion term. We create tensors of all ones 1 as the atten-
tion heatmap labels, and compute L error as the attention
1088 latin. If lasin becomes zero, 1202 11 degrades to non-
attentive version.

lattn = £2 (Aa ]]-) (8)

For L; loss supervision, we use the hard attention. For
each input with K views, we compute the L loss of each
view, find the view with the largest loss, and ignore it when

averaging the final loss I3 1

j=argmax Li(yi,y;0q) (i=1,2,...,K) (9)
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attn 1 *

ey = K_1 lz:ilﬁl(Yiyyz',zd) (10)
i=1,i#j

In general, the final 3d pose loss 32 , . is as follows,

pose_3d
where A\ and o are manually defined weights:

tt tt tt
lgosxé,?)d - lgosg,H + Algosg,J + 0lattn (11)
We train pose_netsq by minimizing [0 5;. Our self-

supervised approach is visually described in Figure 2.

3.6. Implementation details

Training strategies For the Panoptic dataset, similar to
VoxelPose [57], we first train heatmap_netoq for 20 epochs
with pseudo 2d poses. We use the Adam optimizer with an
initial learning rate of le-4, which decreases to le-5 and
le-6 at the 10th and 15th epochs, respectively. Then, we
train the root_net for 1 epoch, followed by end-to-end joint
training of the whole network for 5 epochs using only the
Lo loss, with a learning rate of 1e-4. Afterwards, we add L,
loss to train the whole network for another 5 epochs with a
learning rate of 5e-5. A and o in Eq. (11) are set to 0.01 and
0.1 respectively.

We use the random rotation between —45° to 45° and
random scale between —0.35 to 0.35. We also apply spatial
augmentations using rand-augment [16] and rand-cutout
[17] using python image library'. The rand-augment consist

CLINNT3 CLINNY3

of “contrast-jittering”, “auto-contrast”, “equalize”, “color-
jittering”, “sharpness-jittering”, and “brightness-jittering”,
and the rand-cutout places random square boxes of sizes be-
tween 20 to 40 pixels at random locations in the image. We
use the SMPL model and optimization-based body fitting

approach’[4, 41] to estimate body mesh parameters.

Inference pipeline During inference, we input the multi-
view RGB images, and obtain the estimated 3d poses in an
end-to-end pipeline. For each view, the backbone generates
corresponding 2d heatmaps for cuboid construction. Then,
given constructed cuboid of the whole space, the root_net
predicts root joint locations of all persons. Finally, the
pose_net outputs the regressed 3d locations of each joint
for every cuboid proposal of the root joints.

4. Experiments
4.1. Datasets and evaluation metrics

We conduct experiments on three benchmark datasets:
Panoptic [32], Campus [1], and Shelf [1].

'https :
randaugment

2https : / / github . com/ JiangWenPL / multiperson /
tree/master/misc/smplify-x

/ / github . com / jizongFox / pytorch -

Methods ‘APQ; APso  AP1g0  APi50  Recallaspo MPJPE[mm]

VoxelPose [57] | 83.6 983  99.8  99.9 98.8 17.7
Lin et al. [39] 921 990 998  99.8 - 16.8
4 MvVP [63] 923 9.6 975 977 98.2 15.8
Wu et al. [59] - - - - 98.7 15.8
TEMPO [15] 89.0 991 998 999 - 147
m ACTOR [49] - - - - - 168.4
o MvPose [18] 00 297 5993 81.53 98.23 84.2
2 | SelfPose3d (ours) | 55.1 964 985 99.0 99.6 24.5

Table 1. Result on the Panoptic dataset (FS = fully-supervised, OB
= optimization-based, SS = self-supervised).

| Methods | Shelf | Campus
| | Actor1 Actor2 Actor3 Average | Actor | Actor2 Actor3 Average
Ershadieral. [20] | 933 759 948 88.0 942 929 846 906
Wu et al. [59] 993 965 973 97.7 - - - -
. MVP [63] 993 951 978 97.4 982 941 974 966
£ | VoxelPose[57] | 993 941 976 970 976 938 988 967
VoxelPose” [57] | 995 935 978 96.9 93.1 865 932 90.9
o 3DPS [2] 753 697 816 715 935 757 844 845
° MvPose [15] 988 941 978 96.9 976 933 980 963
2 | SelfPose3d | 972 90.3 97.9 95.1 | 925 82.2 89.2 87.9

Table 2. Results (in PCP) on Shelf and Campus datasets (FS =
fully-supervised, OB = optimization-based, SS = self-supervised,
* = reproduced results). SelfPose3d is trained from the pseudo 3d
poses from the Panoptic training set.

The Panoptic dataset is a large-scale dataset captured in-
side a dome environment containing multiple persons per-
forming daily social activities. We conduct extensive exper-
iments on this dataset to evaluate and assess various compo-
nents of our approach. We use the same data sequences for
training and testing as VoxelPose [57] except that our train-
ing set doesn’t include ‘160906_band3’. In other words,
we are only using 9 multi-view videos for training (the
‘160906_band3’ video is not available due to the broken im-
ages on the source website). We use the five HD camera
images (3, 6, 12, 13, 23) to train and report the performance
in our experiments. We use Average Precision (AP), Recall,
and Mean Per Joint Position Error (MPJPE) in millimeters
(mm) as evaluation metrics (higher AP and lower MPJPE
are better) [57].

The Shelf and Campus are two multi-person datasets
capturing activities in the indoor and outdoor environments,
respectively [1]. We use the same training and test split as
[1,57]. Asusedin [1, 57], we use the Percentage of Correct
Parts (PCP) as evaluation metrics for these two datasets.

Panoptic Table 1 shows the results on the challenging
Panoptic dataset. All the fully-supervised approaches uti-
lizing 2d and 3d ground-truth 3d poses reach nearly the
same performance. SelfPose3d, without using any 3d or
2d ground-truth poses, achieves comparable results to fully-
supervised approaches. Nevertheless, there still exists a gap
compared to the fully-supervised VoxelPose model (96.4 v.s
98.3 AP5q and 24.5 v.s 17.7 MPJPE). However, unlike Vox-
elPose, which relies on heat maps from all the joints to es-
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Figure 4. Qualitative results for the 3d pose estimations, 2d projections on the multi-view images, and estimated SMPL body shapes on

some example images from the Panoptic dataset

timate 3d roots, we only use root-heatmaps to do the same.
This results in the reduction of the input channel from 15
(number of keypoints) to 1 for the root_net, making our
approach computationally faster.

We also compare our approach with optimization-based
baselines from Pirinen er al. [49] and Dong er al. [18].
These non-learning-based approaches fail to capture the
multi-person interaction in a complex scene from a few
sparse multi-view cameras. Our learning-based self-
supervised approach achieves much better performance. It
is to be noted that Pirinen et al. evaluate their approach on
two multi-person sequences, whereas we evaluate on four
multi-person sequences.

Shelf and Campus We compare our approach with the
state-of-the-art methods on the Shelf and Campus dataset.
VoxelPose uses the 3d ground-truth from the Panoptic
dataset to train their approach to these datasets due to noisy
and incomplete 3d ground-truth poses. For a fair compar-
ison with VoxelPose, we use the pseudo 3d poses (by run-
ning SelfPose3d on the Panoptic training set) and train on
these two datasets in a fully supervised manner. As shown
in Table 2, our approach using pseudo 3d poses from the
Panoptic dataset also reaches the same performance as the
fully-supervised approaches.

Qualitative visualizations Figure 4 shows 3d pose esti-
mation results from our SelfPose3d approach on the chal-
lenging Panoptic dataset. Without using any 3d ground-
truth, we can see that SelfPose3d is robust to occlusions
and multiple persons while correctly identifying the person
identities across all the views (see the corresponding 2d pro-
jections in Figure 4). We also show the qualitative results
for the SMPL body mesh fitting [4, 41] on the estimated 3d
poses. All these results demonstrate both the effectiveness
and extendability of SelfPose3d. Please see the supplemen-
tary for more results.

4.2. Ablation studies

Ground-truth 2d poses v.s pseudo 2d poses As shown
in Table 3, when we use the ground-truth 2d poses in our
self-supervised framework, 3d reconstruction error signifi-
cantly reduces. To inspect the better performance when us-
ing the ground-truth 2d poses, we qualitatively compare the
ground-truth 2d poses with the pseudo 2d poses on some
example training images. Pseudo 2d poses contain local-
ization errors due to occlusion, whereas ground-truth 2d
poses exist for partially or even entirely occluded persons
as shown in Figure 3. As the ground-truth 2d poses are
generated by projecting the ground-truth 3d poses to each
multi-view image, they serve as a suitable proxy for the 3d
poses, thereby reaching a performance close to the fully-
supervised approaches. However, obtaining the ground 2d
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2dposes | AP5y APjo9 MPIPE

ground-truth | 98.8 99.6 19.9
pseudo 96.4 98.5 24.5

Table 3. The ground-truth 2d poses in our self-supervised frame-
work decrease the 3d reconstruction error and reach the perfor-
mance close to the fully-supervised approaches.

cross-affine-view consistency | affine augs | APsg APjg9 MPIPE
86.0 96.2 34.7

833 975 333
938  98.1 29.3

v
v

v

Table 4. Affine augmentations and cross-affine-view consistency
significantly improves the 3d pose reconstruction accuracy. All
three models are trained for two epochs with frozen backbone and
frozen root_net and no attention.

Lyloss | Lyloss | APy APsg  APigo  MPIPE
/

438 958 982 25.7
551 964 985 24.5

v
v

v

Table 5. Training using L; and Lo pose losses together achieves
the best performance.

poses in this way would be as challenging as acquiring the
ground-truth 3d poses.

Importance of cross-affine-view consistency and affine
augmentations We also examine the effect of affine aug-
mentations on the multi-view images and cross-affine-view
consistency when generating differentiable 2d representa-
tions from the bottleneck 3d poses. As shown in Table 4, the
affine augmentations and cross-affine-view consistency sig-
nificantly improve the 3d pose reconstruction as they pro-
vide necessary geometric constraints during training.

Analysis of L, and L; pose losses We conduct exper-
iments to analyze the use of L; and Ly pose losses. As
shown in Table 5, using Lo and L, losses together can ob-
tain better results than using Lo loss solely. Also, using L
loss solely doesn’t converge due to the label noises.

Importance of adaptive supervision attention We also
examine the necessity of adaptive supervision attention. Ta-
ble 6 shows that supervision attention for both L; and Lo
losses are necessary for training.

Influence of different 2d human pose estimation models
Finally, we show how pseudo 2d poses generated from dif-
ferent 2d human pose estimation models affect the perfor-
mance. As shown in Table 7, models that perform well on
the COCO dataset [40] also generate better pseudo 2d poses

Ly loss attention | Ly loss attention | APy5  APsg  APjgg MPIPE

325 941 97.8 28.5
v 379 958  98.0 26.3
v 474  96.6 982 25.0
v 551 964 985 24.5

v

Table 6. Training using L, and Lo loss supervisions together
achieves the best performance.

Method for 2d Keypoint AP on

‘AP50 APyo0 MPIPE

pseudo pose generation COCO-val[40]
Keypoint R-CNN (R-101) [25] | 89.2  97.6 31.9 66.1
HRNet (w48 384x288) [55] 938  98.1 29.3 76.3

Table 7. Comparing different models for generating pseudo 2d
poses. Models that perform well on the COCO dataset [40] also
generate better pseudo 2d poses for the Panoptic dataset, helping
SelfPose3d to achieve better performance.

for the Panoptic dataset, helping SelfPose3d to achieve bet-
ter performance.

5. Conclusion

We present a self-supervised approach, called SelfPose3d,
to address the challenging problem of multi-view multi-
person 3d human pose estimation. Unlike current state-of-
the-art methods that use difficult-to-acquire 3d ground-truth
poses to train the model, SelfPose3d requires only multi-
view input images and an off-the-shelf 2d human pose de-
tector. We propose a novel self-supervised learning objec-
tive that aims to recover 2d joints and heatmaps under dif-
ferent affine transformations from the bottleneck 3d poses.
We further improve the performance of our approach by in-
tegrating adaptive supervision attention to address the mis-
information caused by the inaccurate 2d pseudo labels from
the off-the-shelf 2d human pose detector. We conduct ex-
tensive experiments on large-scale benchmark datasets, as-
sess various components of our approach, and show that
SelfPose3d reaches a performance on par with the well-
established fully-supervised baselines. We visualize the 3d
pose reconstruction in the complex multiple-person scenes
and show that body shape meshes fitted on the estimated
3d poses look geometrically plausible under different view-
points.
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